
Data Min Knowl Disc (2013) 27:396–420
DOI 10.1007/s10618-013-0330-1

What distinguish one from its peers in social networks?

Yi-Chen Lo · Jhao-Yin Li · Mi-Yen Yeh ·
Shou-De Lin · Jian Pei

Received: 4 February 2013 / Accepted: 24 June 2013 / Published online: 18 July 2013
© The Author(s) 2013

Abstract Being able to discover the uniqueness of an individual is a meaningful
task in social network analysis. This paper proposes two novel problems in social
network analysis: how to identify the uniqueness of a given query vertex, and how to
identify a group of vertices that can mutually identify each other. We further propose
intuitive yet effective methods to identify the uniqueness identification sets and the
mutual identification groups of different properties. We further conduct an extensive
experiment on both real and synthetic datasets to demonstrate the effectiveness of our
model.

Responsible editor: Hendrik Blockeel, Kristian Kersting, Siegfried Nijssen, Filip Zelezny.

Y.-C. Lo · S.-D. Lin
Department of Computer Science and Information Engineering,
National Taiwan University, Taipei, Taiwan
e-mail: d00922006@csie.ntu.edu.tw

S.-D. Lin
e-mail: sdlin@csie.ntu.edu.tw

J.-Y. Li ·M.-Y. Yeh (B)
Institute of Information Science, Academia Sinica, Taipei, Taiwan
e-mail: miyen@iis.sinica.edu.tw

J.-Y. Li
e-mail: louisjyli@iis.sinica.edu.tw

M.-Y. Yeh
Research Center for Information Technology Innovation, Academia Sinica, Taipei, Taiwan

J. Pei
School of Computing Science, Simon Fraser University, Burnaby, BC, Canada
e-mail: jpei@cs.sfu.ca

123

What distinguish one from its peers 397

Keywords Social query · Node identification · Social networks

1 Introduction

In a heterogeneous social network, each entity is assigned a type (or label) to describe
its category. A node type can be a place, a person, an organization, etc. For example,
consider an expertise bipartite network, where each node is an entity of either the
type expert or expertise, as illustrated in Fig. 1. “Ego” is a node of focus while the
ego-centric view of a node generally contains the neighborhood information of this
node centralized as an ego. In this work, ego is considered as a query node of interests.
It is often interesting and useful to distinguish an ego of some type from the rest of the
entities of the same type. How can one expert be distinguished from another? In Fig. 1,
Alice can be uniquely identified from all the other experts because she possesses the
skill Prolog that nobody else does. Mary can be uniquely identified from the other
experts using the set of expertise C, C++, and Java because she is the only person
that owns all three skills. In other words, we call {C, C++, Java} the uniqueness
identification set of Mary.

Fig. 1 Example of a bipartite
expertise network

Distinguishing a node from its peers in a social network is highly useful in many
applications. In the above example, using the knowledge that Prolog uniquely identifies
Alice from all the other experts, any consulting projects requiring the expertise on
Prolog needs to involve Alice. To take the full advantage of Mary’s expertise, Mary
should be assigned first to those projects requiring expertise on C, C++, and Java
together. Similarly, we may also distinguish different expertise by finding a unique set
of experts that have the interested expertise.

Distinguishing a node from its peers in a social network is far from trivial. Not
every node can be uniquely identified only by its one-degree neighbors. For example,
in Fig. 1, Tim and John cannot be distinguished from one another using only their
expertise, since their expertise sets, {C++, Java}, are identical. To identify John, we
have to use John’s 2-hop neighbors including C++, Java, and Tim. The identification
set for John essentially indicates, “Besides Tim, John is the only person who knows
C++ and Java”. Such information about John is useful—it provides a unique expertise
set of John as well as his alternatives in the network.

Additionally, we may use the identification information to find interesting “com-
munities” in a social network. For example, consider the sub-graph that contains the

123

398 Y.-C. Lo et al.

5 nodes John, Tim, Mary, C++, and Java. Each of these nodes can be identified by the
rest of the nodes (or a subset of them). For instance, the node C++ can be identified
by the set Tim, Java, which can be read as “C++ is the only language other than Java
that Tim knows”. Similarly, the node Java can be identified by the sets {Mary, C++}
and {John, Mary, C++}. In other words, the induced graph on {John, Tim, Mary,
C++, Java} is a closure in identification, which we call a mutual identification group.
Intuitively, in a mutual identification group (MUID) S, each member can be identi-
fied by some other members of S. Such a closure group discloses some interesting
information—John, Mary and Tim may replace each other as they are the only experts
who master both C++ and Java.

Essentially, by designating any node as an ego, we can use its identification sets and
MUID to conduct ego-centric analysis. Such analysis enables valuable applications
including social entity search engines and substitution recommendation systems. For
a social entity search engine, existing work such as (Tang et al. 2008; Zhu et al. 2009)
did not emphasize on choosing neighboring nodes to display, instead they opted to
show all the neighbors of the ego up to certain degree. In contrast, our goal is to
leverage the social network itself and report the uniqueness identification set for a
query entity/ego to highlight its unique information, which helps users quickly catch
the main differences among this entity and others of the same type from a large
amount of redundant information. Such a mechanism facilitates better visualization
and summarization for the task of social relationship search of an entity. Moreover,
with the MUID of each query entity/ego, we can build a substitution recommendation
system that finds an alternative for a query entity that is out of stock or unavailable.
That is, items that can be mutually identified by the same set of objects can be regarded
as serving similar roles in a network, and therefore can be regarded as a surrogate for
each other. Consider a movie network as an example, which contains relationship
between movies, actors, directors, etc. For a movie, an entity search engine can report
its unique identification set containing the minimal set of information of its actors,
director, or places that distinguish this movie from others, rather than simply shows
its neighborhood graph. Moreover, a mutual identification group may capture a set of
movies, actors and places that are closely related to each other. If some movie is sold
out, the substitution system may recommend other movies in the same uniqueness
identification group. We will show several cases in Sect. 6.3.

As astute readers might point out, we may find more than one identification set
for each ego we are interested in a network. For example, to identify Mary we may
choose its neighbor Java. We then find that both Tim and John have the same expertise
and thus are structure equivalent to Mary given their mutual neighbor Java. The final
identification set of Mary includes Tim, John, and Java. On the other hand, we may
also choose both C and C++ to distinguish Mary from other experts. This time, only
Alice has both expertise and the resulting uniqueness identification set of Mary is
{Alice, C, C++}. Compared to the former uniqueness identification set of Mary, the
latter one is preferred since fewer experts are involved and the uniqueness of Mary
possessing the combination of expertise C and C++ is highlighted. Similar concept of
using as few entities as possible when choosing the MUID should be followed.

Motivated by the above identification needs, in this paper, we propose a novel ego-
centric data mining task as follows. In a network where each node is associated with

123

What distinguish one from its peers 399

a unique type, we want to achieve the following two goals: (1) Given an ego, find a
uniqueness identification set (UID) that distinguishes the ego from its peers, which are
nodes of the same type. As there can be more than one uniqueness identification set
of an ego, we aim to find one containing minimum number of structurally equivalent
nodes to distinguish the ego from others of the same type. When two UIDs have
the same number of structurally equivalent nodes, we choose the one that can be
identified with a smaller number of neighbors; (2) Given an ego, find a MUID where
the uniqueness of each node in the group can be identified by the rest of the nodes, or
a subset of them. Similarly, when more than one MUID is available, we aim to find
the one with fewer structurally equivalent neighbor nodes to distinguish the nodes.
We explore different evaluation criteria for the two tasks.

There are four main contributions in this paper. First, we define two novel data
mining problems for social network analysis, namely mining uniqueness identifica-
tion sets and mutual identification groups. Second, we introduce a series of simple
yet effective methods, 1-Hop+, One-Neighbor, and Multiple-Neighbor, to tackle the
problems from different angles. We prove that our methods are guaranteed to iden-
tify a node set that can identify the uniqueness of the query node. Third, we evaluate
the three methods systematically on three real data sets and three synthetic data sets.
The results and follow up analysis show the advantages of these methods. Finally, we
analyze some of the interesting MUID from a real-world movie dataset, and provide
explanation about them. The analysis justifies the usefulness of our approach.

The rest of the paper is organized as follows. We review the related work briefly
in Sect. 2. We define the problems of uniqueness identification set of a vertex in a
network and the MUID in Sect. 3. We present three effective methods to solve the
corresponding problems in Sect. 4. We report the experiment results in Sect. 5 and
conclude the paper in Sect. 6.

2 Related works

Our work is related to the existing studies on social networks in three aspects: social
network search/extraction, community queries, and social network anonymization.

The work on social entity search/extraction focuses on extracting social relationship
among a specific set of people from available open resources such as the Web. For
example, (Zhu et al. 2009) developed an entity relationship extraction framework for
relation extraction from the Web data, and a search engine, Renlifang, was built to
report the entity relationship graph of some query persons, locations, or organizations.
Tang et al. (2008) developed Arnetminer, an academic search system that aims to
automatically extract the researcher profile including the co-authorship relation graph
from the Web. Those studies focus on extracting social networks. In contrast to the
above works, we do not rely on parsing and extracting the information from external
sources, but focus on extracting the MUID from a given social network.

The works on group or community queries, (Sozio and Gionis 2010; Lappas et
al. 2009; Li and Shan 2010; Yang et al. 2011), focuses on selecting a set of nodes
or searching a specific community according to the given query nodes or some con-
straints. Given a set of query nodes in a graph, Sozio and Gionis (2010) searched

123

400 Y.-C. Lo et al.

a community containing the nodes by finding a densely connected sub-graph. They
proposed a greedy algorithm with heuristics to find the optimum solution under the
monotone constraints on the density measure. Lappas et al. (2009) tackled a team
formation problem, which seeks a group of suitable people (each as a node in a graph)
with different skills (as attributes of each node) to complete a task with certain skill
requirement. The output results are determined by minimizing two types of commu-
nication cost between the selected people. Li and Shan (2010) further generalized
the problem in Lappas et al. (2009) by associating each required skill with a specific
number of experts. They proposed a density-based measure for selecting the seed
node and a grouping-based approach to find the team for generalized tasks. Similar to
the previous two works, given a query initiator, Yang et al. (2011) found a group of
people that are available to attend activities while satisfying the acquaintanceship and
social-temporal constraints. The problem was formulated as integer linear program-
ming problem. With two efficient algorithms proposed to find the optimal solution.
Based on a specified ego node, Li and Lin (2009) reported an egocentric abstraction
graph to summarize the features of the given ego node using an unsupervised learning
mechanism. Although all of the above works extract a query-based social graph, their
goals are very different from ours, which is finding a group of nodes that can uniquely
identify the query node.

Our work is also related to the problem of graph anonymization. Specifically, the
k-anonymization of social net-works Zhou and Pei (2008) alters a given social network
such that the 1-neighborhood of each node is isomorphic to those of at least k−1 other
nodes. To achieve the goal, the critical step is to determine whether the 1-neighborhood
of a node can identify the node with probability higher than 1/k. However, in
k-anonymization, the search is constrained to only 1-neighborhood, while our work
does not have such constraint. Moreover, the goals in social network anonymization
and ours are fundamentally different.

To our knowledge, we are the first to identify and tackle the problem of finding
identification sets and mutual identification groups. Our work is clearly different from
community detection (Fortunato 2010; Newman 2004) in a social network, which aims
to divide an entire social network into a set of disjoint or overlapping partitions.

3 Preliminaries

In Sect. 3.1, we provide the formal definitions of the problems. We then prove that the
problem of finding the optimal UID is NP-hard.

3.1 Problem definition

We are given an undirected, simple, and labeled graph G(V, E) and a query nodev ∈ V
whose 1st and 2nd order neighbor set is denoted as N (v) and N2(v), respectively. Each
vertex in G is labeled with a type denoted by t ype(v).

Table 1 summarizes the symbols and terminology used in this paper.

Definition 1 In a graph G(V, E), given a vertex v ∈ V and a set of nodes M ⊆ N (v),
a node u ∈ V is said to be structure equivalent (SE) to v given M , denoted by

123

What distinguish one from its peers 401

Table 1 Symbols and
terminology

Symbol Definition

G = (V, E) A graph consists of vertices V and edges E

N (v) The first order neighbor set of vertex v

N2(v) The second order neighbor set of vertex v

t ype(v) The vertex type of v

U I Uniqueness identification. See Definition 2

UID Uniqueness identification set. See Definition 1

MUID Mutual identification group. See Definition 3

SE(v, M) The structure equivalent set of node v given
a set M . See Definition 1

(a) (b) (c)

Fig. 2 Three examples to show SE(v, M). a u1 and u2 are structure equivalent (SE) to v given M = {m1}.
b By adding m2 into M, u2 becomes not SE to v since u2 has no link with m2. c Similarly by adding m3
into M, SE(v, M) becomes empty set. Note that here we assume two types of nodes: ones with filled color,
one without

u ∈ SE(v, M), if t ype(u) = t ype(v) and M ⊆ N (u). SE(v, M) is the set of nodes
structure equivalent to v given M . Please note that SE(v, M) = ∅ if there does not
exist any node structure equivalent to v given M .

An example is shown in Fig. 2. In Fig. 2a, suppose M = {m1}, then SE(v, M)

= {u1, u2}. Note that u4 is not included in SE(v, M) because it is not the same type
as v. Figure 2b, assuming an additional vertex m2 is added into M (note that the nodes
in M do not need to be of the same type), we can find that the set SE(v, M) becomes
smaller since u2 /∈ N (m2) and has to be removed from SE(v, M). This example shows
that adding nodes into M may decrease the number of nodes in SE(v, M). In Fig. 2c,
when M = {m1, m2, m3}, no vertex is connected to every element in M . Therefore,
SE(v, M) = φ.

Definition 2 Given a vertex v and a non-empty set M ⊆ N (v), we define that v’s
uniqueness can be identified by the 2-tuples set [M, SE(v, M)]. This set is called a
UID of v.

Note that SE(v, M) can be empty as it is possible to interpret such situation as
“v is unique because there is no other vertex that connects to M as v does”. When

123

402 Y.-C. Lo et al.

SE(v, M) is non-empty, then the uniqueness of v can be interpreted as “v is unique
because, besides the vertices in SE(v, M), the only vertex that connects to M is v”.
Next we introduce an interesting and useful property of UIDs.

Property 1 Given a query vertex v, its UIDs can always be found within two-hops
of v.

Proof Since M ⊆ N (v), according to Definition 1, ∀u ∈ SE(v, M), M ⊆ N (u).
Therefore, SE(v, M) ⊆ N2(v). That is, any UID, [M, SE(v, M)], is within two-hops
of v. ��

By Definition 2, there are many possible UIDs given a query vertex v. Therefore,
we define a function to compare the quality of UIDs.

Definition 3 Given two UIDs, D1 = [M1, SE(v, M1)] and D2 = [M2, SE(v, M2)],
we define a comparison function Q(v, M1, M2) as follows.

(a) Q(v, D1, D2) = 1, i.e., the quality of D1 is better than that of D2, if (i)
|SE(v, M1)| < |SE(v, M2)| or (ii) |SE(v, M1)| = |SE(v, M2)| and |M1|
< |M2|.

(b) Q(v, D1, D2) = 0, i.e., the quality of D1 equals to that of D2, if |SE(v, M1)|
= |SE(v, M2)| and |M1| = |M2|.

(c) Otherwise, Q(v, D1, D2) = −1, i.e., the quality of D1 is worse than that of D2

Note that Q(v, D1, D2) = −Q(v, D2, D1). Furthermore, Q is transitive as when
Q(v, D1, D2) = 1 and Q(v, D2, D3) = 1, Q(v, D1, D3) = 1.

In Definition 3, the UIDs with a smaller |SE(v, M)| is preferred. This reflects the
intuition that having less structurally equivalent nodes in the UID indicates a more
unique vertex v. Therefore our primary goal is to minimize |SE(v, M)| of the identified
UIDs. We treat |M | as a secondary criterion because using smaller M to obtain the
same SE(v, M) implies that the query vertex can be identified with fewer critical
neighbors.

In the three UIDs shown in Fig. 2, the quality of the UID in Fig. 2c is the best since
there is no SE node for the query vertex. The UID of the query vertex in Fig. 2a is the
least unique of the three.

We then further introduce a problem of finding MUID given a query vertex. An
MUID is a set of vertices where each vertex can be uniquely identified by the subset
of the remaining vertices in the set.

Definition 4 In a graph G(V, E), given a vertex v ∈ V , a set of vertices X ⊆ V is a
MUID of v if the following two conditions hold.

(a) v ∈ X .
(b) ∀u ∈ X, ∃D ⊆ X , D is a UID of v

The quality measure of MUIDs is conceptually similar to UIDs. For each MUID,
the primary goal is to minimize |SE(v, M)| and secondary goal is to minimize |M |
of the UIDs.

123

What distinguish one from its peers 403

For the reason that each vertex does have a UID, it is less straightforward to define
the quality of MUID. Again, we still prefer a smaller SE(v, M) size than the M
size. To compare the |SE(v, M)| of MUIDs generated from different models, we
propose two different metrics. The first metric uses the union of the SE set of each
node in the MUID, while the second metric evaluates the summation of the size of
the SE set of each node in the MUID. The same rule applies to M as the secondary
criteria. The union measure evaluates how the vertices in the MUID exploit other
members to identify themselves. If the nodes tend to include the same set of vertices
to identify themselves, the union size would be smaller, creating better MUID. The
sum of size of SE tells us whether we only need a small set of vertices to uniquely
identify each individual member, regardless whether those vertices are overlapped or
not.

Then, we can formally define the metric for MUID: Given an MUID X , for all
v ∈ X , the UID Dv = [Mv, SE(v, Mv)]. For the metric of union size, we define size
of union of SE set (USE) and size union of M set (UM):

U SE = |
⋃

v∈X

SE(v, Mv)|, and

U M = |
⋃

v∈X

Mv|.

We are now able to compare the quality of two MUIDs by replacing |SE(v, M)| and
|M | in Definition 3 with U SE and U M . Similarly, for the metric of sum of size, we
define total size of SE set (TSE) and total size of M set (TM):

T SE =
∑

v∈X

|SE(v, Mv)|, and

T M =
∑

v∈X

|Mv|.

We have considered to use other quality measure of UID such as comparing |M | +
|SE(v, M)|, i.e. do not differentiate the importance of |M | and |SE(v, M)| but just
compare the UID size. Under this measure, the three examples in Fig. 2 has the same
quality which is against intuition because case (c) clearly identify v from others.
Minimizing the above criteria while failed to minimize |SE(v, M)| (i.e. due to a
minimum |M |), and we will leave the ego with a set of structure equivalent nodes,
which does not make it “unique”. For the same reason, another alternative measure
to put more emphasis on minimizing size of |M | than |SE(v, M)| cannot highlight
the uniqueness of vertices. The concept of priority of SE set and M set can be also
applied to MUID. We have also considered other measures such as measuring the
number of type included in UID or MUID found. For example, when forming a team,
including more types means including more experts that know different skills. One of
our future work is to modify the current proposed models to optimize such objective
function.

123

404 Y.-C. Lo et al.

3.2 Complexity analysis

In this section we prove that finding the optimal UID with a minimal M under the
condition of a minimal SE(v, M) is NP-hard. We first prove that increasing M can only
decrease the size of SE(v, M) in Theorem 1. Based on this theorem, we can reduce
the set covering optimization problem, which is known as an NP-hard problem, to our
problem of finding the optimal UID.

We first observe an interesting property that adding more nodes into an existing
M set will cause some nodes in SE(v, M) being removed from the set. Therefore,
|SE(v, M)| can only remain the same or become smaller, it can never become larger
when more nodes are added into M .

Theorem 1 Given a query vertex v and M ′ ⊇ M, then SE(v, M ′) ⊆ SE(v, M).

Proof By Definition 1, since for all u′ ∈ SE(v, M ′), we have:

u′ ∈
⋂

m∈M ′
N (m)

= [(
⋂

m∈M

N (m)) ∩ (
⋂

m∈M ′−M

N (m))]

⊆ (
⋂

m∈M

N (m))

= SE(v, M).

Therefore, for all u′ ∈ SE(v, M ′), u′ ∈ SE(v, M) is proved, i.e., SE(v, M ′)
⊆ SE(v, M). ��

This theorem implies that if M = N (v), SE(v, M) would be the minimal SE set
since any other |M ′| < |M | can only produce SE(v, M ′) ⊇ SE(v, M). Therefore, we
can conclude that SE(v, Mmax = N (v)) is the minimal SE set because N (v) is the
largest possible set for M . Next, we want to show that the set covering optimization
problem, which is known as an NP-hard problem, can be reduced to the problem of
finding optimal UID with the minimal size of M to obtain the optimal SE(v, M).

Theorem 2 Given a query vertex v, with the neighbor set N (v) = m1, m2, ..., my.
The optimization of UID first tries to find a minimum SE set, SEmin, then given the
condition tries to find a minimum M set such that M ⊆ N (v) and SE(v, M) = SEmin.
This problem is NP-hard.

Proof The set covering optimization Problem is given a universe set U =
u1, u2, ..., uN and a set of subsets of U , S = S1, S2, ..., Sk where si ⊆ U, i ∈ [1, k],
to find a subset Sopt ⊆ S that

⋃
s∈Sopt

s = U .
For the problem of finding optimal UID, Theorem 1 tells us that each time when

we add a node into M , some nodes in T = N2(v)− SEmin can be removed from the
eventual SE set where SEmin = SE(v, N (v)) and the elements in it are not removable.
Therefore, for each m = mi , we can identify a subset Ti = T −SE(v, mi). We can say

123

What distinguish one from its peers 405

Algorithm 1: Exhaustive search
Input: A Graph G = (V, E), a query vertex v

Output: UID set of v

Get N (v) = {m1, m2,..., md };1
d ←− |N (v)|2

M ←− 2d combination set of N (v) //M(i) is the i th element M ;3
opt M ←− M(0)4

for i = 1 to 2d − 1 do5
if Q(v, M(i), opt M) = 1 then6

opt M ←− M(i)7

end8

end9
optU I D←− [opt M, SE(opt M, v)]10
Output optU I D;11

that for each mi , there is a corresponding set Ti representing nodes that can be excluded
from the potential SE set, T , when mi is added into M . Note that in our problem the
goal is to find a minimum set M = Mmin such that SE(v, Mmin) = SEmin . In other
words, we want to find a minimum M set which can remove all nodes in T to find the
minimal SE set.

To reduce the set covering optimization to finding optimal UID, we first create a
ego vertex v, creating a neighbor mi to v for each Si ⊆ S, and then create a vertex t j

for each u j ∈ U . Finally for each mi , we link mi with t j if u j ∈ U − Si . That is, the
set U to be covered in the Set Covering Optimization Problem can be mapped to the
removable SE set, T , in the finding optimal UID problem and the covering subsets, Si ,
can be mapped to the identifying set of neighbors, Ti . Since by generating graph and
finding the optimal UID in this way, the Set Covering Optimization Problem, which
known as an NP-hard problem, can be also solved, the problem of finding optimal
UID is proven to be NP-hard. ��

Here we suspect the MUID problem is also NP-hard because in MUID all ver-
tices need to be uniquely identified by the rest. However, we will leave the detailed
theoretical analysis of it to the future work.

4 Finding optimal UIDs

In this section, we propose an exact and several greedy methods to find the uniquely
identify set that satisfies a desired criterion. Since finding an optimal UID is an NP-hard
problem, here we propose an exhaustive search method to find the exact outcome and
some heuristic-based methods to identify the sub-optimal result for more efficiency.
In Algorithm 1, an exhaustive search algorithm that requires O(2d) time complexity is
provided which identifies the optimal UID, where d is the degree of the query node v. It
basically tries all the combination of M . Note that this method is not very efficient for
nodes with high degree. For example, in our real world datasets there are a few nodes
with hundreds or even higher degree, which makes running the exhaustive algorithm
impractical.

123

406 Y.-C. Lo et al.

Fig. 3 The example graph to
find UID given v

Fig. 4 The UID of v found by
the 1-Hop+ method

Fig. 5 The UID of v found by
the One-Neighbor method

To improve the efficiency, we propose the following three greedy methods, 1-Hop+,
One-Neighbor, and Multiple-Neighbor, to find sub-optimal UID sets faster. 1-Hop+
and One-Neighbor are naïve baselines to be compared with Multiple-Neighbor. We
will use the example graph of query v in Fig. 3 for demonstration.

In the 1-Hop+ method, the algorithm first includes all neighbors of v as M , and then
adds SE(v, M) into the UID set. This method extracts all the one-degree neighbors
of v with their SE nodes. Figure 4 shows the UID m1, m2, m3, m4, u1 with u1 being
the only node that connects to all the nodes in M . Note that this method guarantees to
find the minimal SE set; however, it may produce the largest M set.

In the One-Neighbor method, given a vertex v, we choose a neighbor m ∈ N (v) and
then obtain SE(v, M = {m}) to be included in the UID. Since the goal is to minimize
the SE size, we observe the size of SE set produced by different m and choose the
minimal one. In Fig. 5, m1 is chosen and it produces SE(v, m1) = {u1, u2, u3}

The two algorithms have low time complexity of O(d) where d is the degree of
query node v. The 1-Hop+ method produces the minimal SE set but the maximal
M . The One-Neighbor method keeps the minimal size of M , but in general does not
minimize the size of the SE set. To address the above concerns, Algorithm 2 introduces
the Multiple-Neighbor method whose goal is to identify a minimal M to minimize

123

What distinguish one from its peers 407

SE set. In this method, we greedily add neighbor nodes of v into M , guaranteeing the
optimal SE set and hoping to obtain a minimal M .

With the greedy heuristic to pick neighbors of v into M , SEgain is defined to
represent “the vertices to be removed from SE(v, M) after adding a node into M”.

Definition 5 Given UID of a query vertex v as D = [M, SE(v, M)], and for M ′
= M ∪{n}, where n ∈ N (v)−M , then SEgain(v, n, M) = SE(v, M)− SE(v, M ′).

In Theorem 3 we prove that the set size of SEgain(v, n, M) is monotonic with the
size of M . In this property, ∀u ∈ SE(v, N (v)), u cannot be in SEgain(v, n, M) for
any v, n, M since there is no larger subset M ⊆ N (v) than N (v) itself.

Theorem 3 Given SE(v, M), SE(v, M ′), n ∈ N (v), n /∈ M and n /∈ M ′, if M ′ ⊇ M
then SEgain(v, n, M ′) ⊆ SEgain(v, n, M).

Proof By Theorem 1, we have the following derivation.

(a) ∵ M ′ ⊇ M , ∴ SE(v, M ′) ⊆ SE(v, M), and
(b) ∵ M ′ ∪ {n} ⊇ M ∪ {n}, ∴ SE(v, M ′ ∪ {n}) ⊆ SE(v, M ∪ {n}).
From (a) and (b), we have

SEgain(v, n, M ′) = SE(v, M ′)− SE(v, M ′ ∪ {n})
⊆ SE(v, M)− SE(v, M ′ ∪ {n})
⊆ SE(v, M)− SE(v, M ∪ {n})
= SEgain(v, n, M).

��
The Multiple-Neighbor method starts from the state of M = φ and SE(v, M)

= N2(v) given the query vertex v. It iteratively calculates the SEgain(v, n, M)

of each neighbor n that is not included in M , adding the neighbor with the largest
|SEgain(v, n, M)| into M and removing the vertices in SEgain(v, n, M) from the
current SE(v, M). It ends when there is no neighbor vertex with |SEgain(v, n, M)|
> 0. This method guarantees that the result UID has a minimal SE set.

Theorem 4 The UID of query vertex v found by the Multiple-Neighbor method is
guaranteed with minimal SE set, i.e., if there is no neighbor n ∈ N (v)−M satisfying
|SEgain(v, n, M)| > 0, then SE(v, M) is minimal.

Proof Let SEmin = SE(v, N (v)) be the minimal SE set and let the current state of the
Multiple-Neighbor method be SE(v, Mv). Suppose that SE(v, Mv) is not minimal,
then the following two conditions must both hold.

(a) ∃u such that u /∈ SEmin and u ∈ SE(v, Mv), and
(b) ¬∃n ∈ N (v)− Mv such that SEgain(v, n, Mv) > 0.

Since u /∈ SEmin , there exits n ∈ N (v) − M such that n /∈ N (u). If we add n into
Mv , then u /∈ SE(v, Mv ∪ n). Because u ∈ SE(v, Mv) and u /∈ SE(v, Mv ∪ n),

u ∈ SE(v, Mv)v − SE(v, Mv ∪ n) = SEgain(v, n, Mv).

123

408 Y.-C. Lo et al.

Fig. 6 The UID of v found by
the Multiple-Neighbor method a
m1 is chosen as the first vertex
to be added into M b m2 is
chosen as the second vertex to
be added into M

(a)

(b)

Algorithm 2: The Multiple-Neighbor method
Input: A Graph G = (V, E), a query vertex v

Output: UID D of v

SE ←− N2(v)1
M ←− φ2
while |SE | > 0 do3

mmax ←− argmaxm |SEgain(v, m, M)|, m ∈ N (v)4
if mmax ≤ 0 and |M | ≥ 1 then5

break;6

end7
M ←− M ∪ mmax8
SE ←− SE − N (mmax)9

end10
D←− [M, SE]11
output D;12

Figure 6 shows how the Multiple-Neighbor method is applied to the same example
graph. In Fig. 6a, SEgain(v, mx , M) is generated for m1, m2, m3 and m4, while m1
is selected to be added into M because it has the largest SEgain. SEgain(v, m1, M)

= {u4, u5, u6} is then removed from SE(v, M). In Fig. 6b, SEgain of the rest of
the neighbors are updated and m2 is then added. After m2 is added, it leaves only u1
in SE(v, M) and the algorithm halts because the condition |SEgain(v, x, M)| > 0
cannot be satisfied by adding any neighbor.

5 Finding MUIDs

In Sect. 4, we introduced four methods to find the UID given a vertex v. We then
extend the three algorithms proposed in Sect. 4, except exhaustive search, to identify
the MUID given a vertex v.

123

What distinguish one from its peers 409

Fig. 7 The MUID of v found by the 1-Hop+ by redefining M and SE set

Note that in MUID, not only the uniqueness of the query nodes but also that of the
rest of the nodes in the set has to be uniquely identified. That is to say, after adding
nodes into the set to uniquely identify the query vertex, one would then need to make
sure the introduced nodes can be uniquely identified by adding more nodes. In the
worst case, one would have to include every node in the graph into the MUID. The
quality of MUID is measured by the average quality of UID of each vertex in the
MUID. Note that the quality of UID is the same as the one defined in Definition 3.

For the 1-Hop+ method, we first prove that the UID found given a vertex v can be
an MUID for v by redefining M and SE set.

Theorem 5 Given a vertex v, and the UID identified by the 1-Hop+ method D
= [Mv, SE(v, Mv)], ∀u ∈ D we can find a UID Du = [Mu, SE(u, Mu)] such
that Mu ⊆ {v} ∪ Mv and SE(u, Mu) ⊆ {v} ∪ Mv ∪ SE(v, Mv).

Proof We have to show that for each m ∈ Mv we can find UID Dm =
[Mm, SE(m, Mm)] such that Mm ⊆ {v} ∪ Mv and SE(m, Mm) ⊆ {v} ∪ Mv , and
the same for u ∈ SE(v, Mv). This can be proved by the following two statements.

(a) For m ∈ Mv , the UID of m can be found as Mm = {v} and SE(m, Mm) = {x |x ∈
Mv − {m}, t ype(x) = t ype(m)}.

(b) For u ∈ SE(v, Mv), the UID of u can be found as Mu = Mv and SE(u, Mu)

= SE(v, Mv) ∪ {v} − {u}.
From (a) and (b), we have shown that ∀u ∈ D, it is possible to identify u with UID,
Du = [Mu, SE(u, Mu)], such that Mu ⊆ {v} ∪ Mv and SE(u, Mu) ⊆ {v} ∪ Mv ∪
SE(v, Mv). Therefore the UID of v identified by the 1-Hop+ method has been proven
to be an MUID of v by redefining M and SE set. ��

In Fig. 7 an example of redefining UID by 1-Hop+ method is shown. The problem
for the MUID obtained this way is that for each query node, all the neighbor nodes
are included in the MUID. For nodes with large degrees, the MUID generated will be
large in size, which is not preferable. Also for the neighbor nodes of v, they are SE to
other neighbors with the same type, leaving large SE set in their own UIDs.

In the One-Neighbor method, given a vertex v, we obtain a UID, Dv =
[{m}, SE(v, m)]. To extend the One-Neighbor method for MUID, we propose One-
Neighbor–MUID method to further uniquely identify the newly introduced nodes.
The proposal is to obtain the UID for m, Dm , in a similar manner. With Dm =
[{v}, SE(m, v)] as shown in Fig. 8, Dv ∪ Dm = [{m} ∪ {v}, SE(v, m) ∪ SE(m, v)]

123

410 Y.-C. Lo et al.

Fig. 8 The MUID of v found
by the One-Neighbor–MUID,
obtained by combining UIDs of
v and m

becomes the MUID of v. The problem for the One-Neighbor–MUID is that for each
node, there could be many SE nodes, which is not desirable in general.

Theorem 6 Given a vertex v and one of its neighbors m and the UID, Dv

= [{m}, SE(v, m)], Dm = [{v}, SE(m, v)], can be identified by the One-Neighbor
method. The union of UIDs, Dv ∪ Dm, is an MUID of v.

Proof Given v and m, which are uniquely identified by UID, Dv and Dm , respectively,
we have to show that for each element u ∈ SE(v, m) and u ∈ SE(m, v) we can find
UID, Du = [Mu, SE(u, Mu)].
(a) For each u ∈ SE(v, m), its UID can be found as Mu = {m} and SE(u, Mu)

= SE(v, m) ∪ {v} − {u}.
(b) For each u ∈ SE(m, v), its UID can be found as Mu = {v} and SE(u, Mu)

= SE(m, v) ∪ {m} − {u}.
From (a) and (b), we can conclude that every vertex u ∈ Dv ∪Dm can be identified by
a UID Du , where Du ⊆ Dv ∪ Dm . We prove that the result of One-Neighbor–MUID,
Dv ∪ Dm , satisfies the requirement as an MUID of v. ��

We have showed that both 1-Hop+ and One-Neighbor–MUID can be extended to
obtain MUID given a query vertex v. However, the quality of MUID produced by
these methods is usually not optimal. To overcome such deficiency, we try to extend
the Multiple-Neighbor method for the MUID problem. As proposed previously, the
spirit of the Multiple-Neighbor method is to choose a small neighborhood subset M of
a given query v, leading to a smallest SE(v, M) to uniquely identify v. To extend the
method for finding MUID as Multiple-Neighbor–MUID, given the query vertex v and
its UID D = Mv ∩ SE(v, Mv), we have to make sure that all newly included m ∈ Mv

and u ∈ SE(v, Mv) need to be uniquely identified, the process continues. It is not hard
to show that each u belonging to SE(v, Mv) obtained from our Multiple-Neighbor
method has been uniquely identified. Unfortunately, their corresponding UIDs might
not be optimal because there could exist another set M identifies better SE sets. Thus,
we need to include more vertices into the MUID to identify the best result set.

We have proposed to use a heuristic SEgain(v, n, M) = SE(v, M) − N (n) as a
criterion to choose the next neighbor to be added in the Multiple-Neighbor method.
This criterion calculates the number of nodes that can be removed from the UID if
n ∈ N (v) is added. However, when it comes to Multiple-Neighbor–MUID, all the
newly added nodes in M and SE(v, M) also have to be uniquely identified. As shown
in Fig. 9, to estimate how many additional nodes would be introduced after adding m1,

123

What distinguish one from its peers 411

Fig. 9 Example of
Multiple-Neighbor–MUID

we need to estimate how many vertices are required to identify Mm1, and to identify
the further introduced vertices.

Similar to the Multiple-Neighbor method for the UID problem, here we define
a heuristic function to estimate the quality of neighbors as candidates to be added
into M . The idea is to execute the UID Multiple-Neighbor method for one pass
on all nodes and record the M and SE(v, M) sets of each node v as U I DSE (v)

and U I DM (v). When choosing the neighbors of v into M in Multiple-Neighbor–
MUID, we give higher priority for neighbor n with smaller |SE(v, M)| in UID, or
|U I DSE (n)|. Given equal-sized |U I DSE (n)|, we then define the secondary criteria
as minimizing |U I DM (n) − M |. This is because that exploiting neighbors already
in M could potentially introduce fewer new vertices. Given equal-sized |U I DSE (n)|
and |U I DM (n)− M | the tertiary criteria is larger SEgain(v, m, M). Note that for n
to be chosen into M, |SEgain(v, n, M)| must be larger than 0.

Algorithm 3 describes the algorithm in details.

6 Experimental results

We introduce 3 real and 3 synthetic datasets for evaluation in Sect. 6.1. Then, in
Sect. 6.2 we display the experimental results of finding UID and MUID, respectively.
Finally, we report some case studies on MUID examples in Sect. 6.3.

6.1 Experiment settings

We exploit three real datasets and three synthetic datasets to evaluate our model. The
statistics of all the data sets are shown in Table 2. The three real datasets include KDD
movie data set, HepTh citation network, and academic co-author network. The KDD
movie data set is a movie-centric heterogeneous information network. There are 35,311
nodes belonging to 20 different types. The node types include movie, actor, director,
place, producer, …etc. There are a total of 168,868 edges in this network connecting
different entities. The second real data set encodes paper-author relationship among
numerous scholars and published research papers. This network consists of 63,122
nodes and 770,155 edges. There are six types of nodes—student, professor, depart-
ment, college, and Chinese and English keywords. For the third dataset, we choose a
commonly used citation graph, Arxiv high energy physics theory (HEPTH), provided

123

412 Y.-C. Lo et al.

Algorithm 3: Multiple-Neighbor–MUID method
Input: A Graph G = (V, E), a query vertex v, precomputed SE(v, M) and M in UID
Output: MUID set X of v

Get N (v) = {m1, m2,..., md };1
Mx ←− ∅2
SEx ←− ∅3
U I DSE (v)←− Read SE(v, M) of v’s UID4
U I DM (v)←− Read M of v’s UID5
W is a stack and initially empty.6
//W stores not yet uniquely identified vertices7
push v into W8
while |W | > 0 do9

w←− pop first element from W10
SEw ←− SE(w, Mx) Mw ←− ∅11
Nx ←− N (v)− X12
while |SEw | > 0 do13

for n ∈ Nx do14
if |SEgain(w, n, Mw)| = 0 then15

Nx ←− Nx − {n}16

end17

end18
if Nx = ∅ then19

break;20

end21
minU I DSE ←− max integer22
minU I DM ←− max integer23
max SEG ←− min integer24
nopt ←− null25
for n ∈ Nx do26

if (U I DSE (n) < minU I DSE) or27
(U I DSE (n) = minU I DSE and U I DM (n) < minU I DM) or28
(U I DSE (n) = minU I DSE and U I DM (n) = minU I DM and29
SEgain(w, n, Mw) > max SEG) then

minU I DSE ←− U I DSE (n)30
minU I DM ←− U I DM (n)31
max SEG ←− SEgain(w, n, Mw)32
nopt ←− n33

end34

end35
Mw ←− Mw ∪ {nopt }36
SEw ←− SEw − N (nopt)37
push nopt into W38

end39
for u ∈ SEw do40

if N (u) ⊃ N (w) then41
p42

end43
ush u into W //∃Mu that w /∈ SE(u, Mu)44

end45
Mx ←− Mx ∪ Mw46
SEx ←− SEx ∪ SEw47

end48
Output X = [Mx , SEx];49

123

What distinguish one from its peers 413

Table 2 Data sets statement
Name |V| |E| Number

of types

KDD movie dataset 35311 168868 20

TW academic network 63122 770155 6

HepTh citation network 41840 933149 4

Erdős-Rényi Model 50000 249128 3

Barabási–Albert Model 50000 249179 3

Watts–Strogatz Model 50000 300000 3

in KDD Cup 2003. There are 93,319 edges connecting 41,840 nodes with four types,
author, paper, journal, and email domain. For each dataset, a giant connected compo-
nent (GCC) is obtained for our experiments. We also create three synthetic datasets
of 50,000 nodes each, based on three different social network generation models. We
apply Erdős and Rényi (1961) model to produce a random graph; the Albert and
Barabási (2002) model to produce scale-free networks; and the Watts and Strogatz
(1998) model to produce graphs that can mimic the small world phenomena. For the
Erdős–Rényi random graph (ER) model , we set the connection probability to be
0.0002. For the Barabási–Albert (BA) model, we set the number of initial nodes to
5. For the Watts–Strogatz (WS) model , we set the mean degree to 6, and the edge
rewiring probability to 0.18. We assume there are three types of vertices in the network
and randomly assign a type to each node.

In Table 3 we compare different models by averaging their rankings (1–3). Note
that the ranking is generated using all vertices in the graph based on Definition 3
(i.e., we compare |SE(v, M)| first, and the second criteria is |M | given identical
|SE(v, M)|). Finally, the methods with lower average rank are considered having
better performance, namely obtaining better quality of UIDs.

For MUID, we compare the performance of the three greedy methods only because
the exhaustive search method becomes intractable. Similar to our experiment on UID,
Table 4 displays the comparison between the three greedy-based algorithms on MUID
using the metrics described in Sect. 3.1. We return the average rank (calculated over
all vertices) of each model.

6.2 Data analysis

We first discuss the results for UID in Table 3. In all datasets, the Multiple-Neighbor
method obtains as good results as the exhaustive search method does. The One-
Neighbor method, although generally cannot achieve the optimal solution, usually
does better than the 1-Hop+ method. The 1-Hop+ method guarantees the minimal SE
set at the cost of including all neighbors into M. The One-Neighbor method includes
only one neighbor into M and therefore cannot guarantee minimizing the size of SE
set. Therefore, it is not hard to show that for datasets where the optimal UID can be
obtained with only one neighbor, the One-Neighbor method would outperform the
1-Hop+ method. The last row of the table records the execution time to generate the

123

414 Y.-C. Lo et al.

Table 3 The UID experimental results of the datasets

Dataset MN ON OH EX

KDD movie 1.00 1.80 2.21 1.00

TW academic 1.01 2.65 3.63 1.00

HepTh 1.00 2.50 3.39 1.00

ER 1.00 2.70 3.70 1.00

BA 1.00 2.62 3.62 1.00

WS 1.00 2.30 3.29 1.00

Execution time of TW Academic (sec.) 383.06 271.84 256.22 3876.46

In the table, “MN”, “ON”, “OH”, “EX” stand for the Multi-Neighbor method, the One-Neighbor method,
the 1-Hop+ method, and exhaustive search, respectively. The last row records the execution time on Taiwan
Academic network

UIDs for all vertices on the Academic network dataset. It shows that the Multiple-
Neighbor method, although requires slightly more time than the other two greedy
methods, performs significantly more efficient than the exhaustive search does.

In Table 4 we discuss the quality of results of the MUID identified by each of the
three methods. In both metrics, Multiple-Neighbor–MUID obtained the best result and
it generally does a better job minimizing the T SE than U SE . Table 5 shows the mean
of union size as well as the T SE and T M on the Taiwan academic network dataset. The
Multiple-Neighbor–MUID obtains the minimal T SE and U SE . The One-Neighbor–
MUID method always obtains the minimal U M as 2 (the query and its neighbor).
Although the 1-Hop+ method guarantees the minimal SE set for the UID of the ego
vertex, it includes full neighborhood of the ego vertex. The neighbors of the same
type would be SE to each other, therefore it introduces not only a large set of M but
also a large SE set. For the KDD Movie dataset, the One-Neighbor–MUID and the
1-Hop+ methods seem to perform closer to Multiple-Neighbor–MUID than with other
datasets. It is because in this dataset more than 40 % vertices have very low degrees.
Also, we have observed that in the dataset with more node types, the performance of
the One-Neighbor–MUID method improves because such data provides more chances
for One-Neighbor method to uniquely identify the query node using only one neighbor
node.

Furthermore, we compare the effectiveness of the heuristics introduced in Sect. 5:
U I DSE , U I DM , SEgain. In Table 6 the Full setting utilizes all three heuristics and
performs the best. The setting, HA(U I DSE is excluded), generally performs the worst.
It is because that using U I DM without U I DSE may include neighbors with many SE
nodes. This also explains why on the HepTh dataset the HAlooks fine because there
are fewer SE nodes. Also, it seems that U I DM is the least effective heuristic among
the three.

6.3 Case study

Here we conduct a case study to demonstrate real-world results for MUID using the
KDD Movie dataset. Figure 10 shows an example of three different MUIDs discovered

123

What distinguish one from its peers 415

Table 4 The MUID experimental results in the datasets

Dataset Metrics MN ON OH

KDD movie Union 1.33 1.61 2.07

Sum 1.01 1.81 2.19

TW academic Union 1.20 2.43 2.32

Sum 1.00 2.55 2.40

HepTh Union 1.04 1.92 2.79

Sum 1.02 1.95 2.78

ER Union 1.00 2.02 2.96

Sum 1.00 2.14 2.84

BA Union 1.00 2.00 2.98

Sum 1.00 2.04 2.95

WS Union 1.05 1.76 2.99

Sum 1.05 1.78 2.97

“Union” and “Sum” represent the two metric ranks described in Sect. 3.1

Table 5 The MUID experimental results in mean of union size and mean of sum of size on Taiwan
Academic network

Dataset Metrics MN ON OH

TW academic USE 3.00 10.45 12.58

UM 10.19 2.00 13.20

TSE 80.04 425.27 1563.26

TM 29.49 12.16 32.58

U SE, U M, T SE, T M are defined in Sect. 3.1

Table 6 The comparison between heuristic sets in Multiple-Neighbor–MUID

Dataset Metrics Full HA HB HC

KDD movie Union 1.07 2.00 1.32 1.63

Sum 1.07 2.01 1.32 1.64

TW academic Union 1.31 2.32 1.45 1.83

Sum 1.36 2.34 1.45 1.83

HepTh Union 1.35 1.58 1.78 1.82

Sum 1.38 1.60 1.79 1.83

Full stands for the heuristic setting including the three heuristics. HA excludes U I DSE , HB excludes
U I DM , and HC excludes both of U I DSE and U I DM (i.e., HC includes only SEgain)

by the three proposed algorithms. The 1-hop+ method simply obtains the neighbors
of the ego vertex (i.e., movie Interiors marked in grey). One-Neighbor adds a single
node, actor Kristin Griffith, first because this vertex has degree 1 and will not further
produce SE nodes that need to be further identified. The Multiple-Neighbor method

123

416 Y.-C. Lo et al.

Fig. 10 Three different groups. A case that MN wins in all evaluation metrics

first selects two neighbor nodes since they are less likely to introduce too many nodes
that require a large amount of vertices to identify.

Table 7 shows the size of MUID sets produced by different models. Note that for
the Multiple-Neighbor method, from T SE we can realize each node in MUID can be
uniquely identified by its M set without the requirement of an SE set, which implies
the vertices in this set are more unique than those in other MUID sets.

After examining the MUID results in KDD Movie dataset, we have identified three
interesting patterns: Outliers, high-degree nodes and movie series. We will discuss
each pattern in detail below.

6.3.1 Outliers

Figure 11 displays a frequent pattern that contains some inactive individuals in the
network. Firstly, a vertex with small degree (e.g., an actor named David Tom) is chosen
as the ego. In this case, 1-Hop+ and One-Neighbor MUID methods return the same set
of nodes. It is because that this ego has only one single neighbor (movie Stepfather 3),
which has to be included by both methods. Then, it is necessary to include SE(’David
Tom’, ’Stepfather 3’) so that Tom can be unique. Then one can observe that the
mission has been accomplished because all the 7 nodes in the set can be uniquely
identified by the remaining nodes in the set. Generally speaking, in the movie dataset,
we found plenty of MUID of such flavor: an outlier ego, with its neighbor and some
SE nodes. The Multiple-Neighbor method first includes two more nodes to identify

123

What distinguish one from its peers 417

Table 7 The MUID experimental results in union size and sum of size for the cases in this section

Queried vertex Metrics MN ON OH

Interiors USE 0 7 9

UM 7 2 12

TSE 0 42 44

TM 12 8 22

David Tom USE 6 6 6

UM 5 2 2

TSE 20 30 30

TM 13 7 7

Saving private Ryan USE 0 2 8

UM 6 2 13

TSE 0 2 16

TM 10 3 24

Blondie on a budget USE 5 17 6

UM 9 2 5

TSE 9 272 30

TM 49 18 28

Fig. 11 Outliers. The MN performed best in TSE

Season Hubley and Priscilla Barnes so their own SE set can be minimized. Then, a
movie Island in The Stream has to be includes to uniquely identify Vice Squad. Note
that although the value |SE(v, M)|+|M | of the Multiple-Neighbor method is not as
small as the other methods in these examples, it generally produces the better union
and sum of SE sets, which implies that some additional vertices might be added to
reduce the size of the SE set.

123

418 Y.-C. Lo et al.

Fig. 12 High-degree nodes. The M N outperformed others in both SE sizes

6.3.2 High-degree nodes

An example of high degree nodes is illustrated in Fig. 12. By taking Saving Private
Ryan as the ego, the Multiple-Neighbor select DreamWorks and Jeremy Davies to
uniquely identify the ego node, indicating that this is the only movie performed by J.
Davis and published by DreamWorks. To identifying both neighbors, we include three
more nodes and finally produce a MUID with an empty SE set, which means all nodes
in this set are unique given certain neighbors. The One-Neighbor algorithm chooses
Omaha Beach to uniquely identify the ego. Then, it continues to find DreamWorks
(place) to uniquely identify Omaha Beach. Although the total size of graph is small,
it does not produce empty SE sets as both places have each other as the SE node. The
1-Hop+ method included all 12 neighbor nodes. In general, nodes with higher degree
have higher chance to connect to vertices with rare type and fewer connections (e.g.,
Omaha beach).

6.3.3 Series of movies

The next example describes the cases where there exist many SE nodes. Figure 13 uses
Blondie on a Budget as the ego, and shows that there are 5 nodes that are SE to this

123

What distinguish one from its peers 419

Fig. 13 Series of movies. A case that MN performed best; while ON performed worst

ego. It is inevitable for any algorithm to include these 5 nodes in order to distinguish
the movie from others. The Multiple-Neighbor produces the set that includes some
relevant information (e.g., director, category, etc.) about the movie, and those 5 SE
nodes. For recommendation purpose, we may find those movies are suitable candi-
dates to replace each other. Furthermore, additional information about the 5 added
movies (e.g., place, time) is provided, so they can be identified with minimal SE sets.

7 Conclusions

This paper shows that the uniqueness of a node can be captured in many different
ways: using all the neighbors plus some similar nodes (1-Hop+), using a combination
of 1st degree and 2nd degree neighbors (One-Neighbor method), greedily adding
vertices that are likely to be unique themselves (Multiple-Neighbor method). This
paper proposes and proves some valid methods to identify a closure set of mutually
identifiable nodes, and focus on finding one with small SE set size in UID or smaller
union or summation SE set size in MUID. The future work lies in the investigation of
some other metrics such as diversity of types, coverage, etc, and comes up with efficient
and effective models to identify such sets and their complexity analysis accordingly.

123

420 Y.-C. Lo et al.

Acknowledgements Mi-Yen Yeh’s research is supported in part by National Science Council of Taiwan,
R.O.C., under Contracts NSC101-2221-E-001-013. Shou-De Lin’s research is supported by National Sci-
ence Council, National Taiwan University and Intel Corporation under Grants NSC100-2911-I-002-001,
NSC101-2628-E-002-028-MY2 and NTU102R7501. Jian Pei’s research is supported in part by an NSERC
Discovery Grant and a BCFRST NRAS Endowment Research Team Program project. All opinions, find-
ings, conclusions and recommendations in this paper are those of the authors and do not necessarily reflect
the views of the funding agencies.

References

Albert R, Barabási A-L (2002) Statistical mechanics of complex networks. Rev Modern Phys 74:47–97
Erdős P, Rényi A (1961) On the evolution of random graphs. Bull Inst Int Stat 38:343
Fortunato S (2010) Community detection in graphs. Phys Rep 486(3–5):75–174
Lappas T, Liu K, Terzi E (2009) Finding a team of experts in social networks. In Proceedings of ACM

SIGKDD international conference on knowledge discovery and data mining
Li C-T, Lin S-D (2009) Egocentric information abstraction for heterogeneous social networks. In ASONAM,

2009
Li C-T, Shan M-K (2010) Team formation for generalized tasks in expertise social networks. In IEEE

SocialCom
Newman M (2004) Detecting community structure in networks. Eur Phys J B Condens Matter Complex

Syst 38(2):321–330
Sozio M, Gionis A (2010) The community-search problem and how to plan a successful cocktail party. In

Proceedings of ACM SIGKDD international conference on knowledge discovery and data mining
Tang J, Zhang J, Yao L, Li J, Zhang L, Su Z (2008) ArnetMiner: extraction and mining of academic social

networks. In Proceedings of ACM SIGKDD international confernce on knowledge discovery and data
mining

Watts D, Strogatz S (1998) Collective dynamics of small-world networks. Nature 363:202–204
Yang D-N, Chen Y-L, Lee W-C, Chen M-S (2011) Social-temporal group query with acquaintance con-

straint. In Proceeding of international conference on very large data, bases
Zhou B, Pei J (2008) Preserving privacy in social networks against neighborhood attacks. In Proceedings

of IEEE international conference on data, engineering
Zhu J, Nie Z, Liu X, Zhang B, Wen J-R (2009) StatSnowball: a statistical approach to extracting entity

relationships. In Proceedings of internatinal world wide web conference

123

	What distinguish one from its peers in social networks?
	Abstract
	1 Introduction
	2 Related works
	3 Preliminaries
	3.1 Problem definition
	3.2 Complexity analysis

	4 Finding optimal UIDs
	5 Finding MUIDs
	6 Experimental results
	6.1 Experiment settings
	6.2 Data analysis
	6.3 Case study
	6.3.1 Outliers
	6.3.2 High-degree nodes
	6.3.3 Series of movies

	7 Conclusions
	Acknowledgements
	References

