
Knowl Inf Syst
DOI 10.1007/s10115-012-0489-6

REGULAR PAPER

Recommendations for two-way selections using skyline
view queries

Jian Chen · Jin Huang · Bin Jiang ·
Jian Pei · Jian Yin

Received: 28 November 2010 / Revised: 3 December 2011 / Accepted: 6 March 2012
© Springer-Verlag London Limited 2012

Abstract We study a practical and novel problem of making recommendations between
two parties such as applicants and job positions. We model the competent choices of each
party using skylines. In order to make recommendations in various scenarios, we propose a
series of skyline view queries. To make recommendations, we often need to answer skyline
view queries for many entries in one or two parties in batch, such as for many applicants
versus many jobs. However, the existing skyline computation algorithms focus on answering
a single skyline query at a time and do not consider sharing computation when answering
skyline view queries for many members in one party or both parties. To tackle the batch
recommendation problem, we develop several efficient algorithms to process skyline view
queries in batch. The experiment results demonstrate that our algorithms significantly out-
perform the state-of-the-art methods.

Keywords Mutual recommendation · Skyline query · Multi-objective optimization ·
Stable matching

J. Chen
South China University of Technology, Guangzhou, China

J. Huang (B)
South China Normal University, Guangzhou 510631, China
e-mail: jinhuang@scnu.edu.cn

B. Jiang
Facebook Inc., Menlo Park, CA, USA

J. Pei
Simon Fraser University, Burnaby, Canada

J. Yin
Sun Yat-sen University, Guangzhou, China

123

J. Chen et al.

1 Introduction

It has been well recognized that skyline queries are important in many multi-criteria decision-
making applications. For example, consider a scenario where an employer screens applicants
for a job position. Suppose each applicant has two attributes: the experience level and the
qualification level, the higher the better. An applicant a dominates another applicant b, that
is, a is a better applicant than b in the context of this example, if a is better than b in at least
one aspect and is not worse than b in the other aspect. Among a set of given applicants, the
ones not dominated by any others in the set form the skyline. In other words, the skyline
applicants are all possible trade-offs between experience and qualification that are superior
to other applicants.

There are many studies on efficient skyline computation, as will be briefly reviewed in
Sect. 3. Existing studies focus on computing the skyline(s) for a given data set in either the
full space or subspaces. In real applications when selections involve more than one party,
skyline analysis can be much more complicated, which motivates our study.

Consider a headhunter making recommendations between job applicants and job posi-
tions. Given a set of applicants in Table 1 and a set of positions in Table 2, suppose the higher
the experience level and qualification level, the better an applicant, and the higher the salary
level and the benefit level, the more attractive a job. In Table 1, each applicant indicates the
jobs interesting to her/him. Symmetrically, each job has some requirement on applicants.
In Table 2, each job has a list of applicants who satisfy the requirement of the job. Those
applicants are qualified for the job.

A natural question from an applicant is to find the skyline jobs that the applicant is qualified.
We call this the reciprocal skyline of the applicant, which represents the best choices for the
applicant. For example, Ada in Table 1 is qualified for jobs J1, J2, and J3. J2 dominates J3,
since J2 is better than J3 in both salary and benefit. Thus, Ada’s reciprocal skyline consists
of J1 and J2, though Ada is not currently interested in J1. This information may help Ada
to adjust her interest. Symmetrically, we can also provide a job the reciprocal skyline of
applicants that contains the best applicants who are interested in the job.

An applicant may also want to know which jobs regard the applicant a skyline applicant.
We can model such an information need by an inverse skyline query. For example, Cathy
in Table 1 is interested in and also qualified for jobs J1, J2, and J3. Unfortunately, Cathy’s
inverse skyline is empty since Cathy is not in the skyline of any jobs. Knowing her inverse
skyline, Cathy may adjust her expectation and job hunting strategy properly, since she may

Table 1 A set of applicants Applicant Experience Qualification Interest

Ada 4 3 J2, J3

Bob 2 4 J1, J3

Cathy 3 1 J1, J2, J3

Dan 1 2 J2, J3

Table 2 A set of job positions Job Salary Benefit Interest

J1 80K 1 Ada, Bob, Cathy

J2 50K 3 Ada, Cathy, Dan

J3 40K 2 Ada, Bob, Cathy, Dan

123

Recommendations for two-way selections

not be the first choice of any jobs. Symmetrically, we can also provide a job the inverse
skyline of applicants that contains the applicants who view the job a skyline one.

Both reciprocal skyline queries and inverse skyline queries are the examples of a series of
skyline view queries to be discussed in this paper. As illustrated, various skyline view que-
ries may be asked in the course of recommendations for two-way selections. Although those
queries can be answered for one applicant or one job individually by adapting some existing
skyline computation algorithms, a headhunter often has to answer such queries in batch for all
or a large number of applicants and/or jobs. For example, online job search engines, such as
mon\discretionary-ster.com, have millions of job posts and registered applicants. Even more,
thousands of new job posts and applicants are added everyday. The search engines have to
make recommendations for new jobs and applicants as well as update the recommendations
for existing jobs and applicants. Such systems need to process millions of skyline view que-
ries periodically. The existing skyline computation algorithms only consider computing a
single skyline at a time and thus are not optimized for answering multiple queries in batch.
Can we answer a batch of skyline view queries in a more efficient and more scalable way than
processing them one by one? It is far from trivial to develop efficient computation sharing
strategies when computing many skylines at the same time.

The scenario of matching applicants and jobs is just one example of recommendations
between two parties towards two-way selections. Recommendations between two parties
for two-way selections are needed in many applications. Online dating services recommend
appropriate dates for men and women, who may specify requirements on various factors
such as age, location, and income. Online advertisement service applications, such as Google
AdSense, make mutual recommendations between web pages and advertisers. Skyline view
queries are highly useful in recommendations between two parties for two-way selections.
However, to the best of our knowledge, skyline queries for recommendations in two-way
selection have not been studied systematically.

In this paper, we identify a series of skyline view queries useful for recommendations
between two parties and develop several novel algorithms to answer the skyline view queries
in batch efficiently. An experimental study indicates that our batch algorithms significantly
outperform answering queries individually using the existing methods.

The rest of the paper is organized as follows. In Sect. 2, we formulate 8 types of skyline
view queries. We review the related work in Sect. 3. Section 4 develops efficient algorithms
for answering the 8 types of skyline view queries. We report an extensive empirical study in
Sect. 5. Section 6 concludes the paper.

2 Skyline view queries

In this section, we first recall the preliminaries of skylines. Then, we formally define 8 skyline
view queries.

2.1 Preliminaries

Consider a set of points S in a multidimensional space D = (D1, . . . , Dd). To keep our
discussion simple, we assume that the domain of each attribute Di (1 ≤ i ≤ d) is numeric.
Our discussion can be generalized to attributes of other types where partial orders are defined.

Consider two points x, y ∈ S. x is said to dominate y, denoted by x � y, if for every attri-
bute Di , x .Di ≥ y.Di , and there exists one attribute D j (1 ≤ j ≤ d) such that x .D j > y.D j .

123

mondiscretionary {-}{}{}ster.com

J. Chen et al.

Table 3 A summary of
frequently used notions

Notion Meaning

V (A) The view of A, {J ∈ J |A.P(J) = true}
I V (A) The inverse view of A, {J ∈ J |J.P(A) = true}
SV (A) The skyline view of A, Sky(V (A))

i Sky(A) The inverse skyline of A, {J |A ∈ SV (J)}
r Sky(A) The reciprocal skyline of A, Sky(I V (A))

MV (A) The mutual view of A, {J |J ∈ V (A) ∧ A ∈ V (J)}
SMV (A) The skyline mutual view of A, Sky(MV (A))

SI S(A) The skyline of inverse skyline of A, Sky(i Sky(A))

A point x ∈ S is a skyline point in S if there does not exist another point x ′ ∈ S such that
x ′ � x . The skyline of S, denoted by Sky(S), is the set of skyline points in S.

A predicate P defined in space D specifies a region in either D or a subspace of D. A point
x is said to satisfy P , denoted by P(x) = true, if x falls in the region specified by P . We
also overload symbol P to denote the region specified by the predicate of the same name.
In this paper, we focus on simple predicates whose regions are rectangles. To be concrete, a
predicate specifies the maximum and/or minimum values on some attributes. For example,
an applicant may specify the predicate of his job interests as Salary >50K, and a job position
may specify the predicate of the applicant requirements as Experience > 3 and Qualification
∈ [2, 3].
2.2 Skyline view queries

In this paper, we study skyline view queries involving two parties. To make our discussion
easy to follow, we use “applicants” and “jobs” as the aliases of the two parties in the question.
If one prefers being formal, we can always replace “applicants” and “jobs” by “Party 1” and
“Party 2,” respectively, in the mathematical statements.

Given an applicant data set A and a job data set J , we study the problem of recommen-
dations between the two data sets.

In practice, it may not be easy to obtain the explicit and complete interest of an applicant
or a job. Instead, an applicant may specify the minimum and/or maximum requirements on
attributes such as salary and benefit. Hence, we model the interest of an applicant A ∈ A
as a predicate A.P in the space of the job data set J . Symmetrically, the qualification of a
job J ∈ J is also modeled as a predicate J.P in the space of the applicants A. Applicant
A is interested in job J if J satisfies the predicate of A, that is, A.P(J) = true. Job J is
interested in applicant A, that is, the applicant qualifies job J , if A satisfies the predicate of
J , that is, J.P(A) = true.

In the rest of this section, we only define the skyline view queries for applicants. Their
counterparts for jobs can be obtained symmetrically. Table 3 summaries the 8 types of skyline
view queries. To help understand the queries, Table 4 shows the results of these queries on
the data sets in Tables 1 and 2.

Definition 1 (View) The view of an applicant A ∈ A consists of all jobs in J satisfying the
predicate of A, that is, V (A) = {J ∈ J |A.P(J) = true}.

Symmetrically, we define the view of a job J with predicate J.P as V (J) = {A ∈
A|J.P(A) = true}.

123

Recommendations for two-way selections

For example, in Table 1, Ada’s view includes J2 and J3.
It is also important for an applicant to know the jobs that she/he is qualified. This can be

modeled by the inverse view of the applicant.

Definition 2 (Inverse view) The inverse view of an applicant A is the set of jobs in J that
are interested in A. That is, I V (A) = {J ∈ J |J.P(A) = true}.

If a job J is in the inverse view of applicant A then A is in the view of J , and vice versa.
Therefore, I V (A) = {J ∈ J |A ∈ V (J)}. Similarly, the inverse view of a job J ∈ J is
I V (J) = {A ∈ A|A.P(J) = true} = {A ∈ A|J ∈ V (A)}.

For an applicant A, V (A) includes all jobs that satisfy A’s predicate. Among these jobs,
the ones in the skyline of V (A) are more attractive to A since they are not dominated by any
other jobs in V (A).

Definition 3 (Skyline view) For an applicant A ∈ A, the skyline view of A is the skyline
of the jobs that A is interested in, that is, the skyline of A’s view denoted by SV (A) =
Sky(V (A)).

Symmetrically, the skyline view of a job J ∈ A is SV (J) = Sky(V (J)).

An applicant A may like to know the jobs J whose skyline view SV (J) contains A. Those
jobs are the ones A has good promise.

Definition 4 (Inverse skyline) For an applicant A ∈ A, the inverse skyline of A is the set of
jobs whose skyline views contain A, denoted by i Sky(A) = {J |A ∈ SV (J)}.

Jobs in the inverse view I V (A) of A should be recommended to A, since A is qualified
those jobs. Moreover, A should pay more attention to the jobs in the skyline of I V (A) because
they are the best jobs A can get. We model this set of jobs as the reciprocal skyline of A.

Definition 5 (Reciprocal skyline) For an applicant A ∈ A, the reciprocal skyline of A is
the skyline of the set of jobs that A is qualified, denoted by r Sky(A) = Sky({I V (A)}).

An important task for headhunters is to match applicants and jobs. When an applicant
and a job satisfy the requirement of each other, they have mutual interest to each other. For
an applicant, the set of jobs which the applicant is interested in and is qualified form the
applicant’s mutual view.

Definition 6 (Mutual view) For an applicant A ∈ A, the mutual view of A is MV (A) =
{J |J ∈ V (A) ∧ A ∈ V (J)}.

Furthermore, Ada may be interested in the skyline in her mutual view, captured by her
skyline mutual view, which consists of the best jobs which she is qualified and interested in.

Definition 7 (Skyline mutual view) For an applicant A ∈ A, the skyline mutual view of A
is SMV (A) = Sky(MV (A)).

The inverse skyline of an applicant cares about the dominance relationships among appli-
cants. For each job in an applicant’s inverse skyline, he is a good candidate (i.e., does not
dominated by any other applicant). However, the jobs in his inverse skyline may be dominated
by other jobs, and this dominance relationship has not been exploreed in inverse skylines.
Therefore, we consider the skyline of an applicant’s inverse skyline and call it the skyline
of inverse skyline. The skyline of inverse skyline consists of the best jobs that consider the
applicant as one of their best candidates. It takes into account the preferences of both the
applicants and the jobs.

123

J. Chen et al.

Definition 8 (Skyline of inverse skyline) For an applicant A ∈ A, the skyline of inverse
skyline of A is SI S(A) = Sky(i Sky(A)).

It is easy to see that a view query is a multidimensional range query where the predicate
specifies the search region. An inverse view query is a stabbing query. The inverse view of
an applicant consists of all jobs whose predicate regions contain the applicant in the space
of applicants. The other 6 types of queries are essentially skyline queries on a subset of the
original data set.

Straightforwardly, we can employee an existing range query algorithm, a stabbing query
algorithm and a skyline algorithm to answer those queries. In two-way selection recommen-
dation systems, recommendations may be made to many or all members of one or both parties
in batch. For example, a headhunter may want to make recommendations to all applicants
and jobs. Apparently, when answering a query for all individuals, much computation may be
redundant. For example, some jobs are compared again and again when computing skyline
views of different applicants. Therefore, in Sect. 4, we develop algorithms to answer each
type of queries for all applicants/jobs in batch mode in order to share as much computation
as possible.

2.3 Properties

Following with the definitions of the skyline view queries, we have several interesting prop-
erties about the queries.

Property 1 For any A ∈ A, SV (A) ⊆ V (A), i Sky(A) ⊆ I V (A), SMV (A) ⊆ MV (A),
and SI S(A) ⊆ i Sky(A).

Property 2 For any A ∈ A, MV (A) = V (A) ∩ I V (A).

We observe that every job in the inverse skyline view of A is also in the inverse view
of A.

Property 3 For any applicant A ∈ A, i Sky(A) ⊆ I V (A).

Proof 1 According to Definition 4, for any job J ∈ i Sky(A), A ∈ Sky(V (J)). Thus,
A ∈ V (J). That is, J ∈ I V (A). Therefore, i Sky(A) ⊆ I V (A).
�

Figures 1 and 2 show the derivative relationships and the containment relationships among
the 8 types of skyline view queries according to the above properties. It is easy to verify that
the above properties hold for the example shown in Table 4.

3 Related work

Our study is highly related to the existing work on skyline computation and the stable match-
ing problem.

3.1 Skyline computation on single data set

Since Börzsönyi et al. [1] introduced the skyline operator into the database community,
there has been a great amount of research dedicated to skyline query processing as well as
extensions and applications of skyline in preference-based data analysis.

123

Recommendations for two-way selections

Fig. 1 The derivative relationships of the 8 types of skyline view queries

Fig. 2 The containment
relationships among the 8 types
of skyline view queries

rSky

iSky

Table 4 The results of the 8 skyline view queries on data sets in Table 1 and 2

Query on applicants Ada Bob Cathy Dan

V J2, J3 J1, J3 J1, J2, J3 J2, J3

I V J1, J2, J3 J1, J3 J1, J2, J3 J2, J3

SV J2 J1, J3 J1, J2 J2

i Sky J1, J2, J3 J1, J3 ∅ ∅
MV J2, J3 J1, J3 J1, J2, J3 J2, J3

SMV J2 J1, J3 J1, J2 J2

r Sky J1, J2 J1, J3 J1, J2 J2

SI S J1, J2 J1, J3 ∅ ∅
Query on jobs J1 J2 J3

V Ada, Bob, Cathy Ada, Cathy, Dan Ada, Bob, Cathy, Dan

I V Bob, Cathy Ada, Cathy, Dan Ada, Bob, Cathy, Dan

SV Ada, Bob Ada Ada, Bob

i Sky Bob, Cathy Ada, Cathy, Dan Bob

MV Bob, Cathy Ada, Cathy, Dan Ada, Bob, Cathy, Dan

SMV Bob, Cathy Ada Ada, Bob

r Sky Bob, Cathy Ada Ada, Bob

SI S Bob, Cathy Ada Bob

123

J. Chen et al.

The algorithms of skyline computation fall into two categories: the non-indexed algorithms
and the index-based algorithms. The non-indexed algorithms do not assume any index on
the data. Such algorithms include the Divide and Conquer algorithm and the Block Nested
Loops algorithm by Börzsönyi et al. [1], the Sort Filter Skyline algorithm by Chomicki et
al. [2], and the Linear Elimination Sort for Skyline algorithm by Godfrey et al. [3].

Different from the non-indexed algorithms which have to scan the whole data set at least
once, index-based algorithms take advantage of various pre-built indexes on data sets, so that
they only access a portion of a data set to compute the skyline. The Bitmap algorithm and the
Index algorithm by Tan et al. [4], the Nearest Neighbor algorithm by Kossmann et al. [5],
and the Branch and Bound Skyline algorithm by Papadias et al. [6,7] belong to this category.

Particularly, R-trees [8] have been used extensively in index-based algorithms [9]. When
computing the skyline of a set of objects, the R-tree index provides a possibility to filter out
a subset of objects without examining them one by one. Because the maximum corner of the
MBB of a node in the R-tree dominates all objects contained in the MBB, if the maximum
corner is dominated by some other object, then none of the objects contained in the MBB
can be in the skyline.

The Branch and Bound Skyline algorithm (BBS for short) [6,7] is an R-tree based skyline
algorithm and is one of the fastest algorithms for computing skyline in practice. Given a
set of points indexed by an R-tree, BBS traverses the R-tree to compute the skyline. BBS
maintains a min-heap H built against the minimum distance to the origin of the data space
mindist of every entry (node). The algorithm proceeds iteratively.

At the beginning, entries at the root are inserted into H . In each iteration, the top element e
of H is processed. If e is fully dominated (i.e., the minimum corner of e.M B B is dominated)
by a known skyline point, then e is discarded. Otherwise, if e is a data point, then it is output
as a skyline point; if not, e is discarded and those entries at e (that is, the children of e) which
are not fully dominated by any known skyline point are inserted into H . An in-memory
R-tree on known skyline points is maintained in order to facilitate examining the dominance
relationship. The algorithm terminates when H is empty.

BBS ensures that each output point is in the skyline. Moreover, BBS is I/O optimal.
In this paper, we assume that every data set is indexed by an R-tree [8] and use BBS as

the baseline in our experiments.
Recently, there is much research studying skylines in multidimensional subspaces. Pei et

al. [10,11] and Yuan et al. [12] proposed a skyline cube data structure that completely pre-
computes the skylines of all possible subspaces for a given data set. Xia et al. [13] addressed
the incremental maintenance of skyline cubes. Tao et al. [14] developed the SUBSKY algo-
rithm to answer subspace skyline queries efficiently in any subspaces. To tackle the problem
of skylines in high dimensional spaces, Chan et al. [15] relaxed the definition of dominance
to k-dominance and proposed k-dominant skylines.

There are also numerous studies on skyline computation in different environments, such as
skyline query processing over data streams [16–20] and time series [21], computing skylines
in distributed systems [22,23] and on mobile lightweight devices such as MANETs [24],
spatial skyline queries [25], skyline computation in partially ordered domains [26], skyline
queries in metric space [27], skyline computation on uncertain data [28,29], using skylines
to mine user preferences and make recommendations [30,31].

To the best of our knowledge, we are the first to study using skyline queries for recommen-
dation in two-way selections. Although the proposed skyline view queries can be answered
by existing methods individually, those methods only consider answering a single query at a
time. It is far from trivial to develop efficient algorithms for answering skyline view queries
in batch.

123

Recommendations for two-way selections

3.2 Skyline computation involving two data sets

Most of the previous work only considers computing skylines (or their variants) on a sin-
gle data set, whereas our skyline view queries deal with two distinct data sets. Recently,
Dellis et al. [32] studied the concept of reverse skyline and bichromatic reverse skyline.
They consider a set of products described by multiple features and a set of customers, each
of whom specifies his/her favorite product features as a data point in the product space.
Given a product q , the reverse skyline consists of the customers whose dynamic skyline
contains q . The dynamic skyline of a customer preference p corresponds to a transformed
data space where p becomes the origin and all other products are represented by their dis-
tance vectors to p. Lian et al. [29] studied the bichromatic probabilistic reverse skyline
queries over uncertain data. Wu et al. [33] proposed several heuristics to enhancing the
performance.

Our skyline view queries are fundamentally different to bichromatic skylines and reverse
skylines.

From the application point of view, bichromatic skylines and reverse skylines care about
only the preference on one party. Customers have interests and preferences in products,
but products cannot choose customers. However, our skyline views queries consider two-
way mutual selections between two parties and both parties have preferences in each
other.

Given this fundamental difference, our problems are modeled differently to bichromatic
skylines and reverse skylines. Bichromatic and reverse skylines compute the skyline of the
data set of one party in a transformed space according to the query point, and they consider
all points in computation. On the other hand, our skyline view queries essentially compute
the skyline of a subset of one party of the data set according to the constraints specified by
the query, and we do not use space transformation.

As a result, the query answering techniques are quite different. The algorithms for bichro-
matic and reverse skylines focus on reducing the overhead of data space transformation in
order to answer one query. However, our algorithms aim at minimizing repetitive computation
when answering multiple queries in batch.

Nevertheless, we pointed out that the inverse skylines, and the reverse skylines are equiv-
alent to each other for special input data as follows.

– For inverse skylines, for each applicant, choose his/her predicate such that all jobs in the
job data set satisfy this predicate.

– For reverse skylines, for each customer, choose his/her preference to be the origin point in
the product space such that no space transformation is needed to answer a reverse skyline
query.

In the above two special cases, the inverse skyline of a job is the same as the reverse skyline
of a product. In fact, the inverse skyline and the reverse skyline of a job/product are equal to
the set of applicants/customers, if this job/product is in the skyline of the set of jobs/products.
Otherwise, the inverse skyline and the reverse skyline of this job/product are an empty set.
In our experiments, we experimentally compare our algorithms for inverse skylines and the
state-of-the-art algorithms for reverse skylines [33].

3.3 The stable matching problem

Making recommendations between two parties is related to the classical stable matching
problem [34] (also known as the stable marriage problem). An applicant and a job can be

123

J. Chen et al.

matched only if they satisfy the requirements from each other. In a matching between all
applicants and all jobs, assume applicant A is paired with job J , and applicant A′ is paired
with job J ′. If A and J ′ satisfy the requirements from each other, and A prefers J ′ to J and
J ′ prefers A to A′, then the pair A and J ′ is called a dissatisfied pair. A matching is said to
be stable if there is no dissatisfied pair.

In the original version of the stable marriage problem [34], the applicant set and the job
set have the same cardinality (denoted by n). The preference of each applicant on jobs is a
complete ranked list (i.e., including all jobs in the job set) without tie. The preference of each
job on applicants is also such a ranked list. Gale and Shapley [34] showed that there always
exists a stable matching and it can be found in O(n2) time.

Numerous variants of the stable marriage problem are studied, such as the college admis-
sion problem where a college can accept more than one student [34], the roommate assign-
ment problem where two parties are from the same set [35], the stable matching problem with
incomplete preference lists and/or with ties [36–38], etc. In general, the preference can be a
partial order. In this case, the problem is proved NP-hard and hard to be approximated [38].
In this paper, the dominance relationship is employed to model the preference, which in fact
defines a partial order.

Although the stable marriage problem and our problem share similar motivations, they
are very different in terms of the goal and the computational issues. The stable marriage
focuses on the global picture and tries to find an assignment such that every one in both
parties is satisfied. Each individual does not have the ability to choose after the assign-
ment is made. However, instead of giving the matching pairs straightforwardly, our paper
addresses a series of flexible queries for mutual decision-making parties. Our problem cares
about the recommendations for individuals. We provide the results of skyline view queries as
recommendations which are good candidates based on each individual’s interest. Individuals
can then make decisions and choices from our skyline view queries without processing the
original large data set.

4 Query answering algorithms

In this section, we develop algorithms to answer the 8 skyline view queries in batch. In
particular, we design efficient algorithms for reciprocal skyline queries and inverse skyline
queries in Sects. 4.2 and 4.3, respectively. Other queries can be reduced to these two queries
as discussed in Sect. 4.1. We assume that both the applicant data set and the job data set are
indexed by R-trees. We only describe the algorithms for queries on applicants since the same
algorithms can be applied to answer queries for jobs symmetrically.

4.1 Query reduction

According to the definition of view queries and that of inverse view queries, with linear time
complexity, we can derive the inverse views of all applicants from the views of all jobs.
Thus, an inverse view query can be answered efficiently using the view query answering
algorithm. This property also holds between skyline view queries and inverse skyline view
queries. Besides, a mutual view can be obtained by intersecting the corresponding view and
the corresponding inverse view.

Example 1 (Query Reduction) Consider the example in Table 4. By scanning the view of
jobs J1 which is {Ada, Bob, Cathy}, we can assign J1 to the inverse views of Ada, Bob, and
Cathy. Similarly, we assign J2 to the inverse views of Ada, Cathy, and Dan, and J3 to the

123

Recommendations for two-way selections

inverse views of Ada, Bob, Cathy, and Dan. Thus, we obtain the inverse views of Ada, Bob,
Cathy, and Dan as shown in the table.

Since the view and the inverse view of Ada are {J2, J3} and {J1, J2, J3}, respectively,
whose intersection is exactly the mutual view of Ada, {J2, J3}. It is easy to verify this property
for other applicants.

Similarly, by intersecting the corresponding skyline view and the corresponding inverse
skyline view, we get a skyline mutual view.

Therefore, we can reduce the 8 types of skyline view queries into 5 types of queries—view
queries, inverse skyline queries, reciprocal skyline queries, skyline mutual view queries, and
skyline of inverse skyline queries.

Using R-trees, a view query can be answered by a simple R-tree traverse. When comput-
ing the views of all applicants in batch, we first insert the predicate regions of all applicants
into an R-tree, referred as the applicant predicate R-tree. Then, an R-tree join algorithm [39]
on the R-tree of the job data set and the applicant predicate R-tree can compute all views
efficiently.

Sections 4.2, 4.3, and 4.4, respectively, discuss how to compute inverse skylines, reciprocal
skylines, skyline mutual views, and skyline of inverse skylines efficiently.

4.2 Answering inverse skyline queries

To process inverse skyline queries in batch and avoid redundant comparisons, we system-
atically make use of the dominance relation between applicants and the dominance relation
between the maximum corners of the views of jobs.

4.2.1 Algorithm framework

Our algorithm framework explores Property 3 of inverse skylines.

Algorithm 1 The inverse skyline algorithm.
Input: A, J , and I V (A) for all A ∈ A;
Output: i Sky(A) for all A ∈ A;
Description:
1: for all A ∈ A do
2: i Sky(A) = I V (A);
3: end for
4: call Algorithm 3 to refine i Sky(A) for all A using dominance relationships among applicants;
5: call Algorithm 4 to refine i Sky(A) for all A using relationships among jobs’ predicates;
6: return i Sky(A) for all A ∈ A;

Using Property 3, we can compute the inverse skyline of an applicant from her/his
inverse view instead of from the whole data set. Algorithm 1 shows the framework based on
Property 3.

To begin with, we initialize the candidate set of i Sky(A) for each applicant A to I V (A)

(lines 1–3). Then, in Sect. 4.2.2, we discuss our techniques to refine the inverse skylines of all
applicants using the dominance relation between applicants (line 4). We prove in Lemmas 1
and 2 that the inverse skyline of an applicant A is her/his inverse view excluding the inverse
skylines of the applicants who dominate A. In Sect. 4.2.4, we make use of the dominance
relation between the maximum corners of the views of jobs (line 5). We prove in Lemmas 3

123

J. Chen et al.

and 4 that if a job J1 is not in the inverse skyline of an applicant A, then any job J2 is not in
the inverse skyline of A if the maximum corner of J2’s view dominates the maximum corner
of J1’s view. We describe the details in the rest of this subsection.

4.2.2 Dominance relationships among applicants

First, we explore a property of the dominance relation among applicants.

Lemma 1 (Dominance relation among applicants) Given two applicants A1 and A2, if A1 �
A2, then for any J ∈ i Sky(A1), J /∈ i Sky(A2).

Proof 2 If A2 /∈ V (J), then A2 /∈ SV (J). Otherwise, if A2 ∈ V (J), since A1 ∈ V (J) and
A1 � A2, then we also have A2 /∈ SV (J). Thus, J /∈ i Sky(A2).
�

By Lemma 1, we define the dominating set for each applicant.

Definition 9 (Dominating set) For an applicant A, the dominating set of A is the set of
applicants dominating A, denoted by DS(A) = {A′ ∈ A|A′ � A}.

We have the following result based on the dominance relation among applicants.

Lemma 2 (Inverse skyline)

i Sky(A) = I V (A) \
⋃

A′∈DS(A)

i Sky(A′). (1)

Proof 3 Combining Property 3 and Lemma 1, we have

i Sky(A) ⊆ I V (A) \
⋃

A′∈DS(A)

i Sky(A′). (2)

Suppose there exists a job

J ∈ I V (A) \
⋃

A′∈DS(A)

i Sky(A′)

and J /∈ i Sky(A). Because A ∈ V (J), there must be another applicant A′′ ∈ SV (J) such
that A′′ � A. Therefore, J ∈ i Sky(A′′) and A′′ ∈ DS(A). This contradicts to the assumption.
Thus,

I V (A) \
⋃

A′∈DS(A)

i Sky(A′) ⊆ i Sky(A). (3)

Equation (1) follows with Eqs. (2) and (3).
�
Example 2 (Inverse skylines) In our running example (Tables 1 and 2), Ada’s inverse skyline
is {J1, J2, J3}. Since Ada dominates Cathy, none of J1, J2, and J3 is in Cathy’s inverse skyline
view, though all of them are in Cathy’s inverse view.

Using Lemma 1, because DS(Cathy) = {Ada}, i Sky(Cathy) = I V (Cathy) \
i Sky(Ada) = {J1, J2, J3} \ {J1, J2, J3} = ∅.

Using Eq. (1) directly, however, is not efficient to compute the inverse skylines of all
applicants iteratively, because the complexity of finding out the exact dominating sets of
all applicants is O(|A|2), where |A| is the cardinality of the applicant data set. To tackle
the problem, we introduce a layer structure to approximate the dominating sets effectively.
Similar data structures are adopted in some previous work, such as the layer structure in [40],
the dominance graph in [41] and DADA cube [42].

123

Recommendations for two-way selections

Fig. 3 An example of the layer
structure (larger values are
preferred)

4.2.3 The layer structure

We divide the applicants into layers. The first layer of the applicant data set is the skyline
among all applicants. The second layer contains those applicants only dominated by some
other applicants at the first layer. The rest layers can be defined inductively.

Definition 10 (Layers) An applicant A ∈ A is at layer-1 if A ∈ Sky(A). An applicant A is
at layer-k (k > 1) if A is not at the 1-st, . . . , the (k − 1)-th layers and A is not dominated
by any applicant except for those at the 1-st, . . . , the (k − 1)-th layers.

Example 3 (The layer structure) Figure 3 shows an example of the layer structure. A1 and
A2 are at layer-1. A3 (dominated by A1) and A4 (dominated by A2) are at layer-2. A5 is at
layer-3 since it is dominated by A3.

In the layer structure, we only maintain the dominance relation between applicants in
adjacent layers. In the example shown in Fig. 3, we only keep records of A1 � A3, A1 �
A4, A2 � A4, and A3 � A5. A1 � A5 can be found transitively through A1 � A3 and
A3 � A5.

The dominance relation between applicants in adjacent layers may not keep all dominance
relations. For example, A2 � A5 is missing. This is the tradeoff we make so that we can
compute the layer structure in time less than O(|A|2). As we will show, using the layer struc-
ture and some other information from the job data set, it is still sufficient to answer inverse
skyline queries correctly.

We describe our layer structure construction algorithm in Algorithm 2. To build the layer
structure, for each applicant A, we define the key of an applicant as the sum of its values on
all attributes, that is, A.key = ∑d

i=1 A.Di (lines 1–3). Then, we sort all applicants in the
key descending order (line 4). This is motivated by the sort-filter-skyline algorithm [2]. The
sorted list of applicants has a nice property: for applicants A1 and A2 such that A1 � A2, A1

precedes A2 in the sorted list. Using this property, we scan the sorted list once (lines 6–9)
and for each applicant in the sorted order, we determine the layer it belongs to.

The first applicant has the maximum key value and is assigned to layer-1 (line 5). We
compare the second applicant with the first one. If the second one is dominated, then it is
assigned to layer-2. Otherwise, it is assigned to layer-1.

Generally, when we process an applicant A (lines 8–25), suppose at the time there already
exist h layers. We compare A with the applicants currently at layer- h

2 �. Then,

– if A is dominated by an applicant at that layer, then A must be at some layer higher than
 h

2 �;
– otherwise, A is neither dominated by nor dominates, any applicant at that layer. Then, A

must be at that layer or some lower layer.

123

J. Chen et al.

Algorithm 2 The algorithm of building the layer structure.
Description:
Input: the applicant data set A;
Output: the layer structure L A;
Description:
1: for all A ∈ A do
2: A.key = ∑d

i=1 A.Di ;
3: end for
4: sort all applicants in A according to their key values in descending order into a sorted list L;
5: assign the first applicant in A to layer-1 of L A;
6: the number of layers we have so far h = 1;
7: while A is not the last applicant in L do
8: let A be next applicant in L;
9: low = 1, high = h;
10: while low ≤ end do
11: middle = (low + high)/2�;
12: if A is dominated by an applicant at layer-middle then
13: low = middle + 1;
14: else
15: high = middle − 1;
16: end if
17: end while
18: if low == middle then
19: insert A to layer-middle;
20: else
21: if middle == h then
22: create a new layer-(h + 1) in L A; h = h + 1;
23: end if
24: insert A to layer-(middle + 1);
25: end if
26: end while
27: return L A;

This comparison operation (line 12) can be done efficiently if we sort all applicants at a
layer in the descending order of their values on the first attribute (in fact, any attribute works
here). Then, instead of comparing with all applicants at this layer, A is compared with only
those applicants that have a larger value on the first attribute than A. We conduct this binary
search recursively until A is assigned to a layer. After that, we find all applicants dominating
A at the layers just below the layer of A. Example 4 shows an example of Algorithm 2.

Example 4 (Building layer structure) In Fig. 3, assume the 5 applicants have values A1 =
(4, 5), A2 = (5, 3), A3 = (2, 4), A4 = (3, 1), and A5 = (1, 2), respectively, on the hori-
zontal and vertical dimensions. By soring them in the key descending order, we have the list
A1, A2, A3, A4, A5. Then, we determine their layers one by one in the sorted order.

First, A1 is at layer-1. A2 is not dominated by A1, so A2 is also at layer-1. Then, A3 is
dominated by A1, so A3 is not at layer-1, and we create layer-2 and add A3 into it. Now the
number of layers h = 2. Then, for A4, we check layer-1 (since h

2 = 1), and find that A4 is
dominated by A1, so A4 should be at layers higher than layer-1. Recursively, we compare
A4 with applicants at layer-2. A4 is not dominated by any applicant at layer-2, so A4 is at
layer-2. Finally, for A5, it is dominated by A1 at layer-1, then dominated by A3 at layer-2,
so we put it at a new layer-3.

Algorithm 3 shows the procedure of refining the inverse skylines of applicants using the
layer structure. We iteratively process applicants layer-by-layer. The applicants at layer-1 are

123

Recommendations for two-way selections

Algorithm 3 Refining using dominance relationships among applicants.
Description:
1: build the layer structure L A of A;
2: for all layer l of L A iterating from layer-2 to the highest one do
3: for all applicant A at layer l do
4: for all applicant A′ at the layer just below layer l do
5: if A′ � A then
6: i Sky(A) = i Sky(A) \ i Sky(A′); /* Lemma 1 */
7: end if
8: end for
9: end for
10: end for

Fig. 4 An example of the inverse skyline region

not dominated by any other applicants. Therefore, their inverse skylines are the same as their
inverse views. For an applicant A at layer-l(l > 1), we find every applicant A′ at layer-(l −1)

such that A′ � A and remove jobs in i Sky(A′) from i Sky(A) according to Lemma 1 (line 6).
Using Algorithm 3, the candidate set of every applicant’s inverse skyline is significantly

reduced. However, the layer structure only captures a subset of the dominating set of an
applicant. As shown in Fig. 3, A2 � A5 is missing. Therefore, we need to explore some
further refining methods using the dominance relation among predicates of jobs.

4.2.4 Dominance relation among predicates of jobs

Let us show that whether a job J is in the inverse skyline of an applicant A can be determined
by simply checking whether there is any other applicant in a specific region referred by the
inverse skyline region of J with respect to A.

Definition 11 (Inverse skyline region) Denote J.Pmax the maximum (top right) corner of
J.P , the predicate of J . I S R(J, A), the inverse skyline region of J with respect to A, is the
region with A as the minimum (bottom left) corner and J.Pmax as the maximum corner.

Example 5 (The inverse skyline region) Suppose for an applicant A the inverse view I V (A) =
{J1, J2, J3}. The predicates of all jobs in I V (A) are shown in Fig. 4. For a job Ji ∈ I V (A)

(i = 1, 2, 3), A is inside the predicate of Ji . The shaded region in Fig. 4 is I S R(J1, A).

The inverse skyline region can be used to verify whether a job belongs to the inverse
skyline of an applicant, as indicated by the following result.

Lemma 3 (Inverse skyline region) Given an applicant A and a job J ∈ I V (A), J ∈
i Sky(A) if and only if there does not exist another applicant A′ �= A such that A′ ∈
I S R(J, A).

123

J. Chen et al.

Proof 4 J ∈ i Sky(A) if and only if A ∈ SV (J). Because J ∈ I V (A), A ∈ V (J). Hence,
A is in the skyline of V (J) if and only if there exists no applicant in region I S R(J, A).
�

Lemma 3 provides a simple method to compute the inverse skyline of an applicant A. If
the inverse skyline region I S R(J, A) of a job J with respect to an applicant A contains some
other applicants, then J /∈ i Sky(A).

Lemma 4 (Dominance between predicates of jobs) Given an applicant A and two jobs
J1, J2 ∈ I V (A), let J1.Pmax and J2.Pmax be the maximum corners of the predicates of J1

and J2, respectively. If J1 /∈ i Sky(A) and J2.Pmax � J1.Pmax, then J2 /∈ i Sky(A).

Proof 5 According to Definition 11, I S R(J1, A) and I S R(J2, A) share the same mini-
mum corner A. For their maximum corners J1.Pmax and J2.Pmax, respectively, if J2.Pmax �
J1.Pmax, then I S R(J2, A) contains I S R(J1, A). If J1 /∈ i Sky(A), there must be an applicant
in I S R(J1, A), thus in I S R(J2, A). Therefore, J2 /∈ i Sky(A).
�
Example 6 (Using Lemma 4) In Fig. 4, I S R(J2, A) contains I S R(J1, A). Thus, we imme-
diately know that J2 /∈ i Sky(A).

Lemma 4 transforms the containment relation among inverse skyline regions into the
dominance relation among the maximum corners of predicates. Similar to the layer structure
on applicants, we build another layer structure on the maximum corners of the predicates of
all jobs so that we can apply Lemma 4 iteratively (pseudocode in Algorithm 4).

Algorithm 4 Refining using relations among predicates of jobs.
Description:
1: build the layer structure L J on the maximum corners of the predicates of all jobs in J ;
2: for all applicant A ∈ A not at layer-1 of L A do
3: organize the maximum corners of jobs in i Sky(A) as layer structure L J (A) according to L J ;
4: for all layer l of L J (A) iterating from the highest layer to layer-1 do
5: for all J.Pmax at layer l do
6: for all J ′.Pmax at the layer just above layer l do
7: if J.Pmax � J ′.Pmax and J ′ /∈ i Sky(A) then
8: i Sky(A) = i Sky(A) \ {J }; /* Lemma 4 */
9: goto line 15;
10: end if
11: end for
12: if I S R(J, A) contains other applicants then
13: i Sky(A) = i Sky(A) \ {J }; /* Lemma 3 */
14: end if
15: end for
16: end for
17: end for

First, we build the layer structure L J on the maximum corners of the predicates of all jobs
in J . Applicants at layer-1 do not need any refinement. For each applicant A not at layer-1,
we retrieve the jobs in the current candidate set of i Sky(A) and organize the maximum cor-
ners of their predicates in a layer structure, denoted by L J (A), which is simply a subset of
L J since i Sky(A) ⊆ J . Similar to Algorithm 3, we iteratively examine the jobs in i Sky(A)

and apply Lemma 4 to further refine i Sky(A) (lines 5–11). If Lemma 4 does not determine
that J is not in i Sky(A), Lines 12-14 conduct a final check of the candidate jobs in i Sky(A)

according to Lemma 3. This can be done by a range query on the R-tree of the applicant
data set.

123

Recommendations for two-way selections

4.2.5 Performance analysis

The time complexity of the layer construction algorithm (Algorithm 2) depends on the input.
In the best case where every applicant dominates the one immediate after in the sorted list
according to their key values, the algorithm acts exactly as a binary search for each applicant,
so it takes O(|A| log |A|) time in total. In the worst case where applicants do not dominate
each other at all and every applicant is at the first layer, the algorithms takes O(|A|2) time.

Using the layer structure, it is expected that the inverse skyline of an applicant A can be
refined significantly by subtracting the inverse skylines of the applicants that dominate A
(Algorithm 3). A subtraction operation can be done in linear time with respect to the size of
the inverse skylines involved if we organize the inverse skylines as sorted lists with a global
order on jobs (e.g., the IDs of jobs).

It is expected that Algorithm 3 can refine the inverse skyline significantly. However, in
the worst case where Algorithm 3 fails to refine the inverse skyline, Algorithm 4 can be still
fast if Lemma 4 can successfully remove a job from consideration. Otherwise, we have to
do range queries as specified in Lemma 3 (Algorithm 4), and we assume a range query takes
time O(log |A|) using an R-tree on data set A.

4.3 Answering reciprocal skyline queries

In this section, we develop an R-tree based algorithm to efficiently compute the reciprocal
skylines for all applicants from their inverse views.

The reciprocal skyline of an applicant A is the skyline in the inverse view of A. Intuitively,
for another applicant A′ close to A in the applicant space, that is, they have similar value on
every attribute, A′ may have similar inverse view as A. Hence, the skyline computation on
their inverse views can be shared.

Taking advantage of an R-tree, applicants close to each other are often clustered into one
leaf node. This gives us the opportunities to develop a computation sharing strategy. We first
show how to share the computation at the leaf level of the R-tree and then extend the method
to other levels.

4.3.1 Sharing computation at the leaf level

Let N be a leaf node in the R-tree of the applicant data set. We also use N to denote the set of
applicants stored at node N . Denote by i I V (N) the intersection of the inverse views of the
applicants in N , that is, i I V (N) = ⋂

A∈N I V (A). i I V (N) is the set of common jobs that
all applicants in N are qualified. For each applicant A ∈ N , let eI V (A) = I V (A) \ i I V (N)

be the set of jobs that A is qualified but not all other applicants in N are qualified. Because
the applicants in a leaf node have similar inverse views, eI V (A) is often a small set.

The equation below computes the reciprocal skyline.

r Sky(A) = Sky(I V (A))

= Sky
(

Sky(i I V (N)) ∪ Sky(eI V (A))
) (4)

We pre-compute i I V (N) and eI V (A) for each applicant A in N . According to Eq. (4), we
only need to compute the skyline of i I V (N) once for all applicants. Computing the skyline
of eI V (A) is easy since eI V (A) only contains a small number of jobs. Furthermore, both
Sky(i I V (N)) and Sky(eI V (A)) are small thus the final skyline can be computed efficiently.

123

J. Chen et al.

4.3.2 Sharing computation at other levels

When computing the skyline of i I V (N) of a non-leaf node N , the method in Sect. 4.3.1 can
be applied recursively.

Let M be the parent node of N . We also use M to denote the set of child nodes in M . For
each sibling node N ′ ∈ M of N , i I V (N ′) is relatively similar to i I V (N) due to the property
of the R-tree. Therefore, we compute the intersection of i I V (N) of every child node N ∈ M ,
denoted by i I V (M) = ⋂

N∈M i I V (N). We also compute eI V (N) = i I V (N) \ i I V (M).
Then, Eq. (4) can be extended to

Sky(i I V (N)) = Sky
(

Sky(i I V (M)) ∪ Sky(eI V (N))
)
. (5)

Recursively, we apply this procedure at every level of the R-tree. Algorithm 5 shows the
details. We first compute eI V (A), i I V (N) and eI V (N) for all applicants and nodes in the
R-tree on the applicant data set from bottom up (lines 1–14). Then, we traverse the R-tree in a
breath-first manner to compute Sky(i I V (N)) for each node and r Sky(A) for each applicant
using Eqs. (5) and (4), respectively (lines 15–22).

Algorithm 5 The reciprocal skyline algorithm.
Input: the R-tree R of A, and I V (A) for all A ∈ A;
Output: r Sky(A) for all A ∈ A;
Description:
1: for all node N on the leaf level of the R-tree of A do
2: i I V (N) = ⋂

A∈N I V (A);
3: for all applicant A ∈ N do
4: eI V (A) = I V (A) \ i I V (N);
5: end for
6: end for
7: for all level l of R from the bottom up except the leaf level do
8: for all node M at level l do
9: i I V (M) = ⋂

N∈M i I V (M);
10: for all child node N ∈ M do
11: eI V (N) = i I V (N) \ i I V (M);
12: end for
13: end for
14: end for
15: for all level l of R from the top down do
16: for all node N on level l do
17: compute Sky(i I V (N)) by Equation (5);
18: end for
19: end for
20: for all applicant A ∈ A do
21: compute r Sky(A) by Equation (4);
22: end for
23: return r Sky(A) for all A ∈ A;

4.3.3 Performance analysis

Let |I V | denote the average size of the inverse views of applicants. Let the time to compute
the reciprocal skyline of an applicant using an existing skyline computation algorithm be
O(s(|I V |)), which in the worst case takes time O(|I V |2). Using a straightforward algo-
rithm to compute the reciprocal skyline of each applicant separately, the complexity is

123

Recommendations for two-way selections

O(|A|s(|I V |)). Thus, in the worst case, the complexity of the straightforward algorithm
is O(|A||I V |2).

In our algorithm, it takes time O(|A||I V |) to pre-compute the intersection i I V for every
tree node. After that, we expect to share a lot of skyline computation since many appli-
cants have similar inverse views, though the worst case complexity remains the same as the
straightforward method.

4.4 Answering skyline mutual view queries and skyline of inverse skyline queries

It is easy to see that the sharing strategy used for computing reciprocal skylines is also appli-
cable to skyline mutual views and skyline of inverse skylines, since a mutual view and an
inverse skyline view are subsets of the corresponding inverse view. Thus, with minor revi-
sion, Algorithm 5 can also answer skyline mutual view queries and skyline of inverse skyline
queries. The only difference is that we replace inverse skyline views by the mutual views or
the inverse skyline views for the input, then the algorithm will produce skyline mutual views
or skyline of inverse skylines instead of reciprocal skylines.

5 Experiments

In this section, we empirically evaluate the running time of the two algorithms developed in
Sect. 4, the inverse skyline algorithm (iSky for short) and the reciprocal skyline algorithm
(rSky for short). We assume all algorithms are in-memory, thus the I/O cost is not considered.
The algorithms were implemented in C++ and compiled by Microsoft Visual Studio 2008.
All experiments were conducted on a laptop computer with an Intel Core Duo 1.67 GHz CPU
and 2 GB main memory running Windows Vista Ultimate.

To the best of our knowledge, no real data sets of two party recommendation applications
have been made public. Thus, we had to use synthetic data sets in our experiments. The
synthetic applicant data sets and job data sets used in our experiments were generated in
the same way. Each (applicant or job) data set contains n objects in a d-dimensional space,
where the cardinality n varies from 25,000 to 100,000 and the dimensionality varies from 2
to 5. By default, n = 50,000 and d = 3. The domain of every attribute is [0,1]. We show the
results on data sets with 2 distributions, namely, anti-correlated distribution and independent
distribution, generated by the benchmark generator developed by Börzsönyi et al. [1]. Lim-
ited by space, we do not show the results on the correlated data sets, which are similar to the
results on the other two distributions.

The view (predicate) of an applicant is represented by a rectangle. We first generate the
centers of the views of all applicants, then bound a rectangle around each center. The view
centers in every attribute follow a normal distribution with mean 0.5 and standard deviation σ .
When σ is small, the rectangles become heavily overlapped, hence, every applicant has a
similar view. On the other hand, when σ is large, the views are diverse. In our experiments, σ
takes values 0.1, 0.3, 0, 5, or 0.7, and 0.3 is used as the default value. We also control the
view sizes (i.e., the number of jobs in an applicant’s view) such that they follow a normal
distribution with mean s and standard deviation σ ′. s varies from 100 to 700 with 300 as the
default. Experiment results are not sensitive to different values of this standard deviation σ ′.
We omit the details due to space limit. In all experiments, we set σ ′ = s/3. The views of
jobs are generated similarly.

Table 5 summaries experiment parameters and their default values. Limited by space, here
we only report the results on inverse skyline queries and reciprocal queries. As indicated in

123

J. Chen et al.

Table 5 Experiment parameters Parameter Values (bold font for default values)

Cardinality n 25,000, 50,000, 75,000, 100,000

Dimensionality d 2, 3, 4, 5

View size s 100, 300, 500, 700

View standard deviation σ 0.1, 0.3, 0.5, 0.7

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

25k 50k 75k 100k

tim
e

(s
)

BBS
iSky

(a)

 0

 20

 40

 60

 80

 100

 120

 140

 160

25k 50k 75k 100k

tim
e

(s
)

BBS
iSky

(b)

Fig. 5 Effect of cardinality on iSky a anti-correlated, b independent

 0

 50

 100

 150

 200

 250

 300

 350

2 3 4 5

tim
e

(s
)

BBS
iSky

(a)

 0

 50

 100

 150

 200

 250

 300

 350

 400

2 3 4 5

tim
e

(s
)

BBS
iSky

(b)

Fig. 6 Effect of dimensionality on iSky a anti-correlated, b independent

Sect. 4.1, the other skyline view queries can be answered either by straightforwardly using
the R-tree indexes or by slightly adapting the algorithms for inverse skyline queries and
reciprocal queries.

5.1 Answering inverse skyline queries

In this subsection, we evaluate our inverse skyline algorithm (iSky for short).
The skyline view query of a job is to compute the skyline of applicants within a given

range. This is called a constraint skyline query by Papadias et al. [7]. They developed the
branch-and-bound algorithm (BBS for short) that is the best existing method for computing
a constraint skyline. Hence, we use iSky to compute the inverse skylines of all applicants,
and compare iSky with a method that employs BBS to compute the skyline view of all jobs
one by one. The BBS implementation used in our experiments was provided by the authors
of [7]. Note that, for a fair comparison, both algorithms run in memory and the I/O cost is
not considered.

Figures 5, 6, 7, and 8 compare iSky and BBS with respect to cardinality, dimensionality,
view size, and view overlap, respectively. It is clear to see that iSky outperforms BBS in every

123

Recommendations for two-way selections

 20

 30

 40

 50

 60

 70

 80

 90

100 300 500 700

tim
e

(s
)

BBS
iSky

(a)

 10

 20

 30

 40

 50

 60

 70

 80

 90

100 300 500 700

tim
e

(s
)

BBS
iSky

(b)

Fig. 7 Effect of view size on iSky a anti-correlated, b independent

 0

 20

 40

 60

 80

 100

0.1 0.3 0.5 0.7

tim
e

(s
)

BBS
iSky

(a)

 0

 20

 40

 60

 80

 100

0.1 0.3 0.5 0.7

tim
e

(s
)

BBS
iSky

(b)

Fig. 8 Effect of view overlap on iSky a anti-correlated, b independent

experiment. Especially, when we increase the view size (Fig. 7), iSky shows a big advantage
over BBS. The major reason of the big difference in efficiency is that it is costly to compute
the skyline of each view separately when the views are large. Our pruning techniques in iSky
avoid redundant comparison and computation.

iSky and BBS have similar trends as the experiment parameters vary. The running time of
both methods increases linearly when the cardinality increases from 25,000 to 100,000 and
increases exponentially when the dimensionality increases from 2 to 5.

Figure 8 shows that BBS is not sensitive to the overlap of views, since it computes the
skyline of each view independently. However, when the standard deviation of the view dis-
tribution increases from 0.1 to 0.7, the overlap of views decreases, thus the running time of
iSky increases. However, the increase is very moderate.

As mentioned in Sect. 3.2, our inverse skyline and the reverse skylines [29,32,33] are
equivalent in special cases where the view of every applicant contains all jobs and the pref-
erence of every customer is the origin in the product space. Figure 9 compares the runtime of
our iSky algorithm and the state-of-the-art reverse skyline algorithm BRS [33] in the special
cases. Clearly, our iSky is faster than BRS by 2 orders of magnitude. The reason is that our
iSky runs in batch and shares computations when answering multiple inverse skyline queries.

In order to show the effectiveness of our sharing strategies for batch processing, Fig. 10
investigates the performance of iSky on clustered data sets. We generate data sets consisting
of 100 clusters. For each data set, we first generate 100 points in anti-correlated or indepen-
dent distribution, each of which serves as the center of a cluster. Then, for each cluster, we
generate 250 points following a Gaussian distribution with mean as the cluster center and
variance δ varying from 0.1 to 0.5. Figure 10a, b show the plots of such data sets with δ

being 0.1 and 0.5, respectively. We see that the smaller δ the more clustered the data set.

123

J. Chen et al.

10-1

100

101

102

103

104

2500 5000 7500 10000

tim
e

(s
)

BRS
iSky

(a)

10-1

100

101

102

103

104

2500 5000 7500 10000

tim
e

(s
)

BRS
iSky

(b)

Fig. 9 Comparison between iSky and BRS with various cardinalities a anti-correlated, b independent

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

 0

 5

 10

 15

 20

0.1 0.2 0.3 0.4 0.5

tim
e

(s
)

anti-correlated
independent

(c)

 0

 5

 10

 15

 20

 25

 30

0.1 0.2 0.3 0.4 0.5

tim
e

(s
)

anti-correlated
independent

(d)

(a) (b)

Fig. 10 Effect of data clustering a data with δ = 0.1, b data with δ = 0.5, c iSky, d rSky

Figure 10c shows the runtime of iSky as δ increases. We observe that iSky works better on
sparse data sets, and the sharing strategy is slightly less effective on clustered data sets.

5.2 Answering reciprocal skyline queries

A reciprocal skyline query can be computed using the sort-filter-skyline (SFS) algorithm [2].
A straightforward method of computing the reciprocal skylines of all applicants is to apply
the sort-filter-skyline algorithm individually for every applicant. We compare our reciprocal
skyline algorithm (rSky for short) with this non-sharing simple method (referred by NS) as
the baseline. Please note that the Linear Elimination Sort for Skyline (LESS) algorithm [3]
is the best non-index skyline algorithm in the average case because it has less I/O cost than
SFS. The advantage of LESS is that it pushes the skyline computation into external sorting.

123

Recommendations for two-way selections

 0

 100

 200

 300

 400

 500

 600

 700

25k 50k 75k 100k

tim
e

(s
)

NS
rSky

(a)

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

25k 50k 75k 100k

tim
e

(s
)

NS
rSky

(b)

Fig. 11 Effect of cardinality on rSky a anti-correlated, b independent

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000

2 3 4 5

tim
e

(s
)

NS
rSky

(a)

 0

 50

 100

 150

 200

 250

 300

 350

2 3 4 5

tim
e

(s
)

NS
rSky

(b)

Fig. 12 Effect of dimensionality on rSky a anti-correlated, b independent

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

100 300 500 700

tim
e

(s
)

NS
rSky

(a)

 0

 20

 40

 60

 80

 100

 120

 140

100 300 500 700

tim
e

(s
)

NS
rSky

(b)

Fig. 13 Effect of view size on rSky a anti-correlated, b independent

However, the two methods have similar performance if they run in-memory, since the saving
is limited when external sorting is not used.

We compare rSky and NS in Figs. 11, 12, 13, and 14 as we vary cardinality, dimensionality,
view size, and view overlap, respectively. Again, our batch method rSky always has a better
performance than NS. The running time of both methods rises linearly as the cardinality goes
up from 25,000 to 100,000, and rises exponentially as the dimensionality increases from 2
to 5.

Figure 13 shows that the runtime of rSky increases more slowly than that of NS as the
view size increases. It demonstrates the benefit of the sharing strategy used in rSky.

Figure 14a shows that the running time of both algorithms on anti-correlated data sets
decreases when the overlap of views decreases (that is, the standard deviation of the view
distribution increases from 0.1 to 0.7). When the views are less overlapping, the inverse
views become smaller. Hence, the cost of computing the skyline of an inverse view decreases.

123

J. Chen et al.

 0

 50

 100

 150

 200

 250

 300

 350

 400

0.1 0.3 0.5 0.7

tim
e

(s
)

NS
rSky

(a)

 0

 20

 40

 60

 80

 100

0.1 0.3 0.5 0.7

tim
e

(s
)

NS
rSky

(b)

Fig. 14 Effect of view overlap on rSky a anti-correlated, b independent

This phenomenon is more obvious on anti-correlated data sets since the cost of computing
skyline on anti-correlated data sets is much more significant than that on the data sets of the
other distributions.

We also show the performance of rSky on clustered data sets in Fig. 10d. According to
our rSky algorithm, the more similar two applicants, the more computation of their rSky can
be shared. Thus, we see that rSky has better performance on more clustered data sets, that is,
data sets with smaller δ.

6 Conclusions

In this paper, we studied the problem of making recommendations between two parties in
two-way selections. We proposed a series of skyline view queries to make recommendations
to all applicants and jobs, and developed several efficient algorithms to answer these queries
in batch. The experiment results demonstrate that our algorithms significantly outperform
the state-of-the-art methods.

For future work, it is interesting to consider more complex queries using skylines for
recommendations between two parties. Moreover, it is interesting to consider more than two
parties where parties collaborate and compete simultaneously.

Acknowledgments We are grateful to the anonymous reviewers for their very useful comments and sug-
gestions. Part of this work was done when Jian Chen and Jin Huang visited Simon Fraser University. The
work was supported in part by the Fundamental Research Funds for the Central Universities, SCUT(Grant No.
2012ZZ0088), the National Natural Science Foundation of China (61033010), Natural Science Foundation of
Guangdong Province (S2011020001182), the Science and Technology Planning Project of Guangdong Prov-
ince, China (Grant No. 2011A091000036), an NSERC Discovery grant, an NSERC Discovery Accelerator
Supplement grant, and a BCFRST Foundation NRAS Endowment Research Team Program grant. All opin-
ions, findings, conclusions and recommendations in this paper are those of the authors and do not necessarily
reflect the views of the funding agencies.

References

1. Börzsönyi S, Kossmann D, Stocker K (2001) The skyline operator. In: Proceedings of the 17th interna-
tional conference on data engineering. IEEE Computer Society, Washington, DC, USA, pp 421–430

2. Chomicki J, Godfrey P, Gryz J, Liang D (March 2003) Skyline with pre-sorting. In: Proceedings 2003
international conference data engineering (ICDE’03). Bangalore, India, p 717

3. Godfrey P, Shipley R, Gryz J (2005) Maximal vector computation in large data sets. In: VLDB ’05: pro-
ceedings of the 31st international conference on very large data bases, pp 229–240. VLDB Endowment

123

Recommendations for two-way selections

4. Tan K-L, Eng P-K, Ooi BC (2001) Efficient progressive skyline computation. In: VLDB ’01: proceed-
ings of the 27th international conference on very large data bases. Morgan Kaufmann Publishers, San
Francisco, CA, USA, pp 301–310

5. Kossmann D, Ramsak F, Rost S (2002) Shooting stars in the sky: an online algorithm for skyline queries.
In: VLDB ’02: proceedings of the 28th international conference on very large data Bases, pp 275–286.
VLDB Endowment

6. Papadias D, Tao Y, Fu G, Seeger B (2003) An optimal and progressive algorithm for skyline queries. In:
SIGMOD ’03: proceedings of the 2003 ACM SIGMOD international conference on management of data.
ACM, New York, NY, USA, pp 467–478

7. Papadias D, Tao Y, Fu G, Seeger B (2005) Progressive skyline computation in database systems. ACM
Trans Database Syst 30(1):41–82

8. Guttman A (1984) R-trees: a dynamic index structure for spatial searching. In: SIGMOD ’84: proceed-
ings of the 1984 ACM SIGMOD international conference on management of data. ACM, New York, NY,
USA, pp 47–57

9. Chen H, Liu J, Furuse K, Yu JX, Ohbo N (2011) Indexing expensive functions for efficient multi-
dimensional similarity search. Knowl Inf Syst 27(2):165–192

10. Pei J, Jin W, Ester M, Tao Y (August 2005) Catching the best views in skyline: a semantic approach.
In: Proceedings of the 31th international conference on very large data bases (VLDB’05). Trondheim,
Norway

11. Pei J, Fu AWC, Lin X, Wang H (April 2007) Computing compressed skyline cubes efficiently. In: Pro-
ceedings of the 23nd international conference on data engineering (ICDE’07). IEEE, Istanbul, Turkey

12. Yuan Y, Lin X, Liu Q, Wang W, Yu JX, Zhang Q (2005) Efficient computation of the skyline cube. In:
VLDB ’05: proceedings of the 31st international conference on very large data bases, pp 241–252. VLDB
Endowment

13. Xia Tian, Zhang Donghui (2006) Refreshing the sky: the compressed skycube with efficient support for
frequent updates. In: SIGMOD ’06: proceedings of the 2006 ACM SIGMOD international conference
on management of data. ACM, New York, NY, USA, pp 491–502

14. Tao Y, Xiao X, Pei J (2006) Subsky: efficient computation of skylines in subspaces. In: ICDE ’06: pro-
ceedings of the 22nd international conference on data engineering. IEEE Computer Society, Washington,
DC, USA, p 65

15. Chan C-Y, Jagadish HV, Tan K-L, Tung AKH, Zhenjie Z (2006) Finding k-dominant skylines in high
dimensional space. In: SIGMOD ’06: proceedings of the 2006 ACM SIGMOD international conference
on management of data. ACM, New York, NY, USA, pp 503–514

16. Lin X, Yuan Y, Wang W, Lu H (2005) Stabbing the sky: efficient skyline computation over sliding
windows. In ICDE ’05: proceedings of the 21st international conference on data engineering. IEEE
Computer Society, Washington, DC, USA, pp 502–513

17. Tao Y, Papadias D (2006) Maintaining sliding window skylines on data streams. IEEE Trans Knowl Data
Eng 18(3):377–391

18. Michael M, Patel JM, Grosky WI (2006) Efficient continuous skyline computation. In: ICDE ’06: pro-
ceedings of the 22nd international conference on data engineering. IEEE Computer Society, Washington,
DC, USA, p 108

19. Sun S, Huang Z, Zhong H, Dai D, Liu H, Li J (2010) Efficient monitoring of skyline queries over distrib-
uted data streams. Knowl Inf Syst 25(3):575–606

20. Huang Z, Sun S-L, Wang W (2010) Efficient mining of skyline objects in subspaces over data streams.
Knowl Inf Syst 22(2):159–183

21. Jiang B, Pei J (2009) Online interval skyline queries on time series. In: ICDE ’09: proceedings of the
2009 IEEE international conference on data engineering. IEEE Computer Society, Washington, DC, USA,
pp 1036–1047

22. Balke W-T, Gntzer U, Zheng JX (2004) Efficient distributed skylining for web information systems.
In: IN EDBT, pp 256–273

23. Wu P, Zhang C, Feng Y, Zhao BY, Agrawal D, Abbadi AEl (2006) Parallelizing skyline queries for
scalable distribution. In: In EDBT06, pp 112–130

24. Huang Z, Jensen CS, Lu H, Ooi BC (2006) Skyline queries against mobile lightweight devices in manets.
In: ICDE ’06: proceedings of the 22nd international conference on data engineering, IEEE Computer
Society, Washington, DC, USA, p 66

25. Sharifzadeh M, Shahabi C (2006) The spatial skyline queries. In: VLDB ’06: proceedings of the 32nd
international conference on very large data bases, pp 751–762. VLDB Endowment

26. Chan C-Y, Eng P-K, Tan K-L (2005) Stratified computation of skylines with partially-ordered domains.
In: SIGMOD ’05: proceedings of the 2005 ACM SIGMOD international conference on management of
data. ACM, New York, NY, USA, pp 203–214

123

J. Chen et al.

27. Chen L, Lian X (2008) Dynamic skyline queries in metric spaces. In: EDBT ’08: proceedings of the 11th
international conference on extending database technology. ACM, New York, NY, USA, pp 333–343

28. Pei J, Jiang B, Lin X, Yuan Y (2007) Probabilistic skylines on uncertain data. In: VLDB ’07: proceedings
of the 33rd international conference on very large data bases, pp 15–26. VLDB Endowment

29. Lian X, Chen L (2008) Monochromatic and bichromatic reverse skyline search over uncertain databases.
In: SIGMOD ’08: proceedings of the 2008 ACM SIGMOD international conference on management of
data. ACM, New York, NY, USA, pp 213–226

30. Wong RC-W, Pei J, Fu AW-C, Wang K (2007) Mining favorable facets. In: KDD ’07: proceedings of the
13th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, New York,
NY, USA, pp 804–813

31. Jiang B, Pei J, Lin X, Cheung DW, Han J (2008) Mining preferences from superior and inferior examples.
In: KDD ’08: proceeding of the 14th ACM SIGKDD international conference on Knowledge discovery
and data mining. ACM, New York, NY, USA, pp 390–398

32. Dellis E, Seeger B (2007) Efficient computation of reverse skyline queries. In: VLDB ’07: proceedings
of the 33rd international conference on very large data bases, pp 291–302. VLDB Endowment

33. Wu X, Tao Y, Wong RC-W, Ding L, Yu JX (2009) Finding the influence set through skylines. In: EDBT
’09: proceedings of the 12th international conference on extending database technology. ACM, New York,
NY, USA, pp 1030–1041

34. Gale D, Shapley LS (1962) College admissions and the stability of marriage. In: American Mathematical
Monthly, pp 9–14

35. Gusfield D (1988) The structure of the stable roommate problem: efficient representation and enumeration
of all stable assignments. SIAM J Comput 17(4):742–769

36. Iwama K, Miyazaki S, Manlove D, Morita Y (1999) Stable marriage with incomplete lists and ties. In:
ICAL ’99: proceedings of the 26th international colloquium on automata, languages and programming.
Springer, London, UK, pp 443–452

37. Manlove DF (2002) The structure of stable marriage with indifference. Discret Appl Math 122(1-3):
167–181

38. Manlove DF, Irving RW, Iwama K, Miyazaki S, Morita Y (2002) Hard variants of stable marriage. Theor
Comput Sci 276(1-2):261–279

39. Brinkhoff T, Kriegel H-P, Seeger B (1993) Efficient processing of spatial joins using r-trees. In: SIGMOD
’93: proceedings of the 1993 ACM SIGMOD international conference on management of data. ACM,
New York, NY, USA, pp 237–246

40. Pei J, Jiang B, Lin X, Yuan Y (2007) Probabilistic skylines on uncertain data. In: Proceedings of the 33rd
international conference on very large data bases, VLDB ’07, pp 15–26. VLDB Endowment

41. Zou L, Chen L (2008) Dominant graph: an efficient indexing structure to answer top-k queries. In: ICDE
’08: proceedings of the 2008 IEEE 24th international conference on data engineering. IEEE Computer
Society, Washington, DC, USA, pp 536–545

42. Li C, Ooi BC, Tung AKH, Wang S (2006) Dada: a data cube for dominant relationship analysis. In:
SIGMOD ’06: proceedings of the 2006 ACM SIGMOD international conference on management of data.
ACM, New York, NY, USA, pp 659–670

Author Biographies

Jian Chen received her B.S. and Ph.D. degrees, both in Computer
Science, from Sun Yat-Sen University, China, in 2000 and 2005 respec-
tively. She is currently an associate professor and director of the Data
Mining Group in SSE (SCUT). Her research interests include database,
data mining, social networks and their related applications. She has
served as a PC member for international conferences such as PAKDD
and CIKM.

123

Recommendations for two-way selections

Jin Huang received his M.E. and Ph.D. degrees, both in Computer
Science, from Sun Yat-Sen University, China, in 2004 and 2010 respec-
tively. Currently, he is postdoctoral researcher of South China Normal
University, China. His current research interests cover database, data
mining and information retrieval.

Bin Jiang is a Research Scientist at Facebook. Bin has published in
premier academic journals and conferences. He served as a reviewer for
TKDE and in the program committees of several international confer-
ences such as SIGKDD and ICDM. Bin holds a Ph.D. degree in Com-
puter Science from Simon Fraser University, Canada and received his
B.Sc. and M.Sc. degrees from Peking University, China and University
of New South Wales, Australia, respectively.

Jian Pei is a Professor at the School of Computing Science, Simon
Fraser University, Canada. He is interested in researching, develop-
ing, and deploying effective and efficient data analysis techniques for
novel data intensive applications, including data mining, Web search,
data warehousing and online analytic processing, database systems,
and their applications in social networks and media, health-informat-
ics, business and bioinformatics. His research has been extensively sup-
ported in part by governmental funding agencies and industry partners.
He is also active in developing industry relations and collaboration,
transferring technologies developed in his group to industry applica-
tions, and developing proof-of-concept prototypes. Since 2000, he has
published 1 textbook, 2 monographs and over 170 research papers in
refereed journals and conferences, which have been cited thousands of
times. He has served in the organization committees and the program
committees of over 160 international conferences and workshops. He is
the associate editor-in-chief of IEEE Transactions of Knowledge and
Data Engineering (TKDE), and an associate editor or editorial board

member of the premier academic journals in his fields. He is an ACM Distinguished Speaker, and a senior
member of ACM and IEEE. He is the recipient of several prestigious awards.

123

J. Chen et al.

Jian Yin received the B.S., M.S., and Ph.D. degrees from Wuhan
University, China, in 1989, 1991, and 1994, respectively, all in com-
puter science. He joined Sun Yat-Sen University in July 1994 and now
he is a professor of Information Science and Technology School. He
has published more than 100 refereed journal and conference papers.
His current research interests are in the areas of Data Mining, Artificial
Intelligence, and Machine Learning. He is a senior member of China
Computer Federation.

123

	Recommendations for two-way selections using skyline view queries
	Abstract
	1 Introduction
	2 Skyline view queries
	2.1 Preliminaries
	2.2 Skyline view queries
	2.3 Properties

	3 Related work
	3.1 Skyline computation on single data set
	3.2 Skyline computation involving two data sets
	3.3 The stable matching problem

	4 Query answering algorithms
	4.1 Query reduction
	4.2 Answering inverse skyline queries
	4.2.1 Algorithm framework
	4.2.2 Dominance relationships among applicants
	4.2.3 The layer structure
	4.2.4 Dominance relation among predicates of jobs
	4.2.5 Performance analysis

	4.3 Answering reciprocal skyline queries
	4.3.1 Sharing computation at the leaf level
	4.3.2 Sharing computation at other levels
	4.3.3 Performance analysis

	4.4 Answering skyline mutual view queries and skyline of inverse skyline queries

	5 Experiments
	5.1 Answering inverse skyline queries
	5.2 Answering reciprocal skyline queries

	6 Conclusions
	Acknowledgments
	References

