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Abstract. Detecting malicious URLs is an essential task in network
security intelligence. In this paper, we make two new contributions be-
yond the state-of-the-art methods on malicious URL detection. First,
instead of using any pre-defined features or fixed delimiters for feature
selection, we propose to dynamically extract lexical patterns from URLs.
Our novel model of URL patterns provides new flexibility and capabil-
ity on capturing malicious URLs algorithmically generated by malicious
programs. Second, we develop a new method to mine our novel URL
patterns, which are not assembled using any pre-defined items and thus
cannot be mined using any existing frequent pattern mining methods.
Our extensive empirical study using the real data sets from Fortinet, a
leader in the network security industry, clearly shows the effectiveness
and efficiency of our approach.

1 Introduction

A web threat refers to any threat that uses the internet to facilitate cyber-
crime [15]. In practice, web threats may use multiple types of malware and
fraud. A common feature is that web threats all use HTTP or HTTPS proto-
cols, though some threats may additionally use other protocols and components,
such as links in emails or IMs, or malware attachments. Through web threats,
cyber-criminals often steal private information or hijack computers as bots in
botnets. It has been well realized that web threats lead to huge risks, including
financial damages, identity thefts, losses of confidential information and data,
thefts of network resources, damaged brand and personal reputation, and ero-
sion of consumer confidence in e-commerce and online banking. For example,
Gartner [4] estimated that phishing attacks alone caused 3.6 million adults los-
ing 3.2 billion US dollars in the period from September 2006 to August 2007,
and the global cost of spam in 2007 was about 100 billion US dollars. The cost of
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spam management in the U.S. alone was estimated 71 billion dollars in 2007 [5].
In Web 2.0 applications, users are even more vulnerable to web threats due to
the increasing online interactivity.

Although the exact adversary mechanisms behind web criminal activities
may vary, they all try to lure users to visit malicious websites by clicking a
corresponding URL (Uniform Resource Locator). A URL is called malicious
(also known as black) if it is created in a malicious purpose and leads a user
to a specific threat that may become an attack, such as spyware, malware, and
phishing. Malicious URLs are a major risk on the web. Therefore, detecting
malicious URLs is an essential task in network security intelligence.

In practice, malicious URL detection faces several challenges.

– Realtime detection. To protect users effectively, a user should be warned
before she/he visits a malicious URL. The malicious URL detection time
should be very short so that users would not have to wait for long and suffer
from poor user experience.

– Detection of new URLs. To avoid being detected, attackers often create new
malicious URLs frequently. Therefore, an effective malicious URL detection
method has to be able to detect new, unseen malicious URLs. In practice,
the capability of detecting new, unseen malicious URLs is of particular im-
portance, since emerging malicious URLs often have high hit counts, and
may cause serious harms to users.

– Effective detection. The detection should have a high accuracy. When the
accuracy is of concern, the visit frequency of URLs should also be considered.
From a user’s point of view, the accuracy of a detection method is the number
of times that the detection method classifies a URL correctly versus the
number of times that the method is consulted. Please note that a URL
may be sent to a detection method multiple times, and should be counted
multiple times in the accuracy calculation. Therefore, detecting frequently
visited URLs correctly is important.
Similarly, it is highly desirable that a malicious URL detection method
should have a high recall so that many malicious URLs can be detected.
Again, when recall is calculated in this context, the visit frequency of URLs
should be considered.

To meet the above challenges, the latest malicious URL detection methods
try to build a classifier based on URLs. A foundamental assumption is that a
clean training sample of malicious URL and good URL samples is available. Such
methods segment a URL into tokens using some delimiters, such as “/” and “?”,
and use such tokens as features. Some methods also extract additional features,
such as WHOIS data and geographic properties of URLs. Then, machine learning
methods are applied to train a classification model from the URL sample.

Although the existing works report good performance on classification of ma-
licious URLs by using machine learning algorithms, the result of these machine
learning algorithms is not human interpretable. However, in real applications,
the human interpretable malicious URL patterns are highly desirable because:



Title Suppressed Due to Excessive Length 3

1. In malicious URL detection, people may not only want to catch new ma-
licious URLs, but also be interested in identifying the campaigns behind
the malicious activities. For example, in anti-phishing system, detecting
a URL is phishing is usually not enough, how to identify the phishing
targets is also very important. The URL patterns can exactly play such
a role to help people analyze the malicious activities. For example, the
URL patterns “*paypal*.cmd.*/*/login.php”, “*paypal*.webscr.*”,
and “*paypal*.cmd.*/webscr*” clearly indicate the phishing campaigns
aims at paypal. The patterns can be further used to analyze the malicious
activities trends.

2. In real applications, the training data used to train the detection model may
be biased and contain some noises. In such cases, the human intervention
is very important. The human interpretable URL patterns can be easily
modified and adapted by network security experts, which can highly prompt
the detection quality.

Thus, in this paper, we introduce such a URL pattern mining algorithm, and
we make two new contributions beyond the state-of-the-art methods on mali-
cious URL detections. First, instead of using any pre-defined features or fixed
delimiters for feature selection, we propose to dynamically extract lexical pat-
terns from URLs. Our novel model of URL patterns provides new flexibility and
capability on capturing malicious URLs algorithmically generated by malicious
programs. The patterns extracted by our algorithm are human interpretable, and
these patterns can help people analyze the malicious activities. For example, our
method can extract patterns like “*paypal.*.cgi.*/login.php” where ∗ is a
wildcard symbol. Second, we develop a new method to mine our novel URL
patterns, which are not assembled using any pre-defined items and thus cannot
be mined using any existing frequent pattern mining methods. Our extensive
empirical study using the real data sets from Fortinet, a leader in the network
security industry, clearly shows the effectiveness and efficiency of our approach.

The rest of the paper is organized as follows. In Section 2, we review the
state-of-the-art methods and point out how our method is different from them.
We discuss our lexical feature extraction method in Section 3, and devise our
pattern mining method in Section 4. We report our empirical study results in
Section 5, and conclude the paper in Section 6.

2 Related Work

The existing work on malicious URL detection can be divided into three cate-
gories, namely the blacklist based methods, the content based methods, and the
URL based methods.

The blacklist based methods maintain a blacklist of malicious URLs.
During detection, a URL is reported as malicious if it is in the
blacklist. Most of the current commercial malicious URL detection sys-
tems, such as Google Safebrowsing (http://www.google.com/tools/firefox/
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safebrowsing/index.html), McAfee SiteAdvisor (http://www.siteadvisor.
com), Websense ThreatSeeker Network (http://www.websense.com/content/
threatseeker.asp), and Fortinet URL lookup tool (http://www.fortiguard.
com/ip_rep.php), use some blacklist based methods. In such detection meth-
ods, the blacklists may be created and maintained through various techniques,
such as manual labeling, honeyports, user feedbacks and crawlers. The blacklist
based methods are simple and have a high accuracy. At the same time, they are
incapable of detecting new, unseen malicious URLs, which often cause big harms
to users.

The content based methods analyze the content of the corresponding web page
of a URL to detect whether the URL is malicious. Web page content provides rich
features for detection. For example, Provos et al. [14] detected malicious URLs
using features from the content of the corresponding URLs, such as the presence
of certain javascript and whether iFrames are out of place. Moshchuk et al. [11]
used anti-spyware tools to analyze downloaded trojan executables in order to
detect malicious URLs. The content based methods are useful for offline detec-
tion and analysis, but are not capable of online detection. For online detection,
the content based methods often incur significant latency, because scanning and
analyzing page content often costs much computation time and resource.

Most recently, the URL based methods use only the URL structures in detec-
tion, even without using any external information, such as WHOIS, blacklists or
content analysis. McGrath and Gupta [10] analyzed the differences between nor-
mal URLs and phishing URLs in some features, such as the URL length, domain
name length, number of dots in URLs. Such features can be used to construct a
classifier for phishing URL detection. Yadav et al. [16] examined more features,
such as the differences in bi-gram distribution of domain names between normal
URLs and malicious ones. Their study confirmed that normal URLs and mali-
cious ones indeed have distinguishable differences in the features extracted from
URLs themselves alone. Their study, however, did not propose any classifier for
malicious outlier detection. Ma et al. [8] applied machine learning methods to
construct classifiers for malicious URL detection. They used two kinds of fea-
tures. The host-based features are related to the host information such as IP
addresses, WHOIS data, and the geographic properties of the URLs. Those fea-
tures are highly valuable for classification, but they may cause non-trivial latency
in detection. To this extent, their method is not completely URL based. The sec-
ond group of features they used is the lexical features, which include numerical
information, such as lengths of features, number of delimiters, and existence of
tokens in the hostname and in the path of the URL. Le et al. [7] showed that
using only the lexical features still can retain most of the performance in phish-
ing URL detection. Kan and Thi [6] also conducted URL classification based on
lexical features only, but their work tries to assign categories to normal URLs,
such as news, business, and sports, instead of detecting malicious URLs from
normal ones.

Our method proposed in this paper is URL based, and uses only the lexical
features. Although Ma et al. [8] and Le et al. [7] also use lexical features to
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build classifier to detect malicious URLs, they don’t explicitly extract the hu-
man interpretable URL patterns which are highly desirable in real applications.
The URL patterns are very valuable because they can help people anaylze the
malicious activities, for example, they can be used to identify the malicious cam-
paigns behind the malicious activities, and be combined with human’s knowledge
to prompt the detection performance.

Our method also differs from [8, 7] on how to select the lexical features. In
the previous studies [8, 7], the lexical features are the tokens in the URL strings
delimited by characters “/”, “?”, “.”, “=”, “-”, and “ ”. Tokens extracted using
those delimiters may not be effective. For example, the previous method may
not be able to identify pattern “*biz*main.php” from malicious URL segments
“mybiz12832main1.php” and “godbiz32421main2.php”. To tackle the problem,
we develop a method to extract lexical features automatically and dynamically.
Our method is more general than the existing methods in lexical feature extrac-
tion, and can use more flexible and informative lexical features.

3 Extracting Lexical Features

A URL can be regarded as a sequence of URL segments, where a URL seg-
ment is a domain name, a directory name, or a file name. As discussed in Sec-
tion 2, the previous studies [8, 7] often treat a segment as a token in mining
patterns and extracting features for malicious URL detection. Simply treat-
ing each URL segment as a token, however, may limit the detection of mali-
cious URLs. For example, suppose we have malicious URLs containing segments
“mybiz12832main1.php” and “lucybiz32421main2.php”. If we treat a segment
in whole as a token, we cannot extract the meaningful common substrings “biz”
and “main” in those two segments.

In this section, we discuss how to extract the common substrings as lexical
features in URLs that may be generated by the same malicious program. Such
patterns will be the building blocks later for malicious URL detection. We start
from URL segments, and then extend to segment sequences and URLs.

3.1 URL Segment Patterns

A URL segment is a string of predefined characters, as specified in the URL
specification (http://www.w3.org/Addressing/URL/url-spec.txt). We define
a URL segment pattern as follows.

Definition 1 (Segment pattern). A URL segment pattern (or a segment
pattern for short) is a string s = c1 · · · cl, where ci (1 ≤ i ≤ l) is a normal
character defined by the URL specification, or ci = ∗ where ∗ is a wildcard meta-
symbol. Denote by |s| = l the length of the segment pattern, and by s[i] = ci the
i-th character in the segment pattern. We constrain that for any i (1 ≤ i < l), if
ci = ∗, then ci+1 6= ∗.

For two URL segment patterns s = c1 · · · cl and s′ = c′1 · · · c′m, s is said to
cover s′, denoted by s w s′, if there is a function f : [1,m]→ [1, l] such that
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1. f(j) ≤ f(j + 1) for (1 ≤ j < m); and
2. for any i (1 ≤ i ≤ l), if ci 6= ∗, then there exists a unique j (1 ≤ j ≤ m)

such that f(j) = i, and c′j = ci.

Trivially, a URL segment itself is a segment pattern that contains no “*”
symbols.

Example 1 (URL segment pattern). “*biz*main*.php” is a segment pattern.
It covers URL segment “godbiz32421main2.php”. Segment pattern “abc*xyz”
does not cover “xyzabc”, and “abc*abc” does not cover “abc”.

The cover relation on all possible segment patterns form a partial order.

Property 1. Let S be the set of all possible segment patterns. w is a partial order
on S.

Proof. (Reflexivity) s w s holds for any segment pattern s by setting f(i) = i
for 1 ≤ i ≤ |s|.

(Antisymmetry) Consider two segment patterns s = c1 · · · cl and s′ =
c′1 · · · c′m. Suppose s w s′ under function f : [1,m] → [1, l] and s′ w s under
function f ′ : [1, l]→ [1,m]. We show ci = c′i where 1 ≤ i ≤ m by induction.

(The basis step) If c1 6= ∗, then there exists a unique j1 (1 ≤ j1 ≤ m) such
that f(j1) = 1 and c′j1 = c1. If j1 > 1, then f(j1−1) < f(j1) = 1, a contradiction
to the assumption that f : [1,m]→ [1, l]. Thus, c1 = c′1.

If c1 = ∗, we assume c′1 6= ∗. Then, there exists a unique i1 (1 ≤ i1 ≤ l) such
that f ′(i1) = 1 and ci1 = c′1. Since c1 = ∗ 6= c′1, i1 > 1. This leads to f ′(i1−1) <
f(i1) = 1, and a contradiction to the assumption that f ′ : [1, l]→ [1 : m]. Thus,
c′1 = ∗ = c1.

(The inductive step) Assume that ci = c′i for 1 ≤ i ≤ k (1 ≤ k < m). We
consider two cases. First, if ck 6= ∗ and thus c′k 6= ∗, then, using an argument
similar to that in the basis step, we can show c′k+1 = ck+1. Second, if ck = c′k = ∗,
then ck+1 6= ∗ and c′k+1 6= ∗. There exists a unique jk+1 (k + 1 ≤ jk+1 ≤ m
such that f(jk+1) = k+ 1 and c′jk+1

= ck+1. If jk+1 > k+ 1, then f(jk+1 − 1) <

f(jk+1) = k+ 1. This leads to a contradiction to the assumption that ci = c′i for
1 ≤ i ≤ k and ck 6= ∗. Thus, jk+1 = k + 1, and ck+1 = c′k+1.

(Transitivity) Consider three URL segment patterns s = c1 · · · cl, s′ =
c′1 · · · c′m, and s′′ = c′′1 · · · c′′n. Suppose s w s′ under function f : [1,m] → [1, l]
and s′ w s′′ under function f ′ : [1, n] → [1,m]. We can construct a function
g : [1, n] → [1, l] by g = f ◦ f ′. For any 1 ≤ i < n, since f ′(i) ≤ f ′(i + 1),
f(f ′(i)) ≤ f(f ′(i+1)), that is, g(i) ≤ g(i+1). Moreover, for any j (1 ≤ j ≤ l), if
cj 6= ∗, then there exists a unique k (1 ≤ k ≤ m) such that c′k = cj and f(k) = j.
Since c′k 6= ∗, there exists a unique i (1 ≤ i ≤ n) such that c′′i = c′k = cj and
f ′(i) = k. Thus, f(f ′(i)) = f(k) = j. Under function g, s w s′′.

Definition 2 (Maximal segment patterns). Given a set of URL segments
or URL segment patterns S = {s1, . . . , sn}, a URL segment pattern s covers S,
denoted by s w S, if for each si ∈ S, s w si.
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Segment pattern s is called a maximal segment pattern with respect to S
if s w S and there exist no other segment pattern s′ w S such that s w s′ and s 6=
s′. Denote by MAX(S) = {s|s is a maximal segment pattern with respect to S}
the set of maximal segment patterns.

Example 2 (Maximal segment patterns). Consider S = {abcabc, abcaabc}. Seg-
ment pattern “abc*abc” is maximal with respect to S. Although ab*abc w S,
it is not a maximal segment pattern, since ab*abc w abc*abc and ab*abc 6=
abc*abc.

Interestingly, given a set of segments, there may exist more than one maximal
segment patterns. For example, “abca*bc” is another maximal segment pattern
with respect to S. MAX(S) = {abc*abc, abca*bc}.

3.2 Finding Maximal Segment Patterns

Given a set S of segments extracted from a set of malicious URLs, how can
we compute MAX(S)? If S contains only two segments, the problem is similar
to the longest common subsequence (LCS) problem and the longest common
substring problem [9, 1]. Following from the known results on those problems,
we can use dynamic programming to compute the maximal segment patterns.

Let D be a set of segment patterns, we define a function Ω(D) = {s|s ∈
D,@s′ ∈ D, s w s′, s 6= s′}, which selects the maximal segment patterns from a
set. Moreover, for a segment s = c1 · · · cl, we write the prefix s[1, i] = c1 · · · ci for
1 ≤ i ≤ l. Trivially, when i > l, s[1, i] = s.

We also write s � c a sequence where a character c is appended to the end of
s. Specifically, if a * is appended to a sequence ended by a *, only one * is kept
at the end of the sequence. For example, abc � * = abc* and abc* � * = abc*.
Moreover, for a set of segment patterns D, we write D � c = {s � c|s ∈ D}.

Given two URL segments s and s′, denote by MAXs,s′(i, j) the set of maxi-
mal segment patterns in the set {s[1, i], s′[1, j]}. Apparently, MAXs,s′(|s|, |s′|) =
MAX({s, s′}). We can compute the function using dynamic programming by

MAXs,s′(i, j) =


∅ if i = 0 or j = 0
Ω({MAXs,s′(i− 1, j − 1) � s[i],
MAXs,s′(i− 1, j) � ∗,MAXs,s′(i, j − 1) � ∗}) if s[i] = s′[j]
Ω({MAXs,s′(i− 1, j),MAXs,s′(i, j − 1)}) � ∗ if si 6= s′j

Consider two segment patterns s and s′. Without loss of generality, assume
|s| ≥ |s′|. At each step of computing MAXs,s′(i, j), function Ω is called once,
which takes time O(|D|2(i+j)), where D is the set of segment patterns where the
maximal segment patterns are derived. Since D is often small, at most 2 in our
experiments, we treat |D| as a constant. Thus, the complexity of the dynamic
programming algorithm is

∑
1≤i≤|s|,1≤j≤|s′|(i+ j) = O(|s|2|s′|).

To compute the maximal segment patterns on a set of URL segments, we
have the following result.
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Theorem 1. Let S = {s1, . . . , sn} (n > 2) be a set of URL segments.

MAX(S) = Ω(
⋃

s∈MAX(S−{sn})

MAX({sn, s}))

Proof. Consider a segment pattern s′ ∈ MAX(S). Apparently, s′ w sn
and s′ w S − {sn}. Thus, there exists at least one segment pattern s′′ ∈
Ω(

⋃
s∈MAX(S−{sn})MAX({sn, s}) such that s′ w s′′. For each segment pat-

tern s′′ ∈ Ω(
⋃

s∈MAX(S−{sn})MAX({sn, s}), s′′ w S. If s′ 6= s′′, then s′ is not

a maximal segment pattern. This contradicts to the assumption s′ ∈MAX(S).
Therefore, MAX(S) ⊆ Ω(

⋃
s∈MAX(S−{sn})MAX({sn, s}). Moreover, due to

the Ω function, MAX(S) = Ω(
⋃

s∈MAX(S−{sn})MAX({sn, s}).

To avoid some segment patterns that are too general to be useful in mali-
cious URL detection, such as “*a*”, we constrain that the non-* substrings in
a segment pattern must have at least 3 characters of numbers or letters.

3.3 URL Segment Sequential Patterns

We can treat a URL as a sequence of URL segments.

Definition 3 (URL Segment sequential pattern). A URL segment se-
quential pattern (or sequential pattern for short) u = 〈s1, . . . , sl〉 is a se-
quence of URL segment patterns. |u| = l is the length of the sequential pattern.

For two sequential patterns u = 〈s1, . . . , sl〉 and u′ = 〈s′1, . . . , s′m〉, u is said
to cover u′, denoted by u w u′, if m ≥ l and there is a function f : [1, l]→ [1,m]
such that si w s′f(i) (1 ≤ i ≤ l), and f(j) < f(j + 1) (1 ≤ j < l).

Please note that, to keep our discussion simple, we do not have a wildcard
meta-symbol at the sequential pattern level. When u covers u′, the segment
patterns in u cover the segment patterns in a subsequence of u′ one by one.

Example 3 (URL segment sequential pattern). 〈20207db*.deanard.*, file4,
get*.php〉 is a segment sequential pattern. It covers 〈20207db09.deanard.com,
dir, file4, get2.php〉. Sequential pattern 〈20207db*, *deanard*〉 does not
cover 〈20207db09.deanard.com〉.

Similar to segment patterns, the cover relation on all possible sequential
patterns form a partial order.

Property 2. Let U be the set of all possible URL segment sequential patterns. w
is a partial order on U .

Proof. (Reflexivity) u w u holds for any sequential pattern u by setting f(i) = i
for 1 ≤ i ≤ |u|.

(Antisymmetry) Consider two sequential patterns u = 〈s1, . . . , sl〉 and u′ =
〈s′1, . . . , s′m〉. Suppose u w u′ under function f : [1, l] → [1,m] and u′ w u
under function f ′ : [1,m] → [1, l]. Apparantly, |u| = |u′|, otherwise the longer
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sequential pattern cannot cover the shorter sequential pattern. Since f(i) <
f(i+ 1) and |u| = |u′|, for any 1 ≤ i ≤ l, f(i) = i, si w s′i. In the same way, for
any 1 ≤ i ≤ m, s′i w si. By the antisymmetry in property 1, si = s′i.

(Transitivity) Consider three sequential patterns u = 〈s1 . . . sl〉, u′ =
〈s′1 . . . s′m〉, and u′′ = 〈s′′1 . . . s′′n〉. Suppose u w u′ under function f : [1, l]→ [1,m]
and u′ w u′′ under function f ′ : [1,m] → [1, n]. We can construct a function
g : [1, l] → [1, n] by g = f ◦ f ′. For any 1 ≤ i < l, since f(i) < f(i + 1),
f ′(f(i)) < f ′(f(i + 1)), that is, g(i) < g(i + 1). Moreover, for any 1 ≤ i ≤ l,
si w s′f(i), and for any 1 ≤ f(i) ≤ m, s′f(i) w s′′f ′(f(i)), by the transitivity in

property 1, si w s′′f ′(f(i)). Under function g, u w u′′.

We can also define maximal sequential patterns.

Definition 4 (Maximal URL segment sequential pattern). Given a set of
URL segment sequential patterns U = {u1, . . . , un}, a URL segment sequential
pattern u is said to cover U , denoted by u w U , if for each ui ∈ U , u w ui

A URL segment sequential pattern u is called a maximal URL segment
sequential pattern (or maximal sequential pattern for short) with respect
to U if u w U and there exists no other sequential pattern u′ w U such that
u w u′ and u 6= u′.

Example 4 (Maximal sequential patterns). Consider U = {〈abcabc,
index〉, 〈abcaabc,index〉}. Sequential pattern 〈abc*abc,index〉 is maximal
with respect to U . Although 〈ab*abc,index〉 w U , it is not maximal, since
〈ab*abc,index〉 w 〈abc*abc,index〉.

Given a set of sequential patterns, there may exist more than one maximal se-
quential patterns. For example, 〈abca*bc,index〉 is another maximal sequential
pattern with respect to U .

Similar to mining maximal segment patterns, we can use dynamic program-
ming to compute maximal sequential patterns. We denote by MAX(U) the set
of maximal sequential patterns with respect to a set of sequential patterns U .

Let E be a set of sequential patterns, we define a function Ω(E) = {u|u ∈
E,@u′ ∈ E, u w u′, u 6= u′}, which selects the maximal sequential patterns from
a set. Moreover, for a sequential pattern u = 〈s1, . . . , sl〉, we write the prefix
u[1, i] = 〈s1 · · · si〉 for 1 ≤ i ≤ l. Trivially, when i > l, u[1, i] = u. We also write
u[i] = si and u′[i] = s′i.

Given two URL sequential patterns u and u′, denote by seqMAXu,u′(i, j)
the set of maximal sequential patterns in the set {u[1, i], u′[1, j]}. Apparently,
seqMAXu,u′(|u|, |u′|) = seqMAX({u, u′}). We can compute the function by

seqMAXu,u′(i, j) =


∅ if i = 0 or j = 0⋃
s∈MAX(u[i],u′[j])

(seqMAXu,u′(i− 1, j − 1), s) if MAX(u[i], u′[j]) 6= ∅

Ω({seqMAXu,u′(i− 1, j), seqMAXu,u′(i, j − 1)}) if MAX(u[i], u′[j]) = ∅

To compute the maximal sequential pattern on a set of segment sequences,
we have the following result.
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Theorem 2. Let U = {u1, . . . , un} (n > 2) be a set of sequential patterns.
Then, seqMAX(U) = seqMAX(seqMAX(U − {un}) ∪ {un}).

Proof. Consider a sequential pattern u′ ∈ seqMAX(U). Apparently, u′ w un
and u′ w U − {un}. Thus, there exists at least one sequential pattern u′′ ∈
seqMAX(seqMAX(U − {un}) ∪ {un}) such that u′ w u′′. For each segment
pattern u′′ ∈ seqMAX(seqMAX(U − {un}) ∪ {un}), u′′ w U . If u′ 6= u′′,
then u′ is not a maximal sequential pattern. This contradicts to the assump-
tion u′ ∈ seqMAX(U). Therefore, seqMAX(U) ⊆ seqMAX(seqMAX(U −
{un}) ∪ {un}). Moreover, due to the seqMAX function, seqMAX(U) =
seqMAX(seqMAX(U − {un}) ∪ {un}).

3.4 URL Patterns

Although we can treat a URL as a sequence of URL segment patterns, due to the
big differences among the roles of domain name, directories, and file name in a
URL, we clearly distinguish those three parts in our definition of URL patterns.

Definition 5 (URL Pattern). A URL pattern is a tuple p = (h, d, f), where
h is a URL segment pattern corresponding to the domain name, d = 〈s1, . . . , sn〉
is a URL sequential pattern corresponding to the directory path, and f is a URL
segment pattern represent the file name.

For two URL pattern p = (h, d, f) and p′ = (h′, d′, f ′), p is said to cover p′,
denoted by p w p′, if h covers h′, f covers f ′, and d covers d′.

Definition 6 (Maximal URL pattern). Given a set of URL patterns P =
{p1, . . . , pn}, a URL pattern p covers P , denoted by p w P , if for each pi ∈ P ,
p w pi.

A URL pattern p is called a maximal URL pattern with respect to P if
p w P and there exists a URL pattern p′ w P such that p w p′ and p 6= p′. We
denote by urlMAX(P ) the set of maximal URL patterns with respect to P .

Based on all the previous discussion and Theorems 1 and 2, we have the
following result immediately.

Theorem 3. Let P = {p1, . . . , pn} (n > 1) be a set of URL patterns.
urlMAX({p1, p2}) = {(h, d, f)|h ∈ MAX(h1, h2), d ∈ seqMAX(d1, d2), f ∈
MAX(f1, f2)}. When n > 2, urlMAX(P ) = urlMAX(urlMAX(P − {pn}) ∪
pn).

4 Mining Patterns

In Section 3, we discuss how to extract patterns as features from a set of URLs
generated by a common malicious mechanism. Given a set of malicious URLs
that are generated by different mechanisms, how can we extract meaningful
patterns for detection? One fundamental challenge is that URL patterns are
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generated from URLs, and cannot be assembled using any pre-defined elements,
such as a given set of items in the conventional frequent pattern mining model.
Thus, all existing frequent pattern mining methods cannot be used.

In this section, we develop new methods to mine URL patterns. We start
with a baseline method that finds all URL patterns. Then, we present a heuristic
method that finds some patterns that are practically effective and efficient.

4.1 The Complete Pattern Set Algorithm (CA)

As discussed, a URL pattern can be generated by a set of URLs. Given a set
of URLs, the complete set of URL patterns are the maximal URL patterns
from different subsets of the URLs. To search the complete set of URL patterns
systematically, we can conduct a bottom-up search, as illustrated in Figure 1. We
first compute the maximal URL patterns on every pair of malicious URLs, and
add the generated valid URL patterns into a result pattern set. Then, we further
compute the maximal patterns on the resulting URL patterns, and repeat this
process until we can not generate new URL patterns. The pseudocode is shown in
Algorithm 1, and the algorithm is called the complete pattern set algorithm
(CA).

Depending on different situations, the definition of “valid patterns” may be
different. In our system, the patterns contain only “*” (empty) or only a full
domain name are invalid, because the former are too general, and the latter
appear only in one malicious domain, and are ineffective in detecting unseen
URLs. Some other heuristics can also be applied. For example, pattern contains
only a file type like “.jpg” should be removed.

We formally justify the correctness of the algorithm.

Theorem 4. Algorithm 1 outputs the complete set of maximal URL patterns.

Proof. Apparently, every pattern output by Algorithm 1 is a maximal pattern
on some subsets of P . Let p be a valid maximal URL pattern generated from
a subset P ′ ⊆ P . We only need to show that Algorithm 1 outputs p. Since p is
valid, every patterns p′ such that p w p′ must also be valid.

We show that a valid pattern generated from a subset of l URLs will be
included into A in the algorithm no later than the (l− 1)-th iteration by math-
ematical induction.
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Algorithm 1 Complete Pattern Set Algorithm (CA)

P ← malicous URLs set; . P is the training URL pattern set
A← ∅; . A is the result URL pattern set
repeat

R← ∅; . R is a intermediate URL pattern set
for all pattern p ∈ P do

for all pattern p′ ∈ P − {p} do
pattern set Q← urlMAX({p, p′});
if Q is valid and Q /∈ A then

R← R ∪Q, A← A ∪Q;
end if

end for
end for
P ← R;

until R = ∅;
return A;

(The basis step) The first iteration generates all valid patterns on every pair
of URLs.

(The inductive step) Assume that all valid patterns generated by subsets
of k URLs are included into P in the algorithm in no later than the (k − 1)-th
iteration. Consider a valid pattern p that is generated by a subset of (k+1) URLs
P ′ = {r1, . . . , rk, rk+1}. Clearly, the patterns p1 generated from {r1, . . . , rk} and
p2 generated from {r2, . . . , rk+1} are generated in the same iteration. If pattern
p has not been generated using p1 and p2 in a previous iteration, it is generated
in the k-th iteration.

The complexity of the CA algorithm is exponential to the number of input
malicious URLs.

4.2 The Greedy Selection Algorithm (GA)

In real applications, the size of training data (malicious URLs) can be huge. The
CA algorithm can be very costly. In the CA algorithm, we compare every mali-
cious URL with all other URLs to extract all patterns. Consequently, one URL
may be covered by many URL patterns. Although those patterns are different,
they may heavily overlap with each other. In other words, there may be many
redundant features in the result URL pattern set.

In our real data sets, the major features of a URL can be captured well
after a small number of patterns are extracted. Moreover, one malicious URL
generation mechanism is often represented by a non-trivial number of URLs in
the training data set. Thus, we develop a greedy algorithm. In this algorithm,
we join two URL patterns p1 and p2 only if the quality of the resulting pattern
is better than that of p1 and p2. To avoid joining a URL many times, which may
result in extracting too much redundant information, we remove a URL once
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Algorithm 2 Greedy Pattern Selection Algorithm

P ← malicous URLs set; . P is the training URL pattern set
A← ∅; . A is the result URL pattern set
repeat

R← ∅; . R is a intermediate URL pattern set
for all pattern p ∈ P do

for all pattern p′ ∈ P − {p} do
pattern set Q← urlMAX({p, p′});
for all pattern q ∈ Q do

if q is valid and q /∈ A and Sc(q) > Max(Sc(p), Sc(p′)) then
. Sc(q) is the quality of pattern q

R← R ∪ {q}, A← A ∪ {q};
P ← P − {p, p′};

end if
end for

end for
end for
P ← R;

until R = ∅;
return A;

it generates a valid URL pattern. This algorithm is called the greedy selection
algorithm (GA), as shown in Algorithm 2.

4.3 Indexing

The space of malicious URLs is very sparse. Most of the URLs do not share any
common features. Thus, we can build an index on the URLs to facilitate similar
the retrieval of similar URLs so that meaningful URL patterns can be mined.

In the system, we build an inverted index ILfile on the trigrams of file
names in malicious URLs. Similarly, we also build an inverted index ILdir on the
trigrams of directory names, and an inverted index ILdomain on the trigrams of
domain names. We also build the corresponding inverted lists on white URL data,
including ILwfile, ILwdir, and ILwdomains. To avoid many meaningless trigrams
such as “jpg”, “com”, “htm”, and “www”, we remove the top 2% most frequent
trigrams of white data set from the malicious trigram inverted indexes. This step
is similar to the well recognized stop-word removal in information retrieval. After
building the indexes, when running our algorithms, we only need to compute the
common pattern between those URLs sharing at least one trigram.

Consequently, the space complexity of the inverted index is linear to the
malicious URLs. Since we do not need to store many patterns in main memory,
the memory usage of our algorithm is very moderate.

4.4 Quality of URL Patterns

Many URL patterns are generated from a large training data set of malicious
URLs. Thus, we need a method to assess the quality of the URL patterns and
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select the effective ones. Based on the assumption that an effective pattern in
malicious URL detection should appear frequently in different malicious domains
and be infrequent in the white websites, we use two criteria: the malicious fre-
quency and white frequency to estimate the quality of them. Please note that
our white data set still may contain malicious URLs.

For a URL pattern p, the malicious frequency of p is the number of unique
domains it covers in the malicious training data, and the white frequency of
p is the number of unique domains it covers in the white data set.

5 Experimental Results

In this section, we report an extensive empirical study to evaluate our approach.
The experiments are run on a PC with 2 dual-core 3.1 GHz processor with 8 GB
memory, running Windows 7 operating system.

5.1 Data Sets

We use the real data from Fortinet. There are two URL data sources: the web-
filtering URL feeds, and the URL log files. The web-filtering URL feeds are
the labeled URLs from different anti-malicious service sources, for example, the
Fortinet web-filtering rating engine [3], phishtank [13], and netcraft [12]. The
URL log files are the URL records collected from different log files, such as the
user browsing log files, the email URL log files, and the anti-spam log files. Since
there are many unlabeled URLs in log files, they are usually the data where
the detection system is to be applied. Because of the limited number of labeled
URLs in log files, the detection models may first need to be trained from the
web-filtering URL feeds, and then applied on the log files to detect new malicious
URLs.

In addition, for online detection of malicious URLs, there may exist no labeled
training URLs from the data sources where the detection will be applied. In such
cases, the training data can first be collected from other data sources, such as
malicious URLs made known in public domain, and train some initial patterns.
These initial patterns can then be used to catch new suspicious URLs, and
the verified malicious URLs can be added into the training data set to update
the patterns. Thus, we evaluate the detection performance in two aspects: the
performance when the training data and testing data are from the same data
source, and the performance where the training and testing are conducted on
different data sources.

For the datasets, we collect 0.5 million labeled malicious URLs and 1 million
benign URLs from the web-filtering URL feeds. We also get two datasets from
the URL log files: 35000 labeled malicious URLs and 70000 benign URLs. Table 1
summarizes some statistics of these four datasets.
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Table 1. Some statistics of the data sets.

web-filtering URL feeds URL log files
malicious benign malicious benign

number of URLs 500K 1000K 35K 70K
number of unique domain names 279683 173859 9765 6367

number of unique directory names 73557 274105 5987 9807
number of unique file names 67460 389648 1760 9505

average URL length 79 132 77 116

5.2 Effectiveness of the GA Algorithm

We first run GA algorithm on the two data sets (0.5 million malicious URLs
and 1 million benign URLs) from web-filtering URL feeds. Similar to previous
works, we conduct 50/50 split cross-validation for training and testing. We also
set different quality score threshold in the experiments to test the effectiveness
of pattern quality score.

As described in Section 4, we use quality score to measure the quality of gen-
erated patterns. In the experiments, we implement the quality score as malicious
probability ratio.

Definition 7 (Malicious probability ratio). For a pattern p, the malicious
probability of p is p’s malicious frequency

nb
, where nb is the number of unique

malicious domains in the malicious data set. The white probability of p is
p’s white frequency

nw
, where nw is the number of unique white domains in the white

data set. If p’s white frequency is 0, we assign the probability of it a small number.
In our experiments, we use 0.1/nw.

The malicious probability ratio of p is p’s malicious probability
p’s white probability .

Figure 2 shows the result. As the quality score threshold increases, the pre-
cision increases because some low-quality URL patterns are filtered out. At the
same time, the recall decreases. Overall, when the threshold is 10, we can get
satisfying accuracy (over 95%).

When running the GA algorithm, 4 GB memory is consumed because there
are millions of lexical string and index structures need to be stored during the
algorithm. There are totally 81623 valid patterns be generated. The left of Ta-
ble 2 shows some of the top ranking patterns found by our algorithm. These top
patterns capture rich features, including segment patterns of domains, full direc-
tory names, full file names, and file name segment patterns. The right of Table
3 lists some of the bottom ranking patterns. These patterns rank low because
they are too general, thus can not distinguish malicious against normal URLs
well.

5.3 Comparison between GA and CA

In this section, we compare the runtime and detection performance of the CA
and GA algorithm.
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Table 2. Some top ranking and bottom ranking malicious URL patterns

Top Ranking Patterns

*/*paypal*.com*/*

*/IC/xvidsetup.exe

*.id3002-wellsfargo.com/index.php

*com.*natwest*/*

*/account/paypal/*

*/*cielo*/fidelidade.*

*/vbv/*.html

*/sais.php

. . .

Bottom Ranking Patterns

. . .
*/Common/*

*/2.0/*

*/feeds/*

*/blogs/*

*/JS/*

*/150/*

*/br/*

*/images/*

Figure 3(a) compares the runtime of the CA and GA algorithms with respect
to different training data size. Figure 3(b) shows the number of URL patterns
found. Apparently, the CA algorithm takes much more time and generates much
more URL patterns than the GA algorithm. How do the patterns generated by
CA and GA, respectively, perform in detection?

In Figure 4, we compare the detection performance of the CA and GA algo-
rithms by setting the training data set size to 200K. Although the CA algorithm
generates much more URL patterns, the performance is not much better than
the GA algorithm. The reason is that the patterns generated by the CA algo-
rithm have heavy overlaps with each other. Many URL patterns actually point
to the same feature, and most patterns cannot detect any malicious URLs.

In summary, the GA algorithm uses much less time and still captures impor-
tant features from the training data.
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5.4 Efficiency of GA

To verify the efficiency of the GA algorithm, we run it on malicious training data
sets of different size. Figure 5 shows the runtime and the number of URL patterns
generated with respect to the size of malicious training data set. Both the run
time and the number of patterns grow quadratically when the training data set
size increases. This is because in our algorithm, the patterns are generated by
joining URL pairs. The run time is still acceptable even when the training data
contains 500K malicious URLs and 1000K benign URLs.

5.5 Comparison with Some State-of-the-art Methods

Section 2 reviews the state-of-the-art machine learning based methods [8, 7] for
classification on URLs. According to those studies, the confidence weighted al-
gorithm (CW) [2] achieves the best results on URL lexical classification. Thus,
we conduct experiments to compare our algorithm GA with the CW algorithm.
We use the source code of the CW algorithm from Koby Crammer’s webpage
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Fig. 5. Runtime and pattern number of GA on different training data

(http://webee.technion.ac.il/people/koby/code-index.html). We imple-
ment the lexical feature extraction as described in [8, 7]. Specifically, we treat
each token (strings delimited by ‘/’, ‘?’, ‘.’, ‘-’, ‘=’, and ‘ ’) in URLs as a binary
feature.

We first evaluate the performance when the training data set and the testing
data set are obtained from the same data source, which is the setting in [8, 7].
Please note that, in real applications, it is hard to collect reliable labeled training
URLs from the data source where the detection system will be used.

We conduct a 50/50 split cross-validation over the 0.5 million malicious URLs
and 1 million benign URLs from the web-filtering URL feeds data sets, respec-
tively. Figure 6 shows the result, from the figure we can see that the GA algorithm
has a higher precision, but the overall accuracy is a little lower than the CW
algorithm due to a lower recall than that of the CW algorithm. The reason is
that the GA algorithm extracts the patterns by joining URLs. Some patterns
that appear only in one URL are not extracted. In the CW algorithm, even the
infrequent lexical features are still used to get malicious weight.

To evaluate the performance of detection in a more practical setting, where
the training data set and the testing data set are from different data sources,
we repeat the experiments by applying the model trained from the web-filtering
feeds data on the data sets of URL log files (35K malicious URLs and 70K benign
URLs). The result is shown in Figure 7.

When the training data set and the testing data set are from different sources,
the precision of the GA algorithm is much higher than that of the CW algorithm.
When the training data set and the testing data set are from different sources,
the CW algorithm may generate a biased model that leads to a low precision
in the testing data set. In the GA algorithm, the strict quality score threshold
can reduce the effect of noise and bias. In real applications, URL patterns can
be further verified and modified by network security experts, which can further
improve the detection accuracy.
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In summary, comparing to the state-of-the-art methods, our algorithm
achieves highly competitive performance.

6 Conclusions

In this paper, we tackle the problem of malicious URL detection and make two
new contributions beyond the state-of-the-art methods. We propose to mine the
human interpretable URL patterns from malicious data set and propose to dy-
namically extract lexical patterns from URLs, which can provide new flexibility
and capability on capturing malicious URLs algorithmically generated by ma-
licious programs. We develop a new method to mine our novel URL patterns,
which are not assembled using any pre-defined items and thus cannot be mined
using any existing frequent pattern mining methods. Our extensive empirical
study using the real data sets from Fortinet clearly shows the effectiveness and
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efficiency of our approach. The data sets are at least two orders of magnitudes
larger than those reported in literature.

As future work, better methods to select patterns for detection is needed,
because the malicious probability ratio threshold method may filter out not only
noise patterns but also some useful patterns. How to further increase the recall
of malicious detection is also critical. More lexical features beyond the common
substring can be used in the detection, such as the statistics of segments, the
meaning of segments (e.g., numerical or letter). Moreover, online algorithms can
be developed to handle the evolving features over time.
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