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Abstract—Compression plays an important role in social
network analysis from both practical and theoretical points
of view. Although there are a few pioneering studies on social
network compression, they mainly focus on lossless approaches.
In this paper, we tackle the novel problem of community
preserving lossy compression of social networks. The trade-off
between space and information preserved in a lossy compres-
sion presents an interesting angle for social network analysis,
and, at the same time, makes the problem very challenging. We
propose a sequence graph compression approach, discuss the
design of objective functions towards community preservation,
and present an interesting and practically effective greedy
algorithm. Our experimental results on both real data sets and
synthetic data sets demonstrate the promise of our method.
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I. I NTRODUCTION

Partly motivated by the recent success of many online
social networking sites such as Facebook and Twitter, man-
aging and analyzing huge social networks have attracted
dramatic interest from both industry and academia. Many
social networks are huge and ever growing, which present
an essential challenge for social network analysis.

As illustrated in several recent studies [2], [3], [4],
[17], compressing social networks can substantially facilitate
mining and advanced analysis of huge social networks.
Social network compression plays an important role in social
network analysis from both practical and theoretical points
of view. Practically, many advanced social network analysis
tools are sensitive to the input size. Those methods are
highly efficient when the data can be held completely or
largely into main memory, but may become very costly on
data mostly out of memory. If social networks can be com-
pressed effectively and efficiently, it may help such advanced
analysis tools to handle much larger social networks.

Compression is always achieved by utilizing some form of
“regularity” in data. Thus, the compressibility of a socialnet-
work can provide valuable insights into the structure of the
network. For example, if a subnetwork can be compressed
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well, it may indicate that the members in the subnetwork
share some regularity, or the subnetwork follows some
structural patterns that are shared by similar subnetworks.

As reviewed in Section II, almost all the existing social
network compression methods target at lossless compres-
sion. We argue that lossy compression in fact is very
interesting and useful for social networks, because it is well-
known that large social networks are often noisy.

From the practical point of view, noise edges and vertices
in large social networks may damp the quality of social
network analysis. An appropriate lossy compression of a
social network can discard the noise edges and vertices in
the network. Consequently, the lossy compression may be
present as the input of higher quality for social network anal-
ysis. In other words, lossy compression of social networks
can serve as a preprocessing step in social network analysis.
This goes far beyond just space saving.

From the theoretical point of view, lossy compression of
social networks can help to discover the importance of edges
and vertices in a social network, and identify noise edges
and vertices. Immagine ideally we have a lossy compression
method that preserves the important information about a
social network and filters out noise. If the method can assign
to each element in a social network (e.g., each edge and
vertex) a priority of being included into a lossy compression,
then the priority can be regarded as a good indicator of
the importance of the element. The lower the priority of an
element, the more likely the element is noise.

Lossy compression of social networks is interesting and
important for social network analysis. At the same time,
it is a very challenging problem. To achieve good lossy
compression of social networks, we have to develop good
methodology that can detect and preserve important infor-
mation in social networks.

In this paper, we tackle the novel problem of community
preserving lossy compression of social networks, and make
several important contributions. First, we advocate commu-
nity preserving lossy compression of social networks due
to the importance of communities in social networks. To
the best of our knowledge, we are the first to identify and
tackle the problem. Second, we propose a sequence graph
compression approach. We design a simple yet meaningful



objective function that opts for community structure preser-
vation. A heuristic algorithm is developed. Last, we reportan
empirical study on both synthetic and real data sets, which
verifies the effectiveness of our method.

The rest of the paper is organized as follows. We review
the related work in Section II. We describe the essential idea
of graph compression using sequence graphs in Section III,
and design the community preserving objective function
in Section IV. We present the compression algorithm in
Section V, and report the experimental results in Section VI.
Section VII concludes the paper.

II. RELATED WORK

Community finding and analysis in social networks have
been extensively explored from multiple disciplines, suchas
computer science, physics, and sociology. Fortunato [9] pre-
sented a comprehensive survey on community detection in
complex networks. In general, given a network, we want to
compute a partitioning of the nodes to communities, where
a community is a set of nodes such that edges inside the
community are more likely than those going outside. Having
this notion of community in mind, Lancichinettiet al. [14]
introduced the LFR benchmark, which is a model that can
produce random networks with implanted communities of
variable size, while the degrees of the nodes follow a power
law distribution. Fortunato [9] also discussed comparing
two different community structures, a nontrivial question.
In particular the Normalized Mutual Information (NMI) [6]
is an information theory based measure designed to capture
the similarity of two different partitions.

There are many community finding methods. For exam-
ple, Girvan and Newman [11] gave an algorithm based on
the concept of “betweenness”. Newman and Girvan [19]
and Clausetet al. [5] developed the notion of modularity.
Good et al. [12] studied modularity landscape. Effective
methods based on random walk [24], hierarchical optimiza-
tion of modularity function [1] were developed recently.

A large body of work on assessing the quality of indi-
vidual communities in real life social networks has been
developed.Conductance[13] is a widely accepted measure
for this purpose. Recently, Leskovecet al. [15], [16] studied
Network Community Profileplot (NCP) of social networks.
They pointed out that in real life social networks, there
are small communities with low conductance. As the size
increases, the communities, however, start to “blend in” with
the rest of the network and become less community like.

Due to practical demands, lossless compression of social
networks/web graphs attracted much attention lately. Boldi
and Vigna [3] showed in particular web graphs are compress-
ible down to almost two bits per edge. Chierichettiet al. [4]
extended the framework [3] using shingle ordering instead
of lexicographical ordering of web pages, in order to tackle
other types of real world networks. Chierichettiet al. [4],
however, suggested that the compressibility of web graphs

is an exception among other types of real life networks.
Exploiting an ordering of nodes, which captures the “regular-
ity” of the network, is critical and challenging. Very recently,
Vigna et al. [2] introduced a layered label propagation
algorithm for reordering very large graphs. They showed
that their method can improve the compression rates for web
graphs and social networks. It is worth mentioning that the
layered label propagation algorithm in essence is a clustering
method built up on [22], [23]. In our previous study [17], we
used the notion of multi-position linearization to compress
real life networks. Multi-position linearization is a sequence
of nodes, in which any node can appear multiple times. The
intuition is that, in real life networks, a node can be part
of several clusters. Thus, such a sequence can capture the
cluster structures better. Then, using a constant size vector
of bits the “local” connections of nodes can be encoded.
Finding an optimal linearization, however, is not trivial.

Navlakha et al. [18] proposed a graph summarization
scheme with an error bound that compresses social networks
by aggregating the nodes in supernodes and replacing all
edges between two groups of nodes by a superedge. They
also keep a set of corrections in order to be able to recreate
the original graph. Their approach allows lossy compression.
Given an error rateǫ, the objective is to reduce the size of
representation. One critical difference between their method
and our approach is that we assume the size of representation
is given and our objective is to capture the community
structure of a network.

Most recently, Fanet al. [8] suggested a query preserving
graph compression framework. Their approach does not
store the original graph, rather, it computes the equivalence
classes of nodes according to a given class of queries.
Then, it builds a smaller graph that has the equivalence
classes as the vertices. This approach is quite effective for
simple queries (e.g. reachability) and less effective for more
complex queries (e.g. pattern matching). Their method does
not target at community preservation.

III. G RAPH L INEARIZATION FOR LOSSYCOMPRESSION

In our previous study [17], we developed the notion of
graph linearization for lossless graph compression. In this
section, we extend the notion of graph linearization to allow
lossy compression.

For the sake of simplicity, in this paper, we model a social
network as anundirected simple graphG = (V,E), where
V is a set of vertices,E ⊂ V × V is a set of edges, and
(u, u) 6∈ E for any u ∈ V . We also refer toV by V (G)
and toE by E(G). Our discussion can be straightforwardly
extended to directed and non-simple graphs.

We first formulate a notion of sequence graph.

Definition 1 (Sequence graph). A graph Gs is a (k, l)-
sequence graph, if |V (Gs)| = l and there is a bijection
φ betweenV (Gs) and the set of integers{1, . . . , l} such
that for every edge(x, y) ∈ E(Gs), |φ(x) − φ(y)| ≤ k.
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(b) A (3, 15)-sequence graphGs that is a lossy linearization ofG.

Figure 1. A graphG and its lossy representation using a(3, 15)-sequence
graphGs.

We callk the local range size, l the sequence length, and
span(x, y) = |φ(x) − φ(y)| the span of edge(x, y).

Intuitively, in a sequence graph, the vertices can be lined
up into a sequence so that all edges are “local”, that is, the
two end points locate within a segment of at mostk in the
sequence. Sinceφ is a bijection betweenV (Gs) and integers
{1, . . . , l}, hereafter, we may simply refer to the vertices in
Gs by integers in{1, . . . , l}, and may draw the vertices of a
sequence graph in a sequence and omit the integers if they
are clear from the context.

Example 1 (Sequence graph). GraphGs in Figure 1(b) is
a (3, 15)-sequence graph. Please note that we simply line
up the vertices in a sequence and omit the integers in the
graph. ψ(·) in the figure is for Example 2 and should be
ignored at this moment.

In general, a(k, l)-sequence graphGs may have more
than one bijection betweenV (Gs) and integers{1, . . . , l}.
Our discussion applies to all bijections unless specifically
mentioning.

To store a(k, l)-sequence graph, for each vertex, we only
need to allocate2k bits to represent the edges involving
the vertex. This representation can also enable efficient
neighborhood queries — finding all neighbors of a vertex
u takes onlyO(k) time.

The general idea behind graph compression using lin-
earization is that we try to “unfold” a graph into a sequence
graph, so that many vertices have the associated edges in
their local ranges. Then, storing the corresponding sequence
graph can save space, because many edges are stored using
only 2 bits each, one for each end point. We refer to this
process as “unfolding” because a vertex in the original graph
may be mapped to several vertices in the sequence graph.

Definition 2 (Graph linearization). A (k, l)-sequence graph
Gs is a (k, l)-linearization of a graphG if there exists
a function ψ : V (Gs) → V (G) such that (1) for every
edge (x, y) ∈ E(Gs), (ψ(x), ψ(y)) ∈ E(G), and (2)
there do not exist two edges(x, y), (x′, y′) ∈ E(Gs),
(x, y) 6= (x′, y′) such that(ψ(x), ψ(y)) = (ψ(x′), ψ(y′)).
To keep our notation simple we overload the symbolψ by
writing ψ(x, y) = (ψ(x), ψ(y)).
Gs is a lossless linearization [17] of G if for every edge

(u, v) ∈ E(G), there exists an edge(x, y) ∈ E(Gs) such
thatψ(x, y) = (u, v). Otherwise,Gs is a lossy linearization
of G.

The second condition in Definition 2 ensures that an
edge in the original graph is encoded at most once in the
linearization. This condition helps us to design a simple yet
effective objective function for lossy compression in the next
section.

Example 2 (Lossy linearization). The (3, 15)-sequence
graph Gs in Figure 1(b) is a lossy linearization of graph
G in Figure 1(a). The mappingψ(·) from the nodes ofGs

to the nodes ofG is depicted.

The problem of finding a(k, l)-lossless linearization of
G that minimizes l is also known as computing MPk-
linearization of graphs [17]. We [17] showed that MPk-
linearization is a very challenging problem in general,
though an optimal algorithm exists fork = 1.

In general, a graphG may have multiple(k, l)-lossy
linearizations. Finding the best(k, l)-lossy linearization for
a graphG is a novel problem not touched by any previous
work. To make the problem concrete, we need to explore
how to quantify the “loss of information” and assess the
degree of community preservation in lossy compression. We
answer this question next by designing an objective function.

IV. OBJECTIVE FUNCTION DESIGN

Let us consider the following optimization problem. Given
a graphG and parametersl > 0 andk > 0, find a(k, l)-lossy
linearizationGs for G and the mappingψ : V (Gs)→ V (G)
such that a utility objective functionf(Gs) is maximized,
wheref(Gs) measures the goodness ofGs in preserving the
information inG.

Lossy compression trades off some edges in the original
graphG for space saving. What information inG should be
preserved in priority? Since communities are the essential
building blocks of social networks, in this paper, we focus
on lossy compressions of social networks that preserve
communities. We regard a dense area in a graph as a po-
tential community, and intently avoid an exact definition of
community, since different applications may have different
definitions.

We want to obtain a utility function that opts for edges
of short spans in the corresponding sequence graph. Instead
of developing a utility function parameterized by local range
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Figure 2. The span of a path.

sizek, we introduce a parameterα (0 < α < 1) that controls
the strength of preference on shorter spans. We will build
the connection between parametersα andk in Section V-B.

A path p = (u1, u2, . . . , um) in a graphG is a series
of edges such that(ui, ui+1) ∈ E(G), 1 ≤ i < m. The
lengthof pathp is (m − 1), the number of edges involved
in the path. In a linearizationGs of G under mappingψ,
pathp′ = (u′1, u

′
2, . . . , u

′
m) in Gs is theembeddingof path

p if ψ(ui, ui+1) = (u′i, u
′
i+1) for 1 ≤ i < m.

Definition 3 (Span of path). Let Gs be a linearization
of graph G, p = (u1, u2, . . . , um) a path in G, and
p′ = (u′1, u

′
2, . . . , u

′
m) the embedding ofp in Gs. Thespan

of p is

span(p) = max
1≤i≤m

{φ(u′i)} − min
1≤i≤m

{φ(u′i)}

Example 3. Figure 2 shows a segment of a(3, l)-sequence
graph. For pathp = (d, a, c, b, e), the span is7− 3 = 4.

Let us start our design of the objective function by consid-
ering a simple function. SupposeGs is a (k, l)-linearization
of G, wherek = l = |V (G)|. If we only consider individual
edges, and try to shorten the sum of spans of all edges, then
we can use the following utility function

f1(Gs) =
∑

(x,y)∈E(Gs)

αspan(x,y)

Utility function f1 has the following two properties.
Property 1: the shorter the spans of edges in the sequence

graph, the higher the utility. This property is consistent
with our goal of preserving community information. A
community typically has a high density, which means there
exist many edges among the set of vertices belonging to the
community. If the vertices of a community are placed in
proximate positions in the sequence, the spans of the edges
within the community tend to be short. The edges of long
spans contribute little to the utility. The utility decreases
exponentially with respect to the span. This property en-
courages the arrangement of vertices belonging to the same
community in the close-by positions, and discourages the
inclusion of edges crossing communities far away in the
original graphG.

Property 2: the more edges included in the compression,
the higher the utility. Consider two linearization graphsGs

andG′
s such thatV (Gs) = V (G′

s) andE(Gs) ⊂ E(G′
s).

Then, f1(Gs) < f1(G
′
s). This property encourages a lin-

earization graph to include as many edges as possible in
addition to optimizing for short span edges.

Utility function f1 is sensitive to individual edges. We
can extend it to incorporate community information better.
Instead of edges, we can consider how paths of a certain
length are represented in a sequence graph. Generally, a
community as a dense subgraph has many short paths
traversing among members within the community. If a
sequence graph preserves the community information, then
the members of the community are lined up close to one
another in the sequence graph and thus the paths in the
community fall into short ranges of the sequence.

To incorporate the above idea, letPm(Gs) be the set of
paths of lengthm in a sequence graphGs. We can extend
utility function f1 to

fm(Gs) =
∑

p∈Pm(Gs)

αspan(p)

Clearly, utility function fm is a generalization off1.
The longer the paths are considered, the more community
oriented the utility function becomes. At the same time, the
optimization problem becomes more challenging when the
value ofm increases.

Observe that functionf1 takes its maximum value when
the span of each edge is one, and that is basically an
adjacency representation of the graph. In this paper, we focus
on the simplest nontrivial settingm = 2 as the first step.
Interestingly, several recent studies, such as [10], suggested
that even considering random walks of short length can
generate high quality results in network analysis. Note that
for m ≥ 3, the problem is computationally more expensive.
Optimizingfm for larger values ofm is the subject of future
studies.

For the sake of simplicity, we omit the subscript2 here-
after, and tackle the optimization of the following objective
function:

f(Gs) = f2(Gs) =
∑

p∈P2(Gs)

αspan(p) (1)

V. L INEARIZATION METHOD

In this section, we derive upper and lower bounds of the
objective function, build the connection between parameters
α andk, and develop a greedy heuristic linearization method.

A. Bounding the Objective Function

How difficult is the problem of finding the optimal lossy
linearization using utility functionf in Equation 1, that is,
finding a sequence graph maximizing the objective function?
In literature, there is a family ofgraph layout problems[7],
whose objective is to find anordering of nodes to optimize
a particular objective function. Many variants of these prob-
lems have been shown to be NP-hard [21], [4]. To the best
of our knowledge, even no constant factor approximation
algorithm for any variation of these problems is known [25],
[7]. Note that our setting is even more complex, since one
node can appear in several positions in a sequence graph.



These evidences suggest that very likely the problem is not
solvable in polynomial time, unlessP = NP . Therefore, in
this section, we design a greedy heuristic method.

In order to obtain effective greedy heuristics, we try to
bound the objective function. We observe the following.

Theorem 1 (Bounds). Let Gs be a sequence graph. Then,

f(Gs) ≤
∑

p∈P2(Gs)

(α1/2)span(e1)+span(e2) (2)

f(Gs) ≥
∑

p∈P2(Gs)

αspan(e1)+span(e2) (3)

Proof: For any pathp = e1e2 in Gs, we have
span(p) ≥ max{span(e1), span(e2)} ≥

span(e1)+span(e2)
2 .

Since0 < α < 1 Equation 2 follows immediately.
Apparently, span(p) ≤ span(e1) + span(e2). Thus,

Equation 3 holds.

In Equations 3 and 2,α
1

2 andα, respectively, are con-
stants. Heuristically, if we can obtain a sequence graph
optimizing the lower bound in Theorem 1, the sequence
graph may have a good chance to boost the objective
function f .

Let Ei be the set of edges incident to vertexi in Gs and
Pi the set of those paths of length two that have vertexi as
the middle vertex. Then,

(
∑

e∈Ei

αspan(e))2 =
∑

p=e1e2∈Pi

αspan(e1)+span(e2)

Therefore, we optimize the lower bound in Theorem 1 if we
optimize the following nice double summation:

f̄(Gs) =
∑

1≤i≤|V (Gs)|

(
∑

e∈Ei

αspan(e))2

B. Connection between Parametersα and k

Given α, we have the following interesting upper bound
on the span of any edge in the optimal sequence graph.

Theorem 2. For a givenα, the maximum span of all edges
in the optimal sequence graph is at mostlogα

α(1−α)
4 .

Proof: Let wi =
∑

e∈Ei
αspan(e), whereEi is the set

of edges associated with positioni.

wi =
∑

e∈Ei

αspan(e) < 2

∞∑

i=1

αi

∑∞
i=1 α

i, however, is the sum of a geometric sequence and
is equal toα/(1 − α). Thus we can rewrite the inequality
in the following form.

wi <
2α

1− α

The contribution of edgee is at most

w2
i − (wi − α

span(e))2 = 2αspan(e)wi − α
2span(e)

<
4αspan(e)+1

1− α
− α2span(e)

This value should be larger than the contribution of a
single isolated edge, otherwise removing this edge and
adding it to the end of the sequence graph would increase
the objective function. Thus,

α2 <
4αspan(e)+1

1− α
− α2span(e)

α(1 − α)

4
<

α2(1− α)

4α− αspan(e)(1 − α)
< αspan(e)

Since0 < α < 1 andspan(e) is an integer, we have

span(e) < logα
α(1− α)

4

Our problem formulation assumes a parameterk is given
as the maximum local range size for the sequence graph. The
objective function, however, uses parameterα. Theorem 2
builds the analytical ground to connectα and k. We use
the equationk = logα

α(1−α)
4 to estimateα. Specifically, to

estimateα given k, we do a binary search on the interval
[0, 1], and stop when the value oflogα

α(1−α)
4 is between

k and k − 0.01. The binary search is effective because
the functionlogα

α(1−α)
4 is monotonically increasing in the

interval [0, 1]. Using this estimate ofα, experimentally we
observe that in the resulting sequence graphs the spans of an
extremely small fraction of edges are more thank/2. This is
consistent with Theorem 2. Therefore, to not waste memory,
we use2k = logα(1− α)α/4 to estimateα.

C. A Greedy Heuristic Method

In this section, we develop a greedy heuristic method for
the community preserving lossy compression problem. We
will use a local search heuristic.

1) Overview and General Ideas:The basic operation for
local improvement in our heuristic is that, given a node,
we find a position in the sequence to insert a new copy
of the node, and find a position to delete such that the
total change in the objective function is positive after the
insertion and deletion. Similar to most local search heuristic
methods, our method does not have any theoretical guarantee
for the convergence time or the quality of the result. Using
an extensive set of experiments, as reported in Section VI,
we verify the effectiveness of our design in practice.

Algorithm 1 shows our main algorithm. we initialize
Gs with a random ordering of the vertices ofG (Line
1). There is no edge inGs at this stage. Then, itera-
tively we consider all vertices for possible reallocation.The
ReAllocate(u,G,Gs, α) procedure (Algorithm 2) returns a
position inGs for possible insertion of an extra copy ofu
and its associated edges. If the length ofGs is alreadyl, the
algorithm searches the local range of the insertion point for
a possible deletion. We apply the changes if they improve
the objective function.

To implement this algorithm we need a data structure to
store the sequence graphGs, which allows fast insertion and
deletion operations. We explain our data structure next.



Algorithm 1 Compression Algorithm
Require: G: input network,k: local range,

l: length of compression (l ≥ |V (G)|)
Ensure: SeqG: sequenced compression

1: Initialize SeqG with a random ordering of nodes
2: α← EstimateAlpha(k)
3: repeat
4: b← f(SeqG, α)
5: for all u ∈ V (G) do
6: IPos← NULL, DPos← NULL
7: (IPos,Nbh)← ReAllocate(u,G, SeqG, α)
8: if (IPos 6= NULL) and (Length(SeqG) = l)

then
9: DPos ← SeqG.LowestBenf(IPos −

k, IPos+ k)
10: end if
11: x← UtilityIncrease(IPos,Nbh, SeqG)
12: y ← UtilityDecrease(DPos, SeqG)
13: if x− y > 0 then
14: Insert(IPos,Nbh, SeqG)
15: Delete(DPos, SeqG)
16: end if
17: end for
18: α← f(SeqG, α)
19: until convergence condition

2) SeqGraph Data Structure:Similar to the Eulerian data
structure we need to store a sequence of cells (Figures 3(a)
and 3(b)), where each cell represents a position inGs. Each
cell contains two pieces of information: anext-copy pointer
to the next copy of the same vertex, and a vector of2k bits to
represent the local edges. All copies of the same vertex form
a cyclic linked list, which is referred to it as avertex cycle.
The Eulerian data structure [17] uses an array, in which the
cost of inserting and deleting a cell is linear.

In our heuristic algorithm, we have to frequently insert
and delete cells. Even the linear cost in insertion and deletion
is too expensive. Thus, we need a better data structure to
avoid the cost of shifting long segments in the sequence
graph in insertions and deletions. Sepcifically, we divide the
cells into segments. Each segment has up toM cells and
is stored in an array. Then, the SeqGraph data structure is
a double linked list of segments. In Figure 3(c),a, b and c
are the segments. In each cell, a next-copy pointer is stored.
For example, in the first cell of segmenta, the next-copy
pointer b:4 points to the fourth cell in segmentb. To point
to a cell, unlike the Eulerian data structure [17] where an
integer index can be simply used, we need to use an index
consisting of a pointer to a segment and an offset in that
segment.

Fortunately, we only need to search within the range size
k. That is, in Algorithm 2, we only need to compute the
exact distance between positionsi1 and i2 if the distance

Algorithm 2 Reallocation Procedure
Require: G: original graph,SeqG: sequence graph,u ∈

V (G), α: weighting parameter
Ensure: IPos: potential position to insert a new copy of

u, Nbh: the edges associated to the new copy ofu
1: C1 ← ψ−1(u); C2 ← ∅;
2: for all {v|(u, v) ∈ E(G \ SeqG)} do
3: Let p be a random member ofψ−1(v);
4: C2 ← C2 ∪ {p};
5: N(p)← {+1}; /* neighbors ofp in SeqG */
6: U(p)← α; /* utility of p */
7: SeqG.Insert(u, p);
8: end for
9: for all p ∈ C1 do

10: N(p)← SeqG.Nbh(p); U(p)←
∑

a∈N(p) α
|a|;

11: end for
12: C ← C1 ∪C2;
13: repeat
14: for all {v|(u, v) ∈ E(G)} do
15: Let pu andpv be s.t.(ψ(p1), ψ(p2)) = (u, v);
16: /* pu ∈ C andpv ∈ ψ−1(v) */
17: a← Dist(pu, pv); /* the distance inSeqG */
18: U(pu)← U(pu)− α|a|;
19: Let p∗u ∈ C andp∗v ∈ ψ

−1(v) be s.t. maximize:

(α|dist(p∗

u
,p∗

v
)| + U(p∗u))

2 − U(p∗u)
2

20: U(p∗u)← U(p∗u) + αdist(p∗

u
,p∗

v
);

21: if p∗u 6= pu then
22: N(p∗u)← N(p∗u) + {dist(p

∗
u, p

∗
v)};

23: N(pu)← N(pu)− {dist(pu, pv)};
24: end if
25: end for
26: until Convergence
27: for all p ∈ C1 do
28: SeqG.UpdateNeighbor(p,N(p));
29: end for
30: for all p ∈ C2 do
31: SeqG.Delete(p);
32: end for
33: Let p ∈ C2 s.t.U(p) is maximum;
34: IPos← p; Nbh← N(p));
35: return(IPos,Nbh);

is up tok. This can be achieved efficiently by searching a
small neighborhood.

Let M be the maximum number of cells in a segment.
Without loss of generality, we assumeM an even number. If
an insertion operation causes a segment to haveM cells, we
split the segment into two segments of equal size. Moreover,
if a deletion operation results in the sum of the lengths of two
consecutive segments equal toM/2, we merge them. This
is to avoid having many tiny segments in the data structure.

For an insertion (deletion) operation, a shift in the affected
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(c) SeqGraph data structure (the cell ids in cells, such asb : 4, are the
next-copy pointers to the next copy of the same vertices)

Figure 3. A graphG and its representation by SeqGraph data structure.

segment is necessary. Moreover, the next pointers should be
updated for those that point to the positions affected by the
insertion and deletion, that is, the position of insertion or
deletion and the positions thereafter in the same segment. A
nice property of our SeqGraph data structure is that all other
segments are not affected. Finally, those edges that pass over
the insertion (deletion) position should be updated, too.

Example 4. In Figure 3(c), let us call the cellsb:2, b:3 and
b:4, respectively, byx, y and z, as labeled in the figure. To
insert a copy ofv7 at position b:2, a shift in the segment
b is needed. Moreover, we have to change the next-copy
pointers of all the cells that point tox, y and z to b:3, b:4
andb:5, respectively. Note that we can find these pointers by
following the vertex cycles ofx, y and z, respectively. The
edges associated with those cells that are at most2 positions
away from the inserted cell should be updated, that isx, x′,
y and y′. Finally, the newly inserted cell should be added
to the vertex cycle ofv7.

The cost of the insertion and deletion operations depends
on the sizes of segments, vertex cycles and maximum span
of edges. The time complexity of an insertion or deletion
operation isO(M∆+k2), where∆ is the maximum degree
of the graph.

3) The Reallocation Procedure:For a nodeu, the reallo-
cation procedure (Algorithm 2) partitions the edges incident

to u into groups. Each group is associated with a copy of
u in Gs. Let C1 be the set of positions of copies ofu that
already exist inGs, andC2 the set of positions of potential
new copies.C2 is generated as follows: letE(G \ Gs) be
the set of edges(u, v) ∈ E(G) that are not represented in
Gs. For (u, v) ∈ E(G \ Gs), we add a potential new copy
of u right behind a random copy ofv in Gs (Lines 3-7).

We insert these new potential copies at the beginning, and
delete them all at the end of the procedure (Lines1-12). In
the edge reassigning step (Lines13-26), each edge is added
to the group for which it has the best contribution (Line
19). The reassigning process stops when no improvement is
possible. At the end, for the existing copies ofu, that is,
C1, the associated edges will be updated if they have been
changed (Lines27-29). For those potential new copies, that
is, C2, we remove them and return the best in the set as the
position of a potential new copy ofu in Gs. The utility is
also returned (Lines30-35).

4) Running Time Analysis:Denote bydv the degree of
nodev. We have at mostdv groups. Inserting and deleting
the groups in the SeqGraph data structure takesO(dv(M∆+
k2)) time. In an iteration of the edge reassigning process, all
edges have to be considered for reassigning. Each edge takes
O(dvk) time. In total each iteration takesO(d2vk) time.

We notice that the number of iteration in practice is very
small. Although we do not have any theoretical bound on
the number of iterations, since the contribution of any single
edge is increasing, the convergence is guaranteed.

Likewise, the overall time complexity of Algorithm 1
depends on the convergence condition and the number of
iterations. At the same time, the complexity of a single
iteration can be estimated as follows. Assuming the number
of iterations for the reallocation process is at mostI, the run-
ning time is proportional to

∑
v∈V (G) dv(dvkI+M∆+k2).

Since k and M are constants, the sum is proportional
to

∑
v∈V (G) dv(dvI + ∆). Notice thatdv is at most∆,

therefore, the time complexity of an iteration isO(|E|∆I).

VI. EMPIRICAL EVALUATION

We report a systematic empirical evaluation.

A. Evaluation Methodology

Our compression algorithm assumes the parametersk, the
local range size, andl, the length of sequenced compression.
Having these parameters fixed, the size of compression can
be computed precisely. Therefore, compression rate does not
have a straightforward meaning here. Instead, we consider
a measure to assess the utility of a single bit.

Definition 4 (Bit-utility rate). Thebit-utility rate is the ratio
of the number of edges encoded in the lossy compression
over the total number of bits.

To evaluate the quality of a lossy compression, one has
to look at the quality of community preservation. This is
a challenging task. It is hard to find a ground truth for
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Figure 4. The bit-utility rate of our lossy compression.

the community structure of real world networks. Moreover,
our method does not even explicitly identify communities in
social networks.

For a sanity check of our method, we design the fol-
lowing methodology. Using the distance of the vertices in
the sequence graph compression, we define aproximity
graph (Definition 5), which is a weighted graph on the
vertex set of the original network. The weight of edge
(u, v) is an indicator foru and v belonging to the same
community. Then, we run a simple community structure
detection algorithm on both the original network and the
proximity graph. A significant improvement in community
detection should be interpreted as the effectiveness of our
community preservation lossy compression method. To have
a ground truth, we use synthesis networks with implanted
communities.

The second experiment is concerned with the effect of
missing edges in the lossy compression. We compare three
different centrality measures on both the network with the
original set of edges and the network with the set of those
edges that are encoded in the compressed version. We use
a collection of real world networks in this experiment.

B. Synthesis Networks

The LFR [14] benchmark is a random model to generate
networks with implanted communities of variable size, while
the degree of the nodes follows a power law distribution.
We use the algorithm by Clausetet al. [5] for community
structure detection. This is a simple and scalable greedy
modularity-based algorithm. As reported by Fortunato [9]
in his Figure 33, this algorithm has a poor performance
on the LFR benchmark. A significant improvement of the
performance of this algorithm over our lossy representation
of the network supports our claim that our method is
more than a compression framework and can serve as a
preprocessing step for clustering analysis.

To generate synthesis networks, we use the same settings
as those used by Fortunato [9]. We set the parameters as
follows: the average degree to20, the maximum degree
to 50, the exponent for degree distribution to2, and the
exponent for the community size distribution to1.

In Figure 4,N is the number of nodes,S stands for
the data sets where the community sizes are made between

10 and 50, while B stands for the data sets where the
community sizes are set between20 and100. The X-axis is
the mixing parameter, which is the fraction of edges going
outside of the community for any particular vertex, used by
the data generator [14]. The Y-axis is the bit-utility rate.
A larger bit-utility rate means that the lossy compression
scheme makes a better use of the available space. As
expected, if the density of the communities decreases, the
bit-utility rate decreases, too.

We define a proximity graph as follows.

Definition 5 (Proximity graph). Let Gs be a linearization
of G, and ψ : V (Gs) → V (G) the mapping. Note that
V (Gs) = {1, · · · , |V (Gs)|}. Theproximity graph ofG with
respect toGs is defined as follows. Consider(u, v) ∈ E(G)
and (i, j) ∈ E(Gs) such that|i − j| ≤ k and ψ(i) = u,
ψ(j) = v. Without loss of generality we assumei < j. The
weight of undirected edge(u, v) in the proximity graph is

∑

(i,l)∈E(Gs),l≥j

α|i−l| +
∑

(j,l)∈E(Gs),l≤i

α|j−l|

The first (second) term is over all the edges associated
with positioni (j) that pass over positionj (i). If there is
no such a pair of(i, j), then the weight for(u, v) is 0. If
there are more than one such pair, for each of those pairs,
we compute the weight and take the sum over all of them.

The merit of this weighting schema is that, wheni
and j belong to a dense part of the sequence graphGs,
(ψ(i), ψ(j)) receives a relatively large value, even if there
is no direct edge betweeni and j. In practice, there is no
need to explicitly store the proximity graph, rather one can
compute the weights from the linearization graph on the
fly. Note that, since the unfolding algorithm uses a random
order of the vertices as the starting seed, to exploit the
power of randomization, one can use several independent
linearizations to derive an aggregate proximity graph, that
is, the weight of(u, v) is the sum of its weights in the
independent proximity graphs.

Figure 5 shows the results of the algorithm by Clausetet
al. [5] on the original graph, the proximity graph and the
aggregate proximity graph on five independent sequenced
compressions. In those experiments,k = 16 andl = 1.2×N ,
whereN is the number of vertices in the original graph.
The Y-axis is the Normalized Mutual Information (NMI) [6],
[9], which measures the similarity between two clusterings,
that is, community structures, of the same set of nodes. We
compute NMI using the code at http://sites.google.com/site/
andrealancichinetti/mutual.

The results clearly show that the algorithm is not effective
on the original graph, but performs significantly better on
the proximity graph. Moreover, the results on the aggregate
proximity graph are comparable to the state-of-the-art al-
gorithms reported by Fortunato [9] in his Figure 33. This
strongly suggests that our method captures the community
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Figure 5. The performance of the algorithm by Clausetet al. [5] on the original network, the proximity network derived from one compression, and the
aggregated proximity network derived from five independentcompressions.
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Figure 6. The effect of (a) local range size (k) and (b) length of sequence (l).

structure of the network, and can serve as an effective
preprocessing step.

Figure 6 shows that our framework can benefit from
increasing local range sizek. The benefit of increasing the
length of sequenced compression, however, is limited for
the community detection quality due to the weakness of the
detection algorithm [5].

C. Centrality

Betweenness [11] is a centrality measure of vertices for
a given graph. It gives higher values to those vertices
that occur on many shortest paths between other pairs of
vertices. PageRank [20] is another centrality measure that
uses random walks in a network to evaluate the importance
of nodes. The degree of a vertex also can be considered
as a simple centrality measure. In this section, we evaluate
the effect of information loss in lossy compression on those
centrality measures.

For a graphG and its sequence graph compressionGs,
ψ(Gs) is a graph on vertex setV (G). Edge(u, v) ∈ E(G) is
an edge inψ(Gs) if and only if there exists(i, j) ∈ E(Gs)
such that(u, v) = (ψ(i), ψ(j)). Intuitively, ψ(Gs) consists
of those edges inG that are encoded inGs.

Each vertex has a centrality score. A centrality measure
on a networkG can be regarded as acentrality vectorof size
|V (G)|. To make comparison we use the Pearson correlation
of the centrality vectors ofG andψ(Gs).

Description #nodes #edges
ca-GrQc Coll. net. of Arxiv Gen Relativity 5242 14990
em-ExCh UVR Email Exchange 1133 5451
wiki-vote Wikipedia who-votes-on-whom network 7115 100763

Table I
STATISTIC OF DATA-SETS
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Figure 8. The running time of a single iteration of Algorithm1.

Figure 7 shows the results on three real world networks
whose statistics are given in Table I. As the value ofk
increases, the correlation between the two centrality vectors
increases.
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Figure 7. Pearson Correlation of centrality measures on original and the compressed version

D. Running Time Efficiency

The running time of our method depends on the number
of iterations in Algorithm 1. For our setting the number of
iterations is typically between15 to 30. Figure 8 depicts the
running time of our method with respect to the graph size
on the same LFR benchmarks [9]. The running time of a
single iteration, when parameterk is fixed, is scaling almost
linearly. Note that the result indicates that our method is
efficient on networks up to millions of nodes.

VII. C ONCLUSIONS

In this paper, we developed a lossy compression scheme
for social networks. In our design, the quota size of compres-
sion is given, and the objective is to preserve the community
structure of a given network as much as possible. We
tackled this problem by introducing a notion of sequence
graph. Moreover, we designed an objective function that
measures the quality of a sequence graph with respect to the
community structure of the network. We presented a non-
trivial heuristic method to optimize our objective function.
Finally, we validated our method using both synthesis and
real world networks.
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