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Abstract—Compression plays an important role in social ~ well, it may indicate that the members in the subnetwork
network analysis from both practical and theoretical points share some regularity, or the subnetwork follows some

of view. Although there are a few pioneering studies on soda  gictural patterns that are shared by similar subnetworks
network compression, they mainly focus on lossless approaes. As reviewed in Section I, almost all the existing social
In this paper, we tackle the novel problem of community ' 9

preserving lossy compression of social networks. The tradeff ~ network compression methods target at lossless compres-
between space and information preserved in a lossy compres- sion. We argue that lossy compression in fact is very
sion presents an interesting angle for social network analis,  interesting and useful for social networks, because it i-we
and, at the same time, makes the problem very challenging. We known that large social networks are often noisy.

propose a sequence graph compression approach, discuss the . . . . .
design of objective functions towards community preservaon, From the practical point of view, noise edges and vertices

and present an interesting and practically effective greeg  in large social networks may damp the quality of social
algorithm. Our experimental results on both real data sets ad network analysis. An appropriate lossy compression of a

synthetic data sets demonstrate the promise of our method.  social network can discard the noise edges and vertices in

Keywords-compression; social networks, communities. the network. Consequently, the lossy compression may be
present as the input of higher quality for social networkiana
. INTRODUCTION ysis. In other words, lossy compression of social networks

Partly motivated by the recent success of many onlin&@n Serve as a preprocessing step in social network analysis

social networking sites such as Facebook and Twitter, mant NS goes far beyond just space saving.

aging and analyzing huge social networks have attracted From the theoretical point of view, lossy compression of
dramatic interest from both industry and academia. Mam;oual networks can help to discover the importance of edges

social networks are huge and ever growing, which preserfnd Vvertices in a social network, and identify noise edges
an essential challenge for social network analysis. and vertices. Immagine ideally we have a lossy compression
As illustrated in several recent studies [2], [3], [4] method that preserves the important information about a

[17], compressing social networks can substantially itaté social network and filters out noise. If the method can assign
mining and advanced analysis of huge social networksl® €ach element in a social network (e.g., each edge and

Social network compression plays an important role in $ociaV€rt€x) & priority of being included into a lossy compressio
network analysis from both practical and theoretical point then the priority can be regarded as a good indicator of
of view. Practically, many advanced social network analysi (h€ importance of the element. The lower the priority of an
tools are sensitive to the input size. Those methods arglément, the more likely the element is noise. _

highly efficient when the data can be held completely or Lossy compression of social netvvprks is mterestlng. and
largely into main memory, but may become very costly onimportant for social _network analysis. At_the same time,
data mostly out of memory. If social networks can be com-t IS @ very challenging problem. To achieve good lossy
pressed effectively and efficiently, it may help such adeanc COMPression of social networks, we have to develop good
analysis tools to handle much larger social networks. methodology that can detect and preserve important infor-

Compression is always achieved by utilizing some form ofation in social networks. ,
“regularity” in data. Thus, the compressibility of a soaiat- In this paper, we tackle the novel problem of community

work can provide valuable insights into the structure of theP'€S€rving lossy compression of social networks, and make

network. For example, if a subnetwork can be Compresseaeveral important contributions. First, we advocate commu
nity preserving lossy compression of social networks due

This research is supported in part by an NSERC Discovery tGran t0 the importance of communities in social networks. To
a BCFRST NRAS Endowment Research Team Program project, and ghe best of our knowledge, we are the first to identify and
GRAND NCE project. All opinions, findings, conclusions aretemmen-
dations in this paper are those of the authors and do not serilgsreflect tackle the_ problem. Second, We_ prOpO_Se a sequence _graph
the views of the funding agencies. compression approach. We design a simple yet meaningful



objective function that opts for community structure prese is an exception among other types of real life networks.
vation. A heuristic algorithm is developed. Last, we reort  Exploiting an ordering of nodes, which captures the “regula
empirical study on both synthetic and real data sets, whiclity” of the network, is critical and challenging. Very redbmn
verifies the effectiveness of our method. Vigna et al. [2] introduced alayered label propagation
The rest of the paper is organized as follows. We reviewalgorithm for reordering very large graphs. They showed
the related work in Section Il. We describe the essentia idethat their method can improve the compression rates for web
of graph compression using sequence graphs in Section llgraphs and social networks. It is worth mentioning that the
and design the community preserving objective functionlayered label propagation algorithm in essence is a clusgter
in Section IV. We present the compression algorithm inmethod built up on [22], [23]. In our previous study [17], we
Section V, and report the experimental results in Sectian Vlused the notion of multi-position linearization to compres

Section VII concludes the paper. real life networks. Multi-position linearization is a semnce
of nodes, in which any node can appear multiple times. The
Il. RELATED WORK intuition is that, in real life networks, a node can be part

Community finding and analysis in social networks haveOf several clusters. Thus, such a sequence can capture the

been extensively explored from multiple disciplines, sash ~ClUSLEr structures better. Then, using a constant sizavect
computer science, physics, and sociology. Fortunato [&] pr Of b|.ts the Ioc_al cpnne_ctlor]s of nodes can be gncoded.
sented a comprehensive survey on community detection ifinding an optimal linearization, however, is not tr|v_|al._
complex networks. In general, given a network, we want to Navlakh.a et al. [18] proposed a graph summanzatlon
compute a partitioning of the nodes to communities, Wherescheme with an error bound that compresses social networks

a community is a set of nodes such that edges inside thgY aggregating the nodes in supernodes and replacing all

community are more likely than those going outside. Havinged9€S between two groups of nodes by a superedge. They

this notion of community in mind, Lancichinett al. [14] also keep a set of corrections in order to be able to recreate

introduced the LFR benchmark, which is a model that car€ ©riginal graph. Their approach allows lossy compressio
produce random networks with implanted communities ofClven an error rate, th_e_ obje_ctlve s to reduce the_S|ze of
variable size, while the degrees of the nodes follow a powefepresentatlon. Oqe critical difference betlween thei t .
law distribution. Fortunato [9] also discussed comparing2nd OUr approachiis that we assume the size of representation
two different community structures, a nontrivial question is given and our objective is to capture the community
In particular the Normalized Mutual Information (NMI) [6] structure of a network.

is an information theory based measure designed to capture MOst recently, Faret al. [8] suggested a query preserving
the similarity of two different partitions. graph compression framework. Their approach does not

There are many community finding methods. For examStore the original graph, rather, it computes the equiwaen
lasses of nodes according to a given class of queries.

ple, Girvan and Newman [11] gave an algorithm based o h + build I h that h h val
the concept of “betweenness”. Newman and Girvan [19] I en, It U|hs a sma erhgrap t ath as t € e(?cfuwa} en:‘:e
and Clausett al. [5] developed the notion of modularity. classes as the vertices. This approach is quite effective fo

Good et al. [12] studied modularity landscape. Effective simple querie_s (e.9. reachability) anq less effgctive foren
methods based on random walk [24], hierarchical optimizapornplex queries (e.g. pattern maiching). Their method does

tion of modularity function [1] were developed recently. not target at community preservation.

A large body of work on assessing the quality of indi- |||, GRAPH LINEARIZATION FOR LOSSY COMPRESSION
vidual communities in real life social networks has been
developedConductancd13] is a widely accepted measure
for this purpose. Recently, Leskovetal. [15], [16] studied
Network Community Profilplot (NCP) of social networks.

They pointed out that in real life social networks, thereIOSSy compression. - .
. . . For the sake of simplicity, in this paper, we model a social
are small communities with low conductance. As the size

increases, the communities, however, start to “blend irith wi hetwork as arundirected simple graplir = (V, £), where

o V is a set of verticesE? ¢ V x V is a set of edges, and
the rest of the .network and become less commgnlty like. '.—SV’“) ¢ E for anyu € V. We also refer toV’ by V(G)
Due to practical demands, lossless compression of soci

networks/web graphs attracted much attention lately. iBoIdanOI to L by E(.G)' Our dlSCUSSan can be straightforwardly
extended to directed and non-simple graphs.

and Vigna [3] showed in particular web graphs are compress- : .
ible down to almost two bits per edge. Chierichettial. [4] We first formulate a notion of sequence graph.

extended the framework [3] using shingle ordering insteadefinition 1 (Sequence graph)A graph G is a (k,1)-
of lexicographical ordering of web pages, in order to tacklesequence graph, if |V (G,)| = [ and there is a bijection
other types of real world networks. Chierichegti al. [4], ¢ betweenV (G,) and the set of integer$l,...,I} such
however, suggested that the compressibility of web graphthat for every edgdx,y) € E(Gs), |o(x) — o(y)| < k.

In our previous study [17], we developed the notion of
graph linearization for lossless graph compression. Ia thi
section, we extend the notion of graph linearization tovallo



Definition 2 (Graph linearization)A (k,[)-sequence graph
Gs is a (k,l)-linearization of a graph GG if there exists
a functiony : V(Gs) — V(G) such that (1) for every
edge (z,y) € E(Gs), (Y(z),¢(y)) € E(G), and (2)
there do not exist two edge@:,y),(2’,y’) € E(Gs),
(z,y) # (z',y") such that(y(x), ¥ (y)) = (¥(a'),¥(y)).
To keep our notation simple we overload the sympdiy
writing ¥ (z, y) = (¥ (z), ¥(y)).

G, is alossless linearization [17] of G if for every edge
(u,v) € E(G), there exists an edger,y) € E(G5) such
thaty(x,y) = (u,v). Otherwise G, is alossy linearization
of G.

V) v otsovvs U v s vLovn ot o vpoUn by The second condition in Definition 2 ensures that an
edge in the original graph is encoded at most once in the
linearization. This condition helps us to design a simple ye
Figure 1. A graph and its lossy representation using3 15)-sequence effec_:tlve objective function for lossy compression in tfeain
graphGs. section.

(b) A (3,15)-sequence graphy that is a lossy linearization af.

Example 2 (Lossy linearization) The (3,15)-sequence

graph G in Figure 1(b) is a lossy linearization of graph
We call £ the local range size, [ the sequence length, and G in Figure 1(a). The mapping(-) from the nodes of7,
span(z,y) = |¢p(x) — ¢(y)| the span of edge(z, y). to the nodes oty is depicted.

Intuitively, in a sequence graph, the vertices can be lined The problem of finding &k, !)-lossless linearization of
up into a sequence so that all edges are “local”, that is, th& that minimizesi is also known as computing MP
two end points locate within a segment of at mbsh the  linearization of graphs [17]. We [17] showed that MP
sequence. Sincg s a bijection betweel (G;) and integers  linearization is a very challenging problem in general,
{1,...,1}, hereafter, we may simply refer to the vertices inthough an optimal algorithm exists far= 1.
G by integers in{1,...,l}, and may draw the vertices ofa  In general, a grapiG may have multiple(k,)-lossy
sequence graph in a sequence and omit the integers if théipearizations. Finding the besk, [)-lossy linearization for
are clear from the context. a graphG is a novel problem not touched by any previous
- . work. To make the problem concrete, we need to explore
Example 1 (Sequence graph)Graph G in Figure jf(b) 'S " how to quantify the “loss of information” and assess the
a (3, 15)-sequence graph. Please note that we simply IInedegree of community preservation in lossy compression. We

up the vertices in a sequence and omit the integers in thg thi ti t by desiani biective functi
graph. ¢(-) in the figure is for Example 2 and should be nSwerthis question next by designing an objective functio

ignored at this moment. IV. OBJECTIVE FUNCTION DESIGN

In general, a(k,1)-sequence grapli’, may have more Let us consider the following optimization problem. Given
than one bijection betwee¥ (G,) and integers(1,...,l}.  @graphG and parameteris> 0 andk > 0, find a(k, )-lossy
Our discussion applies to all bijections unless specificall linearizationG; for G and the mapping : V/(G) — V(G)
mentioning. such that a utility objective functiorf(G5) is maximized,

To store ak, I)-sequence graph, for each vertex, we onlyWheref(Gs) measures the goodness@f in preserving the
need to allocat€k bits to represent the edges involving informationinG. . o
the vertex. This representation can also enable efficient LOSSY compression trades off some edges in the original

neighborhood queries — finding all neighbors of a vertexd@pPhG for space saving. What information @ should be
u takes onlyO(k) time. preserved in priority? Since communities are the essential

The general idea behind graph compression using linbuilding blocks of social networks, in this paper, we focus

earization is that we try to “unfold” a graph into a sequence®n 10SSy compressions of social networks that preserve
graph, so that many vertices have the associated edges femmunities. We regard a dense area in a graph as a po-
their local ranges. Then, storing the corresponding sezgien tential co_mml_m|ty, gnd intently z_;\v0|_d an exact def|n|_t|on of
graph can save space, because many edges are stored u§Rg'MuNity, since different applications may have différen
only 2 bits each, one for each end point. We refer to thisd€Tinitions. _ . _

process as “unfolding” because a vertex in the originallgrap W& want to obtain a utility function that opts for edges

may be mapped to several vertices in the sequence graphc.’f short spans in the corresponding sequence graph. Instead
of developing a utility function parameterized by localgan



m Utility function f; is sensitive to individual edges. We

can extend it to incorporate community information better.
e da b c ; ;
Instead of edges, we can consider how paths of a certain
3 45 67 length are represented in a sequence graph. Generally, a
community as a dense subgraph has many short paths
traversing among members within the community. If a
sequence graph preserves the community information, then

sizek, we introduce a parameter(0 < o < 1) that controls ~ the members of the community are lined up close to one
the strength of preference on shorter spans. We will build@nother in the sequence graph and thus the paths in the
the connection between parameterandk in Section V-B.  community fall into short ranges of the sequence.

A path p = (u1,us,...,u,) in a graphG is a series To incorporate the above idea, 1&%,(G,) be the set of
of edges such thatu;, u;;1) € E(G), 1 < i < m. The pa_lt.hs of Iepgtfm in a sequence grapfi;. We can extend
lengthof pathp is (m — 1), the number of edges involved utility function f; to
in the path. In a Iinearizgtioﬁ?s_of G under mappingzj, Fn(Ga) = Z o5Pan(p)
pathp’ = (u},ub,...,ul,) in G4 is theembeddingf path mAes

p if h(ug, uip1) = (uj,uj, ) for 1 <i <m.

Figure 2. The span of a path.

pePW'L(GS)

Clearly, utility function f,, is a generalization off;.
The longer the paths are considered, the more community
oriented the utility function becomes. At the same time, the
optimization problem becomes more challenging when the
value ofm increases.
span(p) = max {¢(u;)} — min {P(u;)} Observe that functiorf; takes its maximum value when
1sism 1sism the span of each edge is one, and that is basically an
Example 3. Figure 2 shows a segment of(8, /)-sequence adjacency representation of the graph. In this paper, wesfoc
graph. For pathp = (d, a, ¢, b, e), the span istT — 3 = 4. on the simplest nontrivial settings = 2 as the first step.
d_Interestineg, several recent studies, such as [10], sstgde
that even considering random walks of short length can
generate high quality results in network analysis. Note tha
égr m > 3, the problem is computationally more expensive.
ptimizing f,,, for larger values ofn is the subject of future

Definition 3 (Span of path) Let G, be a linearization
of graph G, p = (uj,us,...,u,) @ path in G, and
p = (uj,uh,...,u,,) the embedding of in Gs. Thespan
of pis

Let us start our design of the objective function by consi
ering a simple function. Supposg, is a (k, l)-linearization
of G, wherek = = |V(G)|. If we only consider individual
edges, and try to shorten the sum of spans of all edges, th
we can use the following utility function

studies.
AG)= > awenley) For the sake of simplicity, we omit the subscriphere-
(z,y)€E(Gy) after, and tackle the optimization of the following objeeti

function:

Utility function f; has the following two properties.

Property 1: the shorter the spans of edges in the sequence F(Gy) = £2(Gy) = Z asPan(p) (1)
graph, the higher the utility This property is consistent
with our goal of preserving community information. A
community typically has a high density, which means there V. LINEARIZATION METHOD
exist many edges among the set of vertices belonging to the In this section, we derive upper and lower bounds of the
community. If the vertices of a community are placed inobjective function, build the connection between paransete
proximate positions in the sequence, the spans of the edgesandk, and develop a greedy heuristic linearization method.
within the community tend to be short. The edges of long ] o ]
spans contribute little to the utility. The utility decreas A Bounding the Objective Function
exponentially with respect to the span. This property en- How difficult is the problem of finding the optimal lossy
courages the arrangement of vertices belonging to the sanli@earization using utility functionf in Equation 1, that is,
community in the close-by positions, and discourages thdinding a sequence graph maximizing the objective function?
inclusion of edges crossing communities far away in theln literature, there is a family ofraph layout problem§7],
original graphG. whose objective is to find aardering of nodes to optimize

Property 2:the more edges included in the compressiona particular objective function. Many variants of theselpro
the higher the utility. Consider two linearization grapiis  lems have been shown to be NP-hard [21], [4]. To the best
and G, such thatV (Gs) = V(G,) and E(G,) C E(G,).  of our knowledge, even no constant factor approximation
Then, f1(Gs) < fi1(G%). This property encourages a lin- algorithm for any variation of these problems is known [25],
earization graph to include as many edges as possible ifT]. Note that our setting is even more complex, since one
addition to optimizing for short span edges. node can appear in several positions in a sequence graph.

pEP(Gs)



These evidences suggest that very likely the problem is not This value should be larger than the contribution of a
solvable in polynomial time, unles8 = N P. Therefore, in  single isolated edge, otherwise removing this edge and

this section, we design a greedy heuristic method. adding it to the end of the sequence graph would increase
In order to obtain effective greedy heuristics, we try tothe objective function. Thus,
bound the objective function. We observe the following. Agyspan(e)+1
2 « _ . 2span(e)
Theorem 1 (Bounds) Let Gs be a sequence graph. Then, s 11—« @
f(Gs) < Z (al/Q)Span(el)+span(e2) (2) a(l — Oé) a2(1 — CY) - aspan(e)
e Pa(C) 4 4o — aspan(e) (1 — q)
f(@y) > Z oSpan(er)+span(ez) 3) Since0 < a < 1 and span(e) is an integer, we have
. 1-—
PER(Gs) _ span(e) < log, all=a)
Proof: For any pathp = ejes in Gg, we have 4
span(p) > max{span(e1), span(es)} > w_ Our problem formulation assumes a paramété given
Since0 < « < 1 Equation 2 follows immediately. as the maximum local range size for the sequence graph. The
Apparently, span(p) < span(ei) + span(es). Thus, objective function, however, uses parameterTheorem 2
Equation 3 holds. builds the analytical ground to conneetand k. We use

the equatiork = log,, @ to estimaten. Specifically, to

estimatea given k, we do a binary search on the interval
,1], and stop when the value ddg,, w is between

and £ — 0.01. The binary search is effective because

e functionlog,, M is monotonically increasing in the

interval [0, 1]. Using this estimate ofv, experimentally we

observe that in the resulting sequence graphs the spans of an

extremely small fraction of edges are more tligR. This is

consistent with Theorem 2. Therefore, to not waste memory,

(> ety = N gepenten)tapan(e) we use2k = log,, (1 — a)a/4 to estimateo.

ek o pmandh . _ C. A Greedy Heuristic Method
Therefore, we optimize the lower bound in Theorem 1 if we In this section, we develop a greedy heuristic method for

optimize the following nice double summation: the community preserving lossy compression problem. We
— span(e will use a local search heuristic.
f(Gy) ( asPan( ))2 I local hh t
1<i<|V(Gy)| o€ E: 1) Qverview and .General Ide_as'!?hg basic operation for
B C tion bet P N dk local improvement in our heuristic is that, given a node,
' .onnec lon between aran?e qan . we find a position in the sequence to insert a new copy
Given «, we have the following interesting upper bound of the node, and find a position to delete such that the
on the span of any edge in the optimal sequence graph. total change in the objective function is positive after the

Theorem 2. For a givena, the maximum span of all edges insertion and deletion. Similar to most local search héaris
a(l—=a) methods, our method does not have any theoretical guarantee

in the optimal sequence graph is at masg,, —— . X i
Proof: Let w; = 3", a*?(), whereE; is the set for the convergence time or the quality of the _result. _Usmg
. el an extensive set of experiments, as reported in Section VI,
- we verify the effectiveness of our design in practice.
w; = Z apan(e) 2Zai GAIgprlthm 1 shows our main algorlth_m. we |n|t_|aI|ze
— s With a_random ordgrmg of th_e vertices af (L|_ne
. 1). There is no edge irG, at this stage. Then, itera-
> iz, o', however, is the sum of a geometric sequence angvely we consider all vertices for possible reallocatidhe
is equal toa/(1 — a). Thus we can rewrite the inequality ReAllocate(u, G, Gy, ) procedure (Algorithm 2) returns a
in the following form. position in G for possible insertion of an extra copy of
200 and its associated edges. If the lengtiafis already, the
wi < 1_ o algorithm searches the local range of the insertion point fo
a possible deletion. We apply the changes if they improve
the objective function.
w? — (w; — P2 = gqspan(e)y, _ 2span(e) To implement this algorithm we need a data structure to
4qspan(e)+1 store the sequence graph, which allows fast insertion and
14 deletion operations. We explain our data structure next.

In Equations 3 and 2p% and a, respectively, are con-
stants. Heuristically, if we can obtain a sequence grap
optimizing the lower bound in Theorem 1, the sequenc
graph may have a good chance to boost the objectivtﬁ1
function f.

Let E; be the set of edges incident to vertein G, and
P; the set of those paths of length two that have veitag
the middle vertex. Then,

of edges associated with ﬁositi@n

ecE; 7

The contribution of edge is at most

. 2span(e)
11—« “



Algorithm 1 Compression Algorithm

Algorithm 2 Reallocation Procedure

Require: G: input network,k: local range,
I: length of compressionl & |V (G)])
Ensure: SeqG: sequenced compression
1: Initialize SeqG with a random ordering of nodes

2: a + EstimateAlpha(k) 1
3: repeat 2:
4 b+ f(SeqG,a) 3
5. forall uwe V(G) do 4
6: IPos <+ NULL, DPos < NULL 5:
7 (IPos, Nbh) + ReAllocate(u, G, SeqG, o) 6:
8: if (IPos # NULL) and (Length(SeqG) = 1) 7:
then 8:
9 DPos +— SeqG.LowestBenf(IPos — 9
k,IPos + k) 10:
10: end if 11
11: x + UtilityIncrease(I Pos, Nbh, SeqQ) 12
12: y < UtilityDecrease(DPos, SeqQ) 13
13: if x—y >0 then 14:
14: Insert(IPos, Nbh, SeqG) 15:
15: Delete(DPos, SeqG) 16:
16: end if 17
17: end for 18:
18 «a + f(SeqG, ) 19:
19: until convergence condition
20:
21:

2) SeqGraph Data StructureSimilar to the Eulerian data

structure we need to store a sequence of cells (Figures 3(&F
23:

24:
25:

and 3(b)), where each cell represents a positio inEach
cell contains two pieces of information:rext-copy pointer
to the next copy of the same vertex, and a vectaobits to

represent the local edges. All copies of the same vertex fornf%:
27:

a cyclic linked list, which is referred to it as\eertex cycle

The Eulerian data structure [17] uses an array, in which the?®:
29:

cost of inserting and deleting a cell is linear.
In our heuristic algorithm, we have to frequently inser
and delete cells. Even the linear cost in insertion and idelet

is too expensive. Thus, we need a better data structure t8* , _
33 Letp e Cy s.t. U(p) is maximum;

34:
35:

avoid the cost of shifting long segments in the sequenc
graph in insertions and deletions. Sepcifically, we divite t
cells into segments. Each segment has up/tacells and

Require: G: original graph,SeqG: sequence graphy €

V(@), «: weighting parameter

Ensure: IPos: potential position to insert a new copy of

u, Nbh: the edges associated to the new copy: of
C1 + ¥~ (u); Cy 0
for all {v|(u,v) € E(G\ SeqG)} do
Let p be a random member of ! (v);
02 — 02 U {p};
N(p) < {+1}; I* neighbors ofp in SeqG */
U(p) < a; I* utility of p */
SeqG.Insert(u,p);
end for
for all p e C; do
N(p) « SeqG.Nbh(p); U(p) = P uen(y @'

: end for
O+ CLUCy;
. repeat

for all {v|(u,v) € E(G)} do
Let p, andp, be s.t.(¥(p1),¥(p2)) = (u,v);
I* p, € C andp, € ~1(v) */
a < Dist(py,py); I* the distance inSeqG */
U(pu) — U(pu) - O“a‘;
Let pi € C andp; € ¢~ (v) be s.t. maximize:

(aldist Pl L U (p*))?2 — U(p)?

U(py) < U(py,) + a®istur);
if p¥ # p, then
N(py) < N(py) + {dist(py,, p})}s
N(pu) ¢ N(pu) — {dist(pu,pv)};
end if
end for
until Convergence
for all p e C; do
SeqG.UpdateN eighbor(p, N (p));
end for
for all p € Cy do
SeqG.Delete(p);
end for

IPos « p; Nbh + N(p));
return (I Pos, Nbh);

is stored in an array. Then, the SeqGraph data structure is
a double linked list of segments. In Figure 3(e),b andc

are the segments. In each cell, a next-copy pointer is store@s up to k. This can be achieved efficiently by searching a

For example, in the first cell of segmeat the next-copy
pointer b:4 points to the fourth cell in segmenat To point

small neighborhood.
Let M be the maximum number of cells in a segment.

to a cell, unlike the Eulerian data structure [17] where anWithout loss of generality, we assumé an even number. If
integer index can be simply used, we need to use an indean insertion operation causes a segment to Adveells, we

consisting of a pointer to a segment and an offset in thagplit the segment into two segments of equal size. Moreover,

segment. if a deletion operation results in the sum of the lengths af tw
Fortunately, we only need to search within the range size&onsecutive segments equal x6/2, we merge them. This

k. That is, in Algorithm 2, we only need to compute the is to avoid having many tiny segments in the data structure.

exact distance between positionsand i, if the distance For an insertion (deletion) operation, a shift in the afelct



to w into groups. Each group is associated with a copy of
u in Gs. Let C7 be the set of positions of copies ofthat
already exist inGG;, andC5 the set of positions of potential
new copies.Cs is generated as follows: I1d0(G \ G;) be
the set of edgesu,v) € E(G) that are not represented in
G,. For (u,v) € E(G\ Gs), we add a potential new copy
of u right behind a random copy of in G (Lines 3-7).

We insert these new potential copies at the beginning, and
delete them all at the end of the procedure (Lihel®). In
the edge reassigning step (LinE%26), each edge is added
to the group for which it has the best contribution (Line
19). The reassigning process stops when no improvement is
possible. At the end, for the existing copieswfthat is,

(b) (2, 10)-Sequence Grapt¥s and the mapping) to original vertices of C,, the associated edges will be updated if they have been
G : . .
segments segment phanged (Lineg7-29). For those potential new copies, that
vg U1 Vg v3  Uvs Vs Vg is, Cy, we remove them and return the best in the set as the
0 position of a potential new copy af in G,. The utility is
also returned (Line80-35).

4) Running Time AnalysisDenote byd, the degree of
nodewv. We have at most,, groups. Inserting and deleting
the groups in the SeqGraph data structure tékes, (M A+
k?)) time. In an iteration of the edge reassigning process, all
edges have to be considered for reassigning. Each edge takes
O(d,k) time. In total each iteration take3(d?k) time.

We notice that the number of iteration in practice is very
Figure 3. A graphG and its representation by SeqGraph data structure.small. Although we do not have any theoretical bound on
the number of iterations, since the contribution of any king
edge is increasing, the convergence is guaranteed.

segment is necessary. Moreover, the next pointers should beL'ke\éV'Se' tr;]e overall time comzl_e_xny Ofd ALgorlthmbl ;
updated for those that point to the positions affected by théiepe_n S ozt E convergence Cﬁn ition ?n. t ef num e: 0
insertion and deletion, that is, the position of insertian o lterations. At the same time, the complexity of a single

deletion and the positions thereafter in the same segment. iferation can be estimated as follows. Assuming the number

nice property of our SeqGraph data structure is that allrotheo_f iterations for the reallocation process is at mbshe run-

S . 5
segments are not affected. Finally, those edges that pass oling time s proportional t(zvev(G) dy(dokI+ MA+E).

the insertion (deletion) position should be updated, too. Since k and M are constant_s, the S“”.‘ is_proportional
to > ev(e) dv(du] + A). Notice thatd, is at mostA,

Example 4. In Figure 3(c), let us call the cell&:2, b:3 and  therefore, the time complexity of an iterationG¥|E|AI).
b:4, respectively, by, y and z, as labeled in the figure. To

insert a copy ofv; at positionbd:2, a shift in the segment VI. EMPIRICAL EVALUATION

b is needed. Moreover, we have to change the next-copy We report a systematic empirical evaluation.
pointers of all the cells that point te, y and = to b:3, b:4 o Eyajuation Methodology

andb:5, respectively. Note that we can find these pointers by ) )
Our compression algorithm assumes the paramétedrse

following the vertex cycles af, y and z, respectively. The . )
edges associated with those cells that are at Mgsisitions Ioca_l range size, ant the Ier_19th of seq_uenced compression.
away from the inserted cell should be updated, that,is’ Having these parameters fixed, the size of compression can
y and ¢/ Finally, the newly inserted cell should be added be computed precisely. Therefore, compression rate ddes no
to the vertex cycle of; have a straightforward meaning here. Instead, we consider
a measure to assess the utility of a single bit.
The cost of the insertion and deletion operations depeni@l

(c) SeqGraph data structure (the cell ids in cells, such :a$, are the
next-copy pointers to the next copy of the same vertices)

on the sizes of segments, vertex cycles and maximum sp efinition 4 (Bit-utility rate). Thebit—gtilityrateis the ratio _

of edges. The time complexity of an insertion or deletion® the number of edges e_ncoded in the lossy compression

operation isO(M A + k?), whereA is the maximum degree over the total number of bits.

of the graph. To evaluate the quality of a lossy compression, one has
3) The Reallocation Procedurdzor a nodeu, the reallo- to look at the quality of community preservation. This is

cation procedure (Algorithm 2) partitions the edges inntde a challenging task. It is hard to find a ground truth for



10 and 50, while B stands for the data sets where the

community sizes are set betwe2hand100. The X-axis is

the mixing parameter, which is the fraction of edges going

outside of the community for any particular vertex, used by

the data generator [14]. The Y-axis is the bit-utility rate.

A larger bit-utility rate means that the lossy compression

_— s scheme makes a better use of the available space. As
01 02 Oﬁixi:;pa,zjex;ﬁ or o8 expected, if the density of the communities decreases, the

bit-utility rate decreases, too.
Figure 4. The bit-utility rate of our lossy compression. We define a proximity graph as follows.

Bit-utility rate

0.05 L L L

Definition 5 (Proximity graph) Let G be a linearization

the community structure of real world networks. Moreover,0f G, and ¢ : V(G5) — V(G) the mapping. Note that
our method does not even explicitly identify communities in V' (Gs) = {1, -+, [V/(G;)[}. Theproximity graph of G with
social networks. respect toG, is defined as follows. Considén, v) € E(G)
For a sanity check of our method, we design the fol-and (i, j) € E(Gs) such thati — j| < k and (i) = u,
lowing methodology. Using the distance of the vertices in’(j) = v. Without loss of generality we assumec j. The
the sequence graph compression, we definpraximity ~ Weight of undirected edge., v) in the proximity graph is
graph (Definition 5), which is a weighted graph on the i 1]
vertex set of the original network. The weight of edge Z o T+ Z @
(u,v) is an indicator foru and v belonging to the same
community. Then, we run a simple community structure The first (second) term is over all the edges associated
detection algorithm on both the original network and thewith position: () that pass over positioni (i). If there is
proximity graph. A significant improvement in community no such a pair of(i, j), then the weight fofu,v) is 0. If
detection should be interpreted as the effectiveness of ouhere are more than one such pair, for each of those pairs,
community preservation lossy compression method. To hav@e compute the weight and take the sum over all of them.
a ground truth, we use synthesis networks with implanted , ) o ) ,
communities. The merit of this weighting schema is that, when
The second experiment is concerned with the effect ofNd j belong to a dense part of the sequence graph
missing edges in the lossy compression. We compare thrdd’ (1), ¥(j)) receives a relatively large value, even if there
different centrality measures on both the network with the!S N0 direct edge betweenand ;. In practice, there is no
original set of edges and the network with the set of thosd€ed to explicitly store the proximity graph, rather one can

edges that are encoded in the compressed version. We u$@mpute the weights from the linearization graph on the
a collection of real world networks in this experiment. fly. Note that, since the unfolding algorithm uses a random
order of the vertices as the starting seed, to exploit the

B. Synthesis Networks power of randomization, one can use several independent
The LFR [14] benchmark is a random model to generatdinearizations to derive an aggregate proximity grapht tha
networks with implanted communities of variable size, whil is, the weight of(u,v) is the sum of its weights in the
the degree of the nodes follows a power law distribution.independent proximity graphs.
We use the algorithm by Clauset al. [5] for community Figure 5 shows the results of the algorithm by Clawet
structure detection. This is a simple and scalable greedgl. [5] on the original graph, the proximity graph and the
modularity-based algorithm. As reported by Fortunato [9]aggregate proximity graph on five independent sequenced
in his Figure 33, this algorithm has a poor performancecompressions. In those experimerttss 16 andl = 1.2x N,
on the LFR benchmark. A significant improvement of thewhere N is the number of vertices in the original graph.
performance of this algorithm over our lossy represematio The Y-axis is the Normalized Mutual Information (NMI) [6],
of the network supports our claim that our method is[9], which measures the similarity between two clusterjngs
more than a compression framework and can serve as that is, community structures, of the same set of nodes. We
preprocessing step for clustering analysis. compute NMI using the code at http://sites.google.comy/sit
To generate synthesis networks, we use the same settingsdrealancichinetti/mutual.
as those used by Fortunato [9]. We set the parameters asThe results clearly show that the algorithm is not effective
follows: the average degree tah), the maximum degree on the original graph, but performs significantly better on
to 50, the exponent for degree distribution 8 and the the proximity graph. Moreover, the results on the aggregate
exponent for the community size distribution to proximity graph are comparable to the state-of-the-art al-
In Figure 4, N is the number of nodes$ stands for gorithms reported by Fortunato [9] in his Figure 33. This
the data sets where the community sizes are made betwestrongly suggests that our method captures the community

(i,DEE(Gs), 1> (GDEB(Gs),I<i
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Figure 5. The performance of the algorithm by Clausteal. [5] on the original network, the proximity network deriverbfn one compression, and the
aggregated proximity network derived from five independ=srhpressions.
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Figure 6. The effect of (a) local range siZe) @nd (b) length of sequencé).

truct f th twork d ffective Description #nodes | #edges
structure o € network, and can Serve as an efiectiv ca-GrQc Coll. net. of Arxiv Gen Relativity 5242 14990

preprocessing step. em-ExCh UVR Email Exchange 1133 | 5451
Figure 6 shows that our framework can benefit from wiki-vote | Wikipedia who-votes-on-whom network 7115 | 100763

increasing local range sizZe The benefit of increasing the Table |

length of sequenced compression, however, is limited for STATISTIC OF DATA-SETS

the community detection quality due to the weakness of the

detection algorithm [5].

C. Centrality 1000
Betweenness [11] is a centrality measure of vertices for 900
a given graph. It gives higher values to those vertices 800

that occur on many shortest paths between other pairs of
vertices. PageRank [20] is another centrality measure that
uses random walks in a network to evaluate the importance
of nodes. The degree of a vertex also can be considered
as a simple centrality measure. In this section, we evaluate
the effect of information loss in lossy compression on those
Centrality measures. 100 200 300 400 500 609 700 800 900 1000

For a graphG and its sequence graph compressien Humberofnodes (imes 1000)
1(G5) is a graph on vertex s&f(G). Edge(u,v) € E(G) is
an edge iy (G,) if and only if there existgi, j) € E(Gy)
such that(u, v) = (1(i),%(4)). Intuitively, ¢/(Gs) consists
of those edges id- that are encoded itv.

Each vertex has a centrality score. A centrality measure Figure 7 shows the results on three real world networks
on a networkG can be regarded ascantrality vectorof size whose statistics are given in Table I. As the value kof
|V (G)]. To make comparison we use the Pearson correlatiomcreases, the correlation between the two centralityorsct
of the centrality vectors off and(G5). increases.

Running time (second)

Figure 8. The running time of a single iteration of Algorithin



Pearson Correlation

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3

PageRank —@— ]

Betweenness ---&---
Degree B S

30

0 5 10 15

20 25 35

k (local range size)
(a) Collaboration network

Figure 7.

D. Running Time Efficiency
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Pearson Correlation of centrality measures aginali and the compressed version

Community detection in graphsPhysics

The running time of our method depends on the numbe

of iterations in Algorithm 1. For our setting the number of
iterations is typically betweenh5 to 30. Figure 8 depicts the
running time of our method with respect to the graph siz€11]
on the same LFR benchmarks [9]. The running time of a

single iteration, when parameteiis fixed, is scaling almost
linearly. Note that the result indicates that our method

efficient on networks up to millions of nodes.

VIl. CONCLUSIONS

f10]

id12l

(13]

In this paper, we developed a lossy compression schemnié4]
for social networks. In our design, the quota size of compres

sion is given, and the objective is to preserve the communit

structure of a given network as much as possible. Wi
tackled this problem by introducing a notion of sequence
graph. Moreover, we designed an objective function that
measures the quality of a sequence graph with respect to tf6]
community structure of the network. We presented a non-

15]

trivial heuristic method to optimize our objective funcatio

17
Finally, we validated our method using both synthesis an& )

real world networks.
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