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ABSTRACT
Driven by many applications, in this paper we study the problem
of computing the top-k shortest paths from one set of target nodes
to another set of target nodes in a graph, namely the top-k shortest
path join (KPJ) between two sets of target nodes. While KPJ is
an extension of the problem of computing the top-k shortest paths
(KSP) between two target nodes, the existing technique by convert-
ing KPJ to KSP has several deficiencies in conducting the compu-
tation. To resolve these, we propose to use the best-first paradigm
to recursively divide search subspaces into smaller subspaces, and
to compute the shortest path in each of the subspaces in a prioritized
order based on their lower bounds. Consequently, we only compute
shortest paths in subspaces whose lower bounds are larger than the
length of the current k-th shortest path. To improve the efficiency,
we further propose an iteratively bounding approach to tightening
lower bounds of subspaces. Moreover, we propose two index struc-
tures which can be used to reduce the exploration area of a graph
dramatically; these greatly speed up the computation. Extensive
performance studies based on real road networks demonstrate the
scalability of our approaches and that our approaches outperform
the existing approach by several orders of magnitude. Further-
more, our approaches can be immediately used to compute KSP.
Our experiment also demonstrates that our techniques outperform
the state-of-the-art algorithm for KSP by several orders of magni-
tude.

1. INTRODUCTION
Data are often modeled as graphs in many real applications such

as social networks, information networks, gene networks, protein-
protein interaction networks, and road networks. With the prolif-
eration of graph data, significant research efforts have been made
towards analyzing large graph data. These include the problem of
computing the top-k shortest paths between two target nodes in a
graph, namely the k shortest path (KSP) query.
KSP is a fundamental graph problem with many applications. In

general, KSP is used in the applications that besides lengths, other
constraints against the paths could not be precisely defined [12,
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25]. For example, computing KSP between two sensitive accounts
in a large social network enables end-users to identify all accounts
involved in the top-k shortest paths [14]. In gene networks, the
lengths of top-k shortest paths may be used to define the impor-
tance of a target gene to a source gene [26]. Other applications of
KSP include multiple object tracking in pattern recognition [3], hy-
pothesis generation in computational linguistics, and trip planning
against road networks. Thus, KSP has been extensively studied [8,
9, 14, 15, 18, 24, 28].

The problem of computing the top-k shortest paths between two
“conceptual” target nodes (instead of between two physical nodes)
in a graph, called the top-k shortest path join (KPJ), is recently
investigated in [15]. A conceptual node is a set of physical nodes
in the graph, which can be identified by categories, concepts, and
keywords in the above applications. While a KSP query is a special
case of a KPJ query where each of the two conceptual target nodes
only contains one physical node, KPJ can support more general
application scenarios than KSP since a target node is allowed to
be a set of physical nodes. For example, in a social network, the
KPJ query can be used to detect user accounts involved in the top-k
shortest paths between two criminal gangs to identify other “most
suspicious” user accounts; the KPJ query can also be used in route
planning where the destination is any one from a group of nodes
(e.g., “IKEA”). In this paper, we study KPJ.

Motivations and Challenges. KPJ query shares similarity with
but is different from the well-studied KSP query. To process a
KPJ query, [15] reduces it to a KSP query by introducing a virtual
target node for each conceptual target node and connecting every
physical node in the conceptual node to it. Then, [15] proposes to
use the state-of-the-art algorithm for KSP developed in [15]. Since
the technique for solving KSP in [15] is based on the deviation
paradigm [9, 28], applying KSP to solve KPJ, as proposed in
[15], has the following two deficiencies. 1) Firstly, the deviation
based techniques for KSP need to compute O(k · n) “candidate
paths”. The candidate paths are computed by iteratively extend-
ing all “prefixes" of the obtained l-th (l < k) shortest path, where
n is the number of nodes in a graph, and each candidate path is
computed by running an expensive shortest path algorithm; this is
time-consuming. 2) Secondly, edges that are added to connect to
a virtual target node for processing KPJ by using the KSP tech-
niques depend on queries. This makes the existing index structures
[7, 10] for computing shortest paths inapplicable. Thus, the candi-
date paths are computed by traversing the graph exhaustively; this
is very costly.

Our Approaches. For presentation simplicity, in this paper we
present our techniques against the simplified case, where one con-
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ceptual target node consists of one physical node only - called
source node s, and the other conceptual target node may consist of
multiple physical nodes - called destination nodes; then we extend
our techniques to the general case where source nodes may also
be multiple. Let P denote the set of all simple paths (i.e., paths
without loops) from s to any of the destination nodes as the entire
search space. Clearly, the result of KPJ is the set of k paths in P
with the shortest lengths.

We adopt the best-first paradigm to recursively divide P into
smaller subspaces, and then compute shortest paths for the gen-
erated subspaces in a prioritized order based on their lower bounds,
where lower bound of a subspace is the lower bound of the length
of all paths in the subspace. The top-k shortest paths may be itera-
tively obtained over the subspaces whose lower bounds are smaller
than the length of the current k-th shortest path, while other sub-
spaces can be safely pruned without the time-consuming shortest
path computation.

We further propose to iteratively “guess" and tighten the lower
bound ⌧ of a subspace. Initially, we assign the value of ⌧ as the
length of the (1st) shortest path. Then, we always choose the sub-
space with the smallest ⌧ to test whether the shortest path in it has
length larger than ↵ · ⌧ (for an ↵ > 1). If the shortest path in the
subspace can be determined larger than ↵·⌧ , then we enlarge ⌧ into
↵ · ⌧ for the subspace; otherwise the shortest path in the subspace
is computed. Moreover, we propose two online-built index struc-
tures, SPT

P

and SPT
I

, to significantly reduce the exploration area
of a graph in the lower bound testing as briefly described above.

Contributions. Our primary contributions are summarized as fol-
lows.

• We propose a framework based on the best-first paradigm
for processing KPJ queries which significantly reduces the
number of shortest path computations.

• We propose an iteratively bounding approach to guessing and
tightening the lower bounds, as well as two online-built index
structures to speed-up the lower bound testing.

• We conduct extensive performance studies and demonstrate
the scalability of our approaches which outperform the base-
line approach [15] by several orders of magnitude.

• Moreover, our approaches can be immediately used to pro-
cess KSP queries, and our experiments also demonstrate that
our techniques outperform the state-of-the-art algorithm for
KSP query by several orders of magnitude.

Organization. The rest of this paper is organized as follows. A
brief overview of related work is given below. We give the prelimi-
naries and problem statement in Section 2. The existing KSP-based
approach is given in Section 3, in which we also discuss its defi-
ciencies. We present the best-first paradigm in Section 4, in which
we also implement a best-first approach. Under this paradigm, in
Section 5 we propose an iteratively bounding approach and two
online-built indexes for efficiently processing KPJ queries. In Sec-
tion 6, we extend our techniques to cover other applications includ-
ing the case that the source node has multiple physical nodes. We
conducted extensive experimental studies and report our findings in
Section 7, and we conclude this paper in Section 8.

Related Work. Given two nodes s and t in a graph G, the problem
of computing the top-k shortest paths from s to t is a long-studied
problem, which can be classified into two categories, 1) top-k sim-
ple shortest paths, and 2) top-k general shortest paths.

1) Top-k Simple Shortest Path. The existing algorithms for comput-
ing top-k simple shortest paths are based on the deviation paradigm
proposed by Yen [9, 28], which has a time complexity of O(k ·
n · (m + n log n)), where m is the number of edges in G and
O(m+n log n) is the time complexity of computing single source
shortest paths. Techniques to improve its efficiency in practice have
been studied in [8, 14, 15, 18, 24], which shall be discussed in Sec-
tion 3. We discuss using these techniques to process KPJ queries
in Section 3.
2) Top-k General Shortest Path. Finding top-k general shortest paths
is studied in [2, 12, 19], where cycles in paths are allowed. Since
not enforcing paths to be simple, the top-k general shortest path
problem is generally easier than its counterpart. Eppstein’s algo-
rithm [12] has the best time complexity, O(m+n log n+k), which
is achieved by precomputing a shortest path tree rooted at the des-
tination node and building a sophisticated data structure. Recently,
the authors in [1] propose a heuristic search algorithm that has the
same time complexity as [12]. However, due to different problem
natures, these techniques are inapplicable to finding top-k simple
shortest paths.
Finding Top-k Objects by Keywords. Finding k objects closest to a
query location and containing user-given keywords has been stud-
ied in [13, 20, 22, 23, 29]. Ranking spatial objects by the com-
bination of distance and relevance score is also studied in [4, 5,
27]. Distance oracles for node-label queries in a labeled graph are
studied in [6, 17]; that is, given a query which contains a node
and a label, it returns approximately the closest node to the query
node that contains the query label. Nevertheless, the above queries
are inherently different from KPJ, and their techniques cannot be
applied to process KPJ queries.

2. PRELIMINARY
In this paper, we focus on a weighted and directed graph G =

(V,E,!), where V and E represent the set of nodes and the set of
edges of G, respectively, and ! is a function assigning a weight to
each edge in E. In G, nodes belong to categories, and each cate-
gory represents a conceptual node consisting of all nodes belonging
to that category. The number of nodes and the number of edges of
G are denoted by n = |V | and m = |E|, respectively.

A path P in G is a sequence of nodes (v1, . . . , vl) such that
(vi, vi+1) 2 E, 81  i < l, and we say that P consists of edges
(vi, vi+1), 81  i < l. Here, v1 and vl are called the source node
and destination node of P , respectively. P is a simple path if and
only if all nodes in P are distinct (i.e., vi 6= vj , 8i 6= j). A prefix of
P is a subpath of P starting from the source node of P . The length
of a path is defined as the total weight of its constituent edges;
that is !(P ) =

P
(vi,vi+1)2P !(vi, vi+1). The shortest distance

from v1 to v2 is the shortest length among all paths from v1 to v2,
denoted �(v1, v2).

Definition 2.1: Given a category T , a path P is said to be a path to

category T if its destination node is in VT , where VT is the set of
nodes belonging to category T . 2

Problem Statement: Given a graph G, we study the top-k shortest
path join (KPJ) query, which aims at finding the top-k shortest
simple paths P1, . . . , Pk from a source node s to a category T (i.e.,
to any node in VT ).

Formally, a KPJ query is given as Q = {s, T, k}, where s is
a source node in G, T represents a destination category, and k
specifies the number of paths to find. It is to find k simple paths
P1, . . . , Pk such that: 1) each Pi is a path from s to category T ;
2) !(Pi)  !(Pi+1), 81  i < k; 3) !(Pk)  !(P ) for any

134



other path P from s to category T .
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Figure 1: An example graph

Example 2.1: Fig. 1 illustrates a graph G, where V = {v1, . . . , v15}
and nodes v4, v6, v7 belong to category“H” (i.e., hotel). Here,
edges are bidirectional, and weights are shown besides them with a
default value 1. Consider a KPJ query Q = {v1, “H”, 1}, which
is to find the top-1 shortest path from v1 to category “H”. The top-1
path is P1 = (v1, v8, v7) with !(P1) = 2 + 3 = 5. 2

For a KPJ query, VT is the set of destination nodes. In the fol-
lowing, we assume that an inverted index [21] is offline built on the
categories of nodes such that VT can be efficiently retrieved online,
and assume that a path is a simple path.

3. THE EXISTING KSP-BASED APPROACH
Reducing KPJ Query to KSP Query. The most related problem
to KPJ is k shortest path (KSP) query defined below.

Definition 3.1:[28] Given a graph G, a KSP query Q0

= {s, t, k}
is to find k simple paths P1, . . . , Pk from s to t such that, 1) !(Pi) 
!(Pi+1), 81  i < k, and 2) !(Pk)  !(P ) for any other path P
from s to t. 2

KSP query is a special case of KPJ query where VT contains
only one node. In other words, KSP query considers a single desti-
nation node while KPJ query considers multiple destination nodes.
To process a KPJ query Q = {s, T, k}, [15] reduces it to a KSP
query by adding a virtual destination node t to G and adding a
directed edge from each node in VT to t with a weight 0. Then,
the result of Q on G is the same as the result of the KSP query
Q0

= {s, t, k} on GQ. Reconsider the KPJ query in Example 2.1,
the modified graph GQ is also shown in Fig. 1 with the virtual node
t and the additional edges (dashed lines).

Deviation Algorithm (DA) for KSP Queries. The existing algo-
rithms for KSP queries are based on the deviation paradigm [9, 28],
denoted DA. It maintains a set C of candidate paths which include
the next shortest path from s to t, and chooses k shortest paths from
C one by one in a non-decreasing length order by incrementally
updating C.
Pseudo-tree. The set of already chosen paths are encoded using a
compact trie-like structure [21], called pseudo-tree. It is named
because the same node may appear at several places in the tree;
thus, we refer to nodes in a pseudo-tree as vertices to distinguish
them from nodes in a graph. Let PTi denote the pseudo-tree con-
structed for paths P1, . . . , Pi, and PT0 consists of a single vertex
s. PTi+1 is constructed by inserting Pi+1 into PTi by sharing
the longest prefix; let d be the last vertex of the shared prefix, it is
called the deviation vertex of Pi+1 from PTi. For example, Fig. 2
shows PT1, PT2, and PT3, where PT3 is constructed by inserting
path (v1, v3, v7, t) into PT2, and v3 is the deviation vertex.
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Figure 2: pseudo-trees

Candidate Path. Given a pseudo-treePTi, the DA algorithm main-
tains a set Ci of candidate paths, one corresponding to each ver-
tex u in PTi, denoted c(u), which is the shortest one among all
paths from s to t that takes the path from s to u in PTi as pre-
fix and contains none of the outgoing edges of u in PTi. For
example, in Fig. 2(c), c(v3) is the shortest one among all paths
from s to t that take edge (v1, v3) as prefix and contain neither
(v3, v6) nor (v3, v7); thus c(v3) = (v1, v3, v5, v6, t), and C3 =

{c(v1), c(v8), c(v7), c(v3), c(v6), c(v07)}.

Lemma 3.1: [28]. Given a pseudo-tree PTi and the correspond-
ing Ci of candidate paths, the (i + 1)-th shortest path from s to t
is the path in Ci with shortest length. 2

Following from Lemma 3.1, the pseudocode of processing a KPJ
query using DA is shown in Alg. 1, which is self-explanatory. The
ingredient of Alg. 1 is to incrementally maintain PTi and Ci after
choosing each of the top-k paths.

Algorithm 1: DA(GQ, Q
0

= {s, t, k})
1 Initialize PT0 to contain a single vertex s;
2 Compute the shortest path c(s) from s to t, and C0 = {c(s)};
3 for each i 1 to k do
4 Pi  the path in Ci�1 with the shortest length;
5 Construct PTi by inserting Pi into PTi�1, and let d be the

deviation vertex;
6 Construct Ci by removing Pi from Ci�1, computing the

candidate paths corresponding to vertices in Pi from d to t, and
inserting them into Ci�1;

7 return the k paths P1, . . . , Pk;

Example 3.1: Fig. 2 demonstrates a running example for a KPJ
query Q = {v1, “H", 3} on the graph in Fig. 1. We first trans-
form the graph G into GQ, and reduce Q to a KSP query Q0

=

{v1, t, 3}. The shortest path is P1 = (v1, v8, v7, t) with length
5. After inserting P1 into PT0, the resulting PT1 is shown in
Fig. 2(a), where C1 = {c(v1), c(v8), c(v7)}. The 2nd shortest
path is computed as P2 = c(v1) = (v1, v3, v6, t) which has the
shortest length in C1, and PT2 is shown in Fig. 2(b). Then, can-
didate paths for v1, v3, v6 are updated or computed, and C2 =

{c(v8), c(v7), c(v1), c(v3), c(v6)}. The 3rd shortest path is P3 =

c(v3) = (v1, v3, v7, t) with length 7. 2

DA-SPT: Optimizations. The most time-consuming part of DA
(Alg. 1) is Line 6, which needs to compute O(k ·n) candidate paths
in total. To efficiently compute a candidate path, several optimiza-
tion techniques have been recently proposed [14, 24]. Pascoal [24]
observes that, when computing c(u) for u in a pseudo-tree PT , if
the path formed by concatenating, 1) the path from s to u in PT , 2)
an edge (u, v) in GQ, and 3) the shortest path from v to t in GQ, is
simple, then it is c(u). By preprocessing GQ to generate a shortest
path tree (SPT) storing shortest paths from all nodes to t, the path
described above, if exists, can be found in constant time; otherwise,
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a shortest path algorithm is run to compute c(u). Gao et al. [14, 15]
improve Pascoal’s approach by iteratively testing the above prop-
erty during running Dijkstra’s algorithm [11], and obtaining c(u)
once a simple path is found; this is known as the state-of-the-art
approach, denoted DA-SPT, since a full SPT is built online.

Deficiencies of DA and DA-SPT. Both DA and DA-SPT are in-
efficient for processing KPJ queries due to the following three rea-
sons. 1) Firstly, both need to compute O(k · n) candidate paths
which are computed by iteratively extending all prefixes of the ob-
tained l-th (l < k) shortest path; this is time-consuming. 2) Sec-
ondly, for processing a KPJ query using KSP techniques, the edges
added to connect nodes in VT to the virtual destination node depend
on queries; this makes the existing index structures [7, 10] for effi-
ciently computing shortest paths inapplicable. Thus, the candidate
paths are computed by traversing the graph exhaustively, which is
very costly. 3) Thirdly, although DA-SPT, compared to DA, can
compute candidate paths more efficiently, it is time-consuming to
construct the full SPT, which may be the dominating cost espe-
cially when the k shortest paths are short.

4. A BEST-FIRST APPROACH
In this section, to remedy the deficiencies of using the exist-

ing KSP techniques to process KPJ queries, we adopt a best-first
paradigm which significantly reduces the number of shortest path
computations thus enables fast query processing. In the following,
we first discuss the paradigm, and then give an implementation of
a best-first approach.

4.1 Best-First Paradigm
Given a KPJ query Q = {s, T, k}, let Ps,T (G) denote the set

of all paths in G from s to category T (i.e., to any node in VT ).
When the context is clear, Ps,T (G) is abbreviated to P . Then, the
query Q is to find the k paths in P with shortest lengths. Note that
the size of P can be exponential to n.

Search Space and Subspace. The general idea is that we regard P
as the entire search space S0. Then, the k paths in P with shortest
lengths can be found by recursively dividing a subspace (initially
S0) into smaller subspaces and computing the shortest path in each
newly obtained subspace.

...

...

S2,r+1

S1

S3

S2,2

S4S2,1S2,r

Sl+1

p2

p3

p1

Figure 3: Overview of search space division

Before diving into the details, we first explain the main idea
which is illustrated in Fig. 3. We conceptualize each path in P
as a point, whose distance to the center (i.e., the origin) indicates
the length of the path. Thus, the k paths with shortest lengths cor-
respond to the k points closest to the center which can be computed
as follows. First, we compute the closest point P1 = (v1, . . . , vl)
in the entire search space S0 = P . Second, we divide S0 into l+1

subspaces, S1,S2, . . . ,Sl,Sl+1. Here, S1 consists of only P1 and
is excluded from further considerations. Each of the remaining sub-
spaces, S2, . . . ,Sl+1, represents the set of paths of P that share ex-

actly the prefix of P1 from v1 to vi�1; consequently, Si 6= Sj , 8i 6=
j, and

Sl+1
i=1 Si = S0. Third, we compute the closest point in each

of the l subspace, S2, . . . ,Sl+1, and the one that is closest to the
center among the l closest points represents the 2nd shortest path.
Let it be P2 = (v01, . . . , v

0

r), and assume it is in S2. Fourth, we fur-
ther divide S2 into r + 1 subspaces, S2,1,S2,2, . . . ,S2,r,S2,r+1,
and compute the closest point in each of them, where S2,1 consists
of only P2 and is excluded from further considerations. Thus, the
point that is closest to the center among closest points in all sub-
spaces S3, · · · ,Sl+1,S2,2, . . . ,S2,r+1 represents the 3rd shortest
path. We can repeat this process until k shortest paths are com-
puted.
Subspace Division. We formally define a subspace below.

Definition 4.1: A subspace S is represented by a tuple hPs,u, Xui,
where Ps,u is a path from s to u and Xu is a subset of the outgoing
edges of u. It consists of all paths in P that take Ps,u as prefix and
exclude all edges of Xu. 2

The entire search space S0(= P) is represented by hPs,s =

(s), Xs = ;i. Assume the shortest path in subspace hPs,u, Xui
is P , then after choosing P as one of the k shortest paths, the
subspace is divided into l + 1 subspaces, where l is the number
of nodes in the subpath of P from u to the destination node. The
l+1 subspaces consist of a subspace containing only P , a subspace
corresponding to node u (i.e., subspace hPs,u, Xu [ {(u,w)}i),
and one subspace corresponding to each node v in the subpath
of P from u (exclusive) to the destination node (i.e., subspace
hPs,v, {(v, w0

)}i), where Ps,v is the prefix of P to v, and (u,w)

and (v, w0

) are edges in P . It is important to note that the l +
1 subspaces are disjoint, and their union is the original subspace
hPs,u, Xui from which they are divided.

Example 4.1: Consider a KPJ query Q = {v1, “H”, 2} on the
graph in Fig. 1. Initially, S0 = h(v1), ;i in which the shortest
path is P1 = (v1, v8, v7). Then, S0 is divided into four subspaces,
S1 = {P}, S2 = h(v1), {(v1, v8)}i, S3 = h(v1, v8), {(v8, v7)}i,
and S4 = h(v1, v8, v7), ;i, where S1 is the subspace containing
only P1. The 2nd shortest path is the one with shortest lengths
among shortest paths in S2,S3, S4. 2
Paradigm. It is easy to verify that there is a one-to-one correspon-
dence between candidate paths defined in Section 3 and subspaces
defined above. In the deviation paradigm, subspaces are implicitly
maintained by storing candidate paths based on the fact that each
candidate path is the shortest path in a subspace. Considering that
shortest paths are expensive to compute, we remedy the deficiency
of deviation paradigm by computing lower bounds of subspaces
and pruning subspaces based on their lower bounds.

Definition 4.2: For a subspace S = hPs,u, Xui, we define the
lower bound of a subspace, denoted lb(S) (or lb(Ps,u, Xu)), as
the lower bound of lengths of all paths in S, and denote the shortest

path in a subspace by sp(S) (or sp(Ps,u, Xu)). 2
Based on lower bounds of subspaces, the best-first paradigm is

shown in Alg. 2. Instead of directly computing the shortest path
for each newly obtained subspace, we compute its lower bound
first. All obtained subspaces and their lower bounds are main-
tained in a minimum priority queue Q. Each entry of Q is a triple
hS, lb(S), P i, where S and lb(S) are a subspace and its lower
bound, respectively, and P is either ; or the shortest path in S.
Subspaces in Q are ranked by their lower bounds. Initially, Q con-
tains a single entry representing the entire search space S0 (Line 1).
Then, we iteratively remove the subspace with smallest lower bound
from Q, denoted hS, lb(S), P i (Line 4): if P 6= ;, then P is the
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Algorithm 2: BestFirst(G,Q = {s, T, k})
1 Initialize a minimum priority queue Q to contain a single entry
hS0 = h(s), ;i, lb(S0), ;i;

2 i 1;
3 while i  k do
4 hS = hPs,u, Xui, lb(S), P i  remove the top entry from Q;
5 if P 6= ; then
6 Pi  P ; i i+ 1;
7 for each node v in the subpath of P from u to the

destination node do
8 Create a subspace S0

= hPs,v , Xvi;
9 lb(S0

) max{CompLB(Ps,v , Xv),!(P )};
10 Put hS0

, lb(S0

), ;i into Q;

11 else
12 sp(S) CompSP(Ps,u, Xu);
13 if sp(S) 6= ; then Put hS,!(sp(S)), sp(S)i into Q;

14 return the k paths P1, . . . , Pk;

next shortest path to be output (Line 6), and we divide S by P and
put those newly obtained subspaces into Q (Lines 7-10); otherwise,
we compute the shortest path in S and put S into Q again with the
computed shortest path (Lines 12-13). We will present an imple-
mentation of computing lower bound of a subspace and shortest
path in a subspace in the next subsection.

Lemma 4.1: The set of shortest paths computed in Alg. 2 is a sub-
set of that computed in Alg. 1; thus, the number of shortest path
computations in Alg. 2 is not larger than that in Alg. 1. Assume
that computing lower bound takes less time than computing short-
est path for a subspace, then the time complexity of Alg. 2 is not
larger than that of Alg. 1. 2
Proof Sketch: We prove the first part of Lemma 4.1 by proving
that there is a one-to-one correspondence between subspaces in-
serted into Q in Alg. 2 and candidate paths computed in Alg. 1.
This can be proved by induction. For k = 1, this is true, since there
is only one subspace and one candidate path in Alg. 2 and Alg. 2,
respectively. Now, we assume that this holds for general k � 1,
then we prove that it also holds for (k+ 1). Since the k-th shortest
path Pk corresponds to subspace S in Alg. 2, to obtain the (k+1)-
th shortest path, we generate O(n) new candidate paths from Pk

in Alg. 1 and O(n) new subspaces from S in Alg. 2; moreover,
there is a one-to-one correspondence between these newly gener-
ated subspaces and newly generated candidate paths. Thus, there
is a one-to-one correspondence between subspaces inserted into Q
in Alg. 2 and candidate paths computed in Alg. 1. Considering
that we compute shortest paths only for a subset of the subspaces
inserted into Q, the first part of the lemma holds.

Moreover, if we set all lower bounds computed at Line 9 of
Alg. 2 to be 0, then the number of shortest path computations in
Alg. 2 is the same as that in Alg. 1.

Second, in Alg. 2, any subspace is inserted into Q at most twice:
once with computed lower bound (i.e., P = ;), and once with
computed shortest path. Thus, given that computing lower bound
takes less time than computing shortest path for a subspace, the
time complexity of Alg. 2 is not larger than that of Alg. 1. 2

Following the proof of Lemma 4.1, we can also see that the max-
imum size of Q in Alg. 2 is O(k·n); moreover, given any algorithm
computing a lower bound of a subspace, Alg. 2 correctly processes
a KPJ query. Let Pk be the k-th shortest path for a KPJ query. Ob-
viously, Alg. 2 does not compute shortest paths in subspaces whose
lower bounds are larger than !(Pk). Note that, in contrast, Alg. 1
needs to compute shortest paths in all subspaces in Q. Conceptu-
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Figure 4: Instances of shortest path computations

ally, Fig. 4(a) shows by shadow the subspaces in which the shortest
paths are computed: Alg. 2 computes only 5 shortest paths instead
of l + r + 2 which is done by Alg. 1.

4.2 An Implementation of BestFirst

In the following, we present efficient techniques for computing
a lower bound of a subspace (CompLB at Line 9 of Alg. 2) and for
computing the shortest path in a subspace (CompSP at Line 12 of
Alg. 2), denote the approach as BestFirst.

Algorithm 3: CompLB(Ps,u, Xu)

1 lb +1;
2 for each outgoing edge (u, v) of u do
3 if v /2 Ps,u and (u, v) /2 Xu then
4 Compute lb(v, VT );
5 lb min{lb,!(Ps,u) + !(u, v) + lb(v, VT )};

6 return lb;

Computing Lower Bound of a Subspace. Given a subspace S =

hPs,u, Xui, the set of paths in it corresponds to the set of paths
from s to any node in VT in a subgraph G0 of G obtained as fol-
lows. We first remove all edges of Xu from G, and then for each
node v( 6= u) in Ps,u, we remove from G all outgoing edges of v
except the one that is in Ps,u. Thus, for any two nodes u and v, the
shortest distance from u to v in G0 is lower bounded by that in G.
Consequently, a naive lower bound of S is !(Ps,u) + lb(u, VT ),
where lb(u, VT ) is the lower bound of shortest distance from u
to any node in VT , whose computation shall be discussed shortly.
However, this is loose considering that many outgoing edges of u
(i.e., Xu) are removed from G. Therefore, to estimate the lower
bound of S (i.e., the shortest distance from s to any node in VT in
G0) more accurately, we consider all valid outgoing edges (u, v)
of u (i.e., v /2 Ps,u and (u, v) /2 Xu), and choose the min-
imum estimation. The pseudocode is shown in Alg. 3 which is
self-explanatory, and its correctness immediately follows from the
above discussions.

Example 4.2: Continuing Example 4.1. After dividing S0 into
S1, · · · ,S4, lower bounds of S2,S3,S4 are computed. Here, we
illustrate how to compute lb(S2) = lb((v1), {(v1, v8)}). v1 has
three valid outgoing edges, (v1, v2), (v1, v3), and (v1, v11), that
can be considered for lower bound estimation. Thus, lb(S2) is
computed as min{!(v1, v2)+ lb(v2, VT ),!(v1, v3)+ lb(v3, VT ),
!(v1, v11) + lb(v11, VT )}. 2
Computing lb(u, VT ). We propose a landmark-based approach [16]
to estimating lb(u, VT ) in the following. Note that, the computa-
tion of lb(u, VT ) has not been studied in the literature.

A landmark is a subset of nodes, L ✓ V . With L, the lower
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bound lb(u, v) of shortest distance from u to v is estimated as,
lb(u, v)

.
= maxw2L{�(w, v) � �(w, u)}, 1 where �(w, v) and

�(w, u) are the shortest distance from w to v and to u, respec-
tively, and are precomputed. This estimation is based on the fact
that �(w, u) + �(u, v) � �(w, v). Then, lb(u, VT ) can be esti-
mated as,

lb(u, VT )
.
= minv2VT {lb(u, v)}
= minv2VT maxw2L{�(w, v)� �(w, u)} (1)

However, the computation time is O(|L| · |VT |) which is too costly
especially when VT is large. Therefore, motivated by the trans-
formed graph GQ in Section 3, we propose a new lower bound as
follows,

lb(u, VT )
.
= maxw2L minv2VT {�(w, v)� �(w, u)}
= maxw2L{min{�(w, v) | v 2 VT }� �(w, u)}

(2)
The intuition is that, min{�(w, v) | v 2 VT } is the shortest dis-
tance from w to t in GQ (i.e., �(w, t)); thus, Eq. (2) estimates
lb(u, t). Consequently, lb(u, VT ) can be computed in O(|L|) time
by precomputing �(w, t) for all w 2 L prior to any lower bound
estimations. In what follows, we use Eq. (2) to compute lb(u, VT ).
Remarks & Time Complexity. Note that, the landmark index L is
constructed offline in O(|L|(m + n log n)) time where O(m +

n log n) is the time complexity of a shortest path algorithm, while
its space complexity is O(|L| · n). At the initialization phase of
query processing, we compute �(w, t) which is query dependent.
The time complexity for computing �(w, t) for all w 2 L is O(|L|·
|VT |); note that this is only computed once for each query.

Therefore, the time complexity of lower bound computation (i.e.,
Alg. 3) is O(d(u)|L|) where d(u) is the degree of u in G, since
we traverse at most d(u) edges at Line 2 while computing each
lb(v, VT ) takes O(|L|) time.

Computing Shortest Path in a Subspace. We use A* search [16]
to compute sp(Ps,u, Xu), denoted CompSP. In A* search, we
consider only the valid edges (same as Line 3 of Alg. 3), and use
Eq. (2) to estimate the shortest distance to destination. We omit the
pseudocode.

Example 4.3: Continuing Example 4.2, after dividing S0, Q con-
tains three subspaces, S2, S3, S4, together with their lower bounds.
Assume the lower bounds are lb(S2) = 6, lb(S3) = 11, and
lb(S4) = 12. S2 has the smallest lower bound, and is removed
from Q. Then, sp(S2) is computed, which is the 2nd shortest path
P2, since its length is smaller than lower bounds of subspaces in Q.
Here, we compute the 2nd shortest path without computing shortest
paths in subspaces S3 and S4. 2

5. AN ITERATIVELY BOUNDING APPROACH
In this section, following the best-first paradigm in Section 4, we

propose a new iteratively bounding approach to iteratively “guess-
ing” and tightening lower bounds for subspaces in Section 5.1.
Moreover, we propose two online-built indexes, in Section 5.2 and
Section 5.3, respectively, based on which we can reduce the explo-
ration area of a graph dramatically in tightening lower bounds.

5.1 Iteratively Bounding
In BestFirst, we prune subspaces whose lower bounds are larger

than !(Pk), where Pk is the k-th shortest path for a KPJ query.
1Note that this triangle inequality holds for the shortest distances
based on any distance metrics not only Euclidean distance. Thus,
our techniques work for general graphs.

Therefore, BestFirst will run fast if we can prune more subspaces
based on their lower bounds (i.e., by computing tighter/larger lower
bounds for subspaces), considering that computing shortest path is
time-consuming. However, in general, computing a tighter lower
bound takes longer time, and in the extreme case computing the
shortest path in a subspace provides the tightest lower bound. In
Alg. 3, we present a light-weight lower bound estimation by con-
sidering only the immediate neighbors of u. Intuitively, we can
compute a tighter lower bound by exploring multi-hop neighbors
of u (e.g., neighbors of neighbors).

We propose to guess and tighten lower bounds of subspaces in a
controlled manner by a threshold ⌧ , which is achieved by a proce-
dure TestLB. In a nutshell, given a subspace S and a threshold ⌧ ,
TestLB tests whether the shortest path in S has a length larger than
⌧ : if it is, then the lower bound is set as ⌧ ; otherwise, the short-
est path sp(S) is obtained and returned. Details of TestLB will
be discussed shortly. Ideally, we can set ⌧ as !(Pk), then all sub-
spaces whose lower bounds are larger than !(Pk) are pruned with
the least amount of effort; however, Pk is unknown. Considering
that TestLB takes longer time for a larger ⌧ , we iteratively enlarge
⌧ , and the k shortest paths of a KPJ query will be found once ⌧
becomes no smaller than !(Pk).

Algorithm 4: IterBound(G,Q = {s, T, k})
1 Compute the shortest path P

0 from s to any node in VT in G;
2 Initialize a minimum priority queue Q to contain a single entry
hS0 = h(s), ;i,!(P 0

), P

0i;
3 i 1; ⌧  !(P

0

);
4 while i  k do
5 hS = hPs,u, Xui, lb(S), P i  remove the top entry from Q;
6 if P 6= ; then
7 Same as Lines 6-10 of Alg. 3; /

*

Pi  P, i i+ 1,

and divide S into subspaces

*

/;
8 else
9 ⌧  ↵ ·max{lb(S),Q.top().key}; /

*

Enlarge ⌧

*

/;
10 P  TestLB(Ps,u, Xu, ⌧);
11 if P 6= ; then Put hS,!(P ), P i into Q;
12 else Put hS, ⌧, ;i into Q;

13 return the k paths P1, . . . , Pk;

The algorithm IterBound is given in Alg. 4, which is similar
to Alg. 2. We first compute the shortest path P 0 in G (Line 1),
put subspace S0 = h(s), ;i with path P 0 into Q (Line 2), and
initialize ⌧ as !(P 0

) (Line 3). Then, we iteratively remove the
subspace S with smallest lower bound, together with path P , from
Q (Line 5). If P is not empty, then it is the next shortest path Pi,
and we perform the same subspace division as Lines 6-10 of Alg. 2.
Otherwise, we enlarge ⌧ (Line 9), test whether the shortest path of
S has a distance larger than ⌧ (Line 10), and put S back into Q
together with either the computed shortest path P or a larger lower
bound ⌧ depending on what TestLB returns (Lines 11-12).

Note that ⌧ controls the computation of a tighter lower bound
which we want to make larger but a larger ⌧ will make TestLB
slow. In our approach, we use a parameter ↵ to control the speed
of increasing ⌧ iteratively. Here, ↵ can be any real number larger
than 1, and we use ↵ = 1.1 as default. At Line 9, we enlarge ⌧ as
↵ ·max{lb(S),Q.top().key}, where Q.top().key is the key value
(i.e., lower bound) in the top entry of Q and is defined to be +1 if
Q = ;. The intuition is that, !(Pk) should be not much larger than
!(P1), the initial ⌧ (Line 3). Note that lb(S) is the previous ⌧ we
have tested for S; thus, the lower bound ⌧ we tested for a subspace
increases by a factor of at least ↵. Therefore, we iteratively enlarge
⌧ from !(P1) to approach !(Pk), and obtain the k shortest paths
for a KPJ query once ⌧ becomes no smaller than !(Pk).
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Theorem 5.1: Given TestLB, IterBound correctly computes k
shortest paths for a KPJ query. 2
Proof Sketch: IterBound follows the best-first paradigm of Alg. 2,
except that we iteratively compute lower bounds of subspaces. More-
over, it is easy to prove that the lower bound ⌧ computed for the
same subspace S at Line 9 is strictly increasing (assuming that
↵ > 1). Therefore, let Pi be the correct i-th shortest path, we
can prove that ⌧ will be no less than !(Pi) when the algorithm ter-
minates, and once ⌧ becomes no less than !(Pi), the path Pi will
be computed and inserted into Q, thus will be output. 2

IterBound acts the same as BestFirst if we set ⌧ as +1. Nev-
ertheless, by iteratively enlarging ⌧ with an initial value !(P1),
IterBound runs much faster than BestFirst by pruning more sub-
spaces. Conceptually, Fig. 4(b) shows the subspaces in which the
shortest paths are computed by IterBound. Compared to Fig. 4(a),
S4 and S2,r+1 are pruned based on their tighter lower bounds that
are computed by TestLB. The shadow areas of S4 and S2,r+1 in
Fig. 4(b) indicate the exploration areas of TestLB in testing lower
bounds.

Testing Lower Bound. TestLB tests whether the shortest path
in a subspace has length larger than a given threshold ⌧ . This
is achieved by considering multi-hop neighbors of u, denoted V0.
Given ⌧ , V0 are those nodes v with �

S

(s, v)+lb(v, VT )  ⌧ , where
�
S

(s, v) is the shortest distance from s to v constrained in S (i.e.,
G0 defined in Section 4.2). After obtaining V0, if V0 \VT = ; then
!(sp(S)) > ⌧ , otherwise, sp(S) is obtained by backtracking from
V0 \ VT .

Algorithm 5: TestLB(Ps,u, Xu, ⌧)

1 Initialize a minimum-priority queue QV to contain hu, 0i;
2 ds(u) !(Ps,u), and ds(v) +1 for all other nodes;
3 while QV 6= ; do
4 v  remove the top node from QV ;
5 if v 2 VT then return the path formed by concatenating Ps,u

with the computed shortest path from u to v;
6 else for each outgoing edge (v, w) of v do
7 if w /2 Ps,u, (v, w) /2 Xu and ds(v) + !(v, w) < ds(w)

then
8 ds(w) ds(v) + !(v, w);
9 Compute lb(w, VT );

10 if ds(w) + lb(w, VT )  ⌧ then
11 Put hw, ds(w) + lb(w, VT )i into QV ;

12 return ;;

The pseudocode of TestLB is shown in Alg. 5, which is similar
to A* search [16], where ds(v) stores the length of a path from s to
v constrained in S. We maintain the explored nodes together with
their estimated distances (i.e., node v with ds(v) + lb(v, VT )) in
a minimum-priority queue QV , which is initialized to contain u;
nodes in QV are ranked by their estimated distances. Then, nodes
are iteratively removed from QV (Line 4), and their neighbors are
inserted into QV (Lines 6-11), until QV = ; or we get a node from
VT ; the latter case implies that sp(S) has been computed (Line 5).
Here, V0 is the set of nodes removed from QV . Note that, following
from [16], when a node v is removed from QV , ds(v) stores the
shortest distance from s to v constrained in S (i.e., �

S

(s, v)), and
each node is removed from QV at most once.

The efficiency of TestLB is due to that, we only put into QV

those nodes whose estimated distance are not larger than ⌧ , as en-
sured by Line 10, which prunes a lot of nodes especially for a small
⌧ .

Lemma 5.1: Given a subspace S and ⌧ , TestLB returns sp(S) if

!(sp(S))  ⌧ , and returns ; otherwise. 2
Proof Sketch: First of all, we remark that if we remove Lines 9-10
from Alg. 5, then it is the same as the A* search algorithm [16]
that computes the shortest path in S. Thus, if !(sp(S))  ⌧ , then
TestLB returns sp(S), since every node that is pruned at Line 10
will not be in sp(S) due to the nature of lower bound.

Secondly, we prove that if !(sp(S)) > ⌧ , then TestLB returns
;. The reason is that, for every node v obtained at Line 4 of Alg. 5,
we have ds(v)  ⌧ due to the pruning at Line 10. Thus, Alg. 5
cannot find the path sp(S), and returns ;. 2
Time Complexity. The time complexity of Alg. 5 is O(m0

+n0

log n0

),
where n0 and m0 are the number of visited nodes and edges in
Alg. 5 (specifically, at Line 6), respectively. In the worst case,
n0

= n and m0

= m; thus the time complexity is O(m+n log n).
However, in practice, n0 and m0 are usually small and much smaller
than n and m, respectively.

Example 5.1: First, let’s consider TestLB((v1, v3), {(v3, v6)}, 6).
v3 has three valid out-neighbors, v4, v5, v7. v4 and v7 are pruned
because dv1(v3) + !(v3, v4) > 6 and dv1(v3) + !(v3, v7) > 6.
Assume lb(v5, VT ) = 2, then v5 is also pruned since dv1(v3) +
!(v3, v5)+ lb(v5, VT ) = 7. Thus, TestLB((v1, v3), {(v3, v6)}, 6)
returns ;. Now, let’s consider ⌧ = 7. Among the three valid out-
neighbors, v4 is pruned because dv1(v3) + !(v3, v4) = 8; v5 and
v7 are put into QV with lower bounds 7. Then, v5 is removed from
QV , and its out-neighbor, v6, is put into QV with lower bound 7.
After that, either v6 or v7 is removed from QV , and the shortest
path in h(v1, v3), {(v3, v6)}i is obtained. 2

5.2 Partial Shortest Path Tree
Motivated by DA-SPT, in this subsection we propose to com-

pute and store a partial SPT, denoted SPT
P

, which provides a
more accurate estimation of lb(v, VT ). Recall that lb(v, VT ) is
used in TestLB to prune nodes, thus a more accurate estimation
of TestLB will result in faster computation time. In contrast to
DA-SPT which online constructs a full SPT by incurring high
overheads, we obtain SPT

P

as a by-product of computing the short-
est path in G (i.e., Line 1 of Alg. 4) without any extra cost.

Algorithm 6: PartialSPT(G, s, T )

1 Initialize an empty minimum-priority queue QT ;
2 SPT

P

 a virtual root node t; /

*

Build SPT

P *

/;
3 for each w 2 VT do
4 Put hw, lb(s, w)i into QT , dt(w) 0, p(w) t;
5 while QT 6= ; do
6 v  remove the top node from QT ;
7 Add v as a child of p(v) to SPT

P

; /

*

Build SPT

P *

/;
8 if v = s then return the path from s to t;
9 for each incoming edge (w, v) of v do

10 if dt(v) + !(w, v) < dt(w) then
11 dt(w) dt(v) + !(w, v), p(w) v;
12 Put hw, dt(w) + lb(s, w)i into QT ;

The algorithm to construct SPT
P

is given in Alg. 6, denoted
PartialSPT, which is the A* search algorithm for computing the
shortest path from s to any node in VT in G by adding Lines 2,7.
The algorithm runs in the reverse graph of G, since we want to
compute shortest paths from different nodes to any node in VT .
QT is similar to QV in Alg. 5 and initially contains all nodes of VT

(Lines 3-4). Then, nodes are iteratively removed from QT (Line 6)
and their incoming edges are explored (Lines 9-12). The shortest
path from s to any node in VT is obtained when s is removed from
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QT (Line 8). For all nodes v removed from QT , we add v as a
child of p(v) to SPT

P

. Intuitively, SPT
P

contains all nodes re-
moved from QT prior to s when computing the shortest path from
s to any node in VT .

Proposition 5.1: For nodes v 2 SPT
P

, the path from v to t in
SPT

P

is the shortest path from v to any node in VT in G. 2
Computing lb(v, VT ) using SPT

P

. Both CompLB and TestLB,
which are invoked by IterBound, require computing lb(v, VT ) for
any v 2 V . Eq. (2) computes lb(v, VT ) using a landmark-based
approach. By utilizing SPT

P

, we can compute a more accurate
lb(v, VT ) as follows. If v is in SPT

P

, then lb(v, VT ) is computed as
the length of the path from v to t in SPT

P

, the correctness of which
directly follows from Proposition 5.1; otherwise, it is computed by
Eq. (2). Here, we give SPT

P

a higher priority, because if v 2SPT
P

, then the lower bound computed using SPT
P

is guaranteed to be
not smaller than that by Eq. (2); for lower bound, the larger the
better.
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Figure 5: Partial and incremental SPT

Example 5.2: Fig. 5(a) shows the SPT
P

constructed for Q =

{v1,“H”, 3}. For each node v in SPT
P

, its distance to t in SPT
P

is the shortest distance from v to any node in VT and can be used
as an estimation of lb(v, VT ). For example, lb(v3, VT ) is estimated
as 3. 2
IterBound-SPT

P

Approach. We denote the approach that uses
SPT

P

to estimate lb(v, VT ) in Alg. 4 as IterBound-SPT
P

. The cor-
rectness of IterBound-SPT

P

directly follows from that of IterBound
and the above discussions.

5.3 Incremental Shortest Path Tree
SPT

P

includes all nodes of VT which can be large for a KPJ
query, thus may take long time to construct. In this subsection, we
propose an incremental SPT, denoted SPT

I

, by pruning nodes in
VT that are far-away from the source node s. Moreover, we incre-
mentally enlarge SPT

I

, based on which we identify a new property
for reducing the exploration area of a graph by TestLB.

Constructing SPT
I

. To prune from SPT
I

those nodes in VT that
are far-away from s, in SPT

I

we compute and store shortest paths
from s to each node of a subset of V . Recall that, in SPT

P

, we store
shortest paths from each node of a subset of V to VT . Thus, the
construction of SPT

I

is run on G by starting from s, and consists of
two phases. In the first phase, we construct an initial SPT

I

, which
is a by-product of computing the shortest path from s to any node
in VT in a similar fashion to PartialSPT (i.e., Alg. 6) while running
on G and starting from s; this is invoked at Line 1 of Alg. 4. In the
second phase, we incrementally enlarge SPT

I

by IncrementalSPT,
which is invoked after Line 9 and before Line 10 of Alg. 4.

The pseudocode of IncrementalSPT is shown in Alg. 7, which is
self-explanatory. The general idea is to include into SPT

I

all nodes
of V that are on paths from s to any node in VT whose lengths are
not larger than ⌧ . Therefore, IncrementalSPT iteratively removes

Algorithm 7: IncrementalSPT(G, T, ⌧)

1 while QT .top().key  ⌧ do
2 v  remove the top node from QT ;
3 Add v as a child of p(v) to SPT

I

;
4 if v 2 VT then Add v to D;
5 for each outgoing edge (v, w) of v do
6 if ds(v) + !(v, w) < ds(w) then
7 ds(w) ds(v) + !(v, w), p(w) v;
8 Put hw, ds(w) + lb(w, VT )i into QT ;

the top node v from QT (Line 2), and adds v into SPT
I

(Line 3).
Meanwhile, the subset of VT that are in SPT

I

is maintained into a
set D (Line 4), which will be used later to improve the performance
of testing lower bound for a subspace. In Fig. 5(b), the subtree in
the rectangle shows the initial SPT

I

constructed, and the entire tree
is the resulting SPT

I

for ⌧ = 7. Here, D = {v6, v7}. SPT
I

has
the following property.

Proposition 5.2: The SPT
I

constructed by Alg. 7 contains all nodes
on paths from s to any node in VT whose lengths are no larger than
⌧ . 2

Algorithm 8: CompLB-SPT
I

(Pt,u, Xu)

1 if u 6= t then N(u) {in-neighbors of u} else N(u) D;
2 lb +1;
3 for each v 2 N(u) do
4 if v /2 Pt,u and (v, u) /2 Xu then
5 if v /2SPT

I

then Compute lb(s, v) using Eq. (2);
6 else lb(s, v) the distance from s to v in SPT

I

;
7 lb min{lb,!(Pt,u) + !(v, u) + lb(s, v)};

8 if u = t and lb = +1 and D 6= VT then lb 0;
9 return lb;

Computing Initial Lower Bound for a Subspace using SPT
I

.
We compute the lower bound of a subspace using SPT

I

in a similar
way to CompLB (Alg. 3), by considering the immediate neighbors
of u. The algorithm is shown in Alg. 8, denoted CompLB-SPT

I

.
Note that, here Pt,u is a path from u to t in G and Xu is a subset of
the incoming edges to u. CompLB-SPT

I

differs from CompLB in
the following two aspects. Firstly, lb(s, v) is estimated by utilizing
SPT

I

in the same way as that in Section 5.2. Secondly, when u = t,
instead of considering all nodes of VT , we consider only the subset
that is in SPT

I

(i.e. D). The reason is that, the entire VT can be
very large, while the small subset D is sufficient for our purpose of
computing lb(Pt,u, Xu), which saves a lot of computations.

The correctness of CompLB-SPT
I

when u 6= t directly follows
from that of CompLB. However, when u = t, there are two cases
depending on whether there are any valid incoming edges to u.
1) If there is no valid incoming edge to u (i.e., every node of N(u)
is either in Pt,u or in Xu, Lines 3-4), then lb will be +1. We
reassign lb to 0 if D 6= VT . 2) Otherwise, lb 6= +1, which is
guaranteed to be a lower bound of the subspace hPt,u, Xui.

Testing Lower Bound using SPT
I

. By utilizing SPT
I

, we pro-
pose a more efficient algorithm for testing lower bound, denoted
TestLB-SPT

I

. We modify TestLB to develop TestLB-SPT
I

in the
same fashion as the development of CompLB-SPT

I

. Moreover,
we prune all nodes that are not in SPT

I

from consideration (i.e.,
from putting into QV ). Consequently, every lb(s, w) is computed
as the distance from s to w in SPT

I

; that is, Eq. (2) is not evaluated.
Therefore, TestLB-SPT

I

is more efficient than TestLB. We prove
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the correctness of TestLB-SPT
I

in the following lemma.

Lemma 5.2: Given a subspace S and ⌧ , TestLB-SPT
I

returns ; if
!(sp(S)) � ⌧ , and returns sp(S) otherwise. 2
Proof Sketch: The lemma follows from Lemma 5.1 and Proposi-
tion 5.2. 2
Example 5.3: We show running TestLB-SPT

I

for subspace h(v7),
{(v7, v8)}i with ⌧ = 6, where SPT

I

is shown in Fig. 5(b). Among
v7’s in-neighbors, only v3 is considered, since v13 and v14 are not
in SPT

I

. For v3, lb(v1, v3) = 3 which is the distance in SPT
I

.
Then, v3 is also pruned since !(v3, v7) + lb(v1, v3) = 7, and
TestLB-SPT

I

returns ;. For ⌧ = 7, SPT
I

remains the same. Then,
v3 is not pruned and the shortest path in h(v7), {(v7, v8)}i is ob-
tained, which is (v1, v3, v7) with length 7. 2
IterBound-SPT

I

Approach. Based on SPT
I

and the discussions
above, we propose an approach following Alg. 4 for processing
KPJ queries, denoted IterBound-SPT

I

. It runs on the reverse graph
of G, and a subspace is represented by hPt,u, Xui where Xu is a
subset of the incoming edges to u.
IterBound-SPT

I

improves the efficiency by computing SPT
I

and pruning all nodes not in SPT
I

from consideration when con-
ducting the iteratively bounding search. That is, we take as input
only the small subgraph of G induced by nodes in SPT

I

. Note that,
SPT

I

enlarges for a larger ⌧ , and the subgraph induced by nodes in
SPT

I

also enlarges; this guarantees that we can correctly process
any KPJ query.
Time Complexity. The time complexity of the IterBound-SPT

I

ap-
proach is O(kn(m0

+ n0

log n0

)), where n0 and m0 are the num-
ber of nodes and edges, respectively, in the subgraph G0 of G
that is induced by nodes w with ds(w) + lb(w, VT ) <= ⌧ (see
Line 10 of Alg. 5) for the largest ⌧ obtained in IterBound-SPT

I

.
Note that, n0 and m0 are usually small in real applications; thus,
IterBound-SPT

I

runs much faster than DA (see Alg. 1).

6. EXTENSIONS
In the following, we extend our techniques to other applications

including the case that the source node also has multiple physical
nodes and the case that landmarks are not available.

General KPJ. A general KPJ (GKPJ) query is an extension of
KPJ query where the source node also has multiple physical nodes,
denote as Q = {S, T, k}, where both S and T are categories. It
is to compute the top-k shortest paths from any node in VS to any
node in VT , where VS is the set of nodes of V belonging to category
S. We can convert a GKPJ query to a KPJ query by introducing
a virtual source node s and connecting s to all nodes in VS with
weights 0. Then, Q is reduced to a KPJ query Q0

= {s, T, k}
on the new graph, and all our proposed techniques can be used to
process the query.

Computing without Landmark. Our techniques are presented
based on landmarks which are used to estimate lb(u, VT ). Nev-
ertheless, when landmarks are not available, all our techniques can
still be directly applied by setting all lb(u, VT ) (i.e., computed by
Eq. (2)) to be 0. Specifically, for IterBound-SPT

I

, the landmark
is only used for constructing the SPT

I

using A* search [16], as
discussed in Section 5.3; thus, without landmark, we construct the
SPT

I

by setting lb(u, VT ) to be 0 (the A* search then becomes the
Dijkstra’s algorithm [11]), while other parts of IterBound-SPT

I

re-
main the same.

Moreover, without landmark, our techniques still perform well;
the reasons are as follows. The IterBound-SPT

I

approach mainly

consists of two parts: 1) incrementally constructing the partial short-
est path tree SPT

I

, 2) computing lower bound or shortest path for
a subspace. The dominating cost comes from the second part,
while landmark is only used in the first part. Thus, by running
IterBound-SPT

I

without landmark will only increase the cost of
the first part which is not a big factor in the total cost.

7. PERFORMANCE STUDIES
We conduct extensive performance studies to evaluate the effi-

ciency of our approaches against the baseline approaches for pro-
cessing KPJ queries. The following algorithms are implemented:

• DA [28] and DA-SPT [15]. They are in the deviation paradigm
as discussed in Section 3, and are the baseline approaches for
processing KPJ queries.

• BestFirst. It is the best-first approach as discussed in Sec-
tion 4.

• IterBound, IterBound
P

, and IterBound
I

. They are the it-
eratively bounding approaches with or without SPT as dis-
cussed in Section 5. IterBound

P

and IterBound
I

are abbre-
viations of IterBound-SPT

P

and IterBound-SPT
I

, respec-
tively.

• IterBound
I

-NL. It is the IterBound
I

approach however with-
out landmark, as discussed in Section 6.

Note that, 1) in our testings, a KSP query is also considered as a
KPJ query where the query category uniquely identifies the desti-
nation node; 2) the baseline approaches for processing KPJ queries
are the state-of-the-art techniques for processing KSP queries.

All algorithms are implemented in C++ and compiled with GNU
GCC by -O3 option. All tests are conducted on a PC with an In-
tel(R) Xeon(R) 2.66GHz CPU and 4GB memory running Linux.
We evaluate the performance of the algorithms on real datasets as
follows.

Dataset #Nodes #Edges
CAL 106, 337 213, 964

SJ 18, 263 47, 594
SF 174, 956 443, 604

COL 435, 666 1, 042, 400
FLA 1, 070, 376 2, 687, 902
USA 6, 262, 104 15, 119, 284

Table 1: Summary of dataset
Datasets. We use six real road networks with real/synthetic points
of interest (POIs), and each POI belongs to a category. They are:
California road network (CAL), San Joaquin road network (SJ),
San Francisco road network (SF), Colorado road network (COL),
Florida road network (FLA), and Western USA road network (USA).
The first three are downloaded from www.cs.utah.edu/~lifeifei/

SpatialDataset.htm, and the last three are from DIMACS (www.
dis.uniroma1.it/~challenge9/download.shtml). A sum-
mary is given in Table 1.

POIs. The CAL dataset is provided with real POIs, which have 62

different categories. For the other five road networks, we gener-
ate synthetic POIs randomly located on nodes. For each road net-
work, we generate four sets of POIs, denoted T1, T2, T3, T4, cor-
responding to different number of physical destination nodes (i.e.,
n⇥10

�4, 5n⇥10

�4, 10n⇥10

�4, 15n⇥10

�4 POIs, respectively),
where n is the number of nodes in a road network. For example, for
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COL, |T1| = 43, |T2| = 217, |T3| = 435, and |T4| = 653. Note
that, we generate the POIs in such a way that T1 ⇢ T2 ⇢ T3 ⇢ T4.

Graphs. We model each road network with POIs as a graph G.
Here, an edge (u, v) in G represents a road segment, and has a
non-negative weight !(u, v) which can be any measure of the road
segment, such as distance, travel time, travel cost, and etc. We take
distance as weight in our experiments. Each node belongs to the
categories of POIs that are located on it.2

Queries. A query consists of a source node s, a destination node
set VT indicated by category T , and a value k indicating the num-
ber of paths to found. For each query, we first choose a category T ,
and then randomly generate source nodes. For the CAL dataset, we
consider four representative categories, “Glacier”, “Lake”, “Crater”,
and “Harbor”, which have 1, 8, 14, and 94 physical nodes, respec-
tively. For the other datasets, we consider T1, T2, T3, and T4, and
choose T2 by default.

For a destination category T , the source nodes in a query are
randomly generated as follows. We sort all nodes in increasing
order regarding their shortest path lengths to category T , partition
them into 5 groups, and generate 5 query sets, Q1, Q2, Q3, Q4, Q5,
each of which consists of 100 nodes randomly selected from the
corresponding group. Thus, nodes in Qi are closer to destination
nodes than nodes in Qj do, for i < j. We use Q3 as the default
query set.

k is chosen from 10, 20, 30, and 50, with 20 as the default.

7.1 Experimental Results
Eval-I: Parameters. We evaluate the influence of landmark size
|L| and parameter ↵ on the performance of IterBound

I
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Figure 6: Parameter testing on CAL (Q3, k = 20)

Choosing |L|. In our approaches, we use landmarks for estimat-
ing lb(v, VT ), the lower bound of shortest distance from v to any
node in VT . The landmarks are chosen following the most popular
way in [16].3 Fig. 6(a) shows the processing time of IterBound

I

for different |L| values. Clearly, when |L| increases from 4 to 16,
the processing time decreases, because more landmarks can pro-
vide more accurate estimation of lb(v, VT ). However, when |L|
increases from 16 to 32, the processing time increases a little due
to longer computation time of lb(v, VT ). Therefore, we choose
|L| = 16.
Choosing ↵. The running time of IterBound

I

for different ↵ values
are illustrated in Fig. 6(b). Recall that ↵ is used in our iterative
bounding approaches for controlling the increasing ratio of ⌧ (i.e.,
2For simplicity, we assume that POIs are located on the nodes of
G. When a POI is on an edge (u, v), we can add a new node w to
G and connect w with u and v to replace (u, v). Note that, given
a query with category T , we only need to consider the set of POIs
belonging to category T .
3We firstly pick a random start node and select the farthest node
from the start node as the first landmark, and then iteratively choose
the node that is farthest away from the current set of landmarks as
the next landmark.

controlling the computation of a tighter lower bound, see Alg. 4).
The running time increases when ↵ increases from 1.1 to 1.8 due
to building a larger SPT

I

. However, when ↵ decreases from 1.1 to
1.05, the processing time also increases due to taking more itera-
tions to reach the final ⌧ . Therefore, we choose ↵ = 1.1.

Note that: 1) among our parameters, ⌧ is determined by ↵; 2)
better choices of |L| and ↵ will improve the performance of our
algorithm marginally as shown in Fig. 6. It will be our future work
to automatically find the best choice of |L| and ↵.
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Figure 7: Against baseline approaches on CAL (Varying Q, k)

Eval-II: Against the Baseline Approaches. Here, we evaluate the
performances of our approaches against the baseline approaches on
CAL dataset.
KPJ Query. The processing time of the seven approaches by vary-
ing query sets and k is demonstrated in Fig. 7, where the desti-
nation category is chosen from “Lake”, “Crater”, and “Harbor”.
In general, all our approaches, BestFirst, IterBound, IterBound

P

,
IterBound

I

, and IterBound
I

-NL, outperform the two baseline ap-
proaches, DA and DA-SPT. This is because our approaches use
a best-first paradigm to reduce the number of shortest path com-
putations. In Figures 7(a)-7(d), DA-SPT outperforms DA because
DA-SPT online builds a full SPT to facilitate the shortest path
computation. However, in Fig. 7(e)-7(f), DA-SPT performs worse
due to the dominating cost of building the full SPT. When the
lengths of shortest paths increase (i.e., varying Q from Q1 to Q5),
the running time of all approaches increases except DA-SPT which
is steady, due to the dominating cost of constructing the full SPT.
Moreover, although without landmarks, IterBound

I

-NL outperforms
all other approaches except IterBound

I

across all testings. The
trend of the processing time of these approaches by varying k is
similar to that of varying query set. One exception is that, the pro-
cessing time of DA-SPT also slightly increases due to computing
more shortest paths for larger k.
KSP Query. We test the approaches for processing KSP queries by
setting the destination category as “Glacier” which has only one
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Figure 8: Testing KSP queries on CAL (Varying Q and k)

physical destination node; thus, the KPJ query is a KSP query.
The results are shown in Fig. 8, which are similar to that for KPJ
queries in Fig. 7.
Summary. There is no clear winner between DA and DA-SPT,
and all our approaches perform better than these two baseline ap-
proaches. Despite using the same techniques, IterBound

I

outper-
forms IterBound

I

-NL, which demonstrates the effectiveness of us-
ing landmarks for estimating lower bounds. Therefore, in the fol-
lowing testings, we omit DA, DA-SPT, and IterBound

I

-NL, and
evaluate the other approaches which use different techniques and
all use landmark.
Eval-III: Evaluating Our Approaches. In this testing, we evalu-
ate the efficiency of our different approaches, BestFirst, IterBound,
IterBound

P

, and IterBound
I

, on SJ and COL.
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Figure 9: Our approaches by varying Q and k (T = T2)

Varying Q and k. The running time of the approaches on SJ and
COL by varying Q and k is shown in Fig. 9. Similar to that in
Fig. 7, the running time of these four approaches increases when
either Q varies from Q1 to Q5 or k increases. IterBound slightly
outperforms BestFirst due to less number of shortest path compu-
tations, however with more expensive lower bound computations.
IterBound

P

performs better than IterBound because of the faster
lower bound testing. IterBound

I

runs faster than IterBound
P

be-
cause IterBound

I

can further reduce the exploration area of a graph
by SPT

I

.
Varying Number of Destination Nodes (|T |). Fig. 10 shows the pro-
cessing time of these four approaches on SJ and COL by varying
the number of destination nodes (i.e., varying |T |). For all these
four approaches, the processing time decreases, when the num-
ber of destination nodes increases (i.e., T varies from T1 to T4).
This is because the shortest paths become shorter for more number
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Figure 10: Vary #(destination nodes) (Q = Q3, k = 20)

of destination nodes as shown in Fig. 11 which will be discussed
shortly. IterBound

I

outperforms IterBound
P

which then outper-
forms BestFirst and IterBound. The improvement of IterBound

I

over IterBound
P

becomes more significant when there are more
destination nodes, since IterBound

I

can prune destination nodes
and reduce the exploration area of a graph by SPT

I

.
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Figure 11: Shortest path length (Varying #(destination nodes))

Fig. 11 illustrates the influence of the number of destination nodes
on the shortest path lengths. Specifically, for each category Ti, we
compute the longest length of shortest paths from nodes to Ti, and
report its percentile position in the observations of all n · n short-
est path lengths in the graph. For all datasets, the shortest path
lengths decrease with more number of destination nodes; thus all
approaches run faster as shown in Fig. 10. Note that, for a specific
Ti, the number of destination nodes belonging to Ti are different,
thus the shortest path lengths vary for different datasets; for exam-
ple, for T1, the number of destination nodes for SJ, SF, COL, FLA,
USA are 1, 17, 43, 107, and 626, respectively.
Summary. IterBound

I

outperforms the other approaches, BestFirst,
IterBound, and IterBound

P

, across all different datasets, different
number of destination nodes, different Q, and different k. Thus, in
the following we only evaluate our IterBound

I

approach.
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Figure 12: Scalability of IterBound
I

(T = T2, Q = Q3)

Eval-IV: Scalability Testing. The scalability testing results of
IterBound

I

by varying graph size and k are shown in Fig. 12. Al-
though the running time increases when either the graph size or
k increases, IterBound

I

is scalable enough to process very large
graphs. For example, when the graph size increases 40 times (i.e.,
from SJ to USA), the running time of IterBound

I

only increases
slightly (e.g., by no more than 3 times).
Eval-V: GKPJ Testing. In this evaluation, we test the efficiency of
IterBound

I

over DA-SPT, the state-of-the-art approach, for GKPJ
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queries Q = {S, T, k}. Here, the source category S has 4 physi-
cal nodes which are randomly chosen. Fig. 13 shows the running
time by varying the number of destination nodes (i.e., |T |) or k.
The trends of running time of DA-SPT and IterBound

I

are similar
to the previous evaluations. The improvement of IterBound

I

over
DA-SPT is more significant (e.g., by two orders of magnitude).
This is because the lengths of k shortest paths become smaller with
multiple source nodes.

8. CONCLUSION
In this paper, we studied the problem of top-k shortest path join

(KPJ). We adopted the best-first paradigm to reduce the number
of shortest path computations, compared to the existing deviation
paradigm, by pruning subspaces based on their lower bounds. To
improve the efficiency, we further proposed an iteratively bound-
ing approach to tightening lower bounds of subspaces which is
achieved by lower bound testing. Moreover, we proposed index
structures to significantly reduce the exploration area of a graph in
lower bound testing. We conducted extensive performance studies
using real road networks, and demonstrated that our proposed ap-
proaches significantly outperform the baseline approaches for KPJ
queries. Furthermore, our approaches can be immediately used to
process KSP queries, and they also outperform the state-of-the-art
algorithm for KSP queries by several orders of magnitude.
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