
30

Classification with Streaming Features: An Emerging-Pattern
Mining Approach

KUI YU, Simon Fraser University
WEI DING and DAN A. SIMOVICI, University of Massachusetts Boston
HAO WANG, Hefei University of Technology
JIAN PEI, Simon Fraser University
XINDONG WU, Hefei University of Technology and University of Vermont
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features. In this article, we adapt the well-known emerging-pattern–based classification models and propose
a semi-streaming approach. For streaming features, it is computationally expensive or even prohibitive
to mine long-emerging patterns, and it is nontrivial to integrate emerging-pattern mining with feature
selection. We present an online feature selection step, which is capable of selecting and maintaining a
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we periodically compute and update emerging patterns from the pool of selected features from the online
step. We evaluate the effectiveness and efficiency of the proposed method using a series of benchmark
datasets and a real-world case study on Mars crater detection. Our proposed method yields classification
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1. INTRODUCTION

In some real-world applications, we are facing datasets of not only very high dimen-
sionality but also with features that keep arriving, that is, datasets with streaming
features. For example, in order to monitor and analyze the environment in different
areas, researchers may deploy a set of observation stations in those areas. Each station
is treated as an object in the data collected. In other words, the number of data objects
is fixed. However, the number of features in temporal domains keeps increasing, since
new observation data is collected all the time. Even though the data collection rate may
not be very high, the dimensionality of the underlying dataset can easily reach tens or
hundreds of thousands after a while. As another example, in our research project in
automatic detection of subkilometer craters in high-resolution planetary images [Ding
et al. 2011], a fixed number of craters are continually monitored using the latest avail-
able high-resolution images, which become available and updated over time. Since
impact craters are among the most studied geomorphic features in the solar system,
yielding information about past and present geological processes and providing the only
tool for measuring relative ages of observed geologic formations [Urbach and Stepinski
2009], it is invaluable to build and maintain robust classification models using the
accumulated features in a streaming way extracted from the images available so far.

It is a novel challenge to learn and maintain a classification model on such data
with streaming features, as new features keep arriving. Although classification on
data streams has been well studied in the data-mining and machine-learning liter-
ature [Aggarwal 2010; Dong et al. 2003], to the best of our knowledge, the existing
emerging-pattern–based classification methods only focus on scenarios in which new
objects keep arriving and the features are predetermined. Those methods are orthogo-
nal to the scenarios studied in this article.

To build and maintain effective classification models on datasets with streaming
features, we have to address at least two major challenges. First, as the existing clas-
sification methods typically assume a predefined space of features, it is important to
determine how to handle streaming features in an online manner. This problem is
highly related to feature selection, that is, how to select and maintain a set of features
from a stream of features. Second, it is essential to ascertain how to build and main-
tain a classification model using the features incrementally selected from a stream of
features. Ideally, the model construction and updating should be seamlessly integrated
with online feature selection.

In order to tackle high-dimensional data with streaming features, we adapt the
well-known emerging-pattern–based classification methods [Dong and Li 1999; Novak
et al. 2009]. Emerging patterns are well recognized and effective in classifying high-
dimensional data, since an emerging pattern can handle a subpopulation in a subspace
that deliberates a clear discriminative pattern [Dong et al. 1999; Duan et al. 2014].
However, it is still challenging to extend emerging patterns to classify datasets with
streaming features. First, it is computationally expensive or even prohibitive to mine
long-emerging patterns. As features are accumulated over time, many emerging pat-
terns may become long, partially due to the redundancy among features. Second, it is
challenging to integrate mining emerging patterns and feature selection. To address the
problem of learning classification models on datasets with streaming features, in this
article, we propose a “semi-streaming” approach. Specifically, to tackle the challenge of
streaming features, we propose an online feature selection step, which is capable of se-
lecting and maintaining a pool of effective features from a feature stream. Our feature
selection step scans features one by one as they are available. Moreover, the proposed
feature selection step is specially designed for emerging patterns. To tackle the chal-
lenge of classification model construction and maintenance, we propose an offline step.
Periodically, we can compute and update emerging patterns from the pool of selected
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features that are picked by the online step. Although the emerging-pattern mining step
cannot be made online in theory, this step can be conducted only periodically, and can
be separated from the online step. In other words, when the classification model needs
to be updated, the offline task of emerging-pattern mining can take place.

Our semi-streaming approach is fundamentally different from applying emerging-
pattern mining in a straightforwardmanner on a dataset with streaming features. The
online feature selection step substantially reduces the dimensionality of the feature
space under which the offline emerging-pattern mining step has to handle. This be-
comes possible only when the feature selection step can handle streaming features
in an online manner, and also can select features according to the requirements of
emerging-pattern mining. Due to the effective online feature selection customized for
emerging-pattern mining, the emerging patterns mined in the offline step tend to be
short, since many redundant and correlated features are reduced before the patterns
are mined. This practically facilitates emerging-pattern mining dramatically.

Using a series of benchmark data-sets, we evaluate the effectiveness and efficiency of
the EPSF algorithm, and compare it with the baseline methods and the state-of-the-art
methods. The empirical study clearly shows that our method not only achieves high
accuracy, but also takes less CPU time than the existing classification methods. Most
important, the EPSF algorithm can handle datasets with streaming features efficiently.
In our real-world case study, we evaluate the EPSF algorithm with crater detection from
planetary images. The experimental results show that our method is not only highly
comparable with the existing crater detection algorithms, but also produces a concise
set of emerging patterns that are interpretable for domain scientists to understand the
crater data.

The remainder of this article is organized as follows. Section 2 reviews related work.
Section 3 gives the preliminaries and Section 4 presents our approach. Section 5 reports
our experimental results. Section 6 presents our conclusions.

2. RELATED WORK

Our work relates to emerging-pattern mining and feature selection, which we will
briefly review in this section.

Dong and Li [1999] first introduced emerging patterns (EPs) to represent strong
contrasts between different classes of data. In addition, a Jump Emerging Pattern (JEP)
is a special type of EP whose support increases from zero in one class to nonzero in the
other class [Li et al. 2001a]. Like other patterns composed of conjunctive combinations
of feature-value pairs [Wang and Karypis 2005; Trépos et al. 2013; Sahoo et al. 2014],
EPs can be easily understood and used directly in a wide range of applications [Song
et al. 2014; Wang et al. 2013a], such as failure detection [Lo et al. 2009] and discovering
knowledge in gene expression data [Fang et al. 2012].

Dong et al. [1999] proposed the first EP classifier, called Classification by Aggregating
Emerging Patterns (CAEP). Based on CAEP, Li et al. [2001a] proposed a JEP classifier
that is distinct from the CAEP classifier. The JEP classifier uses JEPs exclusively
because JEPs discriminate between different classes more strongly than any other
type of EP. Li et al. [2000] also presented a lazy EP classifier based on an instance-
based EP discovery, called DeEPs, to improve the efficiency and accuracy of CAEP
and JEP classifier. In addition, Fan and Ramamohanarao [2006] proposed a robust EP
classifier, called SJEP-classifier, using a strong JEP. A strong JEP from class C1 to
class C2 satisfies two conditions: (1) the support of itemset X is zero in C1 but nonzero
and satisfies a minimal support threshold in C2, and (2) any proper subset of X does
not satisfy condition (1). The SJEP classifier integrates the CP-tree miner into the
EP classifier, and uses much fewer JEPs than the JEP classifier. The disadvantage of
JEP and SJEP classifiers is that if a dataset contains no or very few JEP and SJEP
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patterns, then it will cause the classification performance of JEP and SJEP classifiers
to be significantly reduced.

The well-known bottleneck of EP classifiers is that they are computationally pro-
hibitive to dealing with a dataset with more than 60 dimensions without prior feature
set reduction until the Zero-suppressed Binary Decision Diagrams (ZBDD) EP miner
was proposed [Loekito and Bailey 2006]. The ZBDD EP miner can deal with a rela-
tively high-dimensional dataset, but like previous EP mining approaches, it still suffers
from an explosive number of EPs, even with a rather high support threshold. Accord-
ingly, it is still a challenging research issue to build a robust EP classifier from high
dimensionality.

Feature selection has been generally viewed as a problem of searching for a minimal
subset of features in high-dimensional data that leads to the most accurate prediction
model [Liu and Yu 2005]. There are two types of feature selection methods proposed in
the literature: batch methods and online methods.

A batch method has to access the entire feature set on the training data and performs
a global search for the best feature at each round [Brown et al. 2012]. Contrast to batch
methods, online feature selection can be conducted online. Recently, Wang et al. [2013b]
proposed an OSF algorithm for online feature selection. The OFS algorithm assumes
that data instances keep arriving, and performs feature selection on each data instance
as it is available. In contrast to OFS, the Fast-OSFS and alpha-investing algorithms
were proposed to deal with the scenarios in which features keep arriving but the
number of data instances is fixed [Zhou et al. 2006; Wu et al. 2010, 2013]. Zhou et al.
[2006] presented alpha investing, which sequentially considers new features as the
addition to a predictive model by modeling the candidate feature set as a dynamically
generated stream. However, alpha investing requires prior information of the original
feature set and never evaluates redundancy among the selected features as time goes
on. To fix the drawbacks, Wu et al. [2010, 2013] presented the Online Streaming Feature
Selection (OSFS) algorithm and its faster version, the Fast-OSFS algorithm.

In a recent study, Yu et al. [2013] integrated local causal-structure learning into EP
mining to help reduce high dimensionality. The study has shown that this integration
can efficiently extract a minimum number of sets of strongly predictive patterns from
high-dimensional data and get highly accurate EP classifiers. Different from the work
of Yu et al. [2013], which requires a complete set of features available beforehand,
the proposed algorithm in this article is capable of dealing with a high-dimensional
dataset with streaming features. Our new algorithm can mine emerging patterns from
datasets of not only very high dimensionality but also with features that keep arriving,
that is, datasets with streaming features.

3. NOTATIONS AND DEFINITIONS

3.1. Emerging Patterns

Consider a training dataset D is defined upon a feature set F and the class attribute
C. F contains N features, that is, F = {F1, F2, . . . , FN}. For ∀Fi ∈ F, we assume that it
is in a discrete domain dom(Fi). Let I be the set of all items, that is, I = {Fi = fi|Fi ∈
F, fi ∈ Dom(Fi)}, the class attribute C = {C1, C2, . . . , CK} be a finite set of K distinct
class labels, and X be an itemset and X ⊆ I. The dataset D can be partitioned into
D1, D2, . . . , DK, where Dj consists of instances with class label Cj, j = 1, . . . , K. The
mathematical notations used in this article are summarized in Table I.

The Support and Growth Rate (GR) of an itemset X, and an emerging pattern from
Dl to Dm(l, m = 1, . . . , K, and l �= m), are defined as follows.

Definition 3.1 (Support).

supportD(X) = countD(X)/|D| (1)
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Table I. Summary of Mathematical Notations

Notation Mathematical meanings
D training dataset
Dl, Dm subsamples of D
F a feature set from D
Fi a single feature (attribute), Fi ∈ F
fi a discrete value of Fi

Dom(.) Dom(Fi) denotes all discrete values of Fi

S a feature subset S ⊆ F
C the class attribute
Ci a class label, Ci ∈ C
I a set of all items from F
X an itemset, X ∈ I
countD(X) the number of instances in D that supports X
|.| |D| returns the number of instances in D
supportD(X) the support value of X on D
GRDl→Dm(X) the growth rate of X from Dl to Dm

ρ a threshold of GRDl→Dm(X)
e an emerging pattern
Ei a set of emerging patterns
Rateimp(e) the growth rate improvement of e
P(.|.) P(C = C j |S = s) denotes the posterior probability of C j conditioned on s
t a time point
T a test instance
CMB(C)t a Markov blanket of C selected at time t

where countD(X) is the number of instances in D containing X and |D| is the number of
instances in D.

Definition 3.2 (GR: Growth Rate). [Dong and Li 1999]

GRDl→Dm(X) = supportDm(X)/supportDl (X) (2)

If supportDm(X) = 0 and supportDl (X) = 0, then GRDl→Dm(X) = 0; if supportDm(X) �= 0 but
supportDl (X) = 0, then GRDl→Dm(X) = ∞.

Definition 3.3 (EP: Emerging Pattern). [Dong and Li 1999] Given a threshold ρ > 1,
an EP from Dl to Dm is an itemset X, where GRDl→Dm(X) ≥ ρ.

An emerging pattern e from Dl to Dm is also called an EP of Dm. If GR(e) = ∞, e is
called a Jumping EP (JEP). The goal of EP mining is to extract EP set Ei for class Ci,
which consists of EPs from {D − Di} to Di, given a minimum support threshold and a
minimum growth rate threshold.

A positive GR improvement threshold is introduced to ensure a concise and repre-
sentative set of EPs that are not subsumed by one another and consist of items that
are strong contributors to their predictive power. The GR improvement can also help to
reduce the search space by eliminating EPs that are redundant. Here is the definition
of GR improvement.

Definition 3.4 (Growth Rate Improvement). [Zhang et al. 2000a] Given an EP e, the
GR improvement of e, Rateimp(e), is defined as the minimum difference between its
GR and the GRs of all of its subsets,

Rateimp(e) = min(∀e′ ⊂ e, GR(e) − GR(e′)). (3)
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3.2. Feature Relevance in Feature Selection

In feature selection, a feature space F in general can be divided into three disjoint
groups: strongly relevant, weakly relevant, and irrelevant features [Koller and Sahami
1995]. The goal of feature selection is to select a subset from F without performance
degradation on prediction models. In the following definitions, P(C = Cj |S = s) is the
posterior probability of class Cj given a set of values of s of a subset S.

Definition 3.5 (Conditional Independence). Two distinct features Fi ∈ F and Fk ∈ F
are conditionally independent on a feature subset S ⊆ F −{Fi ∪ Fk}, if and only if there
exists an assignment of values fi and fk, s.t.

P(Fi = fi|Fk = fk, S = s) = P(Fi = fi|S = s). (4)

Definition 3.6 (Strong Relevance). A feature Fi is strongly relevant to the class
attribute C, if and only if there exists an assignment of values fi, Cj , and s for which
P(S = s, Fi = fi) > 0,

∀S ⊆ F − {Fi} s.t. P(C = C j |S = s, Fi = fi) �= P(C = C j |S = s). (5)

Definition 3.7 (Weak Relevance). A feature Fi is weakly relevant to the class attribute
C, if and only if it is not strongly relevant, and ∀ fi, C j , and s for which P(S = s) > 0,

∃S ⊂ F − {Fi} s.t. P(C = C j |S = s) �= P(C = Cj |S = s, Fi = fi). (6)

Definition 3.8 (Irrelevance). A feature Fi is irrelevant to the class attribute C, if and
only if it is neither strongly nor weakly relevant, and there exists an assignment of
values fi, C j , and s for which P(S = s, Fi = fi) > 0,

∀S ⊆ F − {Fi} s.t. P(C = C j |S = s, Fi = fi) = P(C = C j |S = s). (7)

Definition 3.9 (Markov Blanket). [Koller and Sahami 1995] The Markov blanket of
feature Fi, denoted as Mi ⊂ F − {Fi} makes all other features independent of Fi given
Mi, that is,

∀Fk ∈ F − (Mi ∪ {Fi}) s.t. P(Fi|Mi, Fk) = P(Fi|Mi). (8)

With Markov blankets, weakly relevant features can be divided into redundant fea-
tures and nonredundant features [Yu and Liu 2004].

Definition 3.10 (Redundant Feature). A feature is redundant, hence should be re-
moved from F, if and only if it is weakly relevant and has a Markov blanket within F.

4. MINING EMERGING PATTERN WITH STREAMING FEATURES

It is computationally expensive to evaluate the complete item combinations for a high-
dimensional dataset. To mitigate this problem, we propose to effectively prune the
feature space before EP mining. Recently, Wu et al. [2013] proposed streaming feature
selection to deal with data with streaming features. In this model, the number of data
instances is fixed, while features keep arriving and each feature is evaluated upon its
arrival. Compared to traditional feature selection, the strength of streaming feature
selection is that the number of features is no longer required to be fixed in advance.
Feature selection is streamlined and conducted online to be able to deal with streaming
features.

Although emerging-pattern mining cannot be done online in theory, in this article,
we propose a “semi-streaming” approach to bridge streaming feature selection and
EP mining to learn and maintain an EP classification model on data with streaming
features.
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Fig. 1. The framework of a semi-streaming approach.

Definition 4.1 (Semi-streaming approach). A semi-streaming approach includes an
online feature selection step customized for an offline step to periodically mine emerg-
ing patterns from the features that are picked by the online step.

In the semi-streaming approach, the online feature selection step is to select and
maintain a pool of effective features from streaming features by scanning features one
by one as they are available. An offline step is to construct and update an EP classifier
by periodically mining emerging patterns from the pool of selected features that are
picked by the online step. Definition 4.1 indicates that, although emerging-pattern
mining cannot be fully online, the offline step needs to be conducted only periodically.
When the EP classifier needs to be updated, the offline task of emerging-pattern mining
will take place.

The framework of the semi-streaming approach is illustrated in Figure 1. At the
first stage, we present an online feature selection step that is capable of selecting and
maintaining a pool of effective features from a feature stream. Our feature selection
step processes features one by one as they are available. At the second stage, we propose
an offline step. Periodically, we can compute and update emerging patterns from the
pool of selected features that are picked by the online step. There are two key research
problems to be addressed:

(1) How to build an influential feature candidate pool to be used for EP mining as
features are available over time

(2) How to build an EP pool to be used for classification by extracting EPs from this
influential feature pool

4.1. Online Building an Influential Feature Pool

In Figure 1, the feature pool shall keep the features that are useful only for producing
predictive EPs, and it may be updated over time as features are available one by one.
To customize the online feature selection step for efficient emerging-pattern mining,
we must be able to evaluate the degree of feature relevance with the discriminative
power of EPs. We have theoretically proved the association of causal relevance in
causal Bayesian networks and EP discriminability in EP mining [Yu et al. 2013]. Here
we provide theoretically an analysis on the relationships between feature relevance
(irrelevant features, strongly relevant features, and redundant features) and EP dis-
criminability (non-EPs, strongly predictive EPs, and redundant EPs) in the following
propositions.

As discussed in Definitions 3.2 and 3.3, the discriminability of an EP is determined
by its support value and GR. Proposition 4.2 establishes the relations between non-EPs
and irrelevant features.

PROPOSITION 4.2. For ∀Fi ∈ F, ∀ fi ∈ dom(Fi), and ∀C j ∈ dom(C), GR{D−Dj }→Dj (Fi =
fi) = 1 holds if and only if Fi is irrelevant to C.

PROOF. Assume a dataset D has two classes: positive class Cp and negative class
Cn, C = {Cp, Cn}. Dp represents Cp class data, Dn represents Cn class data, supDp(Fi =
fi) is the support value of the itemset {Fi = fi} in Dp, and supDn(Fi = fi) is its support
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value in Dn. Then GR(Fi = fi) from Dn to Dp is calculated as follows.

GRDn→Dp(Fi = fi) = supDp(Fi = fi)
supDn(Fi = fi)

= P(Fi = fi|C = Cp)
P(Fi = fi|C = Cn)

= P(Fi = fi, C = Cp)
P(C = Cp)

/
P(Fi = fi, C = Cn)

P(C = Cn)

= P(C = Cp|Fi = fi)P(Fi = fi)
P(C = Cp)

/
P(C = Cn|Fi = fi)P(Fi = fi)

P(C = Cn)

= P(C = Cp|Fi = fi)
P(C = Cn|Fi = fi)

• P(C = Cn)
P(C = Cp)

If GRDn→Dp(Fi = fi) = 1, then the following holds.

P(C = Cp)
P(C = Cn)

= P(C = Cp|Fi = fi)
P(C = Cn|Fi = fi)

As P(C = Cp) + P(C = Cn) = 1 and P(C = Cp|Fi = fi) + P(C = Cn|Fi = fi) = 1, we get

P(C = Cp|Fi = fi) = P(C = Cp)

(with a
b = c

d equivalent to a
b+a = c

d+c ), as well as P(C = Cn|Fi = fi) = P(C = Cn).
According to Definition 3.8, for any assignments fi ∈ dom(Fi) and Cj ∈ dom(C) to F

and C, P(C = Cj |Fi = fi) = P(C = Cj) holds, therefore Fi is irrelevant to C. Similarly,
from Dp to Dn, if GRDp→Dn(Fi = fi) = 1, we can also prove that Fi is irrelevant to C.

On the other hand, if Fi is irrelevant to C, we get

GRDn→Dp(Fi = fi) = P(C = Cp|Fi = fi)
P(C = Cn|Fi = fi)

• P(C = Cn)
P(C = Cp)

= P(C = Cp|Fi = fi)
P(C = Cn|Fi = fi)

• 1 − P(C = Cp)
P(C = Cp)

= 1

Thus, Proposition 4.2 is proven.

According to Definition 3.4, for an EP e, if we can find an e′ ⊂ e to make
Rateimp(e) ≤ 0, then e is a redundant EP, and might be replaced by a subset within
e. Thus, avoiding generation of those redundant EPs in advance will improve search
efficiency. Proposition 4.3 explains the relationship between feature redundancy and
EP redundancy.

PROPOSITION 4.3. For ∃Fi ∈ F, ∃S ⊂ F − Fi,∀ fi ∈ dom(Fi),∀s ⊂ ⋃|S|
k=1 dom(Sk), and

∀Cj ∈ dom(C), GR{D−Dj }→Dj (Fi = fi, S = s) = GR{D−Dj }→Dj (S = s) holds, if and only if
Fi is redundant to C conditioning on the subset S.
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PROOF. GR(Fi = fi, S = s) from Dn to Dp is calculated as follows.

GRDn→Dp(Fi = fi, S = s) = supDp(Fi = fi, S = s)
supDn(Fi = fi, S = s)

= P(Fi = fi, S = s|C = Cp)
P(Fi = fi, S = s|C = Cn)

= P(Fi = fi, S = s, C = Cp)
P(C = Cp)

/
P(Fi = fi, S = s, C = Cn)

P(C = Cn)

= P(C = Cp|Fi = fi, S = s)P(Fi = fi, S = s)
P(C = Cp)/

P(C = Cn|Fi = fi, S = s)P(Fi = fi, S = s)
P(C = Cn)

= P(C = Cp|Fi = fi, S = s)
P(C = Cn|Fi = fi, S = s)

• P(C = Cn)
P(C = Cp)

From Dn to Dp, GR(S = s) = P(S = s|C = Cp)/P(S = s|C = Cn)

P(C = Cp|Fi = fi, S = s)
P(C = Cn|Fi = fi, S = s)

• P(C = Cn)
P(C = Cp)

= P(S = s|C = Cp)
(P(S = s|C = Cn)

P(C = Cp|Fi = fi, S = s)
P(C = Cn|Fi = fi, S = s)

= P(S = s|C = Cp)P(C = Cp)
(P(S = s|C = Cn)P(C = Cn)

P(C = Cp|Fi = fi, S = s)
P(C = Cn|Fi = fi, S = s)

= P(C = Cp|S = s)
P(C = Cn|S = s)

Using the same reasoning in proving Proposition 4.2, we can get two equations P(C =
Cp|Fi = fi, S = s) = P(C = Cp|S = s) and P(C = Cn|Fi = fi, S = s) = P(C = Cn|S = s).
By Definitions 3.9 and 3.10, we can find a subset S ⊂ F as a Markov blanket of Fi,
and for any assignments fi ∈ dom(Fi), s ⊆ dom(S) and Cj ∈ dom(C) to Fi, S and C,
P(C = C j |Fi = fi, S = s) = P(C = Cj |S = s) holds, thus Fi is redundant to C given S.

On the other hand, if Fi is redundant to C, from Dn to Dp, then the following holds.

GRDn→Dp(Fi = fi, S = s) = P(C = Cp|Fi = fi, S = s)
P(C = Cn|Fi = fi, S = s)

• P(C = Cn)
P(C = Cp)

= 1 − P(C = Cn|Fi = fi, S = s)
P(C = Cn|Fi = fi, S = s)

• P(C = Cn)
P(C = Cp)

= 1 − P(C = Cn|S = s)
P(C = Cn|S = s)

• P(C = Cn)
P(C = Cp)

= P(C = Cp|S = s)
P(C = Cn|S = s)

• P(C = Cn)
P(C = Cp)

= P(S = s|P(C = Cp)
P(S = s|C = Cn)

= GRDn→Dp(S = s)

Thus, Proposition 4.3 is proven.
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Proposition 4.3 shows that if Fi is redundant to C conditioned on a subset S, then an
itemset ∀ fi ∈ dom(Fi) together with an itemset ∀s ⊂ ⋃|S|

k=1 dom(Sk) contains the same
predictive information as the itemset ∀s ⊂ ⋃|S|

k=1 dom(Sk).
With Propositions 4.2 and 4.3, as features are processed in a sequential scan, we

can online build an influential feature pool and discarding irrelevant and redundant
features to avoid generating non-EPs or redundant EPs in the EP mining process later
on.

Once we understand the feature relevance with the discriminative power of EPs, the
next step is to understand how to build this influential feature pool online, and then
how to adjust the feature pool once a new feature is added into the pool. To build an
influential feature pool, we need to assess online whether a new feature is irrelevant.
If so, it is discarded. If not, we use Proposition 4.4 proposed by Wu et al. [2013]] to
handle this newly arrived feature.

PROPOSITION 4.4. A current Markov blanket of C at time t is denoted as CMB(C)t.
Assume a new feature Fi at time t + 1 is weakly relevant to C, if ∃S ⊆ CMB(C)t such
that P(C|Fi, S) = P(C|S), then Fi can be discarded.

After Fi is added into CMB(C), we must check whether any existing features in
the feature pool become redundant. We shall use Proposition 4.5 proposed by Wu
et al. [2013] to update the current feature pool online, determining which of the existing
features in the current feature pool can be removed as Fi is added.

PROPOSITION 4.5. With CMB(C)t at time t, a new feature Fi arrives at time t + 1,
and there does not exist any MB(Fi) within CMB(C)t. If ∃Y ∈ CMB(C)t and ∃S ⊆
{CMB(C)t ∪ Fi} − {Y } s.t. P(C|Y, S) = P(C|S), then Y can be removed from CMB(C)t.

4.2. Building an EP Pool

The EP pool stores the candidate EPs that are mined from the feature pool. To make the
EP pool correspond to the changes of the feature pool, we divide the construction of
the EP pool into two steps. One step is to build 1-itemset EP pool online. This 1-itemset
EP pool should be updated as the feature pool is updated. The other step is offline but
periodically mines all EPs from the 1-itemset EP pool to construct an EP classifier.

4.2.1. Building a 1-Itemset EP Pool Online.

(1) Building. As a new feature Fi arrives, we first assess whether it is irrelevant;
if so, it is discarded. Otherwise, we evaluate whether it is redundant to C by
Proposition 4.4; if so, it is also discarded. If not, it is added to the feature pool
CMB(C). Then, the EPSF algorithm (discussed in detail in Section 4.4) converts
feature Fi into a set of itemsets IFi and has a mapping between IFi and Fi, named
map f orm. This mapping can guarantee that itemsets contain items mapped from
the same feature, and their supersets should be pruned. With IFi and the mapping,
EPSF divides the training data by class, mines EPs for each class, and stores the
EPs in a candidate EP pool named CEP.

(2) Updating. Due to F ′
i s inclusion, EPSF updates the feature pool CMB(C) by removing

redundant features according to Proposition 4.5. If feature Y is removed from
CMB(C), we update CEP and map f ormonline by removing EPs in CEP generated
from Y and the mapping between itemsets Iy and Y in map f orm, respectively.
To update CMB(C), EPSF checks all subsets within CMB(C) to re-examine the
redundancy of each feature in CMB(C). To improve this updating efficiency, we
only validate the redundancy of each originally existing feature in CMB(C) by
testing the subsets created by the inclusion of the new feature Fi.
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4.2.2. Periodically Mining All EPs from the 1-Itemset EP Pool. With the current 1-itemset
EP pool, we propose an offline step to periodically mine all EPs, for an EP classifier
construction and maintenance. At this step, we can periodically compute and update
emerging patterns from the 1-itemset EP pool that is picked by the online step. Al-
though the emerging-pattern mining step cannot be made online in theory, this step
can be conducted only periodically, and can be separated from the online step. In other
words, when the classification model needs to be updated, an offline task of emerging-
pattern mining can take place.

4.3. A Score Function for EP Classifiers

When applying EPs to classification, we get all the EPs of each class Ci in a training
set. With the EPs for K classes, we derive K scores for a test instance T , one score per
class, by feeding the EPs of each class into a scoring function. In this article, we use
the score function based on information theory proposed by Zhang et al. [2000b] for
classifying unlabeled instances, since this function is simpler and more efficient than
the score function proposed by Dong et al. [1999] by avoiding computing the base score
for each class. Zhang et al. [2000b] defined the score function of a test instance T by
the following equation:

L(T |Ci) = −
|Ei |∑
k=1

log2 P(Xk|Ci), Xk ∈ Ei and Xk ∈ T , (9)

where |Ei| is the number of emerging patterns in the EP set Ei and Xk is an emerging
pattern in Ei. The test instance T is assigned class label Ci when L(T |Ci) is the mini-
mum. Given an itemset X, P(X) is approximately computed by the following equation:

P(X|Ci) = (|X ∩ Ci| + 2|X|/|D|)/(|Ci| + 2), (10)

where |X∩ Ci| is the number of training instances belonging to class Ci and containing
X, |X| is the total number of training instances containing X, |D| is the total number of
training instances, and |Ci| is the number of training instances for class Ci.

In addition, to ensure that we can always find a partition for an instance, all single-
item itemsets of each class, whether they satisfy the given thresholds or not, are taken
into account when Equation (9) is used to classify a test instance.

4.4. The EPSF Algorithm

To integrate online feature selection and EP mining, we propose the algorithm mining
Emerging Patterns with Streaming Features (EPSF), as shown in Algorithm 1.

EPSF builds two pools online: a feature pool and a 1-itemset EP pool, and periodically
computes and updates emerging patterns from the 1-itemset EP pool for an EP classi-
fication model construction and maintenance. As a new feature arrives, if it is added
into the feature pool, EPSF transforms it into a set of itemsets, and mines 1-itemset
EPs online, which are then added into the 1-itemset EP pool. As the dimensions are
processed one by one, in order to quickly respond to this change, EPSF only mines
1-itemset EPs online for each feature available, and updates the current 1-itemset
EP pool correspondingly with the change of the feature pool. Then EPSF periodically
computes and updates emerging patterns from the 1-itemset EP pool.

As for the EPSF algorithm, in its early version (we call it Pre-EPSF) [Yu et al. 2012],
the Pre-EPSF algorithm needs to check all subsets within CMB(C) to re-examine the
redundancy of each feature in CMB(C) due to a new feature F ′

i s inclusion. In Step 28
of Algorithm 1, the EPSF algorithm in the current version validates the redundancy
of each originally existing feature in CMB(C) by checking only the subsets created by
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ALGORITHM 1: The EPSF Algorithm
1 Initialize the minimum support threshold α, growth rate threshold ρ, and CMB(C)={};
2 repeat
3 Input a new feature Fk;
4 /*Discard irrelevant features*/;
5 if P(C|Fk) = P(C) then
6 Discard Fk and goto step 41;
7 end
8 /*Remove redundant features*/;
9 if ∃S ⊂ CMB(C) s.t. P(C|Fk, S) = P(C|S) then

10 Go to step 41;
11 end
12 /*Add Fk into the current feature pool CMB(C)*/;
13 CMB(C) = CMB(C) ∪ {Fk};
14 /*Convert feature Fk into a set of itemsets*/;
15 IFk = convert(Fk), IFk ∈ Dom(Fk);
16 /*Map between IFk and Fk*/;
17 map f orm=mapping(Fk,IFk);
18 for i = 1 : |C| do
19 /*|C| denotes the number of classes*/;
20 /*Mine 1-itemset EPs for each class with the thresholds α and ρ*/;
21 EPi=mineEP(IFk, α, ρ);
22 /*Add EPi to the current EP pool CEP*/;
23 CEP = CEP ∪ EPi;
24 end
25 /*Update CMB(C)*/;
26 for each feature Y within CMB(C) excluding Fk do
27 /*Find S ⊂ CMB(C) containing Fk*/;
28 if ∃S ⊂ CMB(C) s.t. P(C|Y, S) = P(C|S) then
29 CMB(C) = CMB(C) − Y ;
30 /*Update CEP by removing EPs generated from feature Y */;
31 for each y ∈ Iy do
32 if y ∈ CEP then
33 CEP = CEP − y;
34 end
35 end
36 /*Update map f orm*/;
37 map f orm = map f orm(Iy);
38 end
39 end
40 Periodically mine all EPs from CEP with map f orm;
41 until No more features are available;
42 Classify unlabeled instances by the mined EPs using Equation (9);

the inclusion of the new feature Fi at each time point. By avoiding checking all subsets
within CMB(C) at each time point, the revised EPSF significantly reduces the number
of subsets that need to be checked, thus improves the updating efficiency by avoiding
performing some unnecessary calculation.

Using the Balloon dataset from UCI Repository of Machine Learning
Databases [Blake and Merz 1998], we present an illustrating example to explain the
EPSF algorithm. In Table II, the Balloon dataset includes 4 features (color, size, act
and age) and one class attribute (inflated) with 20 samples. Assuming the input order
of features is color, size, act, and age, and the G2 test [Spirtes et al. 2000] is employed to

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 30, Publication date: June 2015.



Classification with Streaming Features: An Emerging Pattern Mining Approach 30:13

Table II. The Balloon Dataset

Color Size Act Age Inflated
yellow small stretch adult True
yellow small stretch child True
yellow small dip adult True
yellow large stretch adult True
yellow large stretch child True
yellow large dip adult True
purple small stretch adult True
purple small stretch child True
purple small dip adult True
purple large stretch adult True
purple large stretch child True
purple large dip adult True
yellow small dip child False
yellow small dip child False
yellow large dip child False
yellow large dip child False
purple small dip child False
purple small dip child False
purple large dip child False
purple large dip child False

Table III. CEP After Adding act for Class F

Candidate EP Support (class T ) Support (class F) GRT →F (e)
{act=dip} 0.33 1 3

Table IV. CEP After Adding act for Class T

Candidate EP Support (class F) Support (class T ) GRF→T (e)
{act=stretch} 0 0.67 ∞

compute conditional independence defined in Definition 3.5 in Section 3.2 to determine
feature relevance and feature redundancy, the EPSF algorithm is traced as follows.

(1) As feature color arrives, at Step 6 in Algorithm 1, color is discarded as an irrelevant
feature. EPSF then processes the next feature size directly. Since feature size is also
independent of the class attribute inflated, size is also discarded, and will never be
considered again.

(2) As feature act is available, at Step 5 in Algorithm 1, act is regarded as a relevant
feature. Step 9 then checks whether act is a redundant feature given the current
feature pool CMB(C). If so, act will be discarded and EPSF will consider a next
feature available; if not, act will be added to CMB(C). Since the current feature
pool CMB(C) is empty, act is added to CMB(C) at Step 13 and CMB(C) = {act}. At
Steps 14 to 17, feature act is converted into a set of itemsets, that is, {act = dip}
and {act = stretch}. From Steps 18 to 24, EPSF mines 1-itemset EPs of act from
two classes and stores those 1-itemsets into the current EP pool, CEP, as shown in
Tables III and IV, using the minimum support threshold 0.2 and the GR threshold
ρ > 1. Since the current feature pool CMB(C) contains only act, Steps 25 to 39 are
not implemented and EPSF directly processes the next feature age.

(3) As feature age comes, age is considered a relevant feature at Step 5. At Step 9, given
the current feature pool CMB(C) = {act}, P(inf lated|age, act) �= P(inf lated|act).
Accordingly, age is added to CMB(C) at Step 13, and CMB(C) = {act, age}. At
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Table V. CEP After Adding age for Class F

Candidate EP Support (class T ) Support (class F) GRT →F (e)
{act=dip} 0.33 1 3
{age=child} 0.33 1 3

Table VI. CEP After Adding age for Class T

Candidate EP Support (class F) Support (class T ) GRF→T (e)
{act=stretch} 0 0.67 ∞
{age=adult} 0 0.70 ∞

Table VII. 16 Datasets Used in our Comparative Study

ID Dataset # Size ID Dataset # Size
1 kr-vs-kp 36 3,196 9 dexter 20,000 300
2 spectf 44 267 10 breast cancer 17,816 286
3 promoters 57 106 11 arcene 10,000 100
4 infant 86 5,337 12 dorothea 100,000 800
5 madelon 500 2,000 13 colon 2,000 62
6 hiva 1,617 4,229 14 leukemia 7,129 72
7 ovarian cancer 2,190 216 15 lung cancer 12,533 181
8 lymphoma 7,399 227 16 prostate 6,033 102

(#: Number of Features, Size: Number of Instances).

Steps 14 to 17, act is converted into a set of itemsets, that is, {age = child} and
{age = adult}. From Steps 18 to 24, the current EP pool CEP is updated as shown
in Tables V and VI.

(4) Due to age′s addition to CMB(C), Steps 25 to 39 further check whether act is a
redundant feature. If so, act will be removed from CMB(C), and its corresponding
1-itemsets in CEP also will be removed.

(5) With the current EP pool CEP, EPSF periodically mines all EPs by employing a
level-wise, candidate generation-and-test approach to mine EPs (we use the Con-
sEPMiner algorithm [Zhang et al. 2000a]), then uses them to classify test instances
later on.

In summary, compared to the CE-EP algorithm and other existing EP algorithms,
we are the first group to mine EPs from data with streaming features. With an ef-
fective online feature selection customized for emerging-pattern mining, the EPSF
algorithm is designed for datasets with streaming features as it does not need to store
the whole data in the memory to mine EPs. This facilitates emerging-pattern mining
dramatically.

Moreover, EPSF can online mine EPs from the features available so far and can
consume new features in an online manner as they become available. Accordingly,
the EPSF algorithm allows more expensive calculation, including feature redundancy
checking (step 9), emerging pattern mining (steps 14-24), CMB(C) and CEP updating
(steps 25-39) all to be online conducted within the current CMB(C), which is usually
much smaller than the whole feature space.

5. EXPERIMENT RESULTS

5.1. Experiment Setup

In order to thoroughly evaluate the proposed EPSF algorithm, 16 datasets (in Table VII)
are selected including four from the UCI Machine Learning Repository (the first four)
[Blake and Merz 1998], four very high-dimensional biomedical datasets (hiva, ovarian
cancer, lymphoma, and breast cancer), four NIPS 2003 feature selection challenge
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datasets (madelon, arcene, dorothea, and dexter), and four frequently studied public
microarray datasets (the last four).

Our comparative study has the following systematical design, using 10-fold cross-
validation for all the experiments unless specified.

(1) Comparing EPSF with the state-of-the-art EP classifiers, CE-EP [Yu et al. 2013],
the EPSF algorithm in our previous KDD conference version (we call it Pre-
EPSF) [Yu et al. 2012], and the IG-EP classifier, the EP classifier with the infor-
mation gain feature selection method. (We do not compare EPSF with CAEP [Dong
et al. 1999], CBA [Liu et al. 1998], CMAR [Li et al. 2001b] and CPAR [Yin and Han
2003] since they fail to deal with high dimensionality in the scale of thousands or
more.)

(2) Comparing the prediction accuracy of EPSF with that of the state-of-the-art nonas-
sociative classifiers, including Naı̈ve Bayes (NB), KNN, Decision Tree J48, SVM,
Bagging, and AdaBoost using their implementation provided by the Weka tool [Hall
et al. 2009].

(3) Comparing the prediction accuracy of EPSF with that of NB, KNN, J48, SVM, Bag-
ging, and AdaBoost classifiers with the add-on information gain feature selection
method in Weka.

(4) Analyzing the statistical qualities of the EPSF algorithm against the rivals men-
tioned earlier using the kappa statistic [Cohen 1960], the Friedman test [Friedman
1940], and the Nemenyi test [Demšar 2006].

We simulate the streaming feature setting using benchmark datasets to evaluate
EPSF and Pre-EPSF by assuming that the dimensions on a benchmark training dataset
are available one at a time and each dimension is processed upon its arrival. To dis-
cretize continuous features, we use the discretization method in the Causal Explorer
Toolkit proposed by Aliferis et al. [2003]. In the experiments, we set the GR to 20 for
EPSF and CE-EP. To test the impact of the minimum support threshold, we set seven
minimum supports for EPSF, Pre-EPSF, and CE-EP, including 0.005, 0.01, 0.05, 0.1,
0.2, 0.3, and 0.4, respectively. The experiments were performed on a Window 7 Dell
workstation with an Intel Xeon 2.93GHz processor and 12.0GB RAM.

5.2. Comparison of EPSF and Pre-EPSF

Table VIII gives the results of computer runtime of EPSF against Pre-EPSF (the
EPSF algorithm in our previous version [Yu et al. 2012]). Comparing to Pre-EPSF, for
validating the redundancy of each originally existing feature in the current feature
subset, EPSF in this article avoids checking all subsets within the current feature
subset at each round by testing only the subsets created by the inclusion of a new
feature at each time point. Thus, in comparison with Pre-EPSF, EPSF in this article
significantly improves the updating efficiency, as shown in Table VIII. The best results
are highlighted in boldface.

Moreover, since EPSF needs fewer statistical tests to determine the redundancy of
a feature in the current feature subset than Pre-EPSF (hence less unintended estima-
tion errors are introduced), Table IX shows that EPSF gets higher prediction accuracy
on some datasets than Pre-EPSF, especially on high-dimensional datasets with small
samples, such as four NIPS 2003 feature selection challenge datasets and four fre-
quently studied public microarray datasets. In Table IX, we select the best prediction
accuracy under the seven minimum supports as the results for our comparative study.

Finally, Figure 2 reports the kappa statistics of EPSF and Pre-EPSF. In Figure 2, the
x-axis denotes all of the 16 datasets corresponding to Table VII. The kappa statistic
is a measure of consistency among different raters, taking into account the agreement
occurring by chance [Cohen 1960]. The kappa statistic is standardized to lie on a -1 to

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 30, Publication date: June 2015.



30:16 K. Yu et al.

Table VIII. Runtime (in Seconds): EPSF and Pre-EPSF

Dataset EPSF Pre-EPSF
infant 26 41
kr-vs.-kp 24 43
promoters 17 16
spectf 17 17
madelon 20 23
hiva 33 163
ovarian cancer 20 68
lymphoma 20 44
dexter 31 387
arcene 19 30
breast cancer 101 958
dorothea 146 440
colon 17 18
leukemia 19 22
lung cancer 30 117
prostate 20 27

(Best results in boldface).

Table IX. Prediction Accuracy (%): EPSF and Pre-EPSF

Dataset EPSF Pre-EPSF
infant 91.44 91.35
kr-v.s-kp 92.39 92.42
promoters 72.00 71.00
spectf 86.92 86.92
madelon 59.80 61.20
hiva 90.71 95.17
ovarian cancer 92.38 93.81
lymphoma 80.91 76.82
dexter 90.67 89.67
arcene 84.44 80.00
breast cancer 95.19 92.59
dorothea 95.06 94.94
colon 95.00 91.67
leukemia 100 100
lung cancer 99.44 98.89
prostate 98.00 95.00

(Best results in boldface).

Table X. Kappa Statistic and Its Corresponding Kappa Agreement

Kappa statistic <0 0.01–0.20 0.21–0.40 0.61–0.80 0.81–0.99
Kappa less than chance slight moderate substantial almost perfect
agreement agreement agreement agreement agreement agreement

1 scale, where 1 is perfect agreement, 0 is exactly what would be expected by chance,
and negative values indicate agreement less than chance. The other values of kappa
statistics and their corresponding kappa agreements are shown in Table X [Landis and
Koch 1977].

From Figure 2, EPSF is better than Pre-EPSF using kappa statistics, thus we can
conclude that EPSF is more reliable than Pre-EPSF. The explanation is that fewer
statistical tests of EPSF than those of Pre-EPSF make EPSF have more statistical
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Fig. 2. Kappa statistics of Pre-EPSF and EPSF on 16 datasets.

Table XI. Prediction Accuracy (%): EPSF, CE-EP, and IG-EP

Dataset EPSF CE-EP IG-EP
infant 91.44 94.92 91.61
kr-vs-kp 92.39 92.23 87.58
promoters 72.00 72.00 75.00
spectf 86.92 83.85 83.08
madelon 59.80 59.00 60.80
hiva 90.71 93.70 93.36
ovarian-cancer 92.38 92.86 83.33
lymphoma 80.91 77.73 78.18
dexter 90.67 88.33 79.33
arcene 84.44 86.67 68.89
breast-cancer 95.19 92.22 90.74
dorothea 95.06 95.06 93.92
colon 95.00 95.00 88.33
leukemia 100 100 100
lung-cancer 99.44 99.44 98.89
prostate 98.00 94.00 94.00
win/tie/loss / 5/8/3 10/3/3

(Best results in boldface).

power than Pre-EPSF. We can see that both EPSF and Pre-EPSF have only two kappa
statistics (the madelon and hive datasets) that are lower than 0.4 (under the red line in
Figure 2), since the madelon dataset is a synthetic dataset including many redundant
and noise features and hive is a very class-imbalanced dataset (the proportion of posi-
tive class is only 3.52%). Both have 11 kappa statistics that are higher than 0.6 (above
the blue line in Figure 2). Pre-EPSF is a reliable emerging-pattern classifier, while the
improved EPSF is more reliable and more efficient.

5.3. Comparison of EPSF with CE-EP and IG-EP

5.3.1. Comparison of Prediction Accuracy. Table XI reports detailed results in terms of
prediction accuracy (the percentage of the correctly classified test instances that are
previously unseen) of EPSF, CE-EP, and IG-EP on the 16 benchmark datasets. As for
EPSF, CE-EP, and IG-EP, we select the best prediction accuracy under the seven min-
imum supports as the results for our comparative study. The best result is highlighted
in boldface for each dataset.
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Fig. 3. Numbers of mined EPs: EPSF against CE-EP.

Fig. 4. Numbers of mined EPs: EPSF against IG-EP.

To further investigate the classification results, we conduct paired t-tests at a 95%
significance level and summarize the win/tie/loss counts of EPSF against CE-EP and
IG-EP. For example, as shown in the last row of Table XI, against CE-EP, EPSF wins
five times, ties eight times, and loses three times on the 16 datasets. EPSF is always
superior to or ties with IG-EP.

5.3.2. Comparison of the Numbers of Patterns and Runtime. Figures 3 and 4 compare the
numbers of patterns mined by EPSF against CE-EP and IG-EP. We report the average
numbers of mined patterns over all seven minimum support thresholds. In Figure 3,
the x-axis denotes all of the 16 datasets corresponding to Table VII. From Figure 3, we
can see that EPSF is very competitive with CE-EP on the number of mined patterns,
while IG-EP selects more patterns than EPSF and CE-EP, as shown in Figure 4. These
results illustrate that both EPSF and CE-EP can select a small set of strongly predictive
EPs from a very high-dimensional dataset. Furthermore, we can see that even with
very high dimensionality, the numbers of patterns selected by both EPSF and CE-EP do
not change much in comparison with those on the first four low-dimensional datasets
in Table VII.

The runtime (in seconds) of EPSF, CE-EP, and IG-EP contains all learning time, in-
cluding importing datasets, and 10-fold cross-validation learning and testing. Figure 5
reports the average runtime over all seven minimum support thresholds. In Figure 5,
we can see that EPSF is the fastest algorithm, while IG-EP is the slowest one.

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 30, Publication date: June 2015.



Classification with Streaming Features: An Emerging Pattern Mining Approach 30:19

Fig. 5. Runtime (in seconds): EPSF, CE-EP, and IG-EP.

Table XII. Kappa Statistics of EPSF, CE-EP, and IG-EP

Dataset EPSF CE-EP IG-EP
infant 0.4493 0.7875 0.4774
kr-vs.-kp 0.8448 0.8448 0.7508
promoters 0.5133 0.5133 0.5400
spectf 0.7131 0.6476 0.6306
madelon 0.2007 0.1866 0.2191
hiva 0.2477 0.3497 0.2311
ovarian cancer 0.8485 0.8621 0.7077
lymphoma 0.6318 0.5818 0.5864
dexter 0.8200 0.7742 0.5983
arcene 0.7467 0.7800 0.4867
breast cancer 0.8548 0.8197 0.7888
dorothea 0.7488 0.7362 0.6381
colon 0.9000 0.9167 0.7833
leukemia 0.9667 1.0000 1.0000
lung cancer 0.9857 0.9857 0.9714
prostate 0.9600 0.8733 0.8800

(Best results in boldface).

5.3.3. Analysis of the Statistical Qualities. To further analyze EPSF, CE-EP, and IG-EP,
we compare them by the kappa statistic and Nemenyi test. To calculate the kappa
statistic, we set the support threshold to 0.2 and the growth rate threshold to 20 for
EPSF, CE-EP, and IG-EP. Table XII shows the kappa statistics of EPSF, CE-EP, and IG-
EP. We observe that with the kappa statistics, the three classifiers have no significant
difference according to Table X.

Accordingly, we further use the Friedman test [Friedman 1940] and Nemenyi
test [Demšar 2006] to assess whether the performance of our algorithm EPSF is com-
parable to that of CE-EP and IG-EP in prediction accuracy. With the Friedman test
at 95% significance level, under the null hypothesis, which states that whether the
performance of EPSF and that of CE-EP and IG-EP have no significant difference in
prediction accuracy, the null hypothesis is rejected. We get the average ranks for EPSF,
CE-EP, and IG-EP as 2.3125, 2.1563, and 1.5313, respectively.

Then we proceed with the Nemenyi test as a post-hoc test to deal with this situation.
With the Nemenyi test, the performance of the two classifiers is significantly different
if the corresponding average ranks differ by at least the critical difference (for informa-
tion on how to calculate the average ranks and critical difference, see Section 3.2.2
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Table XIII. Comparison of Prediction Accuracy (%): EPSF, NB, IG-NB, KNN, IG-KNN, J48, and IG-J48

Dataset EPSF NB IG-NB KNN IG-KNN J48 IG-J48
infant 91.44 91.91 92.69 94.92 95.05 95.39 95.43
kr-vs.-kp 92.39 83.92 85.89 96.46 96.37 99.31 96.75
promoters 72.00 74.53 71.70 62.26 65.09 63.21 70.75
spectf 86.92 86.63 83.90 84.27 86.52 86.14 87.27
madelon 59.80 59.20 62.30 53.55 61.95 57.50 62.20
hiva 90.71 87.06 94.16 96.50 96.38 96.39 96.62
lymphoma 80.91 68.28 80.61 63.88 73.57 71.81 70.93
breast cancer 95.19 93.01 89.96 86.36 90.55 80.77 85.66
ovarian cancer 92.38 70.83 84.26 85.19 88.89 91.67 89.35
dorothea 95.06 90.25 93.63 90.63 93.38 89.38 93.13
arcene 84.44 63.00 73.00 80.00 79.00 62.00 77.00
dexter 90.67 93.33 78.33 63.67 86.00 82.67 87.00
colon 95.00 79.03 91.94 83.87 93.55 82.26 90.32
leukemia 100 93.06 100 97.22 100 93.06 95.83
lung cancer 99.44 98.34 98.90 98.34 98.34 90.61 96.69
prostate 98.00 69.61 94.12 93.14 94.12 88.24 93.14

(Best results in boldface).

Table XIV. Comparison of Prediction Accuracy (%): EPSF, SVM, IG-SVM, Bagging, IG-Bagging, AdaBoost,
and IG-AdaBoost

Dataset EPSF SVM IG-SVM Bagging IG-Bagging AdaBoost IG-AdaBoost
infant 91.44 95.45 95.48 95.65 95.51 95.43 95.43
kr-vs.-kp 92.39 95.06 94.02 99.22 96.25 93.84 93.84
promoters 72.00 79.25 70.75 66.98 72.64 66.04 72.64
spectf 86.92 88.02 89.89 90.37 87.64 84.27 85.39
madelon 59.80 56.45 62.75 62.20 62.45 60.50 60.7
hiva 90.71 94.70 96.26 96.76 96.57 96.48 96.48
lymphoma 80.91 77.53 79.30 68.28 78.85 62.56 68.72
breast cancer 95.19 92.31 90.21 84.97 88.81 84.61 87.41
ovarian cancer 92.38 93.52 91.67 88.89 87.96 91.67 89.35
dorothea 95.06 92.00 94.00 94.13 93.75 93.75 93.75
arcene 84.44 81.00 74.00 72.00 78.00 71.00 79.00
dexter 90.67 91.33 86.33 89.33 88.67 83.33 85.00
colon 95.00 85.48 88.71 85.48 85.48 85.48 91.94
leukemia 100 98.61 100 94.44 97.22 100 100
lung cancer 99.44 100 100 93.92 99.45 96.69 99.45
prostate 98.00 94.12 94.12 92.16 95.10 92.16 94.12

(Best results in boldface).

of Demšar [2006]). With the Nemenyi test, the critical difference we get is up to
0.8275.

Thus, with the critical difference and the average ranks calculated here, we conclude
that the performance of EPSF and that of CE-EP have no significant difference in
prediction accuracy, but are significantly better than that of IG-EP.

5.4. Comparison of EPSF against the Nonassociative Classifiers

Tables XIII through XIV give the empirical results in terms of prediction accuracy
of EPSF, six nonassociative classifiers, and the same six classifiers with the add-on
information gain feature selection method on the 16 benchmark datasets. We denote
the six classifiers with information gain feature selection as IG-NB, IG-KNN, IG-J48,
IG-SVM, IG-Bagging, and IG-AdaBoost, respectively. Table XV reports the runtime of
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Table XV. Comparison of Runtime (in seconds): EPSF, NB, KNN, J48, SVM, Bagging, and AdaBoost

Dataset EPSF NB KNN J48 SVM Bagging AdaBoost
infant 26 5 5 10 59 20 8
kr-vs.-kp 24 5 5 5 10 5 5
promoters 17 5 5 5 5 5 5
spectf 17 5 5 5 5 5 5
madelon 20 1 21 14 770 50 21
hiva 33 5 95 185 269 430 43
lymphoma 20 6 6 6 6 15 6
breast cancer 101 10 10 21 33 51 26
ovarian cancer 20 5 5 5 5 5 5
dorothea 146 70 975 675 670 1425 625
arcene 19 1 1 1 5 14 3
dexter 31 5 5 52 27 94 17
colon 17 5 5 5 5 5 5
leukemia 19 5 6 6 10 10 10
lung cancer 30 5 5 5 10 15 10
prostate 20 5 5 5 10 10 10

Table XVI. Win/Tie/Loss Counts of EPSF Versus the Other 12 Nonassociative Classifiers

NB KNN J48 SVM Bagging AdaBoost
EPSF 11/3/2 13/0/3 11/2/3 8/2/6 10/2/4 10/3/3

IG-NB IG-KNN IG-J48 IG-SVM IG-Bagging IG-AdaBoost
EPSF 9/4/3 10/2/4 11/1/4 8/3/5 9/3/4 9/4/3

(Pairwise t-test at 95% Significance Level).

EPSF, NB, KNN, J48, SVM, Bagging, and AdaBoost. EPSF is very competitive with
these six nonassociative classifiers. But on datasets with very high dimensionality or
large sample sizes—such as the madelon, hiva, and dorothea datasets—the runtime of
most nonassociative classifiers is more than that of EPSF.

To investigate the classification results of prediction accuracy, we conduct paired t-
tests at a 95% significance level and summarize the win/tie/loss counts of EPSF against
the other rivals in Table XVI. In Table XVI, we can see that EPSF is superior to NB,
KNN, J48, Bagging, and AdaBoost and their variants with the information gain feature
selection method, and also very competitive with SVM and IG-SVM. We have observed
in the experiments that the integration of the streaming feature selection into EP
mining can avoid generating non-EPs and redundant EPs. This enables EPSF not only
to handle high-dimensional datasets such as the last 12 datasets in Table VII, but also
to produce very promising prediction accuracy.

To further analyze prediction accuracies of these classifiers, we use the Friedman
test and Nemenyi test to assess their performance. With the Friedman test at 95%
significance level for EPSF, NB, KNN, J48, SVM, Bagging, and AdaBoost, the null-
hypothesis is also rejected. The average ranks of EPSF, NB, KNN, J48, SVM, Bagging
and, AdaBoost are 5.4063, 3.0313, 3.1875, 2.75, 5.375, 4.5, and 3.75, respectively. After
the Nemenyi test, the critical difference is up to 2.252. Therefore, we can conclude that
the performance of EPSF is significantly better than that of NB and J48, but is highly
comparable to that of KNN, SVM, Bagging, and AdaBoost.

Finally, with the Friedman test at 95% significance level for EPSF, IG-NB, IG-KNN,
IG-J48, IG-SVM, IG-Bagging, and IG-AdaBoost, the null hypothesis cannot be rejected.
Thus, the performance of EPSF has no significant difference from that of the six nonas-
sociative classifiers using the information gain feature selection method.

To further analyze the statistical qualities of EPSF, we compare EPSF with IG-NB,
IG-KNN, IG-J48, IG-SVM, IG-Bagging, and IG-AdaBoost by the kappa statistics and
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Table XVII. Comparison of Kappa Statistics: EPSF Against 6 Associative Classifiers with Information Gain
Feature Selection Method

Dataset EPSF IG-NB IG-KNN IG-J48 IG-SVM IG-Bagging IG-AdaBoost
infant 0.4493 0.4548 0.4328 0.5019 0.4851 0.5012 0.5174
kr-vs.-kp 0.8448 0.7165 0.9273 0.9348 0.8800 0.9248 0.8762
promoters 0.5133 0.4340 0.3019 0.4151 0.4151 0.4528 0.4528
spectf 0.7131 0.5528 0.5933 0.5886 0.6845 0.5797 0.5314
madelon 0.2007 0.2460 0.2390 0.2440 0.2550 0.2490 0.2140
hiva 0.2477 0.2327 0.0663 0.0996 0.0077 0.0731 0.0596
lymphoma 0.6318 0.6124 0.4717 0.4185 0.5859 0.5571 0.3743
breast cancer 0.8548 0.7515 0.7668 0.6281 0.7470 0.7035 0.6853
ovarian cancer 0.8485 0.6862 0.7765 0.7837 0.8305 0.7552 0.7827
dorothea 0.7488 0.6181 0.5425 0.5502 0.6100 0.5884 0.6091
arcene 0.7467 0.4664 0.5728 0.5298 0.4698 0.5557 0.5770
dexter 0.8200 0.5567 0.7200 0.7400 0.7267 0.7733 0.7000
colon 0.9000 0.8256 0.8561 0.7842 0.7456 0.6729 0.8220
leukemia 0.9667 1.0000 1.0000 0.9089 1.0000 0.9376 1.0000
lung cancer 0.9857 0.9620 0.9438 0.8861 1.0000 0.9808 0.9808
prostate 0.9600 0.8825 0.8825 0.8627 0.8824 0.9020 0.8823

(Best results in boldface).

Nemenyi test. Since the prediction accuracy of IG-NB, IG-KNN, IG-J48, IG-SVM, IG-
Bagging, and IG-AdaBoost is better than NB, KNN, J48, SVM, Bagging, and AdaBoost,
we do not give the kappa statistics of NB, KNN, J48, SVM, Bagging, and AdaBoost.
We can see that EPSF gets higher kappa statistics than the other six classifiers in
Table XVII, especially on the class-imbalance datasets, such as hiva and dorothea, or
the datasets with high dimensionality but small sample sizes, such as lymphoma and
prostate. A possible explanation is that the emerging patterns of each class are correctly
mined by EPSF from the corresponding class data and represent strong contrasts
between different classes of data.

Why is the prediction accuracy of EPSF not better than that of IG-EP and 12 nonasso-
ciative classifiers on the low-dimensional datasets, such as infant, kr-vs.-kp, promoters,
spectf , madelon, and hiva, while it is better than that of these algorithms on the remain-
ing high-dimensional datasets? The explanation is that a high-dimensional dataset
would have a better chance of including excessive irrelevant or redundant features than
a low-dimensional dataset. Those excessive irrelevant or redundant features might
significantly reduce performance of predictive models. Thus, on a high-dimensional
dataset, the adverse impact of irrelevant or redundant features on predictive models is
more significant than that on low-dimensional datasets. Our empirical results reveal
that EPSF can deal with irrelevant or redundant features in high-dimensional datasets
much better than the other rivals.

In summary, we can conclude that for datasets with streaming features, the per-
formance of EPSF is very competitive with that of CE-EP and is better than that of
IG-EP, which both need to obtain a complete set of features in advance. Furthermore,
in comparison with the six nonassociative classifiers and the six classifiers with the
information gain feature selection method, the prediction accuracy of EPSF is also very
competitive with that of these 12 nonassociative classifiers.

5.5. Analysis of Prediction Accuracy on Support Thresholds

Figure 6 shows the prediction accuracy of EPSF and CE-EP under the seven support
thresholds, 0.005, 0.01, 0.05, 0.1, 0.2, 0.3, and 0.4. We can see that in prediction accu-
racy, for all 16 datasets, EPSF is insensitive to the different support thresholds, even for
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Fig. 6. Sensitivity analysis of support thresholds on prediction accuracy.

Fig. 7. The effect of GR thresholds on CE-EP.

those high-dimensional datasets. Furthermore, EPSF is not only more insensitive, but
also always achieves higher accuracy under all seven support thresholds than CE-EP.

5.6. Analysis of Prediction Accuracy on Growth-Rate Thresholds

To further explore the performance of EPSF and CE-EP, we conduct an analysis on pre-
diction accuracy of EPSF and CE-EP under seven minimum GR thresholds, as shown
in Figures 7 and 8, where GR stands for growth rate thresholds and the minimum
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Fig. 8. The effect of GR thresholds on EPSF.

Fig. 9. Effect of the input order of features.

support threshold is fixed at 0.1. In Figures 7 and 8, the x-axis denotes all 16 datasets
corresponding to Table VII. From Figures 7 and 8, we can see that CE-EP and EPSF
are not sensitive to the minimum GR thresholds at all.

5.7. Effect of the Input Orders of Features

Since streaming features are processed one by one as they are available, we conduct
an analysis of prediction accuracy on the input (or scan) order of features, against
CE-EP and SVM as the rival algorithms. We generate a number of trials, each trial
representing a random input order of features. We apply EPSF to each randomized trial
and report the results in Figure 9, in which the x-axis represents each of the randomized
trials and the y-axis represents the prediction accuracy from the corresponding trial.
The results in Figure 9 confirm that varying the input order of features does slightly
impact on the prediction accuracy; however, the results demonstrate that EPSF has a
relatively stable performance.

5.8. Mining EPs with Features That Keep Arriving

When the features keep arriving, EPSF provides a solution to this problem by process-
ing features one by one and stopping this process using the EPs seen so far with a
user-specified criterion. CE-EP cannot deal with this situation since it needs to access
all features in advance to identify the causes and effects of the class attribute. We
evaluate this performance of EPSF in Figure 10. For four gene datasets, we select the
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Fig. 10. Comparative performance of EPSF with features that keep arriving.

first 2/3 data instances as the training instances and the remaining for testing; for the
breast cancer dataset, we select the first 200 data instances as the training instances
and the remaining for testing. With respect to the dorothea dataset, we use its original
training and testing datasets. SVM and AdaBoost are used as baselines on the training
and testing sets with a complete set of features. With streaming features, EPSF mines
EPs on the training samples as the features are available one by one and evaluates the
current EPs on the testing samples.

On the colon dataset, when the percentage of features available is up to 20% or 50%,
the prediction accuracy of EPSF is the same as SVM. When features are all available,
the accuracy of EPSF is up to 100%, and is better than SVM. For the remaining
datasets, EPSF can be also up to the accuracy of SVM or AdaBoost without exhaustive
search over an entire feature set. This demonstrates that EPSF provides an effective
and efficient solution to the EP mining problem when it is impossible to get a complete
set of features in advance and must be consumed features in an online manner.

5.9. A Case Study on Automatic Impact Crater Detection

In addition to the validation of the publicly available benchmark datasets, we also
apply our new approach to automatic impact crater detection in real planetary images.
Impact craters, the structures formed by the collisions of meteoroids on planetary
surfaces, are among the most studied geomorphic features in the solar system because
they yield information about past and present geological processes and provide the
only tool for measuring relative ages of planetary surfaces, that is, heavily cratered
surfaces are relatively older than less cratered surfaces [Urbach and Stepinski 2009;
Ding et al. 2011].

In this case study, the EPSF algorithm is plugged into the crater detection framework
designed by Ding et al. [2011]. The calculation contains three steps: (1) identifying
crater candidates; (2) extracting image texture features; and (3) detecting craters using
supervised learning algorithms.

Crater candidates are the regions of an image that may potentially contain craters.
A key insight into identifying crater candidates is that a crater can be recognized as a
pair of crescent-like highlight and shadow regions in an image, as shown in Figure 11.
Those highlight and shadow regions are matched so that each pair will be used to
construct crater candidates, that is, the locations where craters are likely to reside.
The experiments in crater detection are evaluated on Mars because it is at the center
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Fig. 11. (A) An illustration explaining why an image of a subkilometer crater consists of crescent-like
highlight and shadow regions. (B) An image of an actual 1km crater showing the highlight and shadow
regions [Ding et al. 2011].

Fig. 12. Impact craters in a 37,500×56,250m2 test image from Mars [Ding et al. 2011].

Table XVIII. Summary of Crater Datasets

# Samples (Crater Candidates) # Features
West region 6,708 1,089
Central region 2,935 1,089
East region 2,026 1,089

of NASA exploration efforts. A portion of the High Resolution Stereo Camera (HRSC)
nadir panchromatic image h0905 is selected, taken by the Mars Express spacecraft,
to serve as the test set [Ding et al. 2011]. The selected image has a resolution of
12.5 meters/pixel and a size of 3,000 by 4,500 pixels (37,500×56,250m2). The image
represents a significant challenge to automatic crater detection algorithms because
it covers a terrain that has spatially variable morphology and because its contrast is
rather poor (mostly noticeable when the image is inspected at a small spatial scale).

As the image arrives, it is divided into three sections denoted as the west region,
the central region, and the east region (Figure 12) for the test sets summarized in
Table XVIII. The central region is characterized by surface morphology that is distinct
from the rest of the image. The west and east regions have similar morphology, but the
west region is much more heavily cratered than the east region. A total of 1,089 image
texture features are constructed. The training set consists of 204 true craters and 292
noncrater examples selected randomly from crater candidates located in the northern
half of the east region.
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Fig. 13. Emerging patterns for crater detection.

Table XIX. Top 5 Emerging Patterns for Craters

ID Emerging Patterns for Craters Support in Noncraters Support in Craters Growth Rate
1 {f45∈[-138.46, -12.52],

f46∈[-165.18, -27.76],
f185∈[-102.58, -9.99],
f420∈[-39.82,136.04]}

0.34% 59.31% 173.1961

2 {f45∈[-138.46, -12.52],
f46∈[-165.18, -27.76],
f68∈[-140.53, 2.97],
f420∈[-39.82,136.04]}

0.68% 62.75% 91.6078

3 {f45∈[-138.46, -12.52],
f46∈[-165.18, -27.76],
f358∈[-113.51, 2.4],
f420∈[-39.82,136.04]}

0.68% 62.25% 90.8922

4 {f45∈[-138.46, -12.52],
f53∈[-155.16, 10.36],
f185∈[-102.58, -9.99],
f420∈[-39.82,136.04]}

0.68% 58.33% 85.1667

5 {f45∈[-138.46, -12.52],
f185∈[-102.58, -9.99],
f420∈[-39.82,136.04]}

1% 60.29% 58.6863

5.9.1. Emerging Patterns for Crater Detection. With the crate datasets summarized ear-
lier, the framework for counting craters by emerging patterns is shown in Figure 13.
In Steps 4 and 5 of Figure 13, we apply the EPSF and CE-EP algorithms to high-
dimensional crater data for counting craters. Tables XIX and XX show the top 5 EPs
mined from the crater training datasets for the crater class and noncrater class using
the EPSF algorithm, respectively. In Tables XIX and XX, f45 denotes the 45th feature
in the training crate dataset while [–138.46, –12.52] represents the value of feature f45.
In Table XIX, the supports of the EPs in the crater class are much larger than in the
noncrater class. An instance containing one of those EPs will favor the crater class. In
Table XX, the first three EPs are the jumping EPs of the noncrater class, and denote the
instances containing those EPs as the noncrater class. Accordingly, we conclude that
the EPs mined by the EPSF algorithm are high-quality patterns and possess the most
discriminative power. They are the best candidates to be used to construct a highly
accurate classifier and also can produce an understandable classifier for crater data.

5.9.2. Comparison with Existing Crater Detection Methods. In this section, we compare EPSF
with the state-of-the-art crater detection algorithms, CE-EP and Nave Boost [Ding et al.
2011]. The best results are boldfaced in Table XXI. Table XXI shows that, except for
the west region, EPSF outperforms the CE-EP and Nave Boost algorithms.
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Table XX. Top 5 Emerging Patterns for Noncraters

Emerging Patterns for
ID Noncraters Support in Crater Support in noncrater Growth rate
1 {f46∈[-27.76,144.03],

f185∈[-9.99,120.97], f358∈[2.4,
88.26]}

0 60.96% ∞

2 {f45∈[-12.52,158.41],
f185∈[-9.99,120.97], f358∈[2.4,
88.26]}

0 57.53% ∞

3 {f68∈[2.97, 140.72],
f185∈[-9.99,120.97], f358∈[2.4,
88.26]}

0 56.16% ∞

4 {[f53∈[10.36, 154.01], f358∈[2.4,
88.26]}

9.8% 61.30% 62.55

5 {f45∈[-12.52,158.41],
f53∈[10.359,154.01],
f185∈[-9.99,120.97],
f420∈[136.04,276.73]}

1.47% 66.10% 44.95

Table XXI. Prediction Accuracy on Three Regions

West Region Central region East region
EPSF 0.7847 0.7959 0.7784
CE-EP 0.7852 0.7802 0.7739
Nave Boost 0.7661 0.7888 0.7749

(Best results in boldface).

Table XXII. Prediction Accuracy on Three Regions (KNN)

West Region Central Region East Region
EPSF 0.7847 0.7959 0.7784
OSFS 0.7809 0.7874 0.7828
HITON-PC 0.7749 0.7792 0.7813
LARS 0.7740 0.7881 0.7799
FCBF 0.7821 0.7833 0.7828
All features(1089) 0.7303 0.7499 0.7710

(Best results in boldface).

5.9.3. Comparison with the Other Methods. In this section, we compare the prediction
accuracy of EPSF with that of the classifiers, KNN and SVM, with some state-of-the-art
feature selection algorithms, OSFS [Wu et al. 2013], HITON-PC [Aliferis et al. 2010],
LARS [Efron et al. 2004], and FCBF [Yu and Liu 2004]. The best results are boldfaced
in Tables XXII and XXIII. From Tables XXII and XXIII, we can see that EPSF produces
higher prediction accuracy than the other four algorithms in the central region and
gets very competitive results with the other rivals in the remaining regions. Moreover,
the classifier constructed with the mined EPs can help us understand the crated data.

6. CONCLUSIONS

In this article, to learn and maintain a classification model on data with streaming fea-
tures, we have adapted the well-known emerging-pattern–based classification methods
and proposed a semi-streaming approach. This new approach is fundamentally differ-
ent from applying emerging-pattern mining in a straightforward manner on a dataset
with streaming features. With streaming-feature selection, our approach online builds
two pools: a feature pool and a 1-itemset EP pool, and periodically computes and
updates emerging patterns from the 1-itemset EP pool for classification model con-
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Table XXIII. Prediction Accuracy on Three Regions (SVM)

West Region Central Region East Region
EPSF 0.7847 0.7959 0.7784
OSFS 0.7856 0.7874 0.7730
HITON-PC 0.7815 0.7877 0.7710
LARS 0.7840 0.7888 0.7794
FCBF 0.7826 0.7923 0.7794
All features(1089) 0.7683 0.7710 0.7754

(Best results in boldface).

struction and maintenance. The streaming feature selection step substantially reduces
the dimensionality of the feature space under which the offline emerging-pattern min-
ing step has to operate. Due to the effective streaming feature selection customized for
emerging-pattern mining, the emerging patterns mined in the offline step tend to be
short, and this practically facilitates emerging-pattern mining dramatically. Compre-
hensive experimental results on benchmark datasets and a real-world case study on
automatic impact crater detection have demonstrated the effectiveness and efficiency
of our approach.
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