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ABSTRACT
Compressing social networks can substantially facilitate
mining and advanced analysis of large social networks.
Preferably, social networks should be compressed in a way
that they still can be queried efficiently without decompres-
sion. Arguably, neighbor queries, which search for all neigh-
bors of a query vertex, are the most essential operations
on social networks. Can we compress social networks effec-
tively in a neighbor query friendly manner, that is, neigh-
bor queries still can be answered in sublinear time using
the compression? In this paper, we develop an effective so-
cial network compression approach achieved by a novel Eu-
lerian data structure using multi-position linearizations of
directed graphs. Our method comes with a nontrivial the-
oretical bound on the compression rate. To the best of our
knowledge, our approach is the first that can answer both
out-neighbor and in-neighbor queries in sublinear time. An
extensive empirical study on more than a dozen benchmark
real data sets verifies our design.

Categories and Subject Descriptors
E.2 [Data]: Data Storage Representations

General Terms
Algorithms, Experimentation, Theory

Keywords
Social Networks, Compression, MPk linearization, Eulerian
data structure
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A social network is a network of individuals or organi-
zations as nodes, linked by one or multiple types of inter-
dependency, such as friendship, financial relationships, and
kinship. Recently, facilitated by World Wide Web, more
and more online social networks have been formed on the
Web, such as Facebook, Twitter, and LinkedIn. It has been
well recognized that mining social network data can pro-
vide precious actionable knowledge for business and indi-
viduals. As an evidence, the number of US patent appli-
cations on new technologies related to social networks has
grown exponentially since 2003 at a rate of about 250%
per year (http://en.wikipedia.org/wiki/File:Growth_
in_Social_Network_Patent_Applications.jpg).

Social networks are often large, and become
even larger and larger. For example, from Jan-
uary 2008 to September 2008, the number of ac-
tive users of Facebook grew from 60 millions to
140 millions (http://venturebeat.com/2008/12/18/
2008-growth-puts-facebook-in-better-position-to-
make-money/). Facebook has more than 350 million active
users nowadays. The large size and the fast growth rate
present a huge challenge for mining and analyzing large
social networks.

Compressing social networks can substantially facilitate
mining and advanced analysis of large social networks.
Preferably, we want query-able compression of social net-
works. In other words, social networks should be compressed
in a way that they still can be queried efficiently without de-
compression.

Many different kinds of queries can be conducted on so-
cial networks. Arguably, neighbor queries, which search for
all neighbors of a query vertex, are the most essential op-
erations on social networks. Many other operations, such
as community finding, network pattern mining, and outlier
detection, can be built based on neighbor queries.

Can we compress social networks effectively in a neighbor
query friendly manner, that is, neighbor queries still can be
answered in sublinear time using the compression? As to
be analyzed in Section 2, this is a challenging task, and the
existing Web or social network compression methods either
have to maintain the compressions of both the network and
its transpose, or cannot answer neighbor queries in sublinear
time at all.

In this paper, we tackle the problem of neighbor query
friendly compression of social networks. We develop an effec-
tive social network compression approach. Specifically, we
propose a novel Eulerian data structure using multi-position
linearizations of directed graphs. When the optimal MP1

linearization is used, our method comes with a nontrivial



theoretical upper bound on the number of bits used per edge
in the compression. To the best of our knowledge, our ap-
proach is the first that can answer both out-neighbor and
in-neighbor queries in sublinear time. Moreover, we explore
effective extensions using MPk linearization. An extensive
empirical study on more than a dozen benchmark real data
sets verifies our design.

The rest of the paper is organized as follows. In Section 2,
we review the related work. In Section 3, we define the
basic notions, formulate neighbor queries, and review the
concepts of Eulerian paths and multi-position linearization.
We present our novel Eulerian data structure in Section 4,
and explore the extensions to using MPk linearization in
Section 5. We report an empirical study in Section 6, and
conclude the paper in Section 7.

2. RELATED WORK
Due to the fast growth of WWW, compressing Web graphs

has received substantial research interest. A Web graph typ-
ically contains a huge number of Web pages as vertices, and
an even larger number of hyperlinks as directed edges.

Adler and Mitzenmacher [1] gave a Web graph compres-
sion method by finding nodes with similar sets of neighbors.
Randall et al. [13] were the first to use the lexicographic
ordering of URLs of Web pages for compressing the graph.
Their method takes advantage of the fact that many hy-
perlinks are intra-host, and many pages on the same host
have similar hyperlinks. Boldi and Vigna [4, 5] further ex-
ploited the properties of Web pages in lexicographic order-
ing to achieve better compression. Specifically, their method
takes advantage of the lexicographic locality in Web graphs.
That is, proximal pages in URL lexicographic order often
have similar neighborhoods. For better compression, Boldi
et al. [3] further developed new orderings combining host
information and Gray/lexicographic orderings.

Orthogonal to the exploitation of lexicographic ordering,
Raghavan and Garcia-Molina [12] decomposed a Web graph
into a hierarchical structure. They used the notion of S-node
to capture the locality property of Web graphs. Suel and
Yuan [15] also used the structural decomposition technique
in some sense by distinguishing between local and global
links. Recently, Apostolico and Drovandi [2] introduced a
BFS-based method. Their approach also encodes the gaps
between links, but uses a more general setting.

Buehrer and Chellapilla [7] used a data mining approach
to tackle the problem of compressing Web graphs. Using
frequent item-set mining techniques they mined the com-
plete bipartite subgraphs and replaced the edges of those
subgraphs by a virtual node connecting to all vertices in
both partitions in the complete subgraph. Their method,
with the combination of gap coding technique in the lexico-
graphic order, achieves the performance of under two bits
per edge.

All the methods mentioned above use the bits/edge rate as
the primary evaluation measure. Some of them also report
the query processing performance. Specifically, Raghavan
and Garcia-Molina [12] provided a direct comparison with
the method by Randall et al. [13] on a collection of six differ-
ent complex queries. Boldi and Vigna [4, 5] introduced the
lazy iteration for (randomly and sequentially) accessing the
links in a compressed web graph. The access time for their
approach is in the order of several hundred nano seconds per
link.

Most of the existing Web graph compression methods ex-
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Figure 1: A directed graph and its underlying undi-
rected graph

ploit the locality of links in the lexicographic order of web
pages. Can social networks, which do not have a natural lex-
icographic order for the vertices, be compressible to the same
degree? Recently, Chierichetti et al. [8] extended the Web
graph compression framework [4, 5] by Boldi and Vigna (the
BV schema) to compress social networks. The central idea
is to introduce an ordering based on Jaccard coefficient [6].
By integrating this ordering into the BV schema, they in-
troduced a compression schema for social networks. They
further exploited the reciprocal edges. However, one draw-
back is that their method cannot answer neighbor queries in
sublinear time.

Our study is also related to the family of graph layout
(or graph ordering) problems, where the goal is to find an
ordering of the nodes minimizing a given objective function.
Dı́az et al. [10] presented a nice survey. In particular, Pa-
padimitriou [11] proved the NP-hardness of the minimum
bandwidth problem, where the objective is to minimize the
maximum stretch of the edges.

3. PRELIMINARIES
In this section, we review the essential notions used in the

paper, define the neighbor queries of interest in this paper,
discuss the background on Eulerian path, and introduce the
notion of multi-position linearization for a graph.

3.1 Notions
In this paper, we model a social network as a directed

graph G = (V, E) where V is a set of vertices and E ⊆ V ×V
is a set of edges. We also refer to V by V (G) and to E by
E(G). For an edge e = (u, v), we refer to u as the source of
e and v as the destination of e. (u, v) 6= (v, u).

A simple directed graph is a directed graph such that there
does not exist a self-loop, i.e., no edge (u, u) for any vertex u,
and there is at most one edge from a source u to a destination
v. In this paper, we consider simple directed graphs only.
However, it is straightforward to generalize our results and
algorithms to deal with directed graphs that contain self-
loops and multiple edges between two vertices.

In an undirected graph, edges do not carry direction in-
formation, i.e., {u, v} = {v, u}. For a directed graph G, we
can obtain the underlying undirected graph Ḡ of G such that
{u, v} ∈ E(Ḡ) if and only if (u, v) ∈ E(G) or (v, u) ∈ E(G).
Figure 1 shows an example.



For an undirected graph G, we can obtain the directed
version G⇄ of G by placing two directed edges (u, v) and
(v, u) in G⇄ for each undirected edge {u, v} in G.

Hereafter, we call a simple directed graph simply a graph
if there is no ambiguity. Occasionally, we use the notion of
undirected graphs which will be mentioned explicitly.

For a graph G, the transpose of G, denoted by GT , is a
graph such that V (GT ) = V (G) and (u, v) ∈ E(GT ) if and
only if (v, u) ∈ E(G).

In a graph G, an edge (u, v) ∈ E is called reciprocal if
(v, u) ∈ E as well. In such a case, u and v are immediately
connected in both directions. Let Fre(G) be the fraction of
reciprocal edges in E(G), i.e.,

Fre(G) =
number of reciprocal edges in E(G)

|E(G)|
.

Therefore, G = GT if and only if Fre(G) = 1.
In an undirected graph Ḡ, a vertex u is a neighbor of a

vertex v if {u, v} ∈ E(Ḡ). Let Nv be the set of neighbors
of v and Ev = {{u1, u2} ∈ E(Ḡ)|u1, u2 ∈ Nv} be the set of
edges between the vertices in Nv. For a directed graph G
we use its underlying undirected graph Ḡ to define Acc(G),
the average clustering coefficient [16], as

Acc(G) = Acc(Ḡ) =
1

|V (Ḡ)|

X

v∈V (Ḡ)

2|Ev|

|Nv |(|Nv | − 1)

Moreover, we define Gcc(G), the global clustering coeffi-
cient [14], as

Gcc(G) = Gcc(Ḡ) =
2

P

v∈V (Ḡ) |Ev|
P

v∈V (Ḡ) |Nv |(|Nv | − 1)

3.2 Neighbor Queries in Directed Graphs
In a directed graph G, there are two types of neighbors.

For a vertex u ∈ V (G), v1 ∈ V (G) is an out-neighbor of u if
(u, v1) ∈ E(G). Moreover, v2 ∈ V (G) is an in-neighbor of u
if (v2, u) ∈ E(G). An out-neighbor query on u is to find the
set of out-neighbors of u. Similarly, an in-neighbor query on
u is to search for all in-neighbors of u.

Example 1 (Neighbor queries). In Figure 1(a), an
out-neighbor query on v5 in G returns {v2, v3, v6}. An in-
neighbor query on v5 returns {v3, v4, v6}. Please note that v3

and v6 are both out-neighbors and in-neighbors of v5, since
there are reciprocal edges between v3 and v5 as well as be-
tween v5 and v6.

All the existing methods for compressing Web graphs or
social networks encode only outgoing edges. Consequently,
most of those methods can only answer out-neighbor queries
directly. In order to answer in-neighbor queries, they have
to store a compressed version of the transpose of the graph.
As mentioned in Section 2, some methods like [8] cannot
answer neighbor queries in sublinear time.

3.3 Eulerian Paths
A path P of length k in a graph G is a sequence of edges

(u1, u2), (u2, u3), . . . , (uk, uk+1), where (ui, ui+1) ∈ E(G)
(1 ≤ i ≤ k). For the sake of simplicity, we often write path
P as (u1, u2, . . . , uk+1). P is a simple path if u1, . . . , uk+1

are unique among one another.

Definition 1 (Eulerian path). An Eulerian path

for an undirected graph is a path in the graph which visits
each edge of the graph exactly once.

Example 2 (Eulerian path). In Figure 1(b), path S1

is an Eulerian path for Ḡ, S2 is not because it does not visit
edge {v5, v3}, S3 is not an Eulerian path, either, because it
is not a path – {v4, v6} is not an edge in graph Ḡ.

It is well known that a connected undirected graph G has
an Eulerian path if and only if it has at most two vertices
with odd degrees.

A simple algorithm to construct the Eulerian path which
dates back to 1883, known as Fleury’s algorithm, is as fol-
lows: we start with a vertex of an odd degree. If there is
no such a vertex, we start with any vertex. At each step
we move across an edge whose deletion does not disconnect
the graph, unless there is no other choice. We repeat this
process until no edge is left.

3.4 Multi-Position Linearization
In this subsection we introduce the notion of multi-

position linearization of degree k (MPk linearization for
short) for a given graph G.

Let S = (vi1 , vi2 , . . . , vim
) be a sequence of vertices of

graph G (with possible replication). We say S covers G if
all the vertices of G appear at least once in S. The length
of S is m. Here, S does not need to be a path.

We need the following notion of S-distance.

Definition 2 (S-distance). Given a sequence S that
covers a graph G, the S-distance between u and v, denoted
by S-dist(u, v), is the minimum norm-1 distance among all
pairs of appearances of u and v.

Example 3 (S-distance). In Figure 1, the S1-
distance between v3 and v5 is S1-dist(v3, v5) = 1. S1-
dist(v2, v4) = 3 and S2-dist(v5, v3) = 2.

Now we are ready to formally define the notion of MPk

linearization.

Definition 3 (MPk). An MPk linearization of a
graph G is a sequence S of vertices of the graph with possible
replication, such that S covers G and for all (u, v) ∈ E(G),
S-dist(u, v) ≤ k. The length of an MPk linearization is
equal to length of S.

If S is an MPk linearization of a graph G, S is also an MPk

linearization of the underlying undirected graph Ḡ, and vice
versa.

Example 4 (MPk). In Figure 1, the sequences S1 and
S3 are two different MP1 linearizations of both G and Ḡ.
But the length of S1 is less than that of S3. S2 is an MP2

linearization but not an MP1 linearization of G, because for
edge (v5, v3) ∈ E, S2-dist(v5, v3) = 2.

The notion of S-distance can be regarded as an embedding
of the metric space defined by G to a simpler and computa-
tionally more efficient metric space.

4. EULERIAN DATA STRUCTURE
As mentioned in Section 3.2, in order to answer both out-

neighbor queries and in-neighbor queries efficiently, most of
the existing methods have to store both a graph G and its
transpose GT . Is there any schema for encoding directed
graphs which can support fast out-neighbor and in-neighbor
queries and still retain a good compression rate? In other



words, how can we encode the graph G and its transpose
GT at the same time using space less than keeping two in-
dependent copies of the edges?

In this section, we introduce the Eulerian data structure
that affirmatively answers this question. Our method com-
presses a directed graph into an Eulerian data structure.
Before that, we need to establish the connection between
MP1 linearization and Eulerian path of a graph.

4.1 MP1 linearization and Eulerian path
The following proposition is immediate:

Proposition 1 (Lower bound of MP1 linearization).
Given a directed graph G, the lower bound for the length of
the MP1 linearization of G is

|E(Ḡ)| + 1 = (1 −
Fre(G)

2
)|E(G)| + 1.

Moreover the bound is tight if and only if Ḡ has an Eulerian
path, i.e. it has at most two vertices of odd degrees.

Example 5 (Lower bound of MP1 linearization).
The lower bound for the length of MP1 linearization of G
in Figure 1 is 9, since |E(Ḡ)| = 8. We can write |E(Ḡ)|
in terms of |E(G)| using Fre(G). Since Fre(G) = 6/11,

|E(Ḡ)| = (1 − 6/11
2

)|E(G)| = 8.

Unlike the Eulerian path construction problem which is
an existence problem, finding the optimal MP1 linearization
is an optimization problem. No matter what structure a
graph has, always there exists an optimal (i.e., shortest)
MP1 linearization for the graph. The following lemma gives
the length of an optimal MP1 linearization of an arbitrary
directed graph.

Lemma 1. The minimum length of MP1 linearization of
an arbitrary directed graph G is |E(Ḡ)| + max{nodd/2, 1},
where nodd is the number of vertices with odd degrees in Ḡ.

Proof. In any undirected graph Ḡ, the sum of degrees of
all vertices is even. Thus, the number of vertices with odd
degrees is also even.

We first prove by induction that for any graph G
we can obtain an MP1 linearization of length |E(Ḡ)| +
max{nodd/2, 1}.

Basis: For nodd = 0 and nodd = 2, the claim follows from
proposition 1.

Induction: Since nodd must be even, we assume that the
lemma holds for nodd = 2k (k ≥ 1), and consider the case
when nodd = 2(k + 1). There are two subcases.

In the first subcase, there are two vertices u and v with
odd degrees such that they are not connected in Ḡ. We add
an edge {u, v} to Ḡ and call the new graph Ḡ∗. Since Ḡ∗

has only 2k vertices with odd degrees, applying the induction
assumption, we can obtain an MP1 linearization of Ḡ∗ with
length |E(Ḡ∗)| + k = |E(Ḡ)| + k + 1. Since E(Ḡ) ⊂ E(Ḡ∗)
the MP1 linearization of Ḡ∗ is indeed an MP1 linearization
for Ḡ.

In the second subcase, all vertices with odd degrees are
connected. We arbitrarily take two vertices u and v with
odd degrees and remove the edge {u, v} from Ḡ. Let us
call the resulting graph Ḡ∗. Again, Ḡ∗ has 2k vertices with
odd degrees. Therefore, there is an MP1 linearization with
length |E(Ḡ∗)|+ k = |E(Ḡ)| − 1 + k for Ḡ∗. Since the MP1

linearization for Ḡ∗ does not cover {u, v}, we have to add

u and v to the end of the linearization. Therefore we just
build an MP1 linearization for Ḡ of length |E(Ḡ)| + k + 1,
as desired.

Now we prove that |E(Ḡ)|+max{nodd/2, 1} is also a lower
bound for the MP1 linearizations for G. For nodd = 0 and
nodd = 2, simply applying Proposition 1 gives the bound.

Now, let us consider the case where nodd ≥ 4. Let v(i)
be the vertex that appears in the position i of an MP1 lin-
earization L. For a vertex u with an odd degree in Ḡ which
appears in neither the first nor the last position of L, we
denote by Pu = {i|v(i) = u} the set of all appearances of u
in L. There are in total at least nodd − 2 such vertices.

For any interior position i in L, there are two edge slots
in L: (i − 1, i) and (i, i + 1). Consider all the edge slots
associated with the positions in Pu. At least one of these
slots must be a “waste”, that is, there is no edge appearing
in the slot or the edge in the slot also appears in some other
slot. Otherwise, the degree of u is 2|Pu|, which is an even
number.

In the best scenario, two vertices with odd degrees can
share a wasted edge slot. Therefore, we have at least (nodd−
2)/2 wasted edge slots. In addition, we need |E(Ḡ)| edge
slots to cover the edges of Ḡ. Therefore, in total L has
to have at least |E(Ḡ)| + nodd/2 − 1 edge slots. Hence, the
length of L cannot be smaller than |E(Ḡ)|+max{nodd/2, 1}.

Please note that the induction in the proof of Lemma 1
also gives an algorithm to find an optimal MP1 linearization
of a graph G. Since the complexity of finding an Eulerian
path is O(|E(G)|) [9], finding an optimal MP1 linearization
of a graph G is also of the same complexity.

Example 6. In Figure 2, Ḡ2 has 6 vertices of odd de-
grees, namely v1, v2, v4, v5, v7 and v8. Therefore, the lower
bound on the length of MP1 linearization is 15 + 6/2 = 18.
Indeed the MP1 linearization of Figure 2 is optimal.

4.2 The Eulerian Data structure
Based on the relation between Eulerian path and MP1

linearization, we present a novel data structure for encoding
graphs. To keep our discussion simple, similar to [4, 5, 8],
we assume (1) we are allowed to renumber the vertices; (2)
for each vertex there is an identifier which can be used for
referring to the vertex. However, our data structure does
not maintain an index of the identifiers; and (3) the edges
are not labeled. Please note that we can straightforwardly
extend the data structure to remove the above assumptions.

Definition 4 (Eulerian data structure). The
Eulerian data structure for a graph G stores an optimal
MP1 linearization L of G using an array of the same length
as L. Let v(i) be the vertex in G that appears at the position
i of L. For cell i of the Eulerian data structure, we keep the
following two pieces of information

Local information: two bits specifying if edges (v(i −
1), v(i)) and (v(i), v(i − 1)) belong to E(G), respectively.

Pointer: a pointer to the next appearance of v(i). If this
is the last appearance of v(i), then the pointer points to the
first appearance of the vertex.

Example 7 (Eulerian data structure). In Fig-
ure 2(c), the Eulerian data structure of G in Figure 2(a)
using an optimal MP1 linearization is illustrated. Here
we show the pointers by arcs. Since the length of the
linearization is 18, we need ⌈log2 18⌉ = 5 bits to encode
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Figure 2: MP linearizations of an arbitrary directed
graph.

each pointer. Therefore, for each position we need 5 + 2
bits. In total we need 18 × (5 + 2) = 126 bits, which make a
compression rate of 128/19 ≈ 6.63 bits per edge.

We have the following important result on the compression
efficiency of the Eulerian data structure.

Theorem 1. An Eulerian data structure to encode a
graph G uses up to

(1 −
Fre(G)

2
+

1

d̄
)
“

⌈log2(|V (Ḡ)|) + log2(d̄ + 1)⌉ + 1
”

bits per edge on average, where d̄ is the average degree of
Ḡ. Moreover, using this data structure, it is possible to an-
swer the in-neighbor and out-neighbor queries for any vertex
v in O(

P

u∈Nv

deg(u) log |V (G)|) time, where deg(u) is the

degree of vertex u in Ḡ and Nv is the set of out-neighbors/in-
neighbors (resp.) of v in out-neighbor/in-neighbor queries.

Proof. Let L be an optimal MP1 linearization of Ḡ
(therefore for G as well). Since there are at most |V | vertices
of odd degrees in Ḡ, the upper bound for the length of L is
|E(Ḡ)| + |V (Ḡ)|/2. Using 2 bits to store the local informa-
tion and ⌈log2(|E(Ḡ)| + |V (Ḡ)|/2)⌉ bits for the pointer for
each cell, in total the Eulerian data structure uses at most

“

|E(Ḡ)| + |V (Ḡ)|/2
”“

2 + ⌈log2(|E(Ḡ)| + |V (Ḡ)|/2)⌉
”

bits. To get the bits/edge rate we divide this by the number
of edges of G, and have

“ |E(Ḡ)| + |V (Ḡ)|/2

|E(G)|

”“

2 + ⌈log2(|E(Ḡ)| + |V (Ḡ)|/2)⌉
”

.

Notice that we can write the ratio of |E(Ḡ)|/|E(G)| in terms
of Fre(G) and also

|V (Ḡ)|

2|E(G)|
≤

|V (Ḡ)|

2|E(Ḡ)|

which is precisely the inverse of the average degree of Ḡ.
Therefore, the bits/edge rate is at most:

“

1 −
Fre(G)

2
+

1

d̄

”“

2 + ⌈log2(|E(Ḡ)| + |V (Ḡ)|/2)⌉
”

We use |E(Ḡ)| = |V (Ḡ)|d̄
2

to further simplify the inside of the
logarithm, and obtain
“

1 − F re(G)
2

+ 1
d̄

”“

2 + ⌈log2(|V (Ḡ)|d̄/2 + |V (Ḡ)|/2)⌉
”

=
“

1 − F re(G)
2

+ 1
d̄

”“

2 + ⌈log2(|V (Ḡ)|) + log2(d̄ + 1) − log2(2)⌉
”

The upper bound is proved.
Since each vertex u of G appears in at least one position

in the Eulerian data structure, we use the first position of u
in L as the identifier for the vertex. Therefore, for an out-
neighbor/in-neighbor query on vertex u, we have to return
the positions of the first appearances of all out-neighbors/in-
neighbors of u. Fetching the local information (only two
bits) for each position takes constant time. Reading the
pointer takes O(log |V (G)|) time (the number of bits for each
pointer). Since the length of the linked list of positions for
a vertex u is ⌈log(deg(u))⌉ in the MP1 linearization of G,
traversing over the linked list takes O(deg(u) log2 |V (G)|)
time. By traversing the linked list of u we can retrieve
the positions of all neighbors of u. However, for a neigh-
bor v of u, the retrieved position may not be the first ap-
pearance of v. Therefore, for each retrieved neighbor v, we
have to traverse the linked list for v to get the first ap-
pearance. So, answering an out-neighbor/in-neighbor query
takes O(log(|V (G)|)

P

u∈Nv

deg(u)) time in total.

As a baseline for representing a graph G with sub-
linear in-neighbor and out-neighbor queries, we can use
2⌈log2 |V (G)|⌉ bits to encode an edge. For social networks in
practice, it is reasonable to assume that the average degree
increases logarithmatically with respect to the number of
nodes in the graph. Therefore, asymptotically (i.e., assum-
ing the number of nodes approaches infinity) the Eulerian
data structure uses half of the number of bits that the base-
line schema uses due to the following equation.

lim
|V (G)|→∞

(1 + 1
log

2
|V (G)|

)(log2(|V (G)|) + log2 log2(|V (G)|) + 1)

2 log2(|V (G)|)

=
1

2



Number of vertices
Average degree 103 105 107 109

10 0.83 0.71 0.66 0.64
100 0.91 0.74 0.67 0.64
500 1.00 0.80 0.71 0.67

Table 1: Comparison of compression using the Eu-
lerian data structure against the baseline schema.

Table 1 compares our method and the baseline schema
for a number of combinations of d̄ and |V (G)|. Clearly, the
larger and the sparser the graph, the less bits the Eulerian
data structure uses. Real life social networks are often large
and sparse. Thus, the Eulerian data structure is capable of
compressing social networks.

To the best of our knowledge, the Eulerian data structure
is the first schema that allows answering both out-neighbor
and in-neighbor queries in sublinear time, and provides a
nontrivial theoretical upper bound on the number of bits per
edge. The upper bound given by Theorem 1 is for arbitrary
graphs, including totally random graphs. We know that for
some subclasses of graphs the information theoretic lower
bound is ⌈log N⌉ bits per edge. Therefore, from a theoretical
point of view our upper bound is not very far away from this
information theoretic lower bound, at least asymptotically
close.

The real world networks in many cases exhibit some kind
of locality property which can be used to further improve
our method. We will detail our methods in the next section.

5. COMPRESSION USING MPK LIN-
EARIZATION

A natural extension for the Eulerian data structure is to
use MPk linearization instead of MP1 linearization. This
raises several new challenges. First of all, unlike MP1 lin-
earization, finding an optimal MPk linearization for k ≥ 2 is
NP-hard in general, since it can be regarded as a generaliza-
tion of the minimum bandwidth problem [11]. How can we
get a “good” MPk linearization without much cost? Second,
given an MPk linearization, we need to store 2k bits as the
local information for each position i to record whether (i, j)
and (j, i) are edges in the graph for |i− j| ≤ k. The amount
of local information is considerable. Hence, storing the local
information efficiently is important. To address the above
issues, we extend our method to tackle two subproblems:
MPk linearizing a graph and encoding the local information
for each position of the MPk linearization.

In this section, we first motivate the extension. Then, we
discuss the tradeoff. Finally, we present the heuristics and
algorithms.

5.1 Motivation of Using MPk

The most commonly used measure for locality in social
networks is average clustering coefficient. In social networks,
the number of vertices with a small degree is much more than
the number vertices with a large degree. Consequently, av-
erage clustering coefficient usually has a bias toward the ver-
tices with small degrees. Therefore, we consider the measure
Gcc, Global clustering coefficient, as well.

Roughly speaking, Gcc measures the probability that
there is an edge between two vertices when they have a com-
mon neighbor. Consider a social network with a large Gcc

value. Suppose vertices u, v, w and t are four consecutive
vertices in an MPk linearization, and there are edges be-
tween u and v, v and w, as well as w and t. There is a good
chance that u and w are connected, since both have v as
a neighbor. Moreover, if u and w are connected, using the
same argument again, there is a good chance that u and t
are also connected. Depending on how strong the locality
of the network is, it does make sense to keep more bits for
u specifying weather {u, w}, {w, u}, {u, t} and {t, u} belong
to E(Ḡ) or not.

5.2 Tradeoffs
There is a tradeoff between the length of linearization

against the amount of local information. The tradeoff highly
depends on the structure of the graph. Intuitively, for a large
sparse graph where each vertex has the same out degree,
and the destinations of the out-edges are picked randomly,
increasing k would not influence the length of the lineariza-
tion significantly. However, for a large random dense graph
G where the existence of an edge from every node to an-
other is independently determined by a probability of 50%,
increasing k up to |V (G)|, the number of vertices, is actually
beneficial.

Example 8. Figures 2(c) and (d) encode graph G2 in
Figure 2(a) using an MP1 linearization and an MP2 lin-
earization, respectively. Using the MP1 linearization, we
need to use 2 bits to store the local information for each
position. Since the MP1 linearization has 18 positions,
we need to use 5 bits for each pointer. In total we need
18 × (5 + 2) = 126 bits, approximately 6.63 bits per edge on
average.

Using the MP2 linearization, we need to use 4 bits to store
the local information for each position. Since it has 10 posi-
tions, we need to use 4 bits for each pointer. In total it uses
10× (4+4) = 80 bits, approximately 4.21 bits per edge. The
saving of using the MP2 linearization is substantial.

Can we save more by moving from MP2 to MP3 lineariza-
tion? The length of an MPk linearization for any k cannot
be less that the number of vertices in the graph. G2 has
9 edges. Therefore, in the best case of using an MP3 lin-
earization, we have 9 positions. For each position we have
to use 6 bits to store the local information and 4 bits for the
pointer. Thus, using an MP3 linearization needs to use at
least 9 × (6 + 4) = 90 bits. Using MP3 linearization cannot
save, comparing to using the MP2 linearization.

5.3 Heuristics and algorithms
To ensure that we can handle large social networks, we use

a straightforward greedy heuristic for linearizing a graph.
The algorithm is shown in Algorithm 1. We start with a
random vertex. At each step we append to the list the vertex
that has the largest number of edges with the last k nodes in
the list. We remove these edges from the graph and iterate
until no edge is left. If none of the last k vertices in the list
have a neighbor, then we pick a random node with non-zero
degree and continue from there.

Using 2k bits we can encode the local information for each
position. A practical problem of the greedy linearization
heuristic is that, as we are removing the edges of the graph,
the graph becomes sparser and sparser. Thus, having a fixed
k all the time is not a good idea since the rear part of the
linearization may have very few new edges to encode. To be
adaptive, we use a relaxed version of the linearization notion.
We start with a relatively large value of k (say 20) and watch



Name Description |V | |E| Acc Gcc Fre

amazon0302 Amazon product co-purchasing network from march 2, 2003 262111 1234877 0.424 0.236 0.542
amazon0312 Amazon product co-purchasing network from march 12, 2003 400727 3200440 0.411 0.160 0.531
ca-CondMat collaboration network of Arxiv Condensed Matter 23133 186878 0.633 0.264 1
ca-HepPh Collaboration network of Arxiv High Energy Physics 12006 236978 0.611 0.659 1
cit-HepPh Arxiv High Energy Physics paper citation network 34546 421534 0.296 0.145 0.003
cit-Patents Citation network among US Patents 3774768 16518947 0.091 0.067 0
email-Enron Email communication network from Enron 36692 367662 0.497 0.085 1
email-EuAll Email network from a EU research institution 265009 418956 0.309 0.004 0.260
p2p-Gnutella08 Gnutella peer to peer network from August 8 2002 6301 20777 0.015 0.020 0
p2p-Gnutella24 Gnutella peer to peer network from August 24 2002 26518 65369 0.009 0.004 0
soc-Slashdot0902 Slashdot social network from February 2009 82168 870161 0.061 0.024 0.841
soc-LiveJournal1 LiveJournal online social network 4846609 68475391 0.312 0.288 0.374
web-Google Web grpah from Google 875713 5105039 0.604 0.055 0.306
web-Stanford Web graph of Stanford.edu 281903 2312497 0.610 0.096 0.276

Table 2: The dataset stats. (Acc, Gcc, and Fre are defined in Section 3.1)

Algorithm 1 Find an MPK linearization of G

Input: K, reducing factor RF (0 ≤ RF ≤ 1), density
threshold DT (0 ≤ DT ≤ 1) and Graph G

Output: Linearization L of G
Description:
1: initialize L to an empty list
2: while |E(G)| ≥ 1 do
3: let u be a random node with nonzero degree
4: append u to L
5: /* let X be the set of the last K vertices in L */
6: while X has at least one neighbor in V (G) − X do
7: let v be the node which has the most number of

edges to and from X
8: remove all edges between v and vertices in X
9: edgecount+ = degold(v) − degnew(v)

10: append v to L
11: if Length(L)%1000==0 then
12: if edgecount/2 ∗ K ∗ 1000 < DT then
13: K = K ∗ RF
14: end if
15: edgecount = 0
16: end if
17: end while
18: end while

the average local density for the recent positions in the list
(the last 1000 positions as shown in Algorithm 1). Once it
drops below a certain density threshold DT , we reduce k by
multiplying it to a predefined reducing factor RF .

We choose to use a simple heuristic for linearization and
encode the local information. Our purpose is to examine the
feasibility of the framework of using MPk linearization for
compressing social networks. Our method leaves space for
further improvement which is the subject for future work.

6. EXPERIMENTS
To the best of our knowledge, there is no any existing

social network compression method which can answer out-
neighbor and in-neighbor queries in sublinear time. How-
ever, the existing methods which can answer out-neighbor
queries can be made comparable to ours in functionality by
encoding a given graph G and also its transpose GT .

6.1 Experimental Setup

We used the data sets from the SNAP project (Stan-
ford Network Analysis Package, http://snap.stanford.
edu/data/). The data sets in the SNAP project are orga-
nized in different categories. From each category we chose
the data sets with the smallest and the largest Gcc values,
respectively, in order to test the effect of our method with
respect to social networks of different degrees of locality.
Those data sets are from very different domains, such as
social networks, web graphs, peer-to-peer networks, collab-
orative networks, citation networks, and co-purchasing net-
works. Table 2 provides the statistics of these networks and
short descriptions.

We implemented our algorithms using C++, on top of the
SNAP library which is publicly available at http://snap.
stanford.edu/. We used a heterogeneous linux based clus-
ter to run most of the experiments. To report the running
time, we selected a subsets of our experiments and ran them
on a core(TM)2 Duo 2.66GHz linux system with 2GB of
main memory.

Our method has three parameters: Reducing Factor (RF),
(Starting) neighborhood size (K) and Density Threshold
(DT). The last two parameters are more important than the
first one, since they have direct control on the linearization
generated. Therefore, we conducted an extensive experi-
mental study on different values of these two parameters for
each network in our collection. Particularly we are inter-
ested in the tradeoff between the length of the linearization
and the neighborhood size.

We measured the compression performance using the
bits/edge rate, as the previous studies did. In addition, we
also report some other performance statistics such as query
processing time.

Another interesting tradeoff in our method is between the
out-neighbor query processing time and in-neighbor query
processing time. An implementation decision is how to store
the local information for each position. There are two op-
tions. In the first option, for each position in the Eulerian
data structure, we can use the first k bits to record the out-
edges to the previous k vertices in the linearization list, and
use the next k bits to record the out-edges to the next k
vertices in the list. In the second option, we can use the 2k
bits to record both the out-edges and in-edges between the
current position and the next k positions.

The first option biases on the out-neighbor queries. To an-
swer an in-neighbor query about a vertex u, we have to scan



(K, reducing factor) (10, 1) (10, 0.9) (15, 0.9) (20, 0.9) (30, 0.9)
Density threshold 0 0.15 0.25 0.30 0.15 0.25 0.30 0.15 0.25 0.30 0.15 0.25 0.30

amazon0302 15.38 14.61 13.99 14.43 15.08 13.97 14.16 15.09 13.98 14.49 15.39 14.07 14.49
amazon0312 14.35 13.32 12.70 12.79 13.57 12.74 12.84 13.92 12.73 12.90 14.08 12.79 12.86
ca-CondMat 7.89 7.69 6.96 6.69 8.35 7.16 6.77 8.94 7.33 6.93 9.55 7.56 7.26
ca-HepPh 5.24 5.09 4.76 4.63 5.00 4.59 4.57 5.20 4.65 4.53 5.51 4.79 4.69
cit-HepPh 17.07 15.65 14.59 14.23 15.99 14.69 14.29 16.47 14.85 14.31 16.97 15.02 14.48
cit-Patents 31.59 27.69 25.95 25.75 27.63 25.97 25.69 27.73 25.95 25.69 27.78 25.97 25.78
email-Enron 8.72 8.11 7.39 7.26 8.53 7.47 7.27 8.88 7.52 7.31 9.19 7.64 7.44
email-EuAll 30.73 25.31 22.96 22.55 25.63 22.97 22.55 25.56 22.97 22.61 25.81 23.11 22.72
p2p-Gnutella08 30.36 25.48 22.90 21.63 26.70 23.88 23.42 29.82 27.13 26.88 33.84 33.21 33.21
p2p-Gnutella24 35.76 29.51 25.59 24.33 28.67 25.69 24.93 29.41 26.90 26.02 31.25 28.94 28.10
soc-Slashdot0902 16.17 14.19 12.68 12.14 14.55 12.69 12.15 14.63 12.68 12.17 14.75 12.74 12.19
soc-LiveJournal1 16.13 14.48 13.96 13.97 14.50 13.92 13.93 14.49 13.95 13.93 14.56 13.91 13.95
web-Google 12.84 12.22 11.63 11.66 12.29 11.58 11.68 12.74 11.61 11.70 12.99 11.59 11.65
web-Stanford 10.79 10.27 10.17 10.76 10.19 10.23 10.41 10.14 10.05 10.22 10.19 9.88 9.92

Table 3: The average number of bits per edge. The worse cases happen on those data sets that have very
poor locality measures (Gcc and Fre)

the k positions preceding and following every occurrence of
u in the linearization list. We implemented the second op-
tion in our experiments which does not bias on any specific
types of neighbor queries.

6.2 Compression Rates
Table 3 summarizes the results about compression rate.

While the performance of our method varies on different
data sets, the interesting observation here is the strong neg-
ative correlation between the bits/edge rate and the value of
locality measures. The average degree of the network seems
important, too. In particular, Fre and Gcc are larger in
Amazon0302 than in Amazon0312, but the performance of
our method is better on Amazon0312. We believe that this
is due to the higher average degree in Amazon0312 than
Amazon0302.

It is interesting to look at the difference between data
sets email-Enron and email-EuAll from the same category.
Data set email-Enron has one of the best bits/edge rates
and email-EuAll has one of the worst. We think this may
be a footprint of the difference in communication patterns
in industry and in academia.

The results clearly shows that our method takes advantage
of the locality properties of the social networks. Our best
result for the LiveJournal data set is 13.91 bits/edge, while
the best result of BV scheme for the same data set is 14.308
(reported in [8]). Please note that BV scheme supports only
the out-neighborhood queries. To answer both out-neighbor
and in-neighbor queries, BV schema needs 2 × 14.308 bits
per edge, assuming that encoding the transpose of the graph
has approximately the same rate. Moreover, our method is
flexible for incremental updates. We only need to encode the
incremental subgraph. BV schema does not allow sublinear
updates.

6.3 Query Processing Time
We report the query processing time for two types of

queries. An adjacency query checks whether a query edge
(u, v) ∈ E. A neighbor query searches for all out-neighbors
and in-neighbors of a query vertex u.

We used K = 20, RF = 0.25 and DT = 0.9 as the default
values for the parameters. Table 4 reports the average access
time for the adjacency queries performed on the compressed

adj queries(ns) Neigh. queries(ns)
dataset comp. SNAP comp. SNAP

amazon0302 800 750 951 72
amazon0312 1170 790 1753 46
ca-CondMat 390 420 777 30
ca-HepPh 520 400 1849 19
cit-HepPh 1300 480 2745 28
cit-Patents 1400 930 1842 91
email-Enron 620 500 5539 31
email-EuAll 530 670 21518 148
p2p-Gnutella08 640 320 1663 34
p2p-Gnutella24 600 320 1488 50
soc-LiveJournal1 3050 1130 9734 49
soc-Slashdot0902 1380 610 7884 35
web-Google 810 830 4110 66
web-Standford 890 810 39939 49

Table 4: The average access time per edge for pro-
cessing adjacency queries and (in+out) neighbor
queries.

graphs (comp.) and on the original graphs (SNAP) using
the SNAP implementation of the graph data structure. We
ran 1 million adjacency queries and 1 million neighborhood
queries, and normalized the time by the number of edges
that those queries returned. The time is in nano second.

Our method spends up to 3 times more time to answer an
adjacency query than that on the original graph. In most
cases, extra cost in our method is very minor. For neighbor
queries, the query answering time depends on the efficiency
of the linearization. One vertex and one edge may appear
multiple times in a linearization. The more replicates, the
longer the query answering time.

6.4 Tradeoff between Local Information and
Pointers

We divide the bits/edge rate in our method into two parts
the bits/edge rate encoding local information, and that en-
coding the points. The total bits/edge rate is simply the
sum of the two.

We studied the tradeoff between the local bits/edge rate
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three data sets: ca-HepPh, p2p-Gnutella24, and soc-
Slashdot0902. (K = 20, RF = 0.9)
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Figure 4: The trade off between the bits/edge
rate of local information and that of pointers on
three data sets: ca-HepPh, p2p-Gnutella24, and soc-
Slashdot0902. (DT = 0.25 and RF = 0.9)

and that of the points when we varied the parameters of our
method. Limited by space, we only report here the tradeoff
for two parameters: the density threshold (DT ) and the
starting window size (K). We chose three data sets: ca-
HepPh which has the best compression rate, p2p-Gnutella24
which has the worse compression rate, and soc-Slashdot0902
which has about the average compression rate.

In the first experiment, we varied DT = 0.15 to 0.45 with
step 0.05, and fixed the other two parameters K = 20 and
RF = 0.9. Figure 3 shows the local information bits/edge
rate and the total bits/edge rate. Clearly, the compression
rate is insensitive to parameter DT . Therefore, setting the
parameter is not a big problem.

In the second experiment, we fixed DT = 0.25 and RF =
0.9, and varied K from 1 to 30. Figure 4 shows the results.
Increasing k leads to better compression rates on the ca-
HepPh and Soc-Slashdot0902 data sets. However, when k
is 5 or larger, increasing k does not gain big advantage.

Therefore, setting k to a value between 5 and 10 is a good
experience choice.

7. CONCLUSIONS
In this paper, we tackled the problem of compressing so-

cial networks in a neighbor query friendly way. We de-
veloped an effective social network compression approach
achieved by a novel Eulerian data structure using multi-
position linearizations of directed graphs. Importantly, our
method comes with a nontrivial theoretical bound on the
compression rate. To the best of our knowledge, our ap-
proach is the first that can answer both out-neighbor and
in-neighbor queries in sublinear time. An extensive empir-
ical study on more than a dozen benchmark real data sets
justifies the effectiveness of our method.

The encouraging results in this study suggest several in-
teresting future directions. First, it is interesting to explore
approximation methods for MPk linearization for k > 1.
Second, it is interesting to explore effective methods to de-
termine a good value of k for MPk linearization compression
of social networks. Last, our heuristic algorithm is simple.
It leaves space for further improvement in both the compres-
sion rate and the compression runtime.
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