
On Pruning for TopK Ranking in Uncertain Databases

Chonghai Wang, Li Yan Yuan, JiaHuai You, Osmar R. Zaiane
Department of Computing Science

University of Alberta
Edmonton, Alberta, Canada T6G 2E8

E-mail: {chonghai,yuan,you,zaiane}@cs.ualberta.ca

Jian Pei
School of Computing Science

Simon Fraser University
Burnaby, BC Canada V5A 1S6

E-mail: jpei@cs.sfu.ca

ABSTRACT
Top-k ranking for an uncertain database is to rank tuples in
it so that the best k of them can be determined. The prob-
lem has been formalized under the unified approach based
on parameterized ranking functions (PRFs) and the possible
world semantics. Given a PRF, one can always compute the
ranking function values of all the tuples to determine the
top-k tuples, which is a formidable task for large databases.
In this paper, we present a general approach to pruning for
the framework based on PRFs. We show a mathematical
manipulation of possible worlds which reveals key insights
in the part of computation that may be pruned and how to
achieve it in a systematic fashion. This leads to concrete
pruning methods for a wide range of ranking functions. We
show experimentally the effectiveness of our approach.

1. INTRODUCTION
Uncertain databases, also called probabilistic databases,

are proposed to deal with uncertainty in a variety of applica-
tion domains, such as in sensor network and data cleaning [3,
9]. Typically, an uncertain database consists of a set of tu-
ples each of which comes with a numeric value representing
the score of the tuple and a membership probability. Uncer-
tainty may be due to incompleteness of data, limitation of
equipment, or loss in data transfer, etc. Different uncertain
data models have been proposed for uncertain databases [2,
5, 8], some adopting the possible world semantics [5, 8]. As
a reasonable approximation to the uncertain nature of data,
the data model based on x-tuples is often adopted in the
study of uncertain databases.
The interaction of the information associated with a tuple

– the score representing the importance of the tuple, and the
likelihood of a tuple representing the true information, has
made top-k ranking an intriguing issue, with different defini-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 37th International Conference on Very Large Data Bases,
August 29th September 3rd 2011, Seattle, Washington.
Proceedings of the VLDB Endowment, Vol. 4, No. 10
Copyright 2011 VLDB Endowment 21508097/11/04... $ 10.00.

tions of top-k tuples proposed [1, 4, 10, 11]. In [7] however, a
general framework of top-k ranking, based on parameterized
ranking function (PRF) and the possible world semantics
is formulated, which generalizes many previously proposed
ranking functions. Two classes of PRFs, under the names
PRFω and PRF e, are proposed, and their computational
properties are studied under the probabilistic and/xor tree
model [6], of which x-tuples is a special (but a dominating)
case. As commented in [7], before PRF all the other rank-
ing functions for uncertain databases do not consider more
complex correlations than the one of x-tuple.

Depending on the underlying ranking function, a top-k al-
gorithm may run quadratic time or higher, which is consid-
ered too expensive for large databases. There are generally
two ways to improve the performance: design approximation
algorithms or avoid the computation of the ranking function
values of some tuples that are guaranteed not to be in top-
k. The latter is called pruning, which is the focus of this
paper. Some pruning techniques have been proposed in the
past, but they are formulated only for some fixed semantics
(e.g., [1, 4]). As a result, it is often not clear whether they
are applicable to different ranking functions.

In this paper we present such a study for the framework
based on PRFω and PRF e. We show a partitioning of
possible worlds which leads to insights in what constitutes
an upper bound and the mathematics of deriving it. This
leads to concrete pruning methods for a wide range of rank-
ing functions. Our experiments on synthetic data as well
as real data show orders of magnitude speedup over algo-
rithms without pruning, and substantial improvement over
the existing pruning methods.

The next section reviews some definitions, followed by a
general upper bound method in Section 3, which leads to
concrete computational methods in Section 4. Section 5
studies pruning for PRF e. Section 6 presents experimental
results, and Section 7 concludes the paper.

2. RANKING IN UNCERTAIN DATABASES
Under the x-tuple model, an uncertain database (or an un-

certain table) T contains a set of tuples, each t of which is as-
sociated with a membership probability, denoted by Pr(t),
such that Pr(t) > 0. Each tuple t is associated with a
score, score(t), which is determined by a scoring function:
T → ℜ . A generation rule r of an uncertain database T is

an exclusive relation of one or more tuples in T , written as
r = t1 ⊕ t2 ⊕ ...⊕ te (we will also use r to denote the set of
these tuples), and the sum of the membership probabilities
of the involved tuples, denoted by Pr(r), satisfies Pr(r) ≤ 1.
We assume each tuple in T appears in exactly one genera-
tion rule. When Pr(r) < 1, to represent the probability of
the missing information, we define Pr(r̄) = 1 − Pr(r). A
tuple involved in a single-tuple generation rule is called an
independent tuple.
A possible world W is a set of tuples in an uncertain

database T , such that for each generation rule r on T , W
consists of exactly one tuple in r if Pr(r) = 1, and zero or
one tuple in r if Pr(r) < 1. The probability of W , denoted
by Pr(W), is the product of the membership probabilities of
all the tuples in W and all of Pr(r̄), for each r where W con-
tains no tuples from it. It is clear that

∑
W∈Λ Pr(W) = 1,

where Λ is the set of all possible worlds for T .

Example 2.1. Figure 1 shows an example of an uncer-
tain table, where the score of a tuple is its speed. The gen-
eration rules here are t2 ⊕ t3, t4 ⊕ t5, t6 ⊕ t7, and t1.

Time Radar Model Plate No Speed Prob
t1 11:45 L1 Honda X-123 120 1.0
t2 11:50 L2 Toyota Y-245 130 0.7
t3 11:35 L3 Toyota Y-245 95 0.3
t4 12:10 L4 Mazda W-541 90 0.4
t5 12:25 L5 Mazda W-541 110 0.6
t6 12:15 L6 Chevy L-105 105 0.5
t7 12:20 L7 Chevy L-105 85 0.4

Figure 1: A sample uncertain database

Before [7], top-k tuples are typically defined by a fixed
ranking function that combines the effects of scores and
probabilities. In [7], the authors show the conflicting be-
havior of some of these ranking functions and argue that a
single specific ranking function may not be appropriate to
rank different uncertain databases in practice. They then
propose a framework based on parameterized ranking func-
tions, which covers a large number of different definitions of
top-k tuples with different parameter values.
Formally, the parameterized ranking function for a given

tuple t is defined as: Υ(t) =
∑

W∈PW (t) ω(t, βW (t))×Pr(W),

where PW (t) is the set of all the possible worlds containing
t, βW (t) is the position of t in the possible world W (accord-
ing to score(t)), and ω(t, i) is a weight function: T ×N → C
(C is the set of complex numbers). We call Υ(t) the PRFω

value of t. A top-k query returns the k tuples with high-
est |Υ(t)| values. In this paper, we restrict ω(t, i) to ω(i),
which means the weight function is independent of t, and
the values of ω(i) to real numbers. Further, we assume ω(i)
is monotonically non-increasing. This means ω(i)≥ω(i+1),
for all i with 1≤ i≤n− 1, assuming n tuples. This assump-
tion is reasonable, since in normal cases a higher position
is at least as desirable as those behind it and thus should
be given a higher weight. Algorithms are proposed in [7] to
compute the PRFω values (see Appendix A).

Example 2.2. In Example 2.1, suppose the weight func-
tion is ω(i) = 5− i. Consider t3. It is included in 6 possible
worlds: PW1 = {t1, t3, t4, t6}, PW2 = {t1, t3, t4, t7}, PW3 =
{t1, t3, t4}, PW4 = {t1, t3, t5, t6}, PW5 = {t1, t3, t5, t7}, and
PW6={t1, t3, t5}. We calculate Pr(PW1)=0.06, Pr(PW2)=
0.048, Pr(PW3) = 0.012, Pr(PW4) = 0.09, Pr(PW5) =

0.072, and Pr(PW6) = 0.018. Clearly, Υ(t3) = 2 × 0.06 +
3×0.048+3×0.012+1×0.09+2×0.072+2×0.018=0.48.

In [7], a special class of PRFω functions, named PRF e,
is proposed. A PRF e function requires the weight function
to be ω(i) = αi, where α is a constant real number. Here
we assume 0 < α < 1. We make this assumption because
only in this case, ω(i) = αi is monotonically non-increasing
(we will not consider the trivial cases where α = 0 or 1).

Except for the early proposal of U-Topk [10], more re-
cent definitions of top-k tuples in uncertain databases are
all closely related to PRF. For example, Expected Rank [1]
under the x-tuple model can be computed from PRF [7]; U-
kRanks [10] belongs to PRF, but the weight function is not
monotonically non-increasing so our pruning does not apply;
PT-k query [4] belongs to PRF where the weight function is
monotonically non-increasing, so our pruning does apply.

2.1 Outline of computing topk tuples
Given an algorithm for computing top-k tuples, we can

combine it with our pruning methods. Below, we outline this
process for the algorithms given in [7] for PRFω, where the
tuples of an uncertain database are sorted in a descending
order based on their scores, and are retrieved one by one.

In the combined algorithm, we maintain a heap Lk of the
k tuples with the highest PRFω values retrieved so far in the
descending order of their PRFω values. For the first k tu-
ples, they are stored in Lk along with their computed PRFω

values. For a subsequently retrieved tuple, its PRFω value
may or may not be computed, depending on the computed
upper bound of its PRFω value.

We maintain a special tuple, called tlowest, from the re-
trieved tuples (the details on how to choose it will be given
later), which will be used in computing the upper bound of
the next retrieved tuple. Thus, after the first k tuples, we
retrieve a tuple tnew and compute its upper bound, say u.
If for any t in Lk, u ≤ Υ(t), then it is guaranteed that tnew

is not a top-k tuple, hence Υ(tnew) is not computed. Other-
wise, Υ(tnew) is computed and tlowest updated if necessary.
If Υ(tnew) is higher than the lowest PRFω value in Lk, we
replace a tuple in Lk with the lowest PRFω value with tnew.
After all the tuples are retrieved, Lk holds the top-k tuples.

The most important missing detail in this outline is how
to compute an upper bound of Υ(tnew). Related questions
include: (i) what could be an upper bound of Υ(tnew), (ii)
in what sense it is a tight upper bound, and (iii) is there a
simple way to determine such an upper bound for ranking
functions of PRF e? These questions will be answered next.

3. A GENERAL UPPER BOUND METHOD
We present a general approach to generating an upper

bound of Υ(t), for a given tuple t. For simplicity, we just call
it an upper bound of t. A key finding is a new representation
of PRFω values, followed by a general upper bound method.

Throughout this section, given an uncertain database T ,
we consider a set of q tuples Q = {t1, t2, ..., tq}. As we are
interested in the upper bound of a tuple t ∈ Q and in our
method we will use at least one another tuple as a reference,
we assume q ≥ 2. Given Q, there is a set of generation rules
R = {r1, r2, ..., rl} associated with Q, i.e., every tuple in Q
is in some generation rule in R and every ri ∈ R contains at
least one tuple in Q. Clearly, l ≤ q.

For any t ∈ Q, our interest is to find an upper bound of

it. For this, we want to find some real numbers ci such that

q∑
i=1

ciΥ(ti) ≥ 0 (1)

Note that one of the ti ∈ Q is t. Let us denote its coefficient
above by c. If c < 0, (1) can be transformed to

Υ(t) ≤
∑

ti∈Q,ti ̸=t

−ci
c
Υ(ti) (2)

That is, the value of Υ(t) cannot be higher than the right
hand side of (2), which is thus an upper bound of t. The
lower such an upper bound, the better (tighter). But (2)
does not tell us how to compute such an upper bound, for
two reasons: (i) we may not have computed all of the Υ(ti)
values of the other tuples in Q, and (ii) we were not told
how to choose ci so that inequation (2) is guaranteed to hold
for any given q tuples. The theoretical development of this
section aims at the methods that resolve these questions.

3.1 Representation of PRFω values
For each generation rule ri ∈ T , if Pr(ri) < 1, for tech-

nical convenience, we create a tuple ⊘i, called the virtual
tuple of ri. Virtual tuples do not participate in ranking,
hence their scores are irrelevant. Thus we assume a virtual
tuple has no score. But a virtual tuple has a probability,
Pr(⊘i) = 1 − Pr(ri). To distinguish, we call the other tu-
ples of this generation rule the real tuples of the generation
rule. A virtual tuple has the same exclusive relation with
other tuples of the same generation rule. Below, a tuple set
may contain virtual tuples if not said otherwise.
Given a tuple ti ∈ Q (note that Q contains only real

tuples), its PRFω value Υ(ti) is defined in Section 2 as:
Υ(ti) =

∑
W∈PW (ti)

ω(βW (ti)) × Pr(W). Here we derive a

new representation. The idea is to divide all possible worlds
containing ti into l groups, such that Υ(ti) can be expressed
by the sum of the part PRFω values of ti in each group.
Suppose, among l generation rulesR = {r1, ..., rl}, ti ∈ rd,

for some rd ∈ R. Consider a tuple set η of size l, such that
ti ∈ η and each tuple in η is from a distinct generation rule
in R (thus all tuples in η are from different generation rules).
Let us write it in the form

{ts1 , ts2 , ..., tsd−1 , ti, tsd+1 , ..., tsl}

where tsj ∈ rj . Let us denote by ∆i the set of all such tuple
sets. A property of the tuple sets in ∆i is that they are
symmetric to each other, which means, assuming η1, η2 ∈
∆i, for every possible world W1 such that η1 ⊂ W1, there
exists a possible world W2 = (W1 − η1)∪ η2, and vice versa.
We now divide ∆i into l sets Sij , for 0 ≤ j ≤ l − 1:

Sij = {S ∈ ∆i | there are exactly j real tuples in S s.t.
for each such tuple t, score(t) > score(ti)}

Let η ∈ Sij , and PW (η) be the set of all possible worlds
containing all the tuples in η. We define Υη(ti) as:

Υη(ti) =
∑

W∈PW (η)

ω(βW (ti))× Pr(W) (3)

Let Pr(η) be the sum of the probabilities of the possible
worlds in PW (η). We then can show

Theorem 3.1. For any two tuple sets η1, η2 ∈ Sij, we

have
Υη1 (ti)

Pr(η1)
=

Υη2 (ti)

Pr(η2)
.

The theorem says that the ratio between Υη(ti) and Pr(η)
is the same for all tuple sets η ∈ Sij . As this result is critical
in our theory of pruning, let us give it a special notation:
Given a non-empty Sij and η ∈ Sij , define the PRFω value
ratio of Sij , denoted Uij , as

Uij =
Υη(ti)

Pr(η)
(4)

When Sij is empty, it is meaningless to define Uij . For
technical convenience, we can define Uij to be a real number
for an empty Sij (we leave the details to Appendix B).

The tuple set η in (3) is just one in Sij . We are interested
in all η in Sij . Let PW (Sij) = ∪η∈SijPW (η), and define

ΥSij (ti) =
∑

η∈Sij

Υη(ti)

Note that ΥSij (ti) is the part of the PRFω value obtained
from the possible worlds in PW (Sij).

Let us have the notation: Pr(Sij) =
∑

η∈Sij
Pr(η). Note

that Pr(Sij) = 0 when Sij is empty. It is easy to check that

Υ(ti) =
∑l−1

j=0 ΥSij (ti) =
∑l−1

j=0

∑
η∈Sij

Υη(ti)

=
∑l−1

j=0

∑
η∈Sij

Uij × Pr(η) by (4)

=
∑l−1

j=0 Uij × Pr(Sij).

Thus, we have arrived at a new representation of Υ(ti):

Υ(ti) =

l−1∑
j=0

Uij × Pr(Sij) (5)

Equation (5) is quite intuitive: for each j, Uij×Pr(Sij) is
the part of the PRFω value of ti obtained from the possible
worlds in PW (Sij); then the sum of all these PRFω values
of ti is Υ(ti).

Here, Υ(ti) is expressed in terms of Uij and Pr(Sij). We
will compute the latter but not the former (if we do compute
both, we then have computed Υ(ti) - there is no pruning).

Notice that

Pr(ti) =

l−1∑
j=0

Pr(Sij) (6)

since both sides equal the sum of the probabilities of all the
possible worlds containing ti. This equation will be refer-
enced later in this paper.

For the computation of Pr(Sij), we can show that, for
each tuple ti, we need O(l2 + lτ) time to compute Pr(Sij),
where τ is the maximum number of real tuples in a genera-
tion rule. Hence for q tuples, the complexity is O(ql2+ qlτ).
In real applications, τ is usually a very small number com-
pared with the number of tuples in an uncertain database.
The details can be found in Appendix C.

As a summary, we provide the following table of symbols.

Q {t1, ..., tq} (q ≥ 2), the given set of real tuples
R {r1, ..., rl} (l ≤ q), the set of relevant gen. rules
∆i the set of tuple sets of size l s.t. ∀η ∈ ∆i, ti ∈ η

and tuples in η are from distinct gen. rules in R
Sij Sij ⊆ ∆i s.t. ∀η ∈ Sij , there are exactly j tuples

with a score higher than score(ti)
Uij the PRFω value ratio of Sij

PW (t) the set of possible worlds (PWs) that contain t
PW (η) the set of PWs that contain all tuples in η
PW (Sij) the union of PW (η), for each η ∈ Sij

Pr(Sij) the sum of the prob’s of all PWs in PW (Sij)

We now show a key insight in our theory of pruning.

Theorem 3.2. For any Sij1 , Sij2 , Si1j , and Si2j, where
(1 ≤ i, i1, i2 ≤ q) and (0 ≤ j, j1, j2 ≤ l − 1), we have

(i) if j1 ≤ j2 then Uij1 ≥ Uij2 , and

(ii) if score(ti1) ≥ score(ti2) then Ui1j ≥ Ui2j .

For (i) for example, for a tuple ti ∈ {t1, ..., tq}, the larger
the j value, the lower the Uij , since higher j means more
tuples are “ahead” in a possible world containing η.

3.2 A general method to determine upper bounds
Recall that, given a set of real tuples Q = {t1, ..., tq},

our goal is to compute an upper bound of a tuple t ∈ Q,
expressed in the form of (2). In this section we present
a generic method, which is independent of the number of
tuples in Q, as long as there are at least two.
We know that for each tuple ti ∈ Q, its PRFω value can

be expressed in the form of (5). For this equation, we can
multiply both sides with a constant ci to get

ciΥ(ti) = ci

l−1∑
j=0

Uij × Pr(Sij)

For each tuple in Q we have such an equation, so we have q
equations. Let us add them together to get

q∑
i=1

ciΥ(ti) =

q∑
i=1

l−1∑
j=0

ci × Uij × Pr(Sij) (7)

Recall that to get (2), all we need is to establish inequality
(1) (of course, with the assumption c < 0), which can be ob-
tained from (7) if we make its right hand side non-negative.
This is our focus in the following exploration.
Since Pr(Sij) in (7) is to be computed, we are left with

Uij and a choice of the values of ci. As we want to avoid the
computation of Uij , we will utilize the relation developed
in Theorem 3.2. The idea is to transform the right hand
side of (7) to a form in terms of Uij , which is guaranteed
to be non-negative without actually computing Uij . In the
right hand side of (7), each Uij has a coefficient which could
be positive or negative. If we can transform this expression
to a summation of m (m ≥ 1) terms, each consisting of a
large Uij minus a small Ui′j′ with a positive coefficient, then
clearly this expression must be non-negative. Let us write
this summation as

m∑
k=1

ak(Uikjk − Ui′
k
j′
k
) (8)

where ak > 0 is a real number, and each term involves a pair
of distinct Uikjk and Ui′

k
j′
k
such that Uikjk ≥ Ui′

k
j′
k
, where

1 ≤ ik, i
′
k ≤ q, 0 ≤ jk, j

′
k ≤ l − 1.

Example 3.3. Assume two tuples t1 and t2 with score(t1)
≥ score(t2), and we are interested in an upper bound of t2.
Suppose the PRFω values of the two tuples, expressed in
form (5), are

Υ(t1) = 0.03U10 + 0.06U11 Υ(t2) = 0.2U20 + 0.7U21

From Theorem 3.2, we know that

U10 ≥ U11, U20 ≥ U21, U10 ≥ U20, U11 ≥ U21

If we set c1 = 1 and c2 = −0.1, we get the expression in (7)

Υ(t1)− 0.1Υ(t2) = 0.03U10 + 0.06U11 − 0.02U20 − 0.07U21

Now let us transform the right hand side of the above as

0.03U10 + 0.06U11 − 0.02U20 − 0.07U21

= 0.02(U10 − U20) + 0.06(U11 − U21) + 0.01(U10 − U21)

The expression at the right hand side of equality above is in
the form (8), which involves three pairs of Uij with positive
coefficients. Clearly, the value of this expression is non-
negative, which guarantees Υ(t1) − 0.1Υ(t2) ≥ 0. So an
upper bound of t2 is obtained by Υ(t2) ≤ 10Υ(t1).

In general, there is no guarantee that there exist an as-
signment of ci so that a transformation to (8) is possible.
In this case we can relax the condition by allowing an extra
expression, as in

m1∑
k=1

ak(Uikjk − Ui′
k
j′
k
) +

m2∑
k′=1

bk′Uik′ jk′ (9)

where m1 ≥ 0 and m2 ≥ 1. The first summation is similar
to (8). The second involves a subset of PRFω value ratios,
for 1 ≤ ik′ ≤ q and 0 ≤ jk′ ≤ l− 1, with coefficients bk′ > 0.
If ω(β(t)) ≥ 0 for any position β(t) (i.e., the weight function
ω is non-negative), then according to (3) and (4), all Uij

must be non-negative. Then (9) must be non-negative. It
follows that the right hand side of (7) must be non-negative.

Example 3.4. Assume two tuples t1 and t2 with score(t1)
≥ score(t2), and suppose Υ(t1) = 0.02U10 + 0.08U11 and
Υ(t2) = 0.2U20 +0.6U21. Let c1 and c2 be the coefficients of
t1 and t2 respectively, as in equation (7). Assume the weight
function is non-negative. From Theorem 3.2, we know that
U10 ≥ U11, U20 ≥ U21, U10 ≥ U20, and U11 ≥ U21. It can be
shown that there does not exist an assignment that leads to
a transformation to (8). However, a transformation to (9)
is possible. If we set c1 = 1 and c2 = −0.1, we will get

Υ(t1)− 0.1Υ(t2)
= 0.02U10 + 0.08U11 − 0.02U20 − 0.06U21

= 0.02(U10 − U20) + 0.06(U11 − U21) + 0.02U11

The second line above is in the form of the right hand side of
(7), and the last expression is (9), whereas the term 0.02U11

corresponds to the second summation. Thus we conclude
Υ(t1)− 0.1Υ(t2) ≥ 0.

Theorem 3.5. Let Q = {t1, ..., tq}. Assume t ∈ Q and
there exists a tuple s ∈ Q such that s ̸= t and score(s) ≥
score(t). Then, there exists at least one assignment θ of ci
such that the right hand side of (7) can be transformed to an
expression in the form of (8), and if not, to an expression
in the form of (9).

In the following, given any q (real) tuples Q = {t1, ..., tq},
we say that an assignment θ (of ci w.r.t.Q) induces an upper
bound of t, where t ∈ Q, if the right hand side of (7), with
θ substituted, can be transformed to an expression either in
the form of (8) or in the form of (9).

Question arises. In the transformation from (7) to ei-
ther (8) or (9), there can be different choices of coefficients
resulting in different upper bounds of a tuple. In this con-
text, is there a notion of lowest upper bound for a tuple t
w.r.t. a given Q, where t ∈ Q? We can answer this question
when the size of Q is two. This corresponds to the practical
situation of computing an upper bound - to compute an up-
per bound of a newly retrieved tuple t, we use exactly one
another tuple as a reference which is retrieved earlier and
whose PRFω value is known.

Theorem 3.6. Let T be an uncertain table, Q = {t′, t}
be a set of tuples from T . The upper bound u of t, induced

by any assignment w.r.t. Q, satisfies u ≥ Pr(t)
Pr(t′)Υ(t′).

In general, Pr(t)
Pr(t′)Υ(t′) may or may not be an upper bound

of t. When it is, it is guaranteed that there be no assignment
w.r.t. Q = {t′, t} that can yield a lower upper bound.
The lowest upper bound above is defined w.r.t. Q. For dif-

ferent Q’s, the lowest upper bounds may well be different.
This prompts the question that in practice among all re-
trieved tuples (let’s denote the set by P), which tuple should
be chosen as the reference. Clearly, if tlowest ∈ P is such that
Υ(tlowest)
Pr(tlowest)

≤ Υ(t′)
Pr(t′) , for any t′ ∈ P , then the upper bound

of t is not lower than Pr(t)
Pr(tlowest)

Υ(tlowest) when using the

two tuple relation given in Theorem 3.6.
If a computed upper bound is not the lowest according to

Theorem 3.6, we can get additional tuples involved in order
to improve it. This is easy to understand as with more
tuples, we have more information to use and we may get a
better upper bound. Let us see an example.

Example 3.7. Consider Example 2.1, where t6 and t4 are
from different generation rules and score(t6) > score(t4).
We have

Υ(t6) = Pr(S10)U10 + Pr(S11)U11 = 0.2U10 + 0.3U11

Υ(t4) = Pr(S20)U20 + Pr(S21)U21 = 0.2U20 + 0.2U21

Consider an upper bound of t4. By Theorem 3.6, we know
that the upper bound of t4 induced from any assignment

w.r.t. {t6, t4} is no smaller than Pr(t4)
Pr(t6)

Υ(t6). But there

does not exist an assignment w.r.t. {t6, t4}, which induces
this upper bound. Now let us introduce t3. We then have

Υ(t6) = Pr(S10)× U10 + Pr(S11)× U11 + Pr(S12)× U12

= 0.06U10 + 0.23U11 + 0.21U12

Υ(t4) = Pr(S31)× U31 + Pr(S32)× U32 = 0.2U31 + 0.2U32

If we set c1 =
1

Pr(t6)
= 2, c2 = 0, and c3 =− 1

Pr(t4)
=−2.5

(note that coefficients c1, c2, c3 are associated with tuples, in
the order of scores, t6, t3, t4, respectively), we will get

Υ(t6)
Pr(t6)

− Υ(t4)
Pr(t4)

= 0.04(U10 − U31) + 0.46(U11 − U31)

+ 0.08(U10 − U32) + 0.42(U12 − U32) ≥ 0

So we get an upper bound of t4 as Pr(t4)
Pr(t6)

Υ(t6). This upper

bound is induced from an assignment w.r.t. {t6, t4, t3}.

The above example shows that there are cases where by
using an additional tuple we can get a better upper bound.

4. DERIVING PRACTICAL METHODS
The method given in the last section is only a scheme,

which does not tell us how to choose the coefficients ci so
that the targeted transformations are possible. In this sec-
tion, we show how to instantiate this scheme to generate
practical upper bound methods.
Briefly, if two tuples t1 and t2 (score(t1)≥ score(t2)) are

from the same generation rule, there is a choice of ci such
that the lowest upper bound of t2 w.r.t. {t1, t2} is guaran-
teed. In the case that two tuples are from different gener-
ation rules, if some condition is satisfied, the lowest upper
bound is guaranteed, and if it is not we provide a conserva-
tive estimate, i.e., an upper bound is generated in any case.
We may continue this exercise to three tuples and so on.

4.1 Two tuples from the same generation rule
Assume two real tuples t1 and t2 from the same generation

rule, with score(t1) ≥ score(t2). As they are involved in the
same generation rule, l = 1. So according to (5), we have

Υ(t1) = Pr(S10)× U10 Υ(t2) = Pr(S20)× U20

where, as l = 1, Pr(t1) = Pr(S10) and Pr(t2) = Pr(S20)
(by equation (6)). It is also clear that U10 ≥ U20. Then, by
setting c1 = 1

Pr(t1)
and c2 = − 1

Pr(t2)
the right hand side of

equation (7) Υ(t1)
Pr(t1)

− Υ(t2)
Pr(t2)

= U10 − U20 ≥ 0 is an instance

of (8). This is to say that if we know the PRFω value of t1,
we can compute the lowest upper bound of t2.

Theorem 4.1. Let T be an uncertain table, and t1 and
t2 be two real tuples in T that are involved in the same gen-
eration rule, with score(t1) ≥ score(t2). Then, we have

Υ(t2) ≤ Pr(t2)
Pr(t1)

Υ(t1).

The time complexity to compute this upper bound is O(1).

4.2 Two tuples from different generation rules
Assume two real tuples t1 and t2 from different generation

rules and score(t1) ≥ score(t2). As they belong to different
generation rules, l = 2. So, according to (5), we have

Υ(t1) = Pr(S10)× U10 + Pr(S11)× U11

Υ(t2) = Pr(S20)× U20 + Pr(S21)× U21

Let us set c1 = 1
Pr(t1)

and c2 = − 1
Pr(t2)

. We can show

Theorem 4.2. Let T be an uncertain table, and t1 and
t2 be two real tuples in T belonging to different generation

rules. Assume score(t1) ≥ score(t2). If Pr(S10)
Pr(t1)

≥ Pr(S20)
Pr(t2)

,

then Υ(t2) ≤ Pr(t2)
Pr(t1)

Υ(t1).

In Theorem 4.2, we need compute Pr(Sij). As discussed
in Section 3.1, the time complexity of computing Pr(Sij) is
O(ql2+qlτ). Here q=2 and l=2. Thus the time complexity
of computing Pr(Sij) is O(τ), so is the cost of computing
the upper bound of t2.

If the condition in Theorem 4.2 is not satisfied, question
arises as whether there is a reasonable way to estimate an
upper bound of t2. The answer is yes. For this, let us set

c1 = Pr(S20)
Pr(S10)×Pr(t2)

and c2 = − 1
Pr(t2)

. We can show

Theorem 4.3. Let T be an uncertain table, and t1 and t2
be two real tuples in T from different generation rules, with

score(t1) ≥ score(t2). If Pr(S10)
Pr(t1)

< Pr(S20)
Pr(t2)

and the weight

function is non-negative, we have Υ(t2) ≤ Pr(S20)
Pr(S10)

Υ(t1).

That is, if the condition in Theorem 4.2 is not satisfied

(i.e., its negation Pr(S10)
Pr(t1)

< Pr(S20)
Pr(t2)

is satisfied), we still can

get an upper bound of t2, which is Υ(t1) multiplying the

factor Pr(S20)
Pr(S10)

. Obviously, this upper bound is higher.

The cost of computing the upper bound above is O(τ).

4.3 Three tuples
When the condition in Theorem 4.2 is not satisfied, it is

possible to improve the upper bound given in Theorem 4.3.
Let t1, t2, t3 be real tuples from different generation rules,
with score(t1)≥score(t2)≥score(t3). From (5) we get

Υ(t1) = Pr(S10)× U10 + Pr(S11)× U11 + Pr(S12)× U12

Υ(t2) = Pr(S20)× U20 + Pr(S21)× U21 + Pr(S22)× U22

Υ(t3) = Pr(S30)× U30 + Pr(S31)× U31 + Pr(S32)× U32

Through some derivations, we can get

Theorem 4.4. Let T be an uncertain table, and t1, t2,
and t3 be three real tuples in T from three different genera-
tion rules, with score(t1) ≥ score(t2) ≥ score(t3). Let a, b ∈
{1, 2, 3} and a < b. If Pr(Sa0)

Pr(ta)
≥ Pr(Sb0)

Pr(tb)
and Pr(Sa2)

Pr(ta)
≤

Pr(Sb2)
Pr(tb)

, then we have Υ(tb) ≤ Pr(tb)
Pr(ta)

×Υ(ta).

The cost of computing the upper bound above is O(τ).

5. PRUNING FOR PRFE

It is known that the PRF e value of a tuple can be de-
termined in constant time when all the tuples are sorted
according to scores [7]. Thus, the method of pruning given
in previous sections may not be worthwhile for PRF e. Here,
we show a special property of PRF e for pruning, which can
terminate the top-k computation earlier.

Theorem 5.1. Let T be an uncertain table and t ∈ T .
Suppose the ranking function is PRF e and ω(i) = αi, where
α is a real number and 0 < α < 1. Then for any tuple t′ ∈ T
such that score(t′) ≤ score(t), Υ(t′) ≤ 1

α
× 1

Pr(t)
Υ(t).

That is, if we know PRF e(t), then 1
α
× 1

Pr(t)
Υ(t) is an

upper bound of all tuples whose scores are smaller than
score(t). Following the top-k algorithm given in [7], where
tuples in an uncertain table are sorted according to their
scores, when this value is lower than the kth largest PRF e

value found so far the computation can safely terminate.

6. EXPERIMENTS
We combine our pruning methods with top-k algorithms

for PRFω and PRF e, respectively. The procedure outlined
in Section 2.1 uses two tuples for pruning, which was em-
ployed in our experiments. All the experiments were run on
a quad-core 2.3GHZ PC with 16GB RAM, running Linux
operating system. The algorithms are implemented in Mi-
crosoft Visual C++ V6.0.

6.1 Implemented algorithms
We now fill more details on the combined algorithm in

Section 2.1 (a complexity analysis is given in Appendix D).
After the first k tuples, we retrieve a new tuple tnew.

To compute the upper bound of tnew, we maintain a tu-
ple called tlowest, which is among the retrieved tuples whose
PRFω values have been computed. The tuple tlowest must
be the one that has the lowest ratio between its PRFω value
and its membership probability among all retrieved tuples,

i.e., Υ(tlowest)
Pr(tlowest)

≤ Υ(t′)
Pr(t′) , for any retrieved tuple t′ such that

Υ(t′) is computed. If tnew is involved in the same gener-
ation rule with tlowest, we get the upper bound of tnew as
Pr(tnew)

Pr(tlowest)
Υ(tlowest) from Theorem 4.1, which is the low-

est for the set of retrieved tuples whose PRFω values are
computed when using the two tuple relation.
If tnew and tlowest are from different generation rules, we

check whether the condition in Theorem 4.2 is satisfied. If
it is, we get the lowest upper bound of tnew. Otherwise
Theorem 4.3 provides an upper bound of tnew.
Below, we use “computed tuples” to mean the number of

tuples whose PRFω or PRF e values are actually computed
in running top-k algorithms in [7] combined with pruning.
In our experiments, we implemented the PRFω algorithm

given in [7] whose complexity is O(n3). In [7], another al-
gorithm with complexity O(n2log2n) is also provided. If we

use the latter, the “computed tuples” remains the same but
the gaps in running times will be smaller. For PRF e, we
implemented the algorithm given in [7], combined with the
early termination condition given in Section 5.

6.2 Data sets and weight functions
Normal data sets: Synthetic data sets are generated,
each containing some tuples and some multi-tuple genera-
tion rules. The number of tuples involved in each multi-tuple
generation rule follows the normal distribution, so does the
probabilities of independent tuples and multi-tuple gener-
ation rules. To generate different data sets, we vary the
expectation of the membership probabilities of the indepen-
dent tuples and the size of a multi-tuple generation rule.

Special data sets: Intuitively, pruning seems ineffective on
data sets like the following: the scores of the tuples are in an
descending order and their membership probabilities are in
an ascending order. Although these data sets do not seem to
be typical in the real world, it can be used to illustrate an in-
teresting phenomenon of performance changes from variants
of these data sets, which are obtained as follows: we update
such a data set by swapping the membership probabilities
of different tuples such that the membership probabilities of
the resulting tuples are not strictly in an ascending order.
To get different data sets, we vary the ratio between the
number of swapping tuples and the number of all tuples.

Real data set: We also experimented with a real data set,
with conclusions similar to those with normal data sets. We
provide the details in Appendix F, along with an experi-
ment to show the closeness of the computed upper bounds
compared with real PRFω values.

Weight functions: We experimented with different weight
functions ω(i) for PRFω: randomly generated weight func-
tions (RGWFs), the weight function ω(i) = n− i, where n is
the number of tuples in an uncertain database and i is the
position of a tuple in a possible world, and the weight func-
tion from the PT-k query answer [4]. All these functions are
related only to i and monotonically non-increasing. RGWFs
are generated as follows: we generate n random numbers
and sort them into a descending order; the number in the
position i of this order is the weight value of ω(i).

In our experiments, we found that the performance of our
pruning methods for RGWFs is similar to that using the
weight function ω(i) = n− i. So we only give the results for
RGWFs and the one based on PT-k query answer.

6.3 Results
In each figure included in this section (except Figure 4),

there are three graphs, (a), (b) and (c). Each graph shows
computed tuples or running times (on y-axis) over one of
the three parameters (on x-axis): the expected membership
probabilities of independent tuples, the expected number of
tuples in a generation rule, and different values of k. Note
that the first two parameters result in different data sets.
Figure 4 contains two graphs over swapping ratios.

Figure 2 shows the computed tuples for normal data sets
with pruning, for a RGWF random1 and PT-k query an-
swer. The size of the database is 100,000 tuples. We set
k = 50 in both (a) and (b). In Figure 2(a), we see that the
computed tuples is between 50 and 400. Compared with the
size of the data set, with pruning we only need to compute
the PRFω values for a very small portion of the database.
This is an impressive improvement. With the increase of the

expected membership probability of the independent tuples
in a data set, less tuples need be computed. In Figure 2(b),
we see that the computed tuples is between 100 and 400. In
Figure 2(c), we vary the value of k from 50 to 250. We see
that only a small number of tuples are computed for their
PRFω values. Most tuples are pruned.
Figure 3 shows the running times for normal data sets.

Here we also test for 2 weight functions: a RGWF random2
and PT-k query answer. The size of the data set is 2000 tu-
ples (due to much longer computation time, we use smaller
data sets for the experiments without pruning or where
pruning is not effective). We set k = 50 for random2 and
k = 150 for PT-k query answer in both (a) and (b) (for
RGWF random2, the performance gains will be smaller with
larger values of k). The improvement is orders of magnitude.
The improvement is similar for larger data sets (we scaled
the size up to 10,000 tuples and tested some selectively).
Figure 4 uses the special data sets with different ratios

between the number of swapping tuples and the number of
all tuples, and different weight functions. The size of the
data sets is 2000. We set k = 50 for random2 and k = 150
for the PT-k query answer. In the figure ((a) is about com-
puted tuples and (b) running times), we see that when the
swapping ratio is low, pruning produces little performance
gains. With the increase of the swapping ratio, more tuples
are pruned and the running times reduced substantially.

Comparison with pruning of [4]: It can be shown that
the main pruning theorems of [4] are special cases of our
pruning theorems (see Appendix E). We compare with the
simple pruning technique used in [4] on the normal data sets,
with size 2000. We used two weight functions: a RGWF
random2 and the PT-k query answer. Figure 5 compares
the computed tuples, while Figure 6 is on the running times.
In the graphs (a) and (b) of both Figures 5 and 6, we set
k = 50 for random2 and k = 150 for PT-k query answer. It
can be noticed that substantial improvement is generated.

Early termination for PRF e: We use the early termi-
nation condition given in Section 5 to terminate a compu-
tation when the condition is satisfied. The test data sets
are normal data sets, with the size being 1,000,000 tuples.
We set α = 0.95 (the impact of this value is not big as long
as it is close to 1). We summarize the results as follows.
When k=50000 or higher, the computation terminates right
after the first k tuples are retrieved. With smaller k’s, the
number of retrieved tuples could be higher than k, but not
substantially. The running times are shortened to one fifth
to one twentieth of the ones without pruning. This shows
that Theorem 5.1 yields a highly effective pruning method.

Experiments with 3-tuples: We start with two rules
tlowest and tnew as described above, and introduce a third
tuple. It can be shown that this new tuple must be involved
in a generation rule which contains some tuples whose score
is between score(tlowest) and score(tnew) (which therefore
must already been retrieved). Thus, in our experiments a
third tuple is randomly chosen satisfying the above condi-
tion. However, our experiments with the four weight func-
tions for the normal and special synthetic data sets, as well
as for the real data set (see Appendix F), didn’t show perfor-
mance gains, as the number of computed tuples and running
times are very close to those by the pruning method with
two tuples. One observation is that, in most cases, the low-
est upper bound has already been reached using two tuples.

7. FINAL REMARKS
There are three assumptions in our work. The first is

that the weight function is independent of tuples. Techni-
cally, this assumption can be removed if ω(t, i) is restricted
to ω(score(t), i) (i.e., anything that depends on t depends
on score(t), and ω(score(t), i) is non-negative and monoton-
ically non-decreasing w.r.t. score(t)). Another assumption
in our work is that ω(t, i) is monotonically non-increasing
w.r.t. i. This assumption is reasonable, as in most real appli-
cations a smaller i (hence a higher position) is clearly more
important than a larger i. The third assumption requires
the weight function to be non-negative. We are currently
looking into whether this assumption can be removed. Fur-
ther, it is interesting to see whether our theory and result-
ing methods can be extended to general data models such
as the probabilistic and/xor tree model. Such an extension
is non-trivial. Applying our top-k algorithms to real world
applications is another important task for future work.

Acknowledgment: All authors of this paper were sup-
ported in part by grants from NSERC. L. Yuan and J. You
also acknowledge the support from the 863 Project of China
under grant 2009AA01Z150.

8. REFERENCES

[1] G. Cormode, F. Li, and K. Yi. Semantics of ranking
queries for probabilistic data and expected ranks. In
Proc. ICDE, pages 305–316, 2009.

[2] N. Fuhr. A probabilistic framework for vague queries
and imprecise information in databases. In Proc.
VLDB, pages 696–707, 1990.

[3] A. Fuxman, E. Fazli, and R. Miller. Conquer: Efficient
management of inconsistent databases. In Proc.
SIGMOD, pages 155–166, 2005.

[4] M. Hua, J. Pei, W. Zhang, and X. Lin. Ranking
queries on uncertain data: A probabilistic threshold
approach. In Proc. SIGMOD, pages 1357–1364, 2008.

[5] T. Imielinski and J. W. Lipski. Incomplete
information in relational databases. The Journal of
ACM, 31(4):761–791, 1984.

[6] J. Li and A. Deshpande. Consensus answers for
queries over probabilistic databases. In Proc. PODS,
pages 259–268, 2009.

[7] J. Li, B. Saha, and A. Deshpande. A unified approach
to ranking in probablistic databases. The VLDB
Journal, pages 249–275, 2011. (A preliminary version
appeared in Proc. VLDB-09, pp 305-316).

[8] J. Pei, B. Jiang, X. Lin, and Y. Yuan. Probabilistic
skylines on uncertain data. In Proc. VLDB, pages
15–26, 2007.

[9] A. Silberstein, R. Braynard, C. Ellis, and
K. Munagala. A sampling-based approach to
optimizing top-k queries in sensor networks. In Proc.
ICDE, 2006.

[10] M. Soliman, I. Ilyas, and K. Chang. Top-k query
processing in uncertain databases. In Proc. ICDE,
pages 896–905, 2007.

[11] K. Yi, F. Li, G. Kollios, and D. Srivastava. Efficient
processing of top-k queries in uncertain databases
with x-relations. IEEE Transactions on Knowledge
and Data Engineering, 20(12):1699–1711, 2008.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

C
o
m
p
u
t
e
d

t
u
p
l
e
s

Expectation of membership probability

(a)Computed tuples and membership prob.

PT-k

random1

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 5 10 15 20 25

C
o
m
p
u
t
e
d

t
u
p
l
e
s

Average number of tuples in a rule

(b)Computed tuples and rule complexity

PT-k

random1

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 50 100 150 200 250

C
o
m
p
u
t
e
d

t
u
p
l
e
s

Parameter k

(c)Computed tuples and k

PT-k

random1

Figure 2: Computed tuples for PRFω on normal data sets

 0.1

 1

 10

 100

 1000

 10000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

R
u
n
n
i
n
g

t
i
m
e

(
s
e
c
o
n
d
)

Expectation of membership probability

(a)Running time and membership prob.

PT-k with pruning
random2 with pruning

PT-k without prunig
random2 wihtout pruning

 0.1

 1

 10

 100

 1000

 10000

 5 10 15 20 25

R
u
n
n
i
n
g

t
i
m
e

(
s
e
c
o
n
d
)

Average number of tuples in a rule

(b)Running time and rule complexity

PT-k with pruning
random2 with pruning

PT-k without prunig
random2 without pruning

 0.1

 1

 10

 100

 1000

 10000

 150 200 250 300 350

R
u
n
n
i
n
g

t
i
m
e

(
s
e
c
o
n
d
)

Parameter k

(c)Running time and k

PT-k with pruning
random2 with pruning
PT-k without pruning

random2 without pruning

Figure 3: Running times for PRFω on normal data sets

 0

 500

 1000

 1500

 2000

 0 0.2 0.4 0.6 0.8 1

C
o
m
p
u
t
e
d

t
u
p
l
e
s

swapping ratio

(a)Computed tuples and swapping ratio

PT-k

random2

 0

 50

 100

 150

 200

 0 0.2 0.4 0.6 0.8 1

R
u
n
n
i
n
g

t
i
m
e

(
s
e
c
o
n
d
)

swapping ratio

(b)Running time and swapping ratio

PT-k with pruning
random2 with pruning

PT-k without pruing
random2 without pruning

Figure 4: Comparison on special data sets

 0

 200

 400

 600

 800

 1000

 1200

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

C
o
m
p
u
t
e
d

t
u
p
l
e
s

Expectation of membership probability

(a)Computed tuples and membership prob.

PT-k with our pruning
random2 with our pruning
PT-k with simple pruning

random2 with simple pruning

 0

 200

 400

 600

 800

 1000

 5 10 15 20 25

C
o
m
p
u
t
e
d

t
u
p
l
e
s

Average number of tuples in a rule

(b)Computed tuples and rule complexity

PT-k with our pruning
random2 with our pruning
PT-k with simple pruning

random2 with simple pruning

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 150 200 250 300 350

C
o
m
p
u
t
e
d

t
u
p
l
e
s

Parameter k

(c)Computed tuples and k

PT-k with our pruning
random2 with our pruning
PT-k with simple pruning

random2 with simple pruning

Figure 5: Comparison with previous pruning method: computed tuples

 0.1

 1

 10

 100

 1000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

R
u
n
n
i
n
g

t
i
m
e

(
s
e
c
o
n
d
)

Expectation of membership probability

(a)Running time and membership prob.

PT-k with our pruning
random2 with our pruning

PT-k with simple prunig
random2 wiht simple pruning

 0.1

 1

 10

 100

 1000

 5 10 15 20 25

R
u
n
n
i
n
g

t
i
m
e

(
s
e
c
o
n
d
)

Average number of tuples in a rule

(b)Running time and rule complexity

PT-k with our pruning
random2 with our pruning

PT-k with simple prunig
random2 with simple prunin

 1

 10

 100

 1000

 150 200 250 300 350

R
u
n
n
i
n
g

t
i
m
e

(
s
e
c
o
n
d
)

Parameter k

(c)Running time and k

PT-k with our pruning
random2 with our pruning
PT-k with simple pruning

random2 with simple pruning

Figure 6: Comparison with previous pruning method: running times

APPENDIX
A. TOPK ALGORITHMS
We introduce the algorithms in [7] for computing the PRFω

value of a tuple and top-k tuples. Let T be an uncertain
database where the tuples t1, ..., tn are sorted in a non-
increasing order by scores. To compute the PRFω value
of ti, we only need to consider Ti = {t ∈ T | score(t) >
score(ti)}.
In [7], a different but equivalent representation of Υ(t) is

given: Υ(t) =
∑

i>0 ω(t, i) ·Pr(r(t) = i), where Pr(r(t) = i)
is the sum of the probabilities of the possible worlds in which
t ranks at i-th position. Assume the correlation of tuples
in T is that of the x-tuple and let R be the set of all the
generation rules of T . Let ti ∈ r′, and Ri = {r ∈ R− {r′} |
∃t ∈ Ti, t ∈ r}. Let Θi(r) be the set of tuples that are
in Ti and involved in r. Consider the following generating
function: F i(x, y) = Pr(ti)y

∏
r∈Ri

(1 −
∑

t∈Θi(r)
Pr(t) +

x
∑

t∈Θi(r)
Pr(t)). The coefficient of the term xj−1y in the

expansion of F i(x, y) is Pr(r(ti) = j). Then we can compute
Υ(ti). If we expand F i(x, y) by polynomial multiplication
one by one, the complexity of the algorithm to get top-k
tuples (computing Υ(t) for all the tuples and choosing the
k tuples with highest PRFω values) is O(n3). If we use
FFT (Fast Fourier Transformation) for the multiplication of
polynomials, the complexity is O(n2log2n).

B. THEORETICAL DEVELOPMENT
We provide more details on the theoretical development.

We give proofs for Theorems 3.1, 3.2, 3.5 and 3.6, as they
form the basis of our theory. For practical pruning methods,
we provide proofs of Theorems 4.2 and 4.3. Finally, a proof
of Theorem 5.1 will show why the pruning for PRF e works.
We will present the theoretical development in this order.
It is not difficult to prove the following lemmas.

Lemma B.1. Let W and W ′ be two possible worlds and η
and η′ be two tuple sets such that η ⊂ W and η′ ⊂ W ′. If

W ′ = (W − η) ∪ η′ and W = (W ′ − η′) ∪ η, then Pr(W)
Pr(W ′) =∏

t∈η Pr(t)∏
t∈η′ Pr(t)

.

Lemma B.2. For a tuple set η where all tuples are in-
volved in different generation rules, Pr(η) =

∏
ti∈η Pr(ti).

Proof of Theorem 3.1:
We know there exist possible worlds W1,W2, ...,We which
contain all the tuples in η1 and possible worldsW ′

1,W
′
2, ...,W

′
e

which contain all the tuples in η2, such that W ′
v = (Wv −

η1)∪η2 andWv = (W ′
v−η2)∪η1 (1 ≤ v ≤ e). As η1, η2 ∈ Sij ,

η1 and η2 both contain j tuples which have a higher score
than ti. So we know that ti has the same position in Wv and
W ′

v. Thus βWv (ti) = βW ′
v
(ti) and ω(βWv (ti)) = ω(βW ′

v
(ti)).

From equation (3), we have

Υη1(ti) =
∑e

v=1 ω(βWv (ti))× Pr(Wv)
Υη2(ti) =

∑e
v=1 ω(βW ′

v
(ti))× Pr(W ′

v)

By Lemma B.1, we have Pr(Wv)
Pr(W ′

v)
=

∏
tu∈η1

Pr(tu)∏
tu∈η2

Pr(tu)
. So we get

Υη1(ti) =
∑e

v=1 ω(βW ′
v
(ti)) ×

∏
tu∈η1

Pr(tu)∏
tu∈η2

Pr(tu)
× Pr(W ′

v) =∏
tu∈η1

Pr(tu)∏
tu∈η2

Pr(tu)
×

∑e
v=1 ω(βW ′

v
(ti))× Pr(W ′

v) =

∏
tu∈η1

Pr(tu)∏
tu∈η2

Pr(tu)
× Υη2(ti). It follows

Υη1 (ti)

Υη2 (ti)
=

∏
tu∈η1

Pr(tu)∏
tu∈η2

Pr(tu)
.

From Lemma B.2, we have Pr(η1) =
∏

tu∈η1
Pr(tu) and

Pr(η2) =
∏

tu∈η2
Pr(tu). So we have

Υη1 (txi
)

Υη2 (ti)
= Pr(η1)

Pr(η2)
.

That is
Υη1 (ti)

Pr(η1)
=

Υη2 (ti)

Pr(η2)
. 2

Definition of Uij for Empty Sij under PRFω:
We define Uij for empty Sij . Let us first point out some
properties of Sij . From the definition of Sij , we know that
for a fixed i, the non-empty sets Sij must be consecutive.
This means it is impossible that Sih and Si(h+2) (0 ≤ h ≤
l− 3) are non-empty sets and Si(h+1) is an empty set. From
the definition we also know there exists at least one non-
empty Sij for a fixed i. Given ti ∈ Q, let us denote the
consecutive sequence of all non-empty sets (w.r.t. ti) by

Sij1 , Si(j1+1), ..., Sij2

where 0 ≤ j1 ≤ j2 ≤ l − 1. Let us call Sij1 the first non-
empty Sij for ti and Sij2 the last non-empty Sij for ti. We
see that Si0, Si1, ..., Si(j1−1) and Si(j2+1), Si(j2+2), ..., Si(l−1)

are all empty sets.
For any 1 ≤ i1, i2 ≤ q, let Si1j1 be the first non-empty

Sij for ti1 , Si1j2 be the last non-empty Sij for ti2 , Si2j3 be
the first non-empty Sij for ti2 and Si2j4 be the last non-
empty Sij for ti2 . From the definition of Sij , we know that
if score(ti1) ≥ score(ti2), then j1 ≤ j3 and j2 ≤ j4.

Now we define Uij for empty Sij . For a tuple ti ∈ Q (1 ≤
i ≤ q), let Sij1 be the first non-empty Sij for ti and Sij2 be
the last non-empty Sij for ti. For an empty Sij , we define

Uij =

{
Uij1 if j < j1
Uij2 if j > j2

Proof of Theorem 3.2:
We prove part (i). Part (ii) can be proved similarly.

We first prove that for any Sij1 , Sij2 , Si1j , and Si2j which
are non-empty, where (1 ≤ i, i1, i2 ≤ q) and (0 ≤ j, j1, j2 ≤
l − 1), the conclusion in part (i) holds.

Similar to the proof in Theorem 3.1, let η1 ∈ Sij1 and
η2 ∈ Sij2 . By definition, we know there exist possible worlds
W1,W2, ...,We which contain all the tuples in η1 and pos-
sible worlds W ′

1,W
′
2, ...,W

′
e which contain all the tuples in

η2, such that W ′
v = (Wv − η1)∪ η2 and Wv = (W ′

v − η2)∪ η1
(1 ≤ v ≤ e). As η1 ∈ Sij1 , η1 contains j1 tuples which
have a higher score than ti. Since η2 ∈ Sij2 , η2 contains
j2 tuples which have a higher score than ti. Since j1 ≤
j2, compared with W ′

v, Wv must contain a less or equal
number of tuples which has a higher score than ti. So ti
has an equal or higher position in Wv than in W ′

v. As
we have assumed that the weight function is monotonically
non-increasing, we get ω(βWv (ti)) ≥ ω(βW ′

v
(ti)). Because

Υη1(ti) =
∑e

v=1 ω(βWv (ti))Pr(Wv),
Υη2(ti) =

∑e
v=1 ω(βW ′

v
(ti))Pr(W ′

v) and
Pr(Wv)
Pr(W ′

v)
=

∏
tu∈η1

Pr(tu)∏
tu∈η2

Pr(tu)
(Lemma B.1), we can get Υη1(ti) =∑e

v=1 ω(βWv (ti))×
∏

tu∈η1
Pr(tu)∏

tu∈η2
Pr(tu)

×Pr(W ′
v) =

∏
tu∈η1

Pr(tu)∏
tu∈η2

Pr(tu)
×∑e

v=1 ω(βWv (ti))× Pr(W ′
v) ≥

∏
tu∈η1

Pr(tu)∏
tu∈η2

Pr(tu)
×∑e

v=1 ω(βW ′
v
(ti)) × Pr(W ′

v) =
∏

tu∈η1
Pr(tu)∏

tu∈η2
Pr(tu)

× Υη2(ti). So

Υη1 (ti)∏
tu∈η1

Pr(tu)
≥ Υη2 (ti)∏

tu∈η2
Pr(tu)

. Because Pr(η1) =∏
tu∈η1

Pr(tu) and Pr(η2) =
∏

tu∈η2
Pr(tu) (from Lemma

B.2), we can get
Υη1 (ti)

Pr(η1)
≥ Υη2 (ti)

Pr(η2)
. This is Uij1 ≥ Uij2 .

So we have proved that the conclusion in part (i) holds for
non-empty Sij1 , Sij2 , Si1j , and Si2j .
From the definition of Uij for empty Sij , it is easy to see

that the conclusion in part (i) holds for any Sij1 , Sij2 , Si1j ,
and Si2j . We are done. 2

Proof of Theorem 3.5:
For notational convenience, let s and t in the theorem be
also named as ta and tb, respectively. By Theorem 3.2, from
score(ta) ≥ score(tb), we know Uaj ≥ Ubj . We construct an
assignment θ of ci w.r.t. Q as follows: set ci (i ̸= a, b) = 0
in θ. Then the right hand side of (7) can be written as:∑l−1

j=0 ca ×Pr(Saj)×Uaj + cb ×Pr(Sbj)×Ubj . Here ca > 0
and cb < 0. We just need to set ca large enough and the
absolute value of cb small enough such that ca × Pr(Saj) ≥
−cb × Pr(Sbj) , then it is clear that

∑l−1
j=0 ca × Pr(Saj) ×

Uaj+cb×Pr(Sbj)×Ubj =
∑l−1

j=0 −cb×Pr(Sbj)(Uaj−Ubj)+

(ca ×Pr(Saj)+ cb ×Pr(Sbj))Uaj . And this is an expression
either in the form of (8) or in the form of (9). 2

Proof of Theorem 3.6:
If score(t′) < score(t), it is easy to see that no assignment
w.r.t. Q can induce an upper bound of t. For an assignment
w.r.t. Q, if the coefficient of t′ is not greater than 0, it is also
easy to see that this assignment cannot induce an upper
bound of t. So if an assignment w.r.t. Q can induce an
upper bound, score(t′) ≥ score(t) and the coefficient of t′ is
greater than 0.
Let ϕ be any assignment w.r.t. Q which induces an upper

bound u of t. Let the coefficients of t′, t in ϕ be c1, c2,
respectively. We know c1 > 0 and c2 < 0. We thus have

c1Υ(t′) + c2Υ(t)

=
∑l−1

j=0 c1Pr(S1j)U1j +
∑l−1

j=0 c2Pr(S2j)U2j

To make the transformation from the right hand side
of the equation above to (8) or (9), the sum of the posi-
tive coefficients of Uij must not be smaller than the sum
of the absolute value of the negative coefficients of Uij .

From equation (6), we have
∑l−1

j=0 Pr(S1j) = Pr(t′) and∑l−1
j=0 Pr(S2j) = Pr(t) . So we have c1Pr(t′) ≥ −c2Pr(t)

and this is c1 ≥ −c2
Pr(t)
Pr(t′) .

From (2), we know the upper bound u of t induced from

ϕ is u = c1Υ(t′)
−c2

. So we can get u ≥ Pr(t)
Pr(t′)Υ(t′). 2

Proof of Theorem 4.2:
From Theorem 3.2, we know that U10 ≥ U20, U11 ≥ U21, U10 ≥
U11. So U10 ≥ U21. From equation (6), we have Pr(t1) =
Pr(S10) + Pr(S11) and Pr(t2) = Pr(S20) + Pr(S21). So we

can get Pr(S10)
Pr(t1)

− Pr(S20)
Pr(t2)

= Pr(S21)
Pr(t2)

− Pr(S11)
Pr(t1)

.

Let us set c1 = 1
Pr(t1)

and c2 = − 1
Pr(t2)

. We can get
1

Pr(t1)
×Υ(t1)− 1

Pr(t2)
×Υ(t2) =

Pr(S10)
Pr(t1)

×U10+
Pr(S11)
Pr(t1)

×U11− Pr(S20)
Pr(t2)

×U20− Pr(S21)
Pr(t2)

×U21 =
Pr(S20)
Pr(t2)

× (U10 − U20) +
Pr(S11)
Pr(t1)

× (U11 − U21) + (Pr(S10)
Pr(t1)

−
Pr(S20)
Pr(t2)

)×U10−(Pr(S21)
Pr(t2)

− Pr(S11)
Pr(t1)

)×U21 = Pr(S20)
Pr(t2)

×(U10−
U20)+

Pr(S11)
Pr(t1)

×(U11−U21)+(Pr(S10)
Pr(t1)

− Pr(S20)
Pr(t2)

)×(U10−U21).

If Pr(S10)
Pr(t1)

≥ Pr(S20)
Pr(t2)

, then 1
Pr(t1)

× Υ(t1) ≥ 1
Pr(t2)

× Υ(t2).
2

Proof of Theorem 4.3:
From equation (6), we have Pr(t1) = Pr(S10)+Pr(S11) and

Pr(t2) = Pr(S20) + Pr(S21). Because Pr(S10)
Pr(t1)

< Pr(S20)
Pr(t2)

,

we can get Pr(S10)
Pr(S10)+Pr(S11)

< Pr(S20)
Pr(S20)+Pr(S21)

. From this,

we have Pr(S20)×Pr(S11)−Pr(S10)×Pr(S21) > 0. From
Theorem 3.2, we know that U10 ≥ U20, U11 ≥ U21.

Since score(t1) ≥ score(t2) and the tuples are involved
in different generation rules, Pr(S10) > 0. Let us set c1 =

Pr(S20)
Pr(S10)×Pr(t2)

and c2 = − 1
Pr(t2)

. We get Pr(S20)
Pr(S10)×Pr(t2)

×
Υ(t1)− 1

Pr(t2)
×Υ(t2) =

Pr(S20)
Pr(S10)×Pr(t2)

(Pr(S10)× U10 + Pr(S11)× U11)−
1

Pr(t2)
(Pr(S20)× U20 + Pr(S21)× U21) =

Pr(S20)
Pr(t2)

× (U10 − U20) +
Pr(S21)
Pr(t2)

× (U11 − U21)+
Pr(S20)×Pr(S11)−Pr(S10)×Pr(S21)

Pr(S10)×Pr(t2)
× U11 ≥ 0.

So when Pr(S10)
Pr(t1)

< Pr(S20)
Pr(t2)

and the weight function is non-

negative (such that Uij is non-negative), we have Pr(S20)
Pr(S10)

×
Υ(t1) ≥ Υ(t2). 2

To prove Theorem 5.1, we need the following lemma.

Lemma B.3. Let T be an uncertain table and Q={t1,...,tq}
a set of tuples from T . Suppose the ranking function is
PRF e and the weight function is ω(i) = αi. Assume α
is a real number and 0 < α < 1. For any non-empty Sij and
Si(j+1) (0 ≤ j ≤ l − 2, l ≥ 2), we have Ui(j+1) = α× Uij.

Proof. Suppose the tuples in Q are involved in l (l ≤ q)
generation rules in R. Assume score(ti) ≥ score(ti+1) (1 ≤
i ≤ q − 1).

Similar to the proof of part (i) of Theorem 3.2, let η1 ∈ Sij

and η2 ∈ Si(j+1). By definition, there exist possible worlds
W1,W2, ...,We which contain all the tuples in η1 and possi-
ble worlds W ′

1,W
′
2, ...,W

′
e which contain all the tuples in η2,

such that W ′
v = (Wv−η1)∪η2 and Wv = (W ′

v−η2)∪η1 (1 ≤
v ≤ e). Because η1 ∈ Sij , there are j tuples in η1 having a
higher score than ti. Since η2 ∈ Si(j+1), there are j+1 tuples
in η2 having a higher score than ti. So we know that W ′

v

contains one more tuple than Wv with a higher score than
ti. We thus have βWv (ti) = βW ′

v
(ti) − 1 and ω(βWv (ti)) =

1
α
× ω(βW ′

v
(ti)). From Υη1(ti) =

∑e
v=1 ω(βWv (ti))Pr(Wv),

Υη2(ti)=
∑e

v=1ω(βW ′
v
(ti))Pr(W ′

v), and
Pr(Wv)
Pr(W ′

v)
=

∏
tu∈η1

Pr(tu)∏
tu∈η2

Pr(tu)
,

we get Υη1(ti) =
∑e

v=1
1
α
× ω(βW ′

v
(ti)) ×

∏
tu∈η1

Pr(tu)∏
tu∈η2

Pr(tu)
×

Pr(W ′
v) = 1

α
×

∏
tu∈η1

Pr(tu)∏
tu∈η2

Pr(tu)
× Υη2(ti). It follows that

Υη1 (ti)∏
tu∈η1

Pr(tu)
= 1

α
× Υη2 (ti)∏

tu∈η2
Pr(tu)

. As Pr(η1)=
∏

tu∈η1
Pr(tu)

and Pr(η2) =
∏

tu∈η2
Pr(tu), we have

Υη1 (ti)

Pr(η1)
= 1

α
× Υη2 (ti)

Pr(η2)
.

This is Ui(j+1) = α× Uij .

Recall that in the definition of Uij (see equation (4)), we
assume that the corresponding Sij are non-empty. Now, for
technical reasons we would like to deal with empty Sij as
well. We did this for PRFω. Due to the special property
of PRF e (as stated in Lemma B.3), we need to deal with
empty Sij differently from PRFω.

Recall also that for a fixed i, non-empty Sij appears con-
secutively. For a tuple ti ∈ Q, we assume Sij1 is the first
non-empty Sij for ti and Sij2 is the last non-empty Sij for

ti. Now, for empty Sij we define the corresponding Uij as:

Uij =

{
Uij1 × αj−j1 if j < j1
Uij2 × αj−j2 if j > j2

After the setup of Uij for empty Sij , it is easy to check
that for any Sij and Si(j+1) (0 ≤ j ≤ l − 2, l ≥ 2), we have
Ui(j+1) = α × Uij . So we can relax the assumption that
given Sij be non-empty in Lemma B.3.
It is easy to see that after the setup of Uij for empty Sij

for PRF e, the conclusions in Theorem 3.2 still hold.

Proof of Theorem 5.1:
As indices are an important part of our notation, let us use
t1 and t2 for t and t′ in the theorem, respectively. There are
two cases: the tuples t1 and t2 are in two different generation
rules or both are in the same generation rule. Let us assume
the former first. By the new representation in (5), we have

Υ(t1) = Pr(S10)× U10 + Pr(S11)× U11

Υ(t2) = Pr(S20)× U20 + Pr(S21)× U21

By Lemma B.3, we have U11 = α× U10 and U21 = α× U20.
From equation (6), we have

Pr(t1) = Pr(S10) + Pr(S11) (10)

Pr(t2) = Pr(S20) + Pr(S21) (11)

It follows that

Υ(t1)
Pr(t1)

= Pr(S10)
Pr(t1)

× U10 + (1− Pr(S10)
Pr(t1)

)× U10 × α
Υ(t2)
Pr(t2)

= Pr(S20)
Pr(t2)

× U20 + (1− Pr(S20)
Pr(t2)

)× U20 × α

Now, let us divide the two equations above, i.e.,

Υ(t1)
Pr(t1)

Υ(t2)
Pr(t2)

=
U10((1− α)Pr(S10)

Pr(t1)
+ α)

U20((1− α)Pr(S20)
Pr(t2)

+ α)

From equation (10), it is clear that 0 ≤ Pr(S10)
Pr(t1)

≤ 1. Sim-

ilarly, from (11) we have 0 ≤ Pr(S20)
Pr(t2)

≤ 1. Thus, we have

α ≤ (1−α)Pr(S10)
Pr(t1)

+α ≤ 1 and α ≤ (1−α)Pr(S20)
Pr(t2)

+α ≤ 1.

So we have
(1−α)

Pr(S10)
Pr(t1)

+α

(1−α)
Pr(S20)
Pr(t2)

+α
≥ α. Because U10 ≥ U20, we get

Υ(t1)
Pr(t1)

Υ(t2)
Pr(t2)

≥ α. It follows that Υ(t2) ≤ 1
α
× Pr(t2)

Pr(t1)
Υ(t1). As

0 ≤ Pr(t2) ≤ 1, we have Υ(t2) ≤ 1
α
× 1

Pr(t1)
Υ(t1) which is

the conclusion in the theorem.
Now we consider the second case, namely t1 and t2 are

involved in the same generation rule. In this case, by the
new representation of Υ(t), we have Υ(t1) = Pr(S10)× U10

and Υ(t2) = Pr(S20) × U20. From equation (6), we know
that Pr(t1) = Pr(S10) and Pr(t2) = Pr(S20). So we have
Υ(t1)
Pr(t1)

= U10 and Υ(t2)
Pr(t2)

= U20. Because U10 ≥ U20, we

divide the two equations above to get
Υ(t1)
Pr(t1)

Υ(t2)
Pr(t2)

= U10
U20

≥ 1 ≥ α.

So we have Υ(t2) ≤ 1
α
× Pr(t2)

Pr(t1)
Υ(t1). Since 0 ≤ Pr(t2) ≤ 1,

we have Υ(t2) ≤ 1
α
× 1

Pr(t1)
Υ(t1).

Therefore, we conclude that no matter whether t1 and t2
are in the same generation rule or in different generation
rules, we always have Υ(t2) ≤ 1

α
× 1

Pr(t1)
Υ(t1). This com-

pletes the proof. 2

C. COMPUTATION OF PR(SIJ)

We adopt the idea of generating function in [7] for the
computation of Pr(Sij). Suppose tuple ti is involved in
the generation rule rd. For each of the generation rules
r1, r2, ..., rd−1, rd+1, ..., rl, it divides the tuples involved in
it into two parts. Some tuples have higher scores than ti
and others have lower or equal scores than ti. We define
bih as the sum of the probabilities of the tuples involved in
rh(1 ≤ h ≤ l and h ̸= d) which have higher scores than ti.
Here we assume a virtual tuple has lower score than any real
tuple. From the definition of bih, we know that 1−bih is the
sum of the probabilities of the tuples involved in rh which
have equal or lower scores than ti. It is easy to see that we
need O(lτ) time to compute all the bih for ti. For each tuple
ti, we define a set θi = {bih} (1 ≤ h ≤ l and h ̸= d).

Let us consider η ∈ ∆i. We assume η = {ts1 , ts2 , ..., tsd−1 ,
ti, tsd+1 , ..., tsl} where tsh ∈ rh. We construct a generating
vector γ = ⟨γ1, γ2, ..., γd−1, γd+1, ..., γl⟩ for η. If score(tsh) >
score(ti), γh = 1; otherwise, γh = 0. Some tuple sets in ∆i

may have the same generating vector.
We assume γ is a generating vector for some tuple sets in

∆i. We define Φγ as the set of all the tuple sets in ∆i that
have the generating vector γ. Let Pr(Φγ) be the sum of the
probabilities of all the tuple sets in Φγ . It is easy to see that

Pr(Φγ) = Pr(ti)
∏

h:γh=1

bih
∏

h:γh=0

(1− bih)

We notice that all the tuple sets in Φγ belong to the same
Sij . Sij is the union of some Φγ . Let |γ| be the number of
1 in γ. The condition that Φγ belongs to Sij is |γ| = j. We
can compute Pr(Sij) as follows.

Pr(Sij) = Pr(ti)
∑
|γ|=j

∏
h:γh=1

bih
∏

h:γh=0

(1− bih)

.
Let us see a function: F (x) =

∏n
i=1(ai + bix). The coeffi-

cient of xj in F (x) is given by:
∑

|β|=j

∏
i:βi=0 ai

∏
i:βi=1 bi

where β = ⟨β1, ..., βn⟩ is a boolean vector.
Now consider the following generating function: F i(x) =

Pr(ti)×
∏

b∈θi
(1− b+ b× x) =

∑l−1
j=0 ajx

j .

We can see that the coefficient aj of xj in the expansion
of F i(x) is Pr(Sij). We can extend F i(x) to get cj in O(l2)
time. Therefore, for each tuple ti, the complexity of com-
puting Pr(Sij) is O(l2 + lτ). 2

D. COMPLEXITY FOR PRFω

Recall from Section 4.2 that the time cost to compute the
upper bound of a tuple is O(τ), where τ is the maximum
number of real tuples in a generation rule.

Assume there are n tuples in T , and ti is the i-th tuple,
ordered by tuples’ scores. In [7], the time cost of computing
the PRFω value of ti is O(i log2(i)). The total time cost to
find top-k tuples is O(n2log2n), where n is the number of
tuples in T . We can see that the cost of pruning for a tuple
is much smaller than that of computing its PRFω value.

In the worst case in which no tuple is pruned, the time
complexity of our (combined) algorithm is O(n2log2n+nτ)
(since the complexity of finding top-k tuples is O(n2log2n)
and the cost of pruning for each tuple is O(τ)). As the max-
imum value of τ is n, the time complexity of the combined
algorithm remains the same as the one without pruning,

 0

 200

 400

 600

 800

 1000

 150 200 250 300 350

C
o
m
p
u
t
e
d

t
u
p
l
e
s

Parameter k

(a)Computed tuples and k

PT-k

random3

 0.1

 1

 10

 100

 1000

 10000

 100000

 150 200 250 300 350

R
u
n
n
i
n
g

t
i
m
e

(
s
e
c
o
n
d
)

Parameter k

(b)Running time and k

PT-k with pruning
random3 with pruning
PT-k without pruning

random3 without pruning

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

V
a
l
u
e

Tuple index

(c)Real value vs. upper bound

real vlaue
upper bound

Figure 7: Experiments with real data

namely O(n2log2n). So pruning does not reduce or increase
the complexity of the given algorithm.

E. THEORETICAL COMPARISON
In [4], the concept of probability threshold top-k query (PT-

k query) is introduced. It defines the top-k probability of a
tuple t to be the sum of the probabilities of all the possible
worlds in which t is one of the top-k tuples. Given a proba-
bility threshold p, the answer set of a PT-k query is the set
of all tuples whose top-k probability values are at least p.
Here let us consider the answer set of a PT-k query to be
the set of k tuples with highest top-k probabilities.
In [4], some pruning techniques are proposed. PT-k query

answer can be thought of as a special case of PRFω by
writing the weight function of the PT-k query answer as
follows:

ω(i) =

{
1 if i ≤ k
0 if i > k

Therefore, our methods are applicable to PT-k query. In
[4] two theorems (Theorems 3 and 4) are given for pruning.
It can be shown that these theorems are special cases of our
Theorems 4.1 and 4.2 but not conversely.
In fact, our upper bound theorems are much stronger than

those in [4]. For the condition of conclusion (1) in Theo-
rem 3 in [4] (the same condition appears in Theorem 4 in
[4]), our theorems weaken the condition from Prk(t) < p to

Prk(t) < Pr(t)
Pr(t′) × p. Since Pr(t)

Pr(t′) > 1, our condition covers

more cases. Here Prk(t) is the top-k probability of tuple
t. One can think of Prk(t) as Υ(t) of this paper, and take
threshold p as the k-th highest top-k probability found so
far in the combined algorithm of this paper. For conclu-
sion (2) in Theorem 3 in [4], our theorems allow a tuple
in a multi-tuple generation rule to compare directly with
an independent tuple. This means that we can weaken the
condition from Pr(R) ≤ Pr(t) to Pr(t′′) < Pr(t), for any
t′′ ∈ R. We can also weaken the condition from Prk(t) < p

to Prk(t) < Pr(t)
Pr(t′′) × p. The new condition covers more

cases.
Generally speaking, the theorems in [4] must satisfy two

conditions for any two given tuples t and t′: (1) score(t) >
score(t′), and (2) Pr(t) ≥ Pr(t′). But our theorems only
require the first condition. As a result, our theorems cover
more cases. Even when both conditions are satisfied, as we
have already shown in the last paragraph, our theorems can
prune better than the theorems in [4].
In [4], a global constraint is introduced for pruning. But

the global constraint cannot be used for PRFω or PRF e,
due to the difference between the definition of PRFω and
that of PT-k query answer.

F. EXPERIMENTS WITH REAL DATA
We use the data from International Ice Patrol (IIP) Ice-

berg Sighting Databases (http://nsidc.org/data/g00807.html).
A real data set is generated from the iceberg sighting databases
where each tuple contains the number of days drifted (score)
and a confidence value (membership probability). The gen-
erated data set consists of 4232 tuples and 826 multi-tuple
generation rules.

In Figure 7 the left two graphs show the computed tuples
and running times for a RGWF random3 and PT-k query
answer. We vary k from 150 to 350. The improvement is
similar to the ones with the synthetic normal data sets.

We also conducted experiments to show the closeness of
the PRFω values of tuples and their computed upper bounds
using the method of this paper, for the real data set de-
scribed in this appendix. We set k = 50 and use the weight
function ω(i) = n − i. To plot the graph (the last one in
Figure 7), we pick one tuple from every 50 tuples (i.e., 51st,
101st,..., and so on; the upper bounds of the first k tuples
need not be computed).

From the figure, we can see that for early retrieved tu-
ples, the upper bounds are very close to their PRFω values.
This shows that our pruning method finds very good up-
per bounds at the beginning. For later retrieved tuples, the
distance between the upper bounds and the PRFω values
becomes larger. Question arises as why the distance is larger
while most later tuples are still pruned?

A short answer is that later tuples are easier to be pruned.
In more detail, there are three factors to be considered.
First, when more tuples are retrieved, the lowest PRFω

value in the current top-k tuples becomes larger. With the
bar raised it is easier to be lower. If an upper bound of a tu-
ple is lower than this value, the tuple is pruned. Second, the
graph in Figure 7 shows the trend of the PRFω values gen-
erally decreasing with the decrease of scores, for the data set
being tested. So the later tuples in this case generally have
lower PRFω values. (Note that this is not necessarily true
for all data sets, e.g., for the special data sets described in
Section 6.) This is why the distance becomes larger. Third,
for later tuples, because most of the tuples retrieved before
have been pruned and their PRFω values are not computed,
the maintained tlowest’s ratio between its PRFω value and
membership probability is distanced from the possible low-
est ratio among all retrieved tuples. So the computed upper
bounds are not as tight. Observe that this is to say that
when pruning is effective, the distance of the real values and
computed upper bounds tends to become larger, and when
pruning is ineffective, more PRFω values are computed and
better tlowest’s ratios are generated so to make later pruning
more likely. This is an interesting self-adapting process.

