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It is well known that processing big graph data can be costly on Cloud. Processing big
graph data introduces complex and multiple iterations that raise challenges such as parallel
memory bottlenecks, deadlocks, and inefficiency. To tackle the challenges, we propose a
novel technique for effectively processing big graph data on Cloud. Specifically, the big data
will be compressed with its spatiotemporal features on Cloud. By exploring spatial data
correlation, we partition a graph data set into clusters. In a cluster, the workload can be
shared by the inference based on time series similarity. By exploiting temporal correlation,
in each time series or a single graph edge, temporal data compression is conducted.
A novel data driven scheduling is also developed for data processing optimisation. The
experiment results demonstrate that the spatiotemporal compression and scheduling
achieve significant performance gains in terms of data size and data fidelity loss.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

With the fast development of modern information technology, we enter a new era of data explosion which introduces
the new problems for big data processing. The definition of big data is as follows. Big data [1–4] is a collection of data sets
so large and complex that it becomes difficult to process with on-hand database management systems or traditional data
processing applications. It represents the progress of the human cognitive processes, usually including data sets with sizes
beyond the ability of current technology, method and theory to capture, manage, and process the data within a tolerable
elapsed time [2,3,10,11]. Big data has the typical characteristics of three ‘V’s, volume, variety and velocity. Big data sets
come from many areas, including meteorology, connectomics, complex physics simulations [1,2], genomics [1], biological
study, gene analysis and environmental research [2]. Big data sets also come from finance and business informatics in which
Internet search is greatly influenced and limited. These data sets grow in high speed and size because they are increasingly
being collected or generated by ubiquitous mobile sensing devices, aerial sensory systems, cameras, microphones, software
logs, radio-frequency identification readers, business transactions and wireless sensor networks [1,2]. According to literature
[3,4], since 1980s, the technological generated information data doubled its size in every 40 months all over the world. In
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the year of 2012, there were 2.5 quintillion (2.5 × 1018) bytes of data being generated every day. Hence, the technique to
process big data has become a fundamental and critical challenge for modern society.

Cloud computing can be regarded as an ingenious combination of a series of developed or developing ideas and tech-
nologies, establishing a pay-as-you-go business model by offering IT services using economies of scale [5–10,15–18]. Cloud
computing is the use of computing resources (hardware and software) that are delivered as a service over a network (typi-
cally the Internet). The name comes from the use of a Cloud-shaped symbol as an abstraction for the complex infrastructure
it contains in system diagrams. Cloud computing entrusts remote services with a user’s data, software and computation.
It allows companies to avoid upfront infrastructure costs, and focus on projects that differentiate their businesses instead
of infrastructure. Cloud computing relies on sharing of resources to achieve coherence and economies of scale similar to a
utility (like the electricity grid) over a network. At the foundation of Cloud computing is the broader concept of converged
infrastructure and shared services.

Cloud computing provides an ideal platform for big data storage, dissemination and interpreting with its massive compu-
tation power. In lots of real world applications, such as social networks, complex network monitoring, the scientific analysis
of protein interactions and wireless sensor networks self monitoring, it is avoidable to encounter the problem of dealing
with big graph data and big graph data streams. To monitor individual nodes, their related behaviours and detecting the
abnormal operation, huge amount of streaming graph data must be processed and analysed. It is well known that the pro-
cessing of big graph data can be costly and inefficient with current typical Cloud computing techniques or tools, such as
Map-Reduce [27–30]. Those big graph data processing techniques introduce complex and multiple iterations. Those itera-
tions and recursive algorithms may cause computation problems such as parallel memory bottlenecks, deadlocks on data
accessing, algorithm inefficiency [27–30]. In other words, under some circumstances, even with Cloud platform, the task of
big data processing may introduce unacceptable time cost, or even lead to processing failures.

To curb and avoid the formation of the above problems, in this paper, we propose a novel technique for effectively
processing big data, especially streaming big graph data on Cloud. Generally speaking, the big data will be compressed
firstly with its spatiotemporal features on Cloud. By exploring spatial correlation of big data, we partition a graph data set
into clusters so that, in one cluster all edges from the graph have similar time series of data. In each cluster, the workload
can be shared by the inference based on time series similarity. By exploiting temporal correlation, in each time series or
a single edge in a graph data set, temporal data compression is conducted according to time series trend and data item
order. Based on the spatiotemporal compression, a data driven scheduling will be developed to allocate the computation
and storage on Cloud for better big data processing services. The evaluation is conducted on three aspects for measuring
the performance gains of this novel data processing approach. Firstly, the data size can be significantly reduced by the
spatiotemporal compression on Cloud compared to the previous big data processing techniques. Secondly, our data driven
scheduling based on the spatiotemporal compression can distribute big data processing workload optimally on Cloud to
achieve significant time performance gains. Thirdly, the data processing quality and fidelity loss of our proposed approach
comes to most of application requirement.

1.1. Organization of the paper

The research work in this paper is organized as follows. In Section 2, we review the related work and offer the problem
analysis. In Section 3, a novel spatiotemporal compression technique on Cloud for big data will be introduced to reduce the
size of big data sets. In Section 4, a novel scheduling algorithm is developed to distribute the big data, or graph data on
the Cloud platform with better fairness for time performance gains. This scheduling will be based on the processing results
from the spatiotemporal compression offered in Section 4. In Section 5, we offer the integrated approach and the related
algorithms for the compression and the scheduling proposed in Sections 3 and 4. In Section 6, evaluation is designed and
conducted in three aspects to verify the algorithms in terms of data exchange size, the time efficiency and fidelity loss (data
processing quality). In Section 7, we conclude the work in this paper with the outlook of future work.

2. Related work & problem analysis

In this section, the current state of art related to this paper are reviewed including big data processing, Cloud comput-
ing, spatiotemporal data compression and clustering, and some specific tools for big data processing over Cloud such as
MapReduce and Hadoop. With the review of the current typical work, the corresponding problem analysis will be offered.

2.1. Related work

Nowadays, big data is measured with terabyte, petabyte, exabyte or zettabyte which offer a direct feeling of big data
size [3]. The huge size is one important feature, but not the only one feature for big data. It can be typically described as
the characteristics of three ‘V’s, volume, variety and velocity. Specifically, big data sets have a large or even endless data
volume which makes its computation and management exhaust incredible resources. In addition to the large volume, the
sources of big data sets can be very diverse. It means that the format and structure of big data set can change. The data
types are far more beyond traditional structured data under the theme of big data. The high velocity of big data makes it
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time sensitive and stream-like. The main challenges of big data processing include capture, recover, storage, search, sharing,
analysis, interpretation and visualization [1,2].

There are some real world big data examples as follows [1–4,31]. For business, finance institute and scientific research,
there is important information buried under the ocean of big data. That information can bring significant financial value.
For example, the health care financial cost in US is around $300 billion per year, which is 0.7% annual productivity growth
of US. The effective mining and processing big data for US health care means million dollars financial saving. The big data
also comes from US retail market. There is 60% retail increase per year, which counts for 0/5%–1% US annual productivity.
To analyse and interpret that big data, it can help business to improve its market profits. In the US manufacturing industry,
with the adoption of some proper big data processing techniques, the cost for product development decreases up to 50% and
the working capital reduces up to 7%. The cost for Europe public sector administration is around €250 billion per year. It
occupies 0.5% annual productivity growth of the Europe Union. To understand the big data from climate observation in real
time is critical for scientific research, agriculture, public transportation, weather insurance company, aviation and military
activities. It can protect profits of everybody from bad weather.

In order to process big data sets, different techniques, approaches and platforms have designed and developed. Whatever
the technology is based on, hardware or software, they mainly focus on three topics, increasing data storage, increasing data
processing and data availability. Data storage has grown significantly with shifting from analog to digital devices in past 20
years. Similarly to storage devices, the computation capability of modern processing devices can reach more than 6.5 × 1012

million instructions per second. The computation capacity has experienced a sharp increase. Current techniques for big data
processing and analysis include classification, parallel computing, distributed computing, cluster analysis, crowd sourcing,
regression, spatial analysis, learning, temporal analysis, neural networks, network analysis, optimisation, prediction, pattern
recognition, data fusion & integration and visualization, etc.

Those current developments offer a solid support for processing big data in a distributed and paralleled model. Current
technologies such as grid and Cloud computing all aim to access huge computing power by aggregating multiple resources
and offering an integral system view [8,9]. Among these technologies, Cloud computing proves to be a powerful architecture
conduct large-scale, distributed and paralleled processing for complex computing. Cloud computing [5,6] has offered an
approach to abstract and use computing infrastructure. An important aim of Cloud computing is to deliver computing as a
solution for processing big data, such as large-scale, multi-media and high dimensional data sets. Both big data and Cloud
computing are the fastest-moving technologies identified in Gartner Inc.’s 2012 Hype Cycle for Emerging Technologies [5,7].
Therefore, Cloud computing is a fine answer when talking about big data processing method for different resources.

At present, some work has been done for processing big data with Cloud. For example, Amazon EC2 infrastructure as ser-
vice is a typical Cloud based distributed system for big data processing. Amazon S3 supports distributed storage. MapReduce
[12,13,28,29] is adopted as a programming model for big data processing over Cloud computing. Plenty of recent research
has investigated the issues of processing incremental data on Cloud. Kienzler et al. [24] designed a “stream-as-you-go” ap-
proach to access and process on incremental data for data-intensive Cloud applications via a steam-based data management
architecture. Bhatotia et al. [25] extended the traditional Hadoop framework [14] to a novel one named as Incoop by incor-
porating several techniques like task partition and memorization-aware schedule. Olston et al. [26] presented a continuous
workflow system called Nova on top of Pig/Hadoop through stateful incremental data processing.

Recently, MapReduce has been widely revised from a batch processing framework into a more incremental one to analyse
huge-volume incremental data on Cloud [13]. It is a framework for processing parallelisable problems across big datasets
using a large number of computers (nodes), collectively referred to as a cluster in which all computers (nodes) are on
the same local network and use similar hardware; or a grid in which the nodes are shared across geographically and
administratively distributed systems. Computational processing can occur on data sets stored either in a file system with
unstructured or semi-structured data, or in a database with structured data. MapReduce can take advantage of locality of
data, processing data on or near the storage assets to decrease transmission of data. There two main steps to use MapReduce
function. At “Map” step, the master node takes the input, divides it into smaller sub-problems, and distributes them to
worker nodes. A worker node may do this again in turn, leading to a multi-level tree structure. The worker node processes
the smaller problem, and passes the answer back to its master node. At “Reduce” step, the master node then gathers the
answers to all the sub-problems and combines them in some way to generate the final output. MapReduce can be applied
to significantly larger datasets than “commodity” servers can handle. It can sort a petabyte of data in only a few hours. The
parallelism also offers some possibility of recovering from partial failure of servers or storage during the operation. If one
mapper or reducer function fails, the work can be rescheduled if the original input data is still available.

However, MapReduce also has its disadvantage in terms big data processing over Cloud computing. Under MapReduce
programming model for Cloud, target problem needs to be parallelisable and split into a set of smaller code. Smaller pieces
of code are executed in parallel over Cloud computing platform. This working style of MapReduce introduces lots of itera-
tions when encountering big graph data. The real world big data graph examples include bipartite of appearing phrases in
documents, social networks, airline graph, gene expression data, protein interactions and sensor networks monitoring. The
modern graph data may take the form of data stream where newly created data is added into big data graph continuously.
To process that big data sets or stream in big data graph, MapReduce may not be suitable because many iterations are
brought for parallel graph processing [27,30,32]. Firstly, online query support is insufficient. Secondly, graph data cannot
be intuitively expressed by MapReduce. Thirdly, each intermediate iteration result of graph data needs to be materialized.
The whole graph structure needs to be sent on networks iteration after iteration [32] which incurs huge data movement.
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That huge amount of intermediate results and data movement may cause time inefficiency, deadlock, errors and bad perfor-
mance. So, how to design efficient parallel algorithms for processing big graph data, or big streaming graph data becomes
an interesting research topic.

Spatiotemporal data suppression and its related data clustering, compression techniques can be widely found in network
data processing area [19–22]. They are useful in terms of data exchange reduction over Cloud platform. Specifically, the
work of CAG [20] presented an updated CAG algorithm that forms clusters of nodes with similar values within a given
threshold (spatial correlations). The formed clusters remain unchanged as long as the sensor values stay within the given
threshold (temporal correlations) over time. With the clustering technique, every time, there is only one sensor data being
transmitted; whereas the data aggregation algorithm without clustering requires all nodes to transmit. Low Energy Adaptive
Clustering Hierarchy (“LEACH”) [22] is a TDMA-based MAC protocol which is integrated with clustering and a simple routing
protocol in networks systems such as WSN. The goal of LEACH is to provide data aggregation for sensor networks while
providing energy efficient communication that does not predictably deplete some nodes more than others. LEACH is a
hierarchical protocol in which most nodes transmit to cluster-heads, and the cluster-heads aggregate and compress the
data and forward it to the base station. Each node uses a stochastic algorithm at each round to determine whether it will
become a cluster-head in this round. Nodes that have been selected as cluster-heads cannot become cluster-heads again
for next k rounds in LEACH, where k is the desired percentage of cluster heads. Hence, each node has a 1/k probability of
becoming a cluster-head in each round. At the end of each round, each node that is not a cluster head selects the closest
cluster-head to join a cluster. Finally, all nodes that are not cluster-heads only communicate with the cluster head according
to the schedule created by the cluster-head. LEACH offers an approach to automatically select suitable cluster-heads in
terms of energy situation and radio coverage. It solves the technical issues such as topology construction and routing table
maintenance. Edara [21] proposed a temporal trend based time series prediction model which can predict the future data
with a small cost in real time. With respect to data compression, the temporal and order compression [19] techniques
were used to reduce the data exchanges within a network topology. It can be further calibrated to satisfy the big data set
reduction over Cloud platform. In work [23] proposed by Ail, the spatiotemporal based clustering and order compression
were chosen adaptively for data compression over sensor networks. However, the data exchanging model is quite similar to
that over a data exchanging network analysed with Cloud computing. In other words, the compression idea in WSN can be
used on Cloud to reduce the size of big data set and graph data.

2.2. Problem analysis: big data processing on Cloud

As introduced in 2.1, nowadays, lots research work has been done towards the big data processing on Cloud. Cloud
itself as a powerful computation and storage platform, also proves to be a suitable answer for processing and analysing big
data. However, under the theme of big graph data processing, current typical techniques such as MapReduce may introduce
high computation cost [27–30,32]. More work is still expected to improve the effectiveness and efficiency in terms of big
graph data processing on Cloud. Therefore, compared to the too much iteration introduced by MapReduce, we aim to offer
an optimal solution for streaming big graph data processing for applications with high real time requirement, we propose
a novel approach to process streaming big data of cluster-head architecture over Cloud platform. This approach consists
of two important technique parts. The first part focuses on reducing the data size over Cloud computing platform with
spatiotemporal compression. Specifically, a clustering algorithm is developed based on spatial similarity calculation between
multiple time series or streams of data. It compares the data streams according to the topology of the streaming data
graph topologies from the real world. Generally speaking, under clustered network architecture, there are two classes of
data interaction between data nodes from a complex data exchange network. One is the data interaction flows between
the sibling nodes. The other is the interaction data flows between the leaf nodes and the cluster-nodes. In terms of the
data exchange between leaf nodes and a cluster-head, the similarity model is relatively simple because it only involves the
computation of the multiple attributions inside the data. All the similar data streams between a cluster-head and its leaf
data nodes can be approximately inferred with a certain mathematic function based on only one or several bilateral data
streams. In terms of the data exchange between sibling nodes, a data vector should include different origin and destination.
The correspondent computation of similarity should also be modified with the consideration of different data origin and
destination. Furthermore, because the data items in streaming big data sets are heterogeneous and carry very rich order
information themselves, we develop an order compression algorithm to further reduce the size of big data sets.

The second part of our proposed big data processing approach focuses on the computation resource allocation of the
Cloud. For the graph data, especially a big graph data set, the data can be heterogeneous and unfairly distributed over
the Cloud platform. However to mapping this data to the Cloud platform for data processing, we need to consider the
heterogeneous feature of the data. For example the data size from two nodes may be significantly different. To allocate the
computing resource of Cloud according to node is not reasonable. Therefore we aim to offer a scheduling based on the
analysis of data size from each node in a data exchange network to achieve shorter big data processing time and higher
computing resource utility.

As shown in Fig. 1, the data streams generated from a complex social network pour into Cloud processing platform. To
monitor individual nodes, their related behaviours and detecting the abnormal operation, huge amount of streaming graph
data must be processed by Cloud. According to different application purposes, the processing over this streaming big graph
data can be categorized to two types.
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Fig. 1. Requirement for processing on-fly streaming data graph in Cloud computing.

The first one type focuses on parallel data storing over large-scale distributed storage stock of Cloud platform. The stored
big graph data or stream data sets will be queried and evaluated as the model of distributed data-base in Cloud, such as
“Hydoop” [14] and its related “Hive”, “HBase”, “Zookeeper”, and so on. The data processing results are offered as services to
Cloud end users. The other type of applications cares more about the real time results and instance monitoring feedbacks
over on-fly streaming graph data which may be unnecessary to be stored after high velocity data filtering. Under theme
of this type of data processing, there is no need for permanent data storage nodes to intake high volume of data. The
graph-based streaming data will be directly processed with some efficient filtering and event triggering algorithms. The
correspondent approach for allocating the resources of Cloud computing is also needed to be developed to achieve costless
computation and quick reaction time for event monitoring. Our approach proposed in this paper will mainly work in this
application type to achieve both low computation cost and shorter, quicker processing reaction time.

3. Spatiotemporal compression

In Section 2, some typical big data processing techniques and tools over Cloud has been reviewed and analysed. In this
section, we will introduce a novel technique based on spatiotemporal data correlations to compress big data on Cloud.

3.1. Spatiotemporal clustering for time series

In this section, we will introduce a clustering technique based on spatiotemporal data correlations. It computes the
similarity of time series with regression. The definition, the similarity computation model and analysis of this similarity
computation will be offered. It will be used for clustering the nodes in cluster-head network architecture. It aims to reduce
the data exchange within each cluster by data guessing and inference.

3.1.1. Motivation
As shown by the motivating example in Fig. 2, there are several time series collected by the real world noisy sensor

nodes deployed in a public transportation area. The sound is measured in standard Decibel (dB).
Specifically, data time series 1 and 2 are quite similar to each other according to the whole sampling period from sample

1 to 90. In other words, time series 1 or 2 can be used to approximately represent each other, which is used by most
of current clustering algorithms to reduce the data size. For example, to report the three time series 1, 2 and 3, previous
clustering algorithms can divide three time series into 2 time series groups A and B. In group A, there are time series 1 and
2 from sensor 1 and sensor 2. In group B, there is time series of sensor 3. However, there is one problem in the previous
clustering algorithms. The timing of re-clustering for time series is not optimal. Because the re-clustering frequency has
huge influence for the energy cost, for a given data series set, we want to do the minimum re-clustering to capture the
maximum time series difference. In Fig. 2, it can be observed that, from sample 65, the data feature of time series 1, 2 and
3 changes. The time series before sample 65 is very bumpy. It means that, the difference between time series 1, 2 and 3 can
change quickly. To capture that changing, more clustering operation is required. But after sample 65, time series 1, 2 and 3
become relatively smooth and static. It means that with less re-clustering operation, the partition of time series groups can
be done with the satisfaction to accuracy requirement. In order to capture these attributes of three time series and carry out
effective clustering, different method can be adopted. For example, if the data window with of each node can be maintained
by a cluster-head, we can use normal regression to predict the data trend of each time series. Hence, that data trend can
be used as a criterion for sensor nodes partition in each cluster. Furthermore, how to choose an optimal time frequency
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Fig. 2. Motivating example clustering based on time series difference.

of re-clustering according to the feed back of analysis of data history raises an interesting research topic. In this paper,
we develop a clustering algorithm with improved data aggregation which in stead of carrying out regression over a set of
historical data directly, it carries out data aggregation over a consecutively series of weighted data changes. For example,
in Fig. 2, to predict the changing trend after sample 65, the prediction regression model will not directly work on the data
samples before time stamp 65. As an alternative, a series of data trends with time stamp from 1 to 64 will be calculated for
regression. In addition, with our proposed method, the problem of how to choose an optimal timing for re-clustering will
also be discussed. We will give an approach to choose a suitable data distribution to deploy our proposed clustering. Hence,
over the unsuitable data distributions, the clustering can be terminated to avoid the cost of frequent clustering operations.

3.1.2. Similarity and error model influence to clustering
Our clustering algorithm based on weighted data changes conducts its decision making for node sets partitioning ac-

cording to whether two time series being similar enough. So, firstly, it is important to define the similarities of two time
series. Popular and direct similarity definition can be based on some average distance of sets of previous data belonging to
different time series. To calculate that distance for measuring similarity and to predicate the future similarity of two time
series, temporal prediction models should be developed. Current work can be found for temporal prediction based data
regression. However, there is a main disadvantage for this prediction model if applying it for clustering. When two time
series have shape similar to “cos()” and “sin()” functions, though the regression results of two time series can be of high
level similarity, the true situation of two time series can be totally different.

To overcome the above inaccuracy brought by normal regression model based on historical temporal data, we develop
a novel regression based data prediction model. Suppose that there are two time series, denoted as X1{x11, x12, . . . , x1m},
and X2{x21, x22, . . . , x2m}. m is the time tamp for each data collection rounds. We aim to predict the average dissimilarity of
data trend for X1 and X2 in future m rounds. Based on X1 and X2, we can calculate a dissimilarity vector D(d1,d2, . . . ,dm),
where di = xi − yi . With the data trends vector D , we develop a weighted data regression model to calculate the average
dissimilarity of data changes between time series X1 and time series X2. The specific regression model is as follows.

X is a data value set with temporal and spatial formed by n sensor vectors. In the matrix (1), the values collected buy
sensor nodes 1 to n during m data collection rounds is described. Then we assign a weight vector for the changing slopes
of each Xi , denoted as W {w1, w2, . . . , wm−1} which means that according to a specific time stamp, the weight for carrying
out regression is different. Then the matrix (1) can be changed to a data changing matrix, X ′ in (2). With W × X ′ , we can
calculate a weighted data changing value matrix V = W × X ′ in (3). The weights vector is generated with the assumption
that the importance is of variation of Gaussian distribution with the changing of different stamps. In other words, more
recent data has more influence for prediction.

X =

⎡
⎢⎢⎢⎢⎣

x11 x12 ... ... x1m

x21 x22 ... ... x2m

x31 x32 ... ... x3m
...

...
...

...
...

⎤
⎥⎥⎥⎥⎦ (1)
xn1 xn2 ... ... xnm
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X ′ =

⎡
⎢⎢⎢⎢⎣

(x12 − x11)
2 (x13 − x12)

2 ... ... (x1m − x1(m−1))
2

(x22 − x21)
2 (x23 − x22)

2 ... ... (x2m − x2(m−1))
2

(x32 − x31)
2 (x33 − x32)

2 ... ... (x3m − x3(m−1))
2

...
...

...
...

...

(xn2 − xn1)
2 (xn3 − xn2)

2 ... ... (xnm − xn(m−1))
2

⎤
⎥⎥⎥⎥⎦ (2)

V =
⎡
⎢⎣

X ′
1

...

...

X ′
n

⎤
⎥⎦ ×

⎡
⎢⎣

w1
...

...

wn

⎤
⎥⎦ (3)

In order to calculate the W for a time flow, the probability density function of normal distribution should be configured
to describe a time series in which a data with newer time stamp should have higher importance. According to 3 × σ
principle, in Gaussian distribution, we only use the domain between [0,3 ×σ ] to calculate the final weight vector W , and it
is enough to guarantee that

∑m−1
k=1 wk ≈ 1 because more according more than 97% data will be within this [−(3×σ),3×σ ].

However, the time stamp for sensing data changes from [0,+∞] which is not between the domain of [−(3 × σ),3 × σ ]. So
in our work, we change the standard normal distribution as follows in (4).

m−1∑
k=1

wk =
3σ∫

0

2

σ
√

2π
e
(− (x−μ)2

2σ2 ) (4)

Because we assume that the starting time for data collection is 0, we can get μ = 0. So the summary value of the whole
weights domain is calculated with (5)

m−1∑
k=1

wk =
3σ∫

0

2

σ
√

2π
e
(− x2

2σ2 ) (5)

As a result, for a data history window with m items or a vector Xi , we can distribute m − 1 consecutive to the do-
main calculated with formula (5). Specifically, the data range between [0,3 × σ ] is divided into m − 1 fragments as 0 to
3 × σ/(m − 1), 3 × σ/(m − 1) to 6 × σ/(m − 1) until to the final fragment, [(m − 2) × 3 × σ/(m − 1),6 × σ/(m − 1)]. Then
any item wk in the weight vector W can be calculated following (6). With the above W , the regression matrix V can be
evaluated.

wk =
k×3σ
m−1∫

(k−1)×3σ
m−1

2

σ
√

2π
e
(− x2

2σ2 )
(6)

To compare the similarity of any two time series Xi and X j based on our data changing regression model, we only need
to compute the summary difference of corresponding V i and V j . If |V i − V j | < Threshold (threshold is a given error bound
from application requirement), time series Xi and X j will be judged as similar enough and allocated into the same cluster.

3.1.3. Clustering by exploiting data changing
In Section 3.1.2, we introduced our approach for computing the similarity between any two time series Xi an X j . With

that similarity, the clustering process can be carried out. In this section, we will specify what kind of data distribution is
suitable our clustering algorithm. As shown in Fig. 3(a), under a certain data distribution, if the similarity of time series is
of high level, with the time stamp changing from T1 to T2, the clustering algorithm does reduce the number of reporting
node. Specifically, in Fig. 3(a), at T1, only 3 nodes are selected as cluster-heads and at T2, only 2 nodes are selected as
cluster-heads. However, under some high variation data distribution, the effectiveness of clustering algorithm can be not
good due to the distribution of big data sets. As shown in Fig. 3(b), at time stamp T1, the data variation is relative steady.
However, when it comes to time stamp T2, sensing data set is of high volatile and it makes the clustering algorithm divide
more cluster-head.

Under some extreme conditions, it can make all the leaf nodes become cluster-heads as shown in Fig. 3(b) when time
stamp is equal to T1. So under this scenario, we do not want to use the clustering algorithm, because the clustering
brings no transmission reduction for data exchanging. Furthermore, it introduces further time and resources for the data
exchange of computing and clustering from cluster-heads to leaf nodes. Hence, we develop a method which exploits the
trade-off between cost and gains brought by clustering algorithm to adaptively deploy our clustering algorithm according to
underlining data changes. This method is based on the computation resource consumption model which decomposes and
analyses the cost of different activities and operation over Cloud platform for simulating a big graph data set.

• Ms: the size of the new clustering message to be propagated
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Fig. 3. Influence of data changes to a clustering algorithm with static error model.

• Cb: the time and computation cost to broadcast 1 byte of data
• Cr : the time and computation cost to receive 1 byte of data
• P s: the size of data block
• h(G,nodeID): the jumps from gateway to leaf nodes
• Cinstr: computation and time cost for executing instructions for clustering
• D: duration
• t: time stamp

In every data stamp for data exchange within a certain network, suppose that there are n different nodes. Suppose that
totally the clustering algorithm selects x cluster-heads and n − x leaf nodes. Then for k rounds of data exchange, the data
receiving cost should be P s × k × t × (x) × Cr . The data sending cost should be P s × k × t × (x) × Cb . However, the time and
computation cost for propagating the new clustering should be counted. The cost of data exchanging is Ms ×k × t × (x)× Cr

and Ms × k × t × (x) × Cb respectively. There also is some cost for clustering algorithm at the final gateway, Cinstr . If k ≈ n,
it can be observed that no cost will be saved and it also brings new clustering energy cost. When the number of x exceeds
a certain level, we will not use the proposed clustering algorithm to realize saving because it has less effects under this
scenario. In stead, we use an order compression approach to reduce data size to achieve the size reduction for big data on
Cloud.

As described above, under some situation, the proposed clustering algorithm can be ineffective. To offer a compensation
method which can still bring data exchange saving when the clustering algorithm cannot achieve performance gains, an
order data compression approach is developed. The concept of order compression comes from the traditional data com-
pression area. It means to use the order information carried among a group of data items to compress the data. The order
compression can happen in a complex data unit or a group of data units in a data exchanging network. It is a kind of
spatiotemporal compression exploiting data correlations in for data compression.
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Fig. 4. Order compression for multiple attributes sensing data.

3.2. Order compression with spatiotemporal correlations

3.2.1. Order compression for multi-attributes data
To compress multiple attributes sensing data with order data information, some techniques have been developed in

work [19]. As shown in Fig. 4, there is a data sampling and exchanging network. According to the previous techniques [21],
when there is a data record collected by a node in this network, to send back this data, data exchange will start. Based on
current techniques, there are only two possible choices for the newly collected data. (1) Transmit data to the parent node,
(2) suppress the data transmission according to a predefined error range c. The previous technique can easily recognize
whether there is a suppression and transmission when there is less data change happening. As shown in Fig. 4, the current
collected data record has no change in its 4th and 5th data attributes. So, the transmission of the 4th and 5th attributes will
be cancelled according to the in-network data suppression approach [21]. But, if there is also no change in the 6th attribute
when comparing the data history table of the 6th attribute in Fig. 4, the transmission of the 6th data cannot be suppressed.
In other words, single temporal prediction model loses the opportunity for further data exchanging compression. Both data
cluster-head and leaf node in a network maintain the same data history table which can offers the message of previous
message for order compression. In the example of Fig. 4, order message of previous attributes can be utilized to represent
a location of the repetitive data in the data history table in of the 6th attribute, there exists the opportunity to cancel
the transmission of the 6th attribute to reduce the size of the current data record. More specifically, the reporting order
of the first attributes can have 3! = 6 different orders. The unreported attributes 4th and 5th have to obey the original
order because the cluster-head needs this order for predicting the unreported attributes. So, totally, 6 types of reported
attribute order can represent 6 different locations in the data history table of attribute 6th. The second location of the data
history table of the attribute 6th is equal to the current collected data. Then the order is used to transmit the previous
three attributes back to the cluster-head. And the cluster-head can infer the value 3 for attribute 6th based on the received
attributes order and its maintained data history table of the 6th attribute. By the above method, data exchanging for the
6th attribute is saved compared to the previous single temporal data reduction technique [21].

3.2.2. Order compression based on encoding data changes of nodes
In Section 3.2.1, we mainly discuss how to use order information of multiple attributes to compression the exchanging

data size for a big data graph. In this section, the order compression will be used to compression data transmission in tiered
tree topology. As shown in Fig. 5, there is a data exchanging network for data sampling and communication. Firstly, the tree
topology can be divided into a layer topology. Our research is carried out on a cluster, such as x0 and all its child nodes,
x1 to xn . Then our proposed compression can be generalized to the whole data collection network. In the cluster x0, all the
nodes from x0 to xn form a one hop network. If x0 maintains a data buffer for all its child nodes with their length of L = 2,
at each data gathering round, x0 can have l × n previous data for x1 to xn .

Because the length of the data buffer is L = 2; the buffer for a certain child node can be indexed with two real data
reports. For example, the buffer elements for x5 can be represented with the combination order of x1 and x2; and the
buffer elements for x6 can be represented with the combination order of x3 and x4. In addition, the x7 can be represented
with the combination order of (x1; x2) and (x3; x4). With this encoding method, it can be calculated that for a given buffer
length L, and n child nodes cluster, the nodes required to represent a buffer with its length L should be m! � L. In other
words, we can calculate how many nodes are required, m to represent another node. Then we can determine how many in
the node sets with x1 to xn should report and how many can be suppressed with the method offered by the in-network
prediction model. For the unreported data, it will be approximated with the buffered data and its index is given by the
order of the reported data. Theoretically, more nodes are added, more data compression can be achieved with this method
without considering the data mapping and index cost. Furthermore, this compression approach can be recursively deployed
over the whole data gathering tree topology. For example, in Fig. 5, node h can use the order of cluster x0, cluster k and
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Fig. 5. Order inter-node order compression for data exchange in cluster-head network topology.

node l to carry out the data compression operation over it. The advantage of this order compression based on buffering
historical data is that its compression effectiveness is steady under some real data sets.

For example, for independent temporal based data compression and our proposed clustering algorithm, if data sets
change dramatically, the cost of re-clustering and independent temporal suppression can be extremely high. However, ac-
cording to our knowledge, lots of dramatic changes are periodic, which means that most of current data have appeared
previously. So if the previous repetitive data can be retrieved and reused, we can greatly decrease the time and resource
cost for Cloud computing. In other words, the buffering based order compression can reduce more data exchange under the
data set where tradition temporal suppression and the proposed clustering algorithm lose their effects.

4. Data driven scheduling on Cloud

In the previous section, we introduced the approaches for reducing the big data size with spatiotemporal data suppres-
sion. However, a smaller size of data does not definitely mean a shorter processing time which is quite related to the task
division and workload distribution over Cloud. In order to offer a shorter and quicker processing time, we will introduce a
novel scheduling algorithm based on the spatiotemporal compressed data sets.

4.1. Different mapping strategies for scheduling over Cloud

To show the necessity and effectiveness of our data driven scheduling and its mapping, two types of mapping strategies,
node based mapping and edge based mapping will be introduced first for comparison.

4.1.1. Mapping for Cloud scheduling with real network nodes
The most direct and easy way to distribute and schedule the big data processing task over Cloud is based on the real

work topology of the network itself. Under the theme of this mapping, the mapping algorithm is pretty simple and the com-
putation resources are divided and distributed to each node for simulating and analysing data flows in a real world network.
As shown in Fig. 6(a), to filter the graph data stream from a cluster of network nodes, one to one mapping is conducted.
For example all the data flowing through node a, and all the operations from node a will be allocated with a computation
unit in the Cloud. This mapping and resource allocation is fair according to the real world network topology, but it could
be extremely unfair in terms of the distribution of data size under a heterogeneous data exchange network. For example,
in Fig. 6(a) compared to node a, node b, c and d may experience huge data flows within certain time duration which will
cost much longer time for data analysis. After the computation unit allocated to node a has finalized its processing, it has
to wait for the results from node b, c and d to form high level services to end users. In other words, the unfairly distributed
workload can significantly delay the reaction and processing time for processing big data sets over Cloud.

4.1.2. Mapping for Could scheduling with data exchange edges
Instead of directly allocating the computation resources over Cloud according to the real world network topology, the

mapping can be also carried out based on the data exchanging edge between nodes. As shown in Fig. 6(b), each edge which
has data flows over it in a network will be simulated and analysed with a computation unit from Cloud. For example, the
edge ab, ac and cd will be allocated with similar computation and storage units respectively. It is clear that the mapping
in Fig. 6(b) still cannot solve the problem of unfair distributed data size over each data exchanging edge. Furthermore, the
number for the network edges may increase dramatically with the growth of the nodes. Though the cluster-head architecture
and 1-hop cluster somehow limit the increasing number for the edges, to process the data graph in a big cluster itself can
be a very time consuming job for the Cloud. So, the edge mapping and its scheduling for the Cloud computing power is not
suitable for analysing the data exchange cluster in Fig. 6, either.

4.1.3. Mapping for Could scheduling with data exchange quantity
Based on the mapping in Fig. 6(b), we design a novel mapping based on the information carried by the compressed data

sets after the processing of our proposed data reduction with spatial clustering, temporal prediction and order compression.



C. Yang et al. / Journal of Computer and System Sciences 80 (2014) 1563–1583 1573
Fig. 6. Comparison between different mappings for computation resource scheduling over Cloud.

As shown in Fig. 6(c), the computation resources are grouped into to some basic units to offer independent processing power
capability. Then, the edges in a network will be divided into to several blocks according to their real workload of data flow.
For example, according to data exchanging size, clustering situation and compression ratio, the workload for data exchanging
and processing over the edges ab, ce, bd, ac is similar to the half workload over the edge ef . It can be concluded that data
exchange over the edge ef is of high data exchanging density and difficulty to be compressed and clustered. Hence, the edge
ef is grouped into an independent group and allocated with more computation resources from the Cloud platform. With
the data driven mapping in Fig. 6(c), it is clear that the mapping algorithm mainly focuses on how to assign the resources
according to the real requirement for dealing with data. It manages to distribute the workload for data processing more
evenly over the Cloud platform and to make the full use of the computation power of Cloud. Compared to the mapping
strategies in Fig. 6(a) and (b), it is more optimal in terms of time saving and resource dispatching.

4.2. Calculation for weighted data exchanging edges

In order to carry out the scheduling strategy introduced in Fig. 6(c), we need to calculate the data exchanging quantity
for each edge in a network topology as shown in Fig. 7. According to our work introduced in the previous sections, the data
set will be clustered and compressed before being used as a base for offering real time Cloud services. The calculation of
the workload for each edge in a network structure is as follows.

It has been introduced that during the filtering process of big data set, clustering and compression have been conducted.
With that processing the data suppression ratio based on clustering, denoted as Cs for an edge is calculated. The data
suppression ratio based on temporal compression, denoted as Ct is also calculated. For example, the clustering suppression
ratio over edge ab is denoted as Csab and the order compression ratio over edge ab is denoted as Ctab . Because the clustering
and compression have different influence to the data reduction over the edge ab, different weights wsab and wtab are
assigned to Csab and Ctab respectively. With that we can calculate the real workload of data over edge ab, D ′

ab = (wsab ×
Csab + wtab × Ctab) × Dab where wsab + wtab = 1. The selection of wsab and wtab can come from application requirement or
system feedback.

Suppose there are n edges in the network, the total real data exchanging size D ′ = E(ws × Cs + wt × Ct), E ∈ G(V , E).
G is the network graph, V is set for nodes and E is edge set. Then, we can get the percentage of data processing workload
on each edge. Suppose that the whole computation resource of Cloud is R , the data processing task can be scheduled for
over Cloud according to the calculated D ′

xy = (wsxy × Csxy + wtxy × Ctxy) × Dxy , where x and y are two nodes in a data
exchanging network. As shown in Fig. 7, the exchanging data size over the edge ef is D ′

ef = (wsef × Csef + wtef × Ctef )× Def

and that over the edge ab is D ′
ab = (wsab × Csab + wtab × Ctab) × Dab .

5. Spatiotemporal compression based approach

Based on the above compression techniques and scheduling detailed in Sections 3 and 4, the overall approach for efficient
big data processing on Cloud is designed in this section. Specifically, we design related separate algorithms and roadmap for
the proposed spatiotemporal Cloud data compressions and afterwards scheduling, which constitute the approach.
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Fig. 7. Computation model for each edge based on temporal and spatial compression ratio.

5.1. Spatiotemporal clustering algorithm

The clustering algorithm is developed on the cluster-head. It takes time series set X and similarity threshold d as inputs.
The output is a clustering result which specifying each cluster-head node and its related leaf nodes.

Clustering Algorithm with Data Trend Similarity.
Input: a vector set X = {x1, x2, ..., xn}, (vi = {vi1, vi2, ..., vim}),

xi is a time series of node i,
disimilarity threshold: d, clustering round: k, i ∈ [1,n], j ∈ [1,m];

Output: cluster-head nodes set S and cluster information;

(1) While (time stamp j <= k)
(2) if ( j%R == 0 && R! = 0) // R is for reclustering and not the first round
(3) Normalize X to V ; V = X × W ;
(4) select ∀ unselected vi from set V ;
(5) initialize a cluster Ci with vi ; record vi in S;
(6) While (existing unselected element in S)
(7) select ∀ unselected xi , from set X ; transform xi to vi ;
(8) comparesimilarity(v j, S);
(9) if (comparesimilarity(v j, S) > d)
(10) initialize C j with v j ; record v j in S j ;
(11) else
(12) adding vi into the Cl with minimum similarity;
(13) if (all nodes have been traversed)
(14) return S;

As shown in the clustering algorithm, in line (1), the data exchange time stamp j is counted from 1 to the data exchange
application duration, k. In line (2), if the j is the time stamp for re-clustering, the clustering process will be executed. In
line (3), the algorithm changes the computation of Matrix X to data change matrix V with the technique introduced in
Section 3.2. From line (4) to (5), the algorithm selects any vector from V to form the first cluster Ci and node xi will
be used as the cluster-head of Ci . From line (6), the algorithm will carry out the selection of a new vector until all the
vectors are clustered. Specifically, it selects a vector x j from X and transforms it into v j in line (6) to line (7). In line (8),
for each newly selected v j , it will be compare to previous clustered vectors, if the similarity between the is within the
given threshold d, vi and xi will be added into a previous cluster line (11) to line (12). If the similarity exceeds the given
threshold d, a new cluster C j will be initialized with v j or x j as its cluster-head as shown in line (9) to line (10). Finally,
it all the nodes have been compared and clustered, the algorithm will return the final clustered nodes set and clustering
information S which is a partition plan for X .

5.2. Algorithms for spatiotemporal order compression

5.2.1. Order compression
In order to set up the relationship of the reported data and compressed data, the compression algorithm partitions the

n reports from n nodes into two groups Xt and Xs . After this partition, the algorithm aims to construct a mapping between
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sets Xt and Xs . Specifically, for a given historical buffer length L, s is calculated for minimum report of order information
indexing in line 1 and line 2. In line 3, the initialization is conducted. From line 4 to line 8, the first round partitioning for
X and data order mapping is carried out for indexing the elements in Xt with the combination order of the elements in Xs .
From line 9 to line 10, the algorithm will recursively use the indexing concept from line 4 to line 8, to mapping the rest of
data in X . The compressed elements from X will be also sent to Xs .

Algorithm: Order Compression.
Input: a streaming graph data set X = {x1, x2, ..., xn}, window size: L;
Output: a partition of data set X , ordered transmission set Xi and suppression set Xs;

1. for an xi ⊂ X , to index its buffer with L, the required reports size s! ≥ L;
2. return the minimum s;
3. initialize Xt = ∅ and Xs = ∅, i = 1; j = n;
4. while (sizeof(X) >= s + 1)
5. ordering(xi, x(i+1), ...x(i+s)) ⇒ Xt ;
6. x(n−i) ⇒ Xs;
7. delete xi, x(i+1), ...x(i+s−1), x( j) from X ;
8. i = i + s; j = j − 1;
9. while (sizeof(Xt >= s && X ! = ∅))
10. iteration ordering(Xt ) for each element from X ; xk ⇒ Xs;
11. Return final Xt and Xs;

5.2.2. Temporal prediction with order compression

Algorithm: Adding Order Compression to Temporal Prediction.
Input: real-time collected streaming data at , at = {att1,att2, ...,attm}

prediction error bound c
Output: real-time collected data at , a′

t which has a smaller size than at,
or a suppression of at

1. check the temporal inference error bound c;
2. for (int i = 1; i <= m; i++) {
3. if (|att j − att′j | < c)
4. carry out normal in-network prediction;
5. else
6. if (att j ≈ att′′j ) // if att j can be found close to a value att′′j in history table
7. using the order of previous j − 1 attributes to represent the location of “att j ”;
8. order compression in node and inter nodes
9. } end for

The order compression algorithm is developed based on the data history buffering strategy. It should be embedded in
the original temporal in-network prediction. The input of the algorithm includes the real-time collected data of each node
at time interval t . In line 1, the prediction coherency c is checked in line 1 for regular in-network prediction. In line 2, the
compressive algorithm checks the reported attributes. If there is one attribute att j has a similar value to a certain value, att j

stored in its data history table in lines 7 and 8, the order of the previous reported j − 1 attributes will be used to report the
location of att j in the data history table. In other words, the order compression will be carried out inter and inner network
nodes.

5.3. Algorithm for scheduling with weighted data edges

Based on the above definition and computation, the scheduling algorithm is offered as follows. The algorithm takes the
graph data D and its topology G , Could resources as inputs, outputs a scheduling based on partition of R . From line 1 to line
6, the algorithm carries out initialization and creates the first partition for scheduling. From lines 7 to 11, a partition can
have more edges if the computation power is not fully used. From lines 12 to 13, if there is an overloaded data exchanging
edge, more computational power from Cloud will be allocated. This process will be repeatedly executed over all the edges
from the set E .



1576 C. Yang et al. / Journal of Computer and System Sciences 80 (2014) 1563–1583
Algorithm: Data Driven Scheduling.
Input: a big graph G(V , E), a graph data set D , Cloud platform R
Output: a division P of R based on E from G

0. i = 0;
1. While (E! = ∅) {
2. get exy ∈ E;
3. D ′

xy = (wsxy × Csxy + wtxy × Ctxy) × Dxy

4. resource allocation based on k = D ′
xy/D ′ × R;

5. Create a New Partition Pi ;
6. Add exy to Pi ;
7. if (exy < k)
8. get new exy ∈ E;
9. D ′

xy = (wsxy × Csxy + wtxy × Ctxy) × Dxy

10. Add exy to Pi ;
11. i++;
12. else if (exy ≥ 2k)
13 P i ->2kR;
14 i++;
15. } end While

5.4. Overall strategy for Cloud big data processing

With the above offered algorithms including compression and scheduling working at the different stage of our proposed
big data Cloud processing stage, the roadmap for using this approach can be described as follows. 1. Input a big data set to
Cloud platform. 2. Filter the big data set with the data compression algorithms. During the compression, the spatiotemporal
correlations between data are used. The clustering and order compression are combined together for better suppression
effect when processing data sets with different distributions. 3. The filtered and compressed data/graph data will be parti-
tioned and distributed on Cloud according to our scheduling algorithm for further data processing as service providing.

6. Evaluation and comparison

To verify the effectiveness of the proposed spatiotemporal compression and it related scheduling strategy for processing
big streaming data and graph data over Cloud, experiments are designed based on U-Could (Cloud computing environment
at University of Technology Sydney) [15–18]. The streaming data set from a real wireless sensor network system is used for
testing the performance gains of the algorithms. The collected data sets will be filtered with our on-fly compression and
clustering algorithm over Cloud environment. The time cost and computation resource cost will be recorded to measure the
performance gains. Compared to previous big data processing techniques without spatiotemporal compression and its related
scheduling, the evaluation is designed to demonstrate the following gains. 1. The new approach significantly outperforms
previous one in terms of Cloud resource cost by data compression and avoiding iteration. 2. The new approach can save data
processing time significantly by a fair workload distribution strategy. 3. The new approach will not introduce unacceptable
data quality loss to most of real world applications.

6.1. Experiment environment and process

In this data exchange sensor network for our testing data, there are 500 nodes deployed in our physical world to conduct
tasks such as data gathering, information exchanging and mutual interaction. The nodes are organized as a hierarchical
structure with cluster-head and leaf node. Every node collects high frequency data streams such as sounds and vibration.
Every node also collects low frequency data streams such as light and temperature. Because sensor networks is based on
the wireless communication, there exist huge amount of information errors, loss or redundancy. In each cluster, the data
exchange creates a complicated data graph. If we can use Cloud as a powerful tool to simulate and analyse that complicated
data flows in that data graph, the better WSN design and more efficient real time query can be offered.

As shown in Fig. 8, even only considering one node, four types of data can be gathered with different frequency. For
easily computing the similarity between time series from different nodes, they have been normalized into the same value
domain from 1 to 100. Within a 24 hours window, the vibration and sound time series have high sampling frequency and
experience dramatic changes. The light and temperature time series have relative smooth data trend and are sampled with a
relatively low frequency. The time duration for the testing data set is 24 hours. In each second, the sampled data flow over a
node is 0.02 KB on average. In total, there are around 1,000,000 KB data sampled by the whole network. However, under the
fine wireless communication channels environment, to monitor and simulate the network behaviour, the overall exchanging
data size between nodes exceeds 5,000,000 KB for transmitting the collected “vibration”, “sound”, “light” and “temperature”
streaming graph data of 1,000,000 KB. The extra 4,000,000 KB is caused by the communication protocols, gossip between
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Fig. 8. Heterogeneous environment data sets from 1 physical monitoring node (KB/sec./per node).

nodes, failures, data loss, re-transmission, overhearing and redundancy, etc. However, the light and temperature time series
experience relatively smooth changes within time duration of 24 hours. In other words, the data sampling by each real
world node is heterogeneous.

According to the curve in Fig. 8, the high frequency sound and vibration time series fluctuate dramatically when con-
sidering one node. It indicates that regular temporal prediction may have less effect in compressing the size of the time
series. Specifically, the sampling frequency for vibration is 10 bytes per-second and the sampling frequency for sound is
8 bytes per-second. However, the data sampling frequency for light and temperature is relatively low with only 1 byte
per-second. In addition to these data, extra communication consumes large amount of computation and storage resource on
Cloud. According to our approach, before sending these data streams to Cloud for processing, data sets will be compressed
and clustered to reduce the big data size and the task scale for Cloud platform. In total, three groups of experiments are
carried out over U-Cloud with the above experiment data sets. In the first group, we test the compression effectiveness. In
the second group, we test the effectiveness of the scheduling algorithm. In the third group, we test the accuracy and data
loss problems for our approach through the definitions of data quality, such as average accuracy.

6.2. Experiment for the spatiotemporal compression

Firstly, we test the clustering algorithm and compression algorithms with high frequency vibration and sound data sets.
As mentioned above, the total real world data exchange within the whole network exceeds 5,000,000 KB. Because the data
collection is based on a heterogeneous and asynchronous model, the high frequency data sets of sound and vibration count
for 90% data exchange in the real world network. It can be estimated that the real world network data exchange for vibration
and sound is around 4,500,000 KB. Both compression and clustering data reduction techniques have a great effect on big
streaming data reduction based on the results in Fig. 9 (1), (2), (4) and (5). However, clustering algorithm performs slightly
better than order compression for sound data set because for monitoring a vibration system, such as helicopter blades, in a
certain time period, they maintain a set of similar sound curves which are very suitable for clustering based data reduction.

In Fig. 9 (3) and (6), the adaptively using clustering and order compression can achieve better performance gains com-
pared to independent clustering and compression based data reduction algorithms over both sound and vibration data sets.
In Fig. 9 (3), only 800,000 KB sound data is exchanged, and in Fig. 9 (6), around 1,100,000 KB vibration data is exchanged.
Compared to the data size of 4,500,000 KB exchanged in the real world network, significant amount of data exchange is
avoided. In other words, with the clustering and order compression, around 60% big graph data from the high frequency
vibration and sound data sets can be compressed. This significant reduction will undoubtedly lead to the time cost and
computation source saving when analysing the reduced data sets over Cloud platform.

Secondly, we test the clustering algorithm and compression algorithms with low frequency light and temperature data
sets. According to above analysis, the high frequency sound and vibration data exchange within the whole network exceed-
ing 4,500,000 KB. It can be easily calculated that the total data exchange for the real world network low frequency light
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Fig. 9. Exchanging data reduction over high frequency sound and vibration data sets.

Fig. 10. Exchanging data reduction over light and temperature data sets.

and sound data sets are around 500,000 KB. According to experimental results demonstrated in Fig. 10 (1), (2), (4) and (5),
it can be concluded that both clustering and order compression have slightly better reduction effects over the temperature
data set than that over the light data set. The reason is that the temperature within one data of a small area keeps quite
similar and maintains a constant difference between time series which can be accurately described with our data prediction
models for clustering and order compression. Specifically, with the clustering algorithm, around 65,000 KB data is exchanged
for the temperature data set; and around 100,000 KB data is exchanged for the light data set. With the order compression
algorithm, the exchanged data sizes are 160,000 KB and 150,000 KB for temperature and light data set respectively.

However, in Fig. 10 (3) and (6), the adaptively using clustering and order compression can achieve better performance
gains compared to independent clustering and compression based data reduction algorithms over both temperature and
light data sets. In Fig. 10 (3), around 65,000 KB sound data is exchanged, and in Fig. 10 (6), around 70,000 KB vibration data
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Fig. 11. Processing time for streaming data graph with different window length ‘L’.

is exchanged. Compared to the data size of 500,000 KB exchanged in the real world network, significant amount of data
exchange is avoided. In other words, with the clustering and order compression, more than 70% big graph data from the low
frequency vibration and sound data sets can be compressed. Compared to the high frequency data sets in the whole testing
big graph data set, more data is compressed because the low frequency data sets are much easier to model and predict.

6.3. Experiment for scheduling time performance gains

In the above Section 6.2, we demonstrated that the order compression and clustering algorithm can effectively reduce
the data size for future analysis over Cloud platform. A smaller data set means a smaller problem size over a distributed
processing platform. But it does not definitely mean a shorter processing and reaction time which are normally determined
by the time cost of the final node to finish its task branch in a distributed system such as Cloud. So, scheduling is necessary
to dispatch the tasks more evenly and optimal over Cloud platform. In other words, the time consumption situation and
real time reaction are good to measure the performance of scheduling algorithm.

As shown in Fig. 11, the horizontal axis stands for the window length which is necessary for most streaming data ap-
plications. With the data from a given window length ‘L’, the data analysis algorithm will work on the Cloud to digest it
and form the final services to the end users. The vertical axis stands for the time cost calculated in second. In this exper-
iment, we implement two scheduling algorithms. They are original scheduling based on the physical topology of the real
world network. Because this scheduling ignores the real workload of each node, some nodes over Cloud may be overloaded
and others may be idle to wait for those overloaded nodes. Especially after the clustering and order compression, the data
stream size flowing through each real world network node can be extremely different. As a result, this physical topology
node based scheduling costs more time for filtering the whole streaming data set and simulating the data exchanging com-
pared to our proposed data driven scheduling algorithm in every different window length from 1 hour to 14 hours. The
trend curve of our node based scheduling keeps running below the trend curve of the node based scheduling. The larger
the window size is, the more filtering time is saved.

However, it is not reasonable to test the window too larger over 14 hours, because it causes a very big data graph
which may introduce lots of approximation and failures by magnifying the acceptable errors in our data reduction models.
Furthermore, an extra-longer window size makes the filtering time increase exponentially. For example, in Fig. 11, when
L = 14 hours, the time costs of our data driven scheduling and the real world node based scheduling are around 30 seconds
and 70 seconds respectively. Compared to the 7 hours window with the time costs around 8 seconds and 12 seconds,
the filtering time and system reaction time is greatly increased. There is an important point to be mentioned here for the
experiment results in Fig. 11. With the increase of the stream window length ‘L’, the time cost does not increase with
a linear relationship; whereas an approximate exponential relationship can be observed. The reason for that exponential
increase is that with the increased window length, more nodes from different time stamps join the network graph to
change the topology with more complexity.
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6.4. Experiment for data quality and fidelity loss

In previous sections, we demonstrated the effectiveness of our clustering and compression techniques for reducing big
data size. In addition, we conducted the experiment to test our scheduling algorithm with respect to its time cost. However,
because the data reduction process of our techniques is not lossless, the fidelity problem is critical to be discussed to
guarantee the service quality offered to end users. In this section the experiment will be conducted to show the fidelity
loss and data quality after deploying our data reduction and scheduling over Cloud platform. We aim to prove that under
most of applications, our algorithm can achieve efficient big data processing on Cloud without losing acceptable accuracy
for most of applications.

6.4.1. Definition for accuracy
Before introducing and analysing the experiment results, we first offer the definition and method for accuracy. The

accuracy is based on measuring the similarity between two vectors, one from real big data graph G and the other G ′ from
filtered data as the service provided by Could. Actually, these two vectors are the data items flowing between two nodes
within a cluster at a certain time stamp. To describe the similarity between two nodes, we use correlation coefficient model.
Suppose that there are two vectors, X and Y . With Correlation Coefficient method, we can calculate the similarity between
the two vectors, X from G and Y from G ′ in formula (7).

sim(X, Y ) = r(X, Y ) = cov(X, Y )√
cov(X, X) · cov(y, y)

(7)

From (7) we can find that this similarity resembles to the “cos” similarity computation. sim(X, Y ) has a data range
[−1,1]. The calculation of “cov(vector1,vector2)” is carried out in formulas (8) to (10).

cov(X, Y ) = 1

n − 1

n∑
i=1

(Xi − X)(Yi − Y ) (8)

cov(X, X) = 1

n − 1

n∑
i=1

(Xi − X)2 (9)

cov(Y , Y ) = 1

n − 1

n∑
i=1

(Xi − X)(Yi − Y ) (10)

So, the similarity between two vectors can be calculated with following formula (11).

sim(X, Y ) =
∑n

i=1(Xi − X)(Yi − Y )√∑n
i=1(Xi − X)2(Yi − Y )2

(11)

Because we only want to correlate the accuracy and similarity, only [0,1] data range is selected. The original data range
[−1,1] could be normalized into [0,1] for representing the accuracy from 0% to 100%. As shown in formula (12), sim(X, Y )′
is calculated instead of formula (11). sim(X, Y )′ ∈ [0,1].

sim(X, Y )′ = |∑n
i=1(Xi − X)(Yi − Y )|√∑n
i=1(Xi − X)2(Yi − Y )2

(12)

Hence the accuracy for an edge in G at a time stamp t can be assessed with the formula (13).

accuracy = sim(X, Y )′ × 100% = |∑n
i=1(Xi − X)(Yi − Y )|√∑n
i=1(Xi − X)2(Yi − Y )2

× 100% (13)

The final accuracy for “Accuracy” for data service quality between two points within a cluster can be assessed with the
Accuracy in formula (14). In our example, T = 24 hours is used.

Accuracy =
T∑

t=0

( |∑n
i=1(Xit − Xt)(Yit − Y t)|√∑n
i=1(Xit − Xt)2(Yit − Y t)2

)
/T × 100% (14)

Suppose that in the graph data set G(V , E), there are total S edges (because the cluster-head structure, it avoids the
edge explosion) and each edge is index with s from [1, S]. We can calculate the Average Accuracy of the Cloud computed
Data set ‘G ’ against the original ‘G ’. This Average Accuracy is used in formula (15) to demonstrate our experiment results in
Fig. 12 and Fig. 13.
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Fig. 12. Fidelity loss with the error bound increase.

Fig. 13. Comparison of fidelity loss with worst and best accuracy.

Average_Accuracy =
S∑

s=1

(Accuracy)s (15)

6.4.2. Data accuracy analysis
The inaccuracy in our technique based on Cloud is mainly caused by the error from clustering process and data com-

pression loss. Both data window length L and prediction error bounds have influence to the accuracy and final service
quality. As shown in Fig. 12, the data accuracy decreases with the increase of the given prediction error bound. However,
there is another factor, window length ‘L’ which influences the accuracy. It can be found in Fig. 12 that with the increase
of the historical data window length ‘L’, the accuracy curve runs totally at a low accuracy level. That is caused by the large
window in which more nodes and data are involved in simulating the graph data. During that simulating process, the error
and failures will have a magnifying effect when repetitively exchanging among more nodes. From the experiment result in
Fig. 12, it can be concluded that when the given error bound is less than 2 (after normalization) and the window length
is less than 12 hours, the accuracy and data quality of service are within an acceptable level, around 95%. With the error
bound larger than 2 and the window length larger than 12 hours, the data quality for service after processing over Cloud
platform decreases dramatically. Due to the big errors, there is no need to plot the error bound larger than 9 which is totally
useless in real applications. So, we used an empirically study to select 2 as an optimal number for our algorithm. It is also
used in the related experiments for data reduction and scheduling.

Specifically, we use as the average value from 0 to 9 for accuracy test. As shown in Fig. 13, with the increase of win-
dow length L, the average accuracy decreases dramatically. Whatever the window length is, the best case accuracy can
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be achieved as 100%. Best case accuracy is the highest accuracy of a data item offered as the service after the processing
over Cloud. However, with the increase of the window length, the worst case accuracy decreases dramatically. Worst case
accuracy is the lowest accuracy of a data item offered as the service after the processing over Cloud. It is measured and
calculated with the correlation coefficient similarity. Especially, when the window length enlarges to more than 11 hours,
the worst cased accuracy drops from 80% to 0 very quickly. In other words, according to the experiment results in Fig. 13,
a 2 or 3 hours data window is better for guaranteeing the data accuracy and service quality for deploying our proposed big
data technique over Cloud.

7. Conclusions and future work

Cloud promises an ideal platform with massive computation power and storage capacity for processing big data that is
of high variety, volume, veracity, and velocity. To reduce the quantity and the processing time of big data sets encountered
by the current typical Cloud big data processing techniques, in this paper, we proposed a spatiotemporal compression based
approach on Cloud to deal with big data and big graph data from real world applications. In our technique, the big data
was compressed firstly according to its spatiotemporal features on Cloud. Based on this spatiotemporal compression, a data
driven scheduling was developed to allocate the computation and storage of Cloud for providing better big data processing
services. The evaluation was conducted over our U-Cloud platform to demonstrate that the spatiotemporal compression
could significantly reduce the data size compared to the previous big data processing techniques on Cloud. Furthermore, our
data driven scheduling distributed big data processing workload optimally on Cloud to achieve significant time performance
gains. Last but not least, the evaluation results also demonstrated that the data processing quality and fidelity loss of our
proposed approach met most of the application requirements.

Data compression can be based on different data correlations or data models. As future work, more spatiotemporal
correlations should be exploited and modelled to effectively reduce different big data sets. In accordance with various
data correlations and compression models, the scheduling should also be changed dynamically to generate fair workload
distribution and to achieve optimal time performance.
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