
Knowl Inf Syst
DOI 10.1007/s10115-012-0486-9

Skyline distance: a measure of multidimensional
competence

Jin Huang · Bin Jiang ·
Jian Pei · Jian Chen · Yong Tang

Received: 30 May 2011 / Accepted: 5 March 2012
© Springer-Verlag London Limited 2012

Abstract Skyline has been widely recognized as being useful for multi-criteria decision-
making applications. While most of the existing work computes skylines in various contexts,
in this paper, we consider a novel problem: how far away a point is from the skyline?
We propose a novel notion of skyline distance that measures the minimum cost of upgrading
a point to the skyline given a cost function. Skyline distance can be regarded as a measure
of multidimensional competence and can be used to rank possible choices in recommen-
dation systems. Computing skyline distances efficiently is far from trivial and cannot be
handled by any straightforward extension of the existing skyline computation methods.
To tackle this problem, we systematically explore several directions. We first present a
dynamic programming method. Then, we investigate the boundary of skylines and develop
a sort-projection method that utilizes the skyline boundary in calculating skyline distances.
Last, we develop a space partitioning method to further improve the performance. We report
extensive experiment results which show that our methods are efficient and scalable.

Keywords Skyline · Skyline distance · Skyline boundary · Query optimization

J. Huang · Y. Tang
South China Normal University, Guangdong, China

B. Jiang
Facebook Inc., Palo Alto, CA, USA

J. Pei
Simon Fraser University, Burnaby, BC, Canada

J. Chen (B)
School of Software Engineering, South China University of Technology,
Guangzhou 510006, China
e-mail: ellachen@scut.edu.cn

123

J. Huang et al.

1 Introduction

Skyline analysis, which finds superior trade-offs among multiple factors in multi-criteria
decision-making applications, has been attracting a great amount of attention in the database
community.

Example 1.1 (Skyline) In the expo business, the number of conference halls and the number
of guest rooms are two major factors determining the competitiveness of a hotel in the market.
Among the 4 synthesized hotels shown in Fig. 1, B has more conference halls and more guest
rooms than D, and thus is a better choice than D. Using the terminology of skyline analysis,
B dominates D.

Since B is not dominated by any other hotels in the set, B is in the skyline. The skyline
hotels, A, B, and C , are the superior trade-offs between the number of conference halls and
the number of guest rooms, the two factors in question.

As will be reviewed in Sect. 3, most of the previous studies focus on computing skylines in
various contexts, and thus ignore non-skyline points. However, in many applications, ques-
tions about non-skyline points are often interesting. Particularly, it is interesting to explore
how a non-skyline point can be enhanced to join the skyline.

Example 1.2 (Motivation) Suppose one wants to invest to expand hotel D in Fig. 1, so that it
can compete with the skyline hotels A, B, and C . There are two possible choices with various
cost. Suppose constructing a new conference hall costs 1 million dollars and constructing a
new guest room costs 20 thousand dollars.

There are many different ways to upgrade D, so that it is in the skyline. For example,
D can build 200 new guest rooms with 4 million dollars cost, build 4 new conference halls
with 4 million dollars cost, or build 100 new guest rooms and 1 new conference hall with 3
million dollars cost. Among the above three ways, the last one costs the least.

Naturally, an optimization problem is to minimize the cost of upgrading D, so that D is
not dominated by A, B, and C . The minimum cost of D can be regarded as the measure of
the competence of D in the set of hotels. This measure is informative. For example, when
multiple hotels are available for investment, an investor may want to consider the ones with
small minimum cost. A recommendation system can rank all the candidate hotels in their
minimum cost ascending order. This paper will propose the notion of skyline distance to
solve such a cost minimization problem.

Computing the minimum cost of upgrading a point to the skyline is far from trivial.
In a d-dimensional space, upgrades can be conducted on any of the (2d − 1) non-empty
subsets of the d different dimensions. Moreover, the improvement on each dimension can be
an arbitrary positive number. There are a huge number of possible combinations of improve-
ments to boost a non-skyline point to the skyline. Existing skyline algorithms do not compute
any information about how far a point is to the skyline.

Fig. 1 Four synthesized hotels

123

Skyline distance: a measure of multidimensional competence

Moreover, different cost functions may apply for different points. In the context of
Example 1.2, different hotels may have different cost in building new conference halls
and guest rooms. The minimum cost changes as the cost function changes. For example,
in Example 1.2, if the unit price of a conference hall decreases to 5 hundred thousand dollars,
then the cost of the three ways of upgrade is 4 million, 2 million, and 2.5 million dollars,
respectively. The second choice of building 4 new conference halls is the best.

In this paper, we tackle the problem of computing the minimum cost of upgrading to the
skyline with an arbitrary linear cost function. Some of our methods can be straightforwardly
extended to monotonic cost functions. We make the following major contributions in this
paper. First, we formulate the skyline distance of a query point. Second, we investigate the
search space, which is called the skyline boundary, of the possible upgrades that may lead
to the minimum cost and prove a complexity bound. Third, we develop several methods for
efficient computation of skyline distances. Specifically, we start with a dynamic program-
ming method. Then, we propose a sort-projection method to compute the skyline boundary
and use it to compute skyline distances. Furthermore, we devise a space partitioning method
based on the divide and conquer and the bounding techniques to boost the performance. As
the last contribution, we conduct extensive experiments on both synthetic and real data sets
to evaluate the efficiency and scalability of our methods.

The rest of the paper is organized as follows. In Sect. 2, we formulate the notion of skyline
distances. We briefly review the related work in Sect. 3. We present a dynamic programming
method in Sect. 4. Section 5 studies the boundary of the skyline and shows that the optimal
solution always lays on the boundary. Section 6 presents a basic sort-projection method to
compute the skyline boundary. In Sect. 7, we develop a space partitioning method to improve
the performance. We report extensive experimental results in Sect. 8 and conclude the paper
in Sect. 9.

2 Problem definition

We consider a set S of points in a d-dimensional space D = D1 ×· · ·× Dd . A point p is writ-
ten as p = (p.D1, . . . , p.Dd), where p.Di is the value of p on dimension Di (1 ≤ i ≤ d).
We assume that the domain of each dimension is continuous and numeric. Our techniques
can be easily extended to discrete domain. Limited by space, we omit the details.

In this paper, we assume that, on each dimension, larger values are preferred. A point p
dominates another point q , denoted by p ≺ q , if p is not smaller than q on every dimen-
sion and larger than q on at least one dimension, i.e., p.Di ≥ q.Di for i ∈ [1, d] and
p.Di0 > q.Di0 for at least one i0 ∈ [1, d]. Furthermore, we say p strictly dominates q,
denoted by p ≺≺ q , if p is larger than q on every dimension, i.e., p.Di > q.Di for every
i ∈ [1, d]. To facilitate the presentation, we also denote a position in D in the same way
as a point and treat it as a virtual point, so that we can say a point dominates (or strictly
dominates) a position.

The skyline of S consists of all points that are not dominated by any other point, i.e.,
Sky(S) = {p ∈ S|�q ∈ S, q ≺ p}. A point is called a skyline point if it is in the skyline,
otherwise it is a non-skyline point. Example 1.1 demonstrates the concepts of dominance and
skyline.

For a non-skyline point q ∈ S, we ask the following question: how can we change
the values of q on the dimensions, so that q is not dominated by any other point in S?
Moving a point q to a new position q ′ is associated with some cost cost (q, q ′). The cost
function is also called the distance function in our paper.

123

J. Huang et al.

In this paper, we focus on linear cost functions, which are popularly used in practice.
That is, the cost is in the form of cost (q, q ′) = ∑d

i=1 wi (q ′.Di − q.Di), where wi > 0 for
i ∈ [1, d]. Our goal is to find q ′, which minimizes the cost. As will be discussed in Sect. 9,
some of our methods can be straightforwardly extended to monotonic functions in general.

In this paper, we only consider positive upgrades, that is q ′.Di ≥ q.Di for i ∈ [1, d].
A problem of negative upgrades can be converted to a problem only allowing positive
upgrades. To be concrete, if q ′.Di < q.Di on some dimension Di (i ∈ [1, d]), q ′ can
take a value in the range [xi , yi] on dimension Di (i ∈ [1, d]) and we let q0 = (x1, . . . , xd),
then

cost (q, q ′) =
d∑

i=1

wi (q
′.Di − q.Di)

=
d∑

i=1

wi (q
′.Di − q0.Di) +

d∑

i=1

wi (q0.Di − q.Di)

= cost (q0, q ′) + cost (q, q0)

Since cost (q, q0) is irrelevant to the position q ′, the optimization task is to minimize
cost (q0, q ′). Clearly, q ′.Di ≥ q0.Di for i ∈ [1, d]. Thus, the problem is equivalent to a
problem with only positive upgrades.

If q ′ can take an arbitrary value smaller than q on a dimension Di0 (i0 ∈ [1, d]), then a
trivial solution is that we set q ′.Di0 = −∞, choose an arbitrary dimension Di1(i1 �= i0),
and set q ′.Di1 = maxp∈S{p.Di1}+1. Obviously, cost (q, q ′) = −∞. In practice, for a point
q , the possible upgrade point q ′ can only sit in a finite region. In other words, q ′ can take a
value in a limited range on each dimension.

To avoid the triviality of the solution and also to keep our discussion simple, in the rest of
the paper, we assume that q ′.Di ≥ q.Di for i ∈ [1, d]. Under the assumption, the cost/dis-
tance is always positive for any pair of q and q ′.

Given a point q ∈ S, we are interested in upgrading q to the skyline, i.e., moving q to a
new position q ′ (q ′.Di ≥ q.Di for i ∈ [1, d]), such that q ′ is not dominated by any other
point in S and the cost cost (q, q ′) is minimized. One critical observation here is that the new
position does not need to be in the skyline, due to the following result.

Theorem 2.1 (Non-strict dominance) Given a set of points S and a linear cost function
cost (·, ·), for a point q ∈ S, if q is not strictly dominated by any other point in S, then with
an arbitrarily small cost ε > 0, q can be upgraded, so that it is not dominated by any other
point in S.

Proof With the total cost of ε, we can upgrade q to q ′ such that q ′.Di = q.Di + ε
d·wi

> q.Di .
For any other point p ∈ S, p �= q , if p does not dominate, q, p cannot dominate q ′. If p
dominates q , the domination is not strict. Thus, there exists at least one-dimension Di0 such
that p.Di0 = q.Di0 < q ′.Di0 . Thus, p cannot dominate q ′. 	

In Theorem 2.1, the cost ε is arbitrarily small and thus is negligible. Based on the above
discussion, we are ready to formulate the notion of skyline distance.

Definition 2.1 (Skyline distance) Given a set S of points in a d-dimensional space D,
a query point q , and a cost function cost (·, ·), the skyline distance of q is the mini-
mum cost cost (q, q ′), where q ′ is a position in D such that q ′.Di ≥ q.Di for i ∈
[1, d] and q ′ is not strictly dominated by any point in S. That is, Sky Dist (q) =
minq ′∈D,q ′.Di ≥q.Di for i∈[1,d],�p∈S,p≺≺q ′ {cost (q, q ′)}.

123

Skyline distance: a measure of multidimensional competence

As a special case, if q is not strictly dominated by any point in S, there is no need to upgrade
it, thus the cost is 0, and Sky Dist (q) = 0.

One may be lured by linear cost functions to associating our problem with linear pro-
gramming [7]. Linear programming is a technique for optimizing a linear objective function
subject to linear constraints (i.e., linear equalities and linear inequalities). It is proved that the
search space defined by linear constraints is always convex. However, as we will show later
in the paper, the search space of our problem, called the skyline boundary, is not convex. It is
difficult to convert our problem to a linear programming problem and techniques for linear
programming cannot be applied to our problem. In this paper, we develop several dedicated
methods to solve the problem.

3 Related work

Some representative algorithms for skyline computation include the divide-and-conquer algo-
rithm and the Block Nested Loops algorithm [3], the Sort Filter Skyline algorithm [6],
the Linear Elimination Sort for Skyline algorithm [9], the Bitmap algorithm and the Index
algorithm [25], the Nearest Neighbor algorithm [13], and the Branch and Bound Skyline
algorithm [19,20].

There are also numerous studies on skyline variations for different applications. For exam-
ple, subspace skylines [21,27,31], k-dominant skylines [5], reverse skyline queries [8], prob-
abilistic skyline computation on uncertain data [14], weighted attributes skylines [17], skyline
queries over data streams [15,18,24,26], skyline analysis on time series data [10], spatial
skyline queries [23], skyline computation in partially ordered domains [4,22], skyline main-
tenance for frequent updates [32], skyline cardinality estimation [16,33], and using skylines
to mine user preferences, make recommendations [11,29] and microeconomic analysis [34].

In this paper, we study skylines from a different angle by investigating the distance from a
query point to the skyline. The existing algorithms for skyline computation can only compute
the skyline of a given data set, but cannot give any information about how far a non-skyline
point is to the skyline.

Kim et al. [12] studied the same problem. They developed a Grid-Search algorithm.
The algorithm partitions the data space into a uniform grid where each cell has the same
size. Then, the algorithm traverses the grid in a best first fashion to compute the skyline
distance. Clearly, the Grid-Search algorithm cannot scale to high-dimensional data as the
number of cells to search is exponential to the dimensionality. Kim et al. [12] did not provide
an empirical study on the performance of the Grid-Search algorithm. In Sect. 8, we show
that our algorithms outperform the Grid-Search algorithm on almost all data sets used in our
experiments, especially on high cardinality and/or high dimensionality data sets.

Lately, Wan et al. [28] also studied a problem of creating competitive products from
multiple sources tables, for example, creating vacation packages from tables of hotels and
flights. A competitive product is one that is not dominated by any existing product nor any
possible product, which can be generated. The problem is different to our skyline distance
problem. For the problem of skyline distance, we focus on improving existing products to
join the skyline rather than creating new product. More importantly, we look for the best way
for such improvement with respect to certain cost functions. Furthermore, [28] is designed
for discrete domain obtained from source tables, e.g., table of hotels and flights, while we
focus on continuous domains and our techniques can be extended to discrete domains.

Wu et al. [30] considered the exclusive dominance region of a skyline point, which is the
region solely dominated by this skyline point. However, finding the exclusive dominance

123

J. Huang et al.

region of a skyline point cannot give us the answer of the skyline distance. In fact, in our
problem, a query point can be dominated by several skyline points at the same time. Hence,
a query point may not be in the exclusive dominance region of any skyline point. Our prob-
lem of skyline distance and the problem of exclusive dominance region are two different
problems. A solution to one cannot be used to solve the other easily.

4 Dynamic programming

Consider a set S of points in space D. Let Sky(S) be the set of skyline points in S. We assume
that Sky(S) is computed using an existing skyline computation algorithm.

Given a query point q , suppose q is strictly dominated by m skyline points in Sky(S). For
any position q ′ not strictly dominated by any point in S and q ′.Di ≥ q.Di for all i ∈ [1, d],
the upgrade from q to q ′ can be viewed as a path from q to q ′, which always goes up along
axes. Since we use linear cost functions, cost (q, q ′) is the sum of the weighted length of the
segments on the path.

We denote a path from q to q ′ by P(q, q ′). Due to Definition 2.1, our objective is to find
a path with the minimum cost, so that the end point q ′ of the path is not strictly dominated
by any skyline point and q ′.Di ≥ q.Di for i ∈ [1, d].

Given a path described above, we define m turning positions. The kth (1 ≤ k ≤ m) turn-
ing position of a path, denoted by qk , is the first position in the path such that qk is strictly
dominated by at most m − k skyline points. Apparently, qm is not strictly dominated by any
skyline point. We always set q ′ to be qm to minimize the length of the path. Specifically, we
also let q0 = q . Therefore, we can realize a path in m steps. We claim the following.

Lemma 4.1 (Cost of a path) The cost of the path from q to q ′, i.e., cost (q, q ′), is simply the
sum of the cost in all steps.

Proof We prove by mathematical induction. For q ′ = q0, it is obviously cost (q, q ′) = 0.
For q ′ = qk , we assume cost (q, q ′) = cost (q0, qk) = ∑k

i=1 cost (qi−1.qi) holds. Then,
for q ′ = qk+1,

cost (q, q ′) = cost (q0, qk+1) = cost (q0, qk) + cost (qk, qk+1) =
k+1∑

i=1

cost (qi−1.qi).

In each step of the dynamic programming, due to the d dimensions in space D, we spe-
cifically select d options of qk , denoted by qk,i (1 ≤ i ≤ d). The i th choice qk,i is

qk,i .D j =
{

mins∈Sky(S),s≺qk−1{s.Di } i = j;
qk−1.D j 1≤ j ≤d, j �= i.

(1)

We compute Sky Dist (.) in a particular order. Firstly, we compute Sky Dist (qm) where qm

is the destination of the path (which corresponds to the base case). Secondly, we compute
Sky Dist (qm−1) based on Sky Dist (qm). In general, we compute Sky Dist (qk−1) based on
Sky Dist (qk). Finally, we compute Sky Dist (q1) based on Sky Dist (q2).The dynamic pro-
gramming method recurs as follows,

Sky Dist (qk−1) = d
min
i=1

{Sky Dist (qk,i)+cost (qk−1, qk,i)} (2)

where qk,i is given by Eq. (1). The pseudocode is given in Algorithm 1.

123

Skyline distance: a measure of multidimensional competence

Algorithm 1 The dynamic programming method D P(q, SK Y, d).
Input: the set SK Y ={s1, . . . , sm } of skyline points which dominate the query point q; the dimensionality d;
Output: the skyline distance of q;
Description:
1: if there is no point in SK Y that strictly dominates q then
2: return 0;
3: else if Sky Dist (q) is already computed then
4: return Sky Dist (q);
5: else
6: for all qi given by Eq. (1) (1 ≤ i ≤ d) do
7: Sky Dist (qi) = D P(qi , {s ∈ SK Y |s ≺ qi }, d);
8: end for
9: return mind

i=1{Sky Dist (qi) + cost (q, qi)};
10: end if

Fig. 2 A 2D example of the
dynamic programming method

Algorithm 1 shows the pseudocode of the dynamic programming method developed in
Sect. 4.

4.1 An example and visualization of the dynamic programming method

To visualize the dynamic programming method, we can imagine a d-dimensional grid in
space D formed by lines parallel to the d axes crossing the query point q and the skyline
points s1, . . . , sm , which strictly dominate q . We call a point an intersection point if its value
on every dimension is the same as some skyline points or the query point. We denote an
intersection point by pt1,...,td if it has the same value as point ti (1 ≤ i ≤ d) on dimension i ,
where t1, . . . , td belong to {q, s1, . . . , sm}.
Example 4.1 (Intersection points) Figure 2 illustrates a 2-dimensional example, the query
point q is strictly dominated by 3 skyline points s1, s2, and s3. The grid is depicted by the
dashed lines. There are 9 intersection points plotted as solid dots.

Basically, the dynamic programming method recursively computes the skyline distances
of the intersection points and derives the skyline distance of the query point q .

Example 4.2 (The dynamic programming method) In Fig. 2, initially, we set q0 = q . At the
first step, q1 has two choices, pq,s3 and ps1,q , for upgrading. So Sky Dist (q) is the smaller one
between Sky Dist (pq,s3) + cost (q, pq,s3), and Sky Dist (ps1,q) + cost (q, ps1,q). We recur-
sively compute Sky Dist (pq,s3) and Sky Dist (ps1,q), respectively. Eventually, we compute
the skyline distances of the intersection points listed in Table 1 from bottom up. By definition,
pq,s1 , ps1,s2 , ps2,s3 , and ps3,q have skyline distances 0.

123

J. Huang et al.

Table 1 A dynamic
programming method example

q

pq,s3 ps1,q

pq,s2 ps1,s3 ps2,q

pq,s1 ps1,s2 ps2,s3 ps3,q

4.2 The correctness of the dynamic programming method

Given a query point q strictly dominated by m skyline points in Sky(S), we denote the updat-
ing path from q to q ′ by P(q, q ′), with m turning positions. q0 and qm are set to be q and q ′
as discussed before.

To prove the correctness of the dynamic programming method in Sect. 4, we first show a
path defines an optimal substructure.

Clearly, if the cost of a path P(q0, qm) from q0 to qm is the minimum cost of upgrading
q0 to the skyline, then, for any qk (0 ≤ k ≤ m) of P(q0, qm), the cost of the path P(qk, qm)

from qk to qm is the minimum cost of upgrading qk to the skyline. That is, the cost of
P(qk, qm) is the skyline distance of qk . This provides an optimal substructure for the skyline
distance problem. Consequently, we realize the dynamic programming method in m steps in
a recursive way. We have

Sky Dist (qk−1) = min
qk

{Sky Dist (qk) + cost (qk−1, qk)}. (3)

Then, kth step, we only need to enumerate k choices (shown in Eq. 1) of the turning position
qk (1 ≤ k ≤). The lemma below helps us to limit the possible choices of qk .

Lemma 4.2 Given two points v1 and v2, let SK Y1 and SK Y2 be the sets of skyline points
strictly dominating v1 and v2, respectively. If SK Y1 = SK Y2, then

Sky Dist (v1) − Sky Dist (v2) =
d∑

i=1

wi (v2.Di − v1.Di). (4)

Proof Consider position v0 such that v0.Di = max{v1.Di , v2.Di }. We first show that SK Y1

is exactly the set of skyline points strictly dominating v0 if SK Y1 = SK Y2. Since SK Y1 =
SK Y2, for any skyline point s ∈ SK Y1 and any dimension Di (1 ≤ i ≤ d), s.Di > v1.Di

and s.Di > v2.Di . Therefore, s.Di > max{v1.Di , v2.Di } = v0.Di . That is, s strictly domi-
nates v0. Moreover, for any skyline point s strictly dominating v0, s also strictly dominates
both v1 and v2.

Consider a path starting from v1 that upgrades v1 to the skyline such that its cost is mini-
mized (i.e., its cost is Sky Dist (v1)). Because a path goes along axes, we can always adjust
it to pass through v0 and maintain its cost unchanged, since v0 and v1 are strictly dominated
by the same set of skyline points. Then,

Sky Dist (v1) − Sky Dist (v0) =
d∑

i=1

wi (v0.Di − v1.Di). (5)

Similarly, we have

123

Skyline distance: a measure of multidimensional competence

Sky Dist (v2) − Sky Dist (v0) =
d∑

i=1

wi (v0.Di − v2.Di). (6)

Subtracting Eq. (6) from (5), we have Eq. (4). 	

At the kth step, we select d candidates qk,i (1 ≤ i ≤ d) for qk given by Eq. (1). Clearly,

there exists a qk,i (1 ≤ i ≤ d) such that the set of skyline points strictly dominating qk is the
same as the set of skyline points strictly dominating qk,i . By Lemma 4.2,

Sky Dist (qk) + cost (qk−1, qk) = Sky Dist (qk,i)

+
d∑

j=1

wi (qk,i .D j − qk .D j) + cost (qk−1, qk)

= Sky Dist (qk,i) + cost (qk−1, qk,i). (7)

Combining Eqs. (3) and (7), we have the final recursive formula for the dynamic program-
ming method as shown in Eq. (2).

In a d-dimensional space, a query point q and the m skyline points that strictly dominate
q form a grid of O(md) intersection points. There are d choices at every step. So, the com-
plexity of the dynamic programming method is O(dmd) plus the cost of retrieving the m
skyline points.

Taking a closer look at the dynamic programming method and Example 4.2, we
notice that the optimal upgrading position of q has to be one of the intersection points
pq,s1 , ps1,s2 , ps2,s3 , and ps3,q . These intersection points have skyline distances 0. They lay
on the “boundary” of the skyline. We call them boundary intersection points. Section 5 for-
mally defines boundary intersection points and show how to use them to compute skyline
distances efficiently.

5 Skyline boundary

For a set of points S in a d-dimensional space D, the skyline boundary is a (d − 1)-dimen-
sional surface that consists of all positions that are dominated by some skyline points but not
strictly dominated by any skyline point.

Definition 5.1 (Skyline boundary) Given a set SK Y of skyline points in S, we say a point
p ∈ D (p does not necessarily belong to S) is on the skyline boundary if there exists a point
s ∈ SK Y such that s ≺ p and there does not exists a point s′ ∈ SK Y such that s′ ≺≺ p.

According to Theorem 2.1 and Definition 2.1, we have the following property immedi-
ately.

Property 5.1 (Skyline boundary) Every point on the skyline boundary has a skyline
distance 0.

By Property 5.1, for a query point q , there must be a point p on the skyline boundary such
that Sky Dist (q) = cost (q, p).

Section 4 discusses intersection points. We call an intersection point a boundary intersec-
tion point if it is on the skyline boundary.

Property 5.2 (Boundary intersection points) Let p be a point on the skyline boundary w.r.t.
a set S of points and p is not a boundary intersection point. Then, there exists a boundary
intersection point p′ such that p ≺ p′.

123

J. Huang et al.

Fig. 3 A 3D example (axes
drawn in reverse direction)

Proof The (d − 1)-dimensional surface of the skyline boundary can be decomposed into a
set of (d − 1)-dimensional axis-aligned polyhedrons. The set of vertices of each polyhedron
consists of one skyline point and a number r of boundary intersection points dominated by
the skyline point. It is easy to see that such a polyhedron can be further decomposed into
r(d − 1)-dimensional axis-aligned hyper-rectangles, each of which has a boundary intersec-
tion point as the minimum corner. Because p is on the skyline boundary, it must fall into
one polyhedron, then in a hyper-rectangle. Thus, it dominates the minimum corner of that
hyper-rectangle, which is the boundary intersection point p′ we look for. 	

Example 5.1 (Skyline Boundary) Figure 2 shows a set of points and the skyline in a 2-
dimensional space. The solid line in the figure illustrates the skyline boundary. Among the 9
intersection points, pq,s1 , ps1,s2 , ps2,s3 , and ps3,q are on the skyline boundary.

Figure 3 shows a 3-dimensional case, where A, B, and C are the skyline points. To make
the figure easy to see, axes are drawn in reverse direction. The skyline boundary, which is a
2-dimensional surface, is shown in the figure.

Clearly, the skyline boundaries shown in the above example are not convex. Hence, linear
programming cannot be applied to our problem.

How is the skyline distance related to the dominance relationship between points?

Lemma 5.1 (Dominance and cost) Consider a query point q, two points p1 and p2 such that
p1 ≺ p2, p1.Di ≥ q.Di and p2.Di ≥ q.Di for i ∈ [1, d]. Then, cost (q, p1) > cost (q, p2).

Proof

cost (q, p1) − cost (q, p2) =
d∑

i=1

wi (p1.Di − q.Di)

−
d∑

i=1

wi (p2.Di − q.Di)

=
d∑

i=1

wi (p1.Di − p2.Di)

Since p1 ≺ p2, p1.Di ≥ p2.Di and there exists at least one-dimension Di0 such that
p1.Di0 > p2.Di0 . Thus, cost (q, p1) − cost (q, p2) > 0. 	

Boundary intersection points play an important role in skyline distance computation, since
the skyline distance of a query point is determined by the minimum cost of upgrading the
query point to a boundary intersection point, as formally shown in the following theorem.

123

Skyline distance: a measure of multidimensional competence

Theorem 5.1 (Boundary intersection points) Consider a query point q which is dominated
by m > 0 skyline points s1, . . . , sm. Let p1, . . . , pr be the r boundary intersection points
determined by q and s1, . . . , sm. Then, Sky Dist (q) = minr

i=1{cost (q, pi)}.
Proof We prove the theorem by contradiction. Suppose q ′ is the optimal position on the sky-
line boundary such that Sky Dist (q) = cost (q, q ′) but q ′ is not a boundary intersection point.
By Definition 2.1, q ′.Di ≥ q.Di for i ∈ [1, d]. By Property 5.2, q ′ must dominate a boundary
intersection point p j (j ∈ [1, r]). By Lemma 5.1, cost (q, p j) < cost (q, q ′) = Sky Dist (q),
which leads to a contradiction. 	

It is possible that one boundary intersection point dominates another one. For example, in
Fig. 3, point (2, 2, 3) dominates point (2, 2, 2). By Lemma 5.1, those boundary intersection
points which dominate other boundary intersection points cannot be the solution for any
query point. So, we call a boundary intersection point a local optimal point if it does not
dominate any other boundary intersection point. Combining Theorem 5.1 and Lemma 5.1,
we have the following.

Corollary 5.1 (Local optimal points) Consider a query point q dominated by m skyline points
s1, . . . , sm. Let p1, . . . , pr be the r local optimal points determined by q and s1, . . . , sm. Then,
Sky Dist (q) = minr

i=1{cost (q, pi)}.
In summary, local optimal points have the following properties which are critical to skyline

distance computation.

1. A local optimal point is dominated by some skyline points but not strictly dominated by
any skyline point;

2. A local optimal point has a skyline distance 0; and
3. Local optimal points do no dominate each other.

Example 5.2 (Local Optimal points) In Fig. 2, the four boundary intersection points
pq,s1 , ps1,s2 , ps2,s3 , and ps3,q are also local optimal points.

Figure 3 shows a 3-dimensional example, where the 7 local optimal points are plotted in
solid dots. Point (2, 2, 3) is a boundary intersection point but not a local optimal point, since
it dominates local optimal point (2, 2, 2).

6 The sort-projection method

In this section, we develop a sort-projection algorithm to compute local optimal points. Then,
the skyline distance can be calculated straightforwardly by finding the minimum cost of the
query point to the set of local optimal points.

To find local optimal points in a d-dimensional space, a d-dimensional problem is decom-
posed into multiple (d − 1)-dimensional problems, which are solved recursively. We first
illustrate the algorithm in the 2-dimensional case then show the recursion in high-dimensional
cases.

6.1 The 2-dimensional case

Given a query point q which is dominated by m skyline points s1, . . . , sm (assuming no
two points are the same) in a 2-dimensional space D1 × D2, we simply sort the skyline
points in the ascending order on dimension D1. Without loss of generality, we assume

123

J. Huang et al.

s1.D1 < s2.D1 < · · · < sm .D1 (note that, no two points have the same value). Because
skyline points do not dominate each other, s1, . . . , sm are also in the descending order on
dimension D2. That is, s1.D2 > s2.D2 > · · · > sm .D2.

Clearly, there are m + 1 local optimal points and the i th one pi is given by the following
formula,

pi =

⎧
⎪⎨

⎪⎩

(q.D1, s1.D2) i = 1;
(si−1.D1, si .D2) 2 ≤ i ≤ m;
(sm .D1, q.D2) i = m + 1.

(8)

Figure 2 gives an illustration. Apparently, sorting is the major cost for the sort-projection
algorithm in the 2-dimensional space. Thus, the time complexity is O(m log m).

Algorithm 2 gives the pseudocode of the sort-projection algorithm. Lines 1–3 summa-
rize the processing for the 2-dimensional case. Lines 4–13 apply to the high-dimensional
cases.

Algorithm 2 The sort-projection algorithm S P(q, SK Y, d).
Input: the set SK Y = {s1, . . . , sm } of skyline points which dominate the query point q; the dimensionality

d;
Output: the skyline distance of q;
Description:
1: if d = 2 then
2: sort points in SK Y in the ascending order on dimension D1;
3: P = {pi |1 ≤ i ≤ m + 1} where pi is given by Eq. (8);
4: else
5: select the dimension Dk of the least distinct values for sorting;
6: divide points in SK Y into l partitions such that partition Si (1 ≤ i ≤ l) consists of the projections of

points with the i th largest value on dimension Dk ;
7: Let P1 = {p|p.D j = q.D j for j �= k}; P = {p|p.Dk = S1.Dk , p.D j = p′.D j for j �= k, p′ ∈ P1};

Let SS = ∅;
8: for i from 2 to l + 1 do
9: SS = Sky(SS ∪ Si−1);
10: Let Pi = S P(q, SS, d − 1);
11: P = P ∪ {p|p.Dk = Si .Dk , p.D j = p′.D j for j �= k, p′ ∈ (Pi−1 \ Pi)};
12: end for
13: end if
14: return min{cost (q, p)|p ∈ P};

6.2 The higher dimensional cases

Generally, in a d-dimensional space, again, we denote by q the query point, and by s1, . . . , sm

the m skyline points which dominate q . The sort-projection algorithm follows a divide-and-
conquer framework in three steps: dividing, conquering, and merging.

Dividing: The algorithm first sorts the skyline points in the descending order on the
dimension with the least number of distinct values. The choice of the dimension will become
clear in Sect. 6.3. Let Dk be the dimension used to sort skyline points. Suppose, there are l
distinct values on Dk .

We project the skyline points to a (d − 1)-dimensional space D1 × · · · × Dk−1 × Dk+1

×· · ·× Dd . The skyline points are divided into l partitions such that the points with the same
value on dimension Dk are put in the same partition. Let Si be the i th partition (1 ≤ i ≤ l)

123

Skyline distance: a measure of multidimensional competence

(a) (b) (c)

Fig. 4 The 2D projections of Fig. 3. a Z = 3. b Z = 2. c Z = 1

consisting of the projections of points with the i th largest value on dimension Dk . We also
denote the i th largest value on Dk by Si .Dk . As a special case, we denote Sl+1.Dk = q.Dk .
Consequently, Si .Dk > S j .Dk for any 1 ≤ i < j ≤ l, i �= k, j �= k.

Conquering: We process the (l+1) partitions one by one, starting from S1. In the d-dimen-
sional space D1×· · ·× Dd , if we fix the value on dimension Dk , we get a (d −1)-dimensional
hyperplane D1 × · · · × Dk−1 × Dk+1 · · · × Dd . The i th hyperplane is the one when we fix
the value on dimension Dk to Si .Dk . Let Pi (1 ≤ i ≤ l + 1) denotes the set of local optimal
points on the i th hyperplane.

The only local optimal point on the first hyperplane is simply the projection of q ,
i.e., P1 = {p|p.D j = q.D j for j �= k} (line 7 in Algorithm 2). The local optimal
points on the i th hyperplane (2 ≤ i ≤ l + 1) are determined by the points in the set
of skyline

⋃i−1
j=1 S j (line 9). Pi is computed by recursively applying the sort-projection

algorithm.

Merging: To obtain the local optimal points in the original d-dimensional space, we first
recover points in Pi (1 ≤ i ≤ l +1) from the (d −1)-dimensional space to the d-dimensional
space. Each point p in Pi corresponds to a point that has value Si .Dk on dimension Dk and
value p.D j on dimensions D j other than Dk . We denote the d-dimensional correspondence
of p by pd . Because Si .Dk > S j .Dk for any i < j , for any point p ∈ Pi , and any point
p′ ∈ Pj , p′d cannot dominate pd . Furthermore, pd dominates p′d only if p = p′ with
respect to their values on the projected d − 1 dimensions. Therefore, in the merging step,
we simply remove a point p′ in Pi−1 if there is a point p in Pi such that p.Di = p′.Di for
1 ≤ i ≤ d, i �= k (line 11).

Example 6.1 (The sort-projection algorithm) Figure 3 illustrates a 3-dimensional exam-
ple in space X × Y × Z . The query point q(1, 1, 1) is dominated by 3 skyline points
A(2, 4, 4), B(3, 2, 3), and C(4, 3, 2). In the dividing step, the algorithm sorts A, B, and
C on dimension Z and divides them into 3 partitions S1 = {A′(2, 4)}, S2 = {B ′(3, 2)}, and
S3 = {C ′(4, 3)}.

In the conquering step, we consider the X × Y planes one by one. In the X × Y plane
with Z = 4, the set of local optimal points P1 = {(1, 1)}. The skylines of the other 3X × Y
planes with Z values 3, 2, and 1 are shown in Fig. 4. The corresponding sets of local opti-
mal points (plotted in solid dots) are P2 = {(1, 4), (2, 1)}, P3 = {(1, 4), (2, 2), (3, 1)}, and
P4 = {(1, 4), (2, 3), (4, 1)}, respectively.

In the merging step, (1, 4) appears in P2, P3, and P4. So, we only retain the one in
P4 and remove those in P2 and P3. Finally, we obtain the set of local optimal points
{(1, 1, 4), (2, 1, 3), (2, 2, 2), (3, 1, 2), (1, 4, 1), (2, 3, 1), (4, 1, 1)}.

123

J. Huang et al.

6.3 Complexity analysis

Because the time complexity of the sort-project method depends on the number of local
optimal points, we firstly prove the number of local optimal points in lemma 6.1 then we
give Theorem 6.1 and its proof.

Lemma 6.1 (Number of local optimal points) Let N (m, d) be the number of local optimal
points with m input skyline points in a d-dimensional space. Then, N (m, 2) = O(m) and
N (m, d) ≤ N (m, d + 1) ≤ m N (m, d) for d ≥ 2.

Proof The 2-dimensional case is obvious. For a (d +1)-dimensional space (d ≥ 2), suppose
the sort-projection algorithm divides the m skyline points into l partitions, where the i th
(1 ≤ i ≤ l partition has mi points. We have

∑l
i=1 mi = m. The i th (2 ≤ i ≤ l +1) d-dimen-

sional hyperplane has at most
∑i−1

j=1 m j skyline points, thus at most N (
∑i−1

j=1 m j , d) local
optimal points. Then, the total number of local optimal points in the (d + 1)-dimensional
space is N (m, d + 1) = 1 + ∑l+1

i=2 N (
∑i−1

j=1 m j , d).

When d = 2, we obtain N (m, 3) = 1 + ∑l
i=1(l − i + 1)O(mi). We establish O(m) ≤

N (m, 3) ≤ (m2). It is equivalent to N (m, 2) ≤ N (m, 3) ≤ m N (m, 2). By mathematical
induction, it is easy to derive N (m, d) ≤ N (m, d + 1) ≤ m N (m, d) for d ≥ 2. 	

Following with Lemma 6.1, we have the following.

Corollary 6.1 Denote by N (m, d) the number of local optimal points in a d-dimensional
space. N (m, d) = �(m) and N (m, d) = O(md−1).

Now, we can prove our complexity result stated in Theorem 6.1.

Theorem 6.1 (Complexity—sort-projection) Let f (m, d) denotes the complexity of the sort-
projection algorithm with m input skyline points in a d-dimensional space. f (m, 2) =
O(m log m). Moreover, f (m, d) = �(m log m) and f (m, d) = o(md−1) for d ≥ 3.

Proof We prove by mathematical induction. As stated in Sect. 6.1, f (m, 2) = O(m log m).
For the (d +1)-dimensional (d ≥ 2) space, the cost of the sorting step is O(m log m). The

algorithm divides the m skyline points into l partitions with cardinalities m1, . . . , ml . We
have

∑l
i=1 mi = m. Then, in the conquering step, the number of skyline points considered in

the i th (2 ≤ l + 1) d-dimensional hyperplane is at most
∑i−1

j=1 m j . Thus, the cost of comput-

ing the local optimal points in the i th hyperplane is f (
∑i−1

j=1 m j , d). In the merging step, the
algorithm compares Pi−1 and Pi . The comparison has complexity N (mi−1, d) + N (mi , d)

since points in Pi−1 and Pi are sorted. Therefore, the total complexity of the sort-projection
algorithm is

f (m, d + 1) = O(m log m) +
l+1∑

i=2

(
f (

i−1∑

j=1

m j , d)

+N (mi−1, d) + N (mi , d)
)
.

By Corollary 6.1, we have f (m, d + 1) = �(m log m) and f (m, d + 1) = o(md). 	

According to the complexity analysis, to minimize the cost, in the dividing step, we

should choose the dimension with the least distinct values such that the number of partitions
is minimized.

123

Skyline distance: a measure of multidimensional competence

Fig. 5 An example of space
partitioning

7 A space partitioning method

In this section, we develop a space partitioning method. This method partitions the space
into several d-dimensional hyper-rectangles and searches for local optimal points in each
hyper-rectangle individually. To reduce the search space, we propose two pruning rules to
eliminate hyper-rectangles, which do not contain any local optimal point that contributes
to the skyline distance with respect to a query point. For a hyper-rectangle that cannot be
pruned, either it is further partitioned into sub-hyper-rectangles or the sort-projection method
is applied to compute the local optimal points within it.

Given a query point q dominated by a set SK Y of skyline points, initially, the space
partitioning method finds d local optimal points, p1, . . . , pd , where pi (1 ≤ i ≤ d) is given
by the following formula,

pi .D j =
{

max{s.Di |s ∈ SK Y } for j = i

q.D j for j �= i
(9)

Then, the space partitioning method finds the minimum cost of q to p1, . . . , pd . Let
pmin denotes the local optimal point such that cost (q, pmin) = mind

i=1{cost (q, pi)}. We set
threshold = cost (q, pmin).

The cost function and the threshold define a threshold hyperplane
∑d

i=1 wi × x .Di =
threshold. Any local optimal point p above the threshold hyperplane has cost cost (q, p) >

threshold and thus cannot be the optimal solution.

Example 7.1 (The space partitioning method) Let us explain the details of the space parti-
tioning method using Fig. 5 as a 2-dimensional example, where a query point q is dominated
by four skyline points s1, s2, s3, and s4. Two local optimal points p1 and p2 are found, and
p2 is the one with the smaller cost. Thus, we set threshold = cost (q, p2).

In Fig. 5, the dotted line through p2 is the initial threshold hyperplane, and the local
optimal point p1 which is above the threshold hyperplane has larger cost from q and thus
can be pruned. If we find more local optimal points, we may reduce the value of threshold
progressively and prune more local optimal points.

It is easy to see that q, pmin , and the cost function jointly define a d-dimensional hyper-
rectangle. We partition a hyper-rectangle into 2d equal size sub-hyper-rectangles surrounding
its center.

Let R denotes a d-dimensional hyper-rectangle. Let max(R) and min(R) be the maxi-
mum and minimum corners of R, respectively. R can be pruned if any of the following two
situations happen.

123

J. Huang et al.

Algorithm 3 The space partitioning method.
Input: a query point q and the set SK Y of skyline points dominating q; dimensionality d;
Output: the skyline distance of q;
Description:
1: find the d initial-local optimal points p1, . . . , pd as shown in Equation (9);
2: compute pmin among p1, . . . , pd ; threshold = cost (q, pmin);
3: initial a heap H and insert the hyper-rectangle defined by q, pmin , and the cost function;
4: while H is not empty do
5: R = H.pop();
6: if max(R) is dominated by a skyline point then
7: continue; /* PR1 */
8: end if
9: if cost (q, min(R)) > threshold then
10: break; /* PR2 */
11: end if
12: let S be the set of skyline points that dominate min(R);
13: if |S| ≤ limit then
14: P = S P(q, S, d); /* invoke Algorithm 2 */
15: update threshold according to local optimal points in P;
16: else
17: partition R into 2d equal-sized sub-hyper-rectangles and insert them into H;
18: end if
19: end while
20: return threshold;

PR1 if max(R) is strictly dominated by a skyline point, then R can be pruned, since any
point inside R is strictly dominated by a skyline point so it is not a local optimal point.
To efficiently check whether max(R) is strictly dominated by a skyline point, we can
pre-build an R∗-tree [1] on all skyline points.

PR2 if cost (q, min(R)) > threshold , then R can be pruned, since for any local optimal
point p inside R, cost (q, p) > threshold (Lemma 5.1).

If a hyper-rectangle R contains a local optimal point p, then p dominates min(R). More-
over, any skyline points dominating p also dominate min(R). Therefore, if a skyline point s
does not dominate min(R), s cannot lead to any local optimal points in R. In other words,
to compute the local optimal points inside a hyper-rectangle R, we only need to consider the
skyline points which dominate min(R).

For a hyper-rectangle R which is not pruned by rules PR1 and PR2, we check the number
of skyline points dominating min(R). If the number is no more than a pre-defined thresh-
old limit , we apply the sort-projection method (Algorithm 2) to compute the local optimal
points. Otherwise, R is further partitioned into 2d sub-hyper-rectangles.

Example 7.2 (Space partitioning method (continued)) In our running example (Fig. 5), the
big rectangle p2q B A plotted by the dashed lines is partitioned into 4 sub-rectangles. Hyper-
rectangle Gq F D is pruned by PR1, and hyper-rectangle C DE A is pruned by PR2.

Suppose limit = 2, then hyper-rectangle DF B E is further partitioned, and we compute
the local optimal points in hyper-rectangle p2G DC and get local optimal point p3, resulting
in the update of the value of threshold .

To schedule the processing of hyper-rectangles, we build a min-heap H with cost
(q, min(R)) as the key for each hyper-rectangle R. We always process the top hyper-rectan-
gle in H. New rectangles are inserted into H. Algorithm 3 gives the pseudocode of the space
partitioning method.

123

Skyline distance: a measure of multidimensional competence

20k

40k

60k

80k

100k

120k

2 3 4 5 6 7 8

of

 lo
ca

l o
pt

im
al

 p
oi

nt
s

dimensionality

5k

10k

15k

20k

25k

30k

35k

40k

200 400 600 800 1000

of

 lo
ca

l o
pt

im
al

 p
oi

nt
s

of skyline points

2d

3d

4d

5d

(a) (b)

Fig. 6 Number of local optimal points. a Effect of d. b Effect of n

The space partitioning method has the same worst case complexity as the sort-projection
method when the two heuristic pruning rules fail. However, as shown in our experiments,
the space partitioning method works much better than the sort-projection method on various
data sets.

8 Empirical studies

We conducted extensive experiments to evaluate the efficiency and scalability of the three
methods developed in this paper, namely the dynamic programming method (DP), the sort-
projection method (Sort-Proj), and the space partitioning method (Space-Part). All methods
were implemented in C++ and compiled by Microsoft Visual Studio 2008. All experiments
were conducted on a laptop computer with an Intel Core Duo 1.67GHz CPU and 2GB main
memory running Windows Vista Ultimate. We used the NBA data set from http://www.nba.
com and synthetic data sets. In our experiments, the skyline of a data set is pre-computed
and indexed by an R-tree. The cost reports do not include the cost of skyline computation.
All methods run in-memory.

We consider two major factors in our experiments, the dimensionality d of the data space
and the number m of the skyline points that strictly dominate the query point, which we
call cardinality. By default, the dimensionality is set to d = 3 and varies from 2 to 8. The
cardinality m varies from 50 to 100,000 and is set to 500 by default. All weights in the cost
function are equal to 1.

To generate a synthetic data set, we first used an anti-correlated data generator [3] to pro-
duce a large data set, from which we computed the skyline. Next, we randomly selected m
points from the skyline and computed the minimum bounding box of these m points. Those
points which are not selected are then ignored. Next, the minimum corner of the minimum
bounding box was set to be the query point. Every experiment was repeated 10 times, and
the average result is reported.

8.1 Results on the synthetic data sets

8.1.1 Number of local optimal points

We first show the number of local optimal points in different data sets, which is bounded
between O(m) and O(md−1) (Corollary 6.1 in Sect. 6.3). In Fig. 6a, the number of local
optimal points increases exponentially as the dimensionality increases, while Fig. 6b shows
a linear increase in the number of local optimal points with respect to the cardinality.

123

http://www.nba.com
http://www.nba.com

J. Huang et al.

10-3
10-2
10-1
100
101
102
103

50 100 150 200

tim
e

(s
)

of skyline points

DP
Sort-Proj

Space-Part
Grid-Search

10-2

10-1

100

101

102

103

2k 4k 6k 8k 10k

tim
e

(s
)

of skyline points

Space-Part
Sort-Proj

Grid-Search

10-2

100

102

104

106

2 3 4 5 6

tim
e

(s
)

dimensionality

Sort-Proj
Space-Part

Grid-Search

(a) (b) (c)

Fig. 7 Comparing the four methods. a Effect of n (low). b Effect of n (high). c Effect of d

1k

2k

3k

4k

5k

6k

2 3 4 5 6 7 8

of

 h
yp

er
-r

ec
ta

ng
le

s

dimensionality

PR1
PR2

Sort-Proj
Total

 0

 50

 100

 150

 200

 250

 300

 350

 400

2k 4k 6k 8k 10k

of

 h
yp

er
-r

ec
ta

ng
le

s

of skyline points

PR1
PR2

Sort-Proj
Total

(a) (b)

Fig. 8 Pruning power of the Space-Part method. a Effect of d. b Effect of n

8.1.2 Comparing the three methods

Figure 7 compares the running time of the three methods, as well as the Grid-Search algorithm
developed in [12], on different data sets. Because the dynamic programming method needs
to maintain a table of the skyline distances of all intersection points, and the table is of size
O(md), it cannot run on large data sets. Figure 7a shows the performance of the four methods
on data sets with low cardinalities (from 50 to 200). We can see that the running time of DP
increases quickly as the cardinality increases. The other three algorithms are much faster
than DP. Due to the poor scalability of DP, we exclude DP from comparison in the rest of
our experiments.

Figure 7b shows the running time of grid search and Sort-Proj increases much faster than
Space-Part with respect to cardinality. Space-Part is faster than Sort-Proj by two orders of
magnitude.

Figure 7c shows that the running time of grid search, Sort-Proj, and Space-Part goes up
exponentially as the dimensionality goes up from 2 to 8. Still, Space-Part is orders of mag-
nitude faster than Sort-Proj and grid search. Sort-Proj also outperforms grid search as the
dimensionality increases.

Clearly, our Space-Part algorithm is faster than grid search and Sort-Proj in almost all
cases, especially on data sets with high cardinality and/or high dimensionality.

8.1.3 Analysis of the space partitioning method

As the space partitioning method is exceptionally better than the other methods, we investi-
gate it in detail. The performance of Space-Part depends on the number of hyper-rectangles
generated and the number of hyper-rectangles pruned. Figure 8 shows the effectiveness of the
two pruning rules used in Space-Part. Four curves are shown in both Fig. 8a, b, the number
of hyper-rectangles pruned by PR1 and PR2, computed by Sort-Proj, and the total number

123

Skyline distance: a measure of multidimensional competence

Fig. 9 A 3D illustration of local
optimal points

skyline point
local optimal point

 0.04
 0.045
 0.05

 0.055
 0.06

 0.065
 0.07

 0.075
 0.08

 0.085
 0.09

7 11 15 25 75200

tim
e

(s
)

limit

Space-Part

 0

 500

 1000

 1500

 2000

 2500

 3000

7 11 15 25 75 200

of

 h
yp

er
-r

ec
ta

ng
le

s

limit

PR1
PR2

Sort-Proj
Total

(a) (b)

Fig. 10 Effect of limit in Space-Part a Running time. b Pruning power

of hyper-rectangles generated. In fact, the total number is equal to the sum of the numbers of
the hyper-rectangles pruned by PR1 and PR2 and computed by Sort-Proj. It is clear that most
of the hyper-rectangles are pruned by PR1 and PR2, only a small amount of hyper-rectangles
are actually processed by Sort-Proj. This explains the efficiency of Space-Part. Moreover,
PR2 is more powerful in pruning than PR1.

Figure 8a shows that the total number of hyper-rectangles generated increases exponen-
tially against the dimensionality. This is the reason that the running time of Space-Part is
exponential to the dimensionality, even most of the hyper-rectangles are pruned. In Fig. 8b,
the number of hyper-rectangles is insensitive to the change of the cardinality, so is the running
time.

Figure 9 shows a set of skyline points, and the local optimal points generated by the skyline
points in a 3-dimensional space. We can see that the local optimal points form a bowl shape.
Therefore, many parts of the search space can be pruned after Space-Part finds a few local
optimal points.

Figure 10 shows the effect of the parameter limit used in the space partitioning method.
The running time is the smallest when limit is set to 25. However, the pruning power
decreases all the way when limit increases. The result shows that when limit is small, the
major cost of Space-Part is on partitioning the search space. When limit is large, the number
of hyper-rectangles generated is small, but the cost of computing the local optimal points in
one hyper-rectangle increases. The best setting of limit achieves the balance between the
two aspects of cost.

Figure 11 shows the scalability of Space-Part by varying the cardinality from 20k to 100k.
The running time is linear with respect to the cardinality. Moreover, Space-Part can answer a
skyline distance query within 1.2 s even the query point is dominated by 100k skyline points.
To this extent, Space-Part is scalable on large data sets. In theory, the number of skyline points
is O((log n)d−1) in a set of n uniformly distributed points [2]. So 100k skyline points are
expected to be generated from a data set of billions of data points if the points are uniformly
distributed (Fig. 10).

123

J. Huang et al.

Fig. 11 The Space-Part method
on high cardinality data set

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

20k 40k 60k 80k 100k

tim
e

(s
)

of skyline points

Space-Part

 0

 50

 100

 150

 200

 250

 300

 350

4 5 6 7 8

of

 s
ky

lin
e

po
in

ts

dimensionality

10-2

100

102

104

106

4 5 6 7 8

tim
e

(s
)

dimensionality

Sort-Proj
Space-Part

Grid-Search

(a) (b)

Fig. 12 The NBA data set. a # of skyline points. b Running time

8.2 Results on the NBA data set

We also conducted experiments on the well-known NBA data set. The data set consists of the
seasonal average statistics of 3,986 players throughout their careers. In total, there are 15,748
points. The data set has 17 attributes. We selected the first d attributes where d varies from 4 to
8 to form a data set and compute the corresponding skyline. The list of attributes that we used
are number of games played, total minutes played, total points, offense rebounds, defense
rebounds, total assists, total steals, and total blocks. Figure 12a shows that the number of
skyline points in the NBA data set increases sub-linearly with respect to the dimensionality.
Figure 12b shows that the running time of grid search, Sort-Proj, and Space-Part increases
exponentially. Still, Space-Part performs at least an order of magnitude better than grid search
and Sort-Proj.

9 Discussion and conclusions

In this paper, we proposed a novel skyline distance which measures the minimum cost of
upgrading a query point to the skyline. Skyline distance is a measure of competence of
non-skyline points in multi-criteria decision problems and can be used for ranking non-sky-
line points in recommendation systems. Computing skyline distance efficiently is far from
trivial. We developed several methods. First, we presented a dynamic programming method.
Second, we investigated the boundary of the skyline and proposed a sort-projection method to
compute skyline boundary and use it to compute skyline distances. Furthermore, we devised
a space partitioning method based on the divide and conquer and the bounding techniques

123

Skyline distance: a measure of multidimensional competence

to boost the performance. We conducted extensive experiments to exhibit the efficiency and
scalability of our methods.

We discussed only linear cost functions in this paper. Interestingly, both the sort-projec-
tion method and the space partitioning method can be extended to handle monotonic cost
functions in general. We can prove that Lemma 5.1 holds for any monotonic cost functions.

Lemma 9.1 Given p1, p2, and q the same as Lemma 5.1, for a monotonic cost function

cost (q, p) = f (p.D1 − q.D1, . . . , p.Dd − q.Dd),

we have cost (q, p1) > cost (q, p2).

Proof Since p1 ≺ p2, we have p1.Di − q.Di ≥ p2.Di − q.Di for i ∈ [1, d], and
p1.Di0 − q.Di0 > p2.Di0 − q.Di0 for at least one i0 ∈ [1, d]. If f (.) is monotonic, then
cost (q, p1) > cost (q, p2). 	

Therefore, Corollary 5.1 is still valid and guarantees that the optimal upgrading position
is among the local optimal points. In the space partitioning method, the two pruning rules
PR1 and PR2 are still applicable, though the threshold may not define a hyperplane.

Lemma 9.2 PR1 and PR2 are correct under any monotonic function in the space partitioning
method.

Proof Given R, max(R), and min(R) denoted as Sect. 7,

PR1 if max(R) is strictly dominated by a skyline point, then R can be pruned, since any
point inside R is strictly dominated by a skyline point so it is not a local optimal point.

PR2 if cost (q, min(R)) > threshold , then for any local optimal point p inside R, since
p ≺ min(R) we have cost (q, p) > cost (q, min(R)) > threshold (Lemma 9.2).

	

For future work, it is interesting to consider non-monotonic functions, a challenging prob-

lem. Another direction is to develop an index over the set of local optimal points to boost the
query answering performance.

Acknowledgments We are grateful to the anonymous reviewers for their very useful comments and
suggestions. Part of this work was done when Jian Chen and Jin Huang visited Simon Fraser University. The
work was supported in part by the Fundamental Research Funds for the Central Universities, SCUT (Grant
No. 2012ZZ0088), the Science and Technology Planning Project of Guangdong Province, China (Grant No.
2011A091000036), the National Natural Science of China (Grant No. 60970044), an NSERC Discovery grant,
an NSERC Discovery Accelerator Supplement grant, and a BCFRST Foundation NRAS Endowment Research
Team Program grant. All opinions, findings, conclusions, and recommendations in this paper are those of the
authors and do not necessarily reflect the views of the funding agencies.

References

1. Beckmann N, Kriegel HP, Schneider R, Seeger B (1990) The r*-tree: an efficient and robust access
method for points and rectangles. In: Proceedings of the 1990 ACM SIGMOD international conference
on management of data, SIGMOD’90, New York, NY, USA, ACM, pp 322–331

2. Bentley JL, Kung HT, Schkolnick M, Thompson CD (1978) On the average number of maxima in a set
of vectors and applications. J ACM 25:536–543

3. Börzsönyi S, Kossmann D, Stocker K (2001) The skyline operator. In: Proceedings of the 17th interna-
tional conference on data engineering, Washington, DC, USA, IEEE Computer Society, pp 421–430

123

J. Huang et al.

4. Chan C-Y, Eng P-K, Tan K-L (2005) Stratified computation of skylines with partially-ordered domains.
In: Proceedings of the 2005 ACM SIGMOD international conference on management of data, SIG-
MOD’05, New York, NY, USA, ACM, pp 203–214

5. Chan C-Y, Jagadish HV, Tan K-L, Tung Anthony KH, Zhang Z (2006) Finding k-dominant skylines in high
dimensional space. In: Proceedings of the 2006 ACM SIGMOD international conference on management
of data, SIGMOD’06, New York, NY, USA, ACM, pp 503–514

6. Chomicki J, Godfrey P, Gryz J, Liang D (2005) Skyline with presorting: theory and optimizations.
In: Intelligent Information Systems’05, pp 595–604

7. Cormen T, Leiserson C, Rivest R (1990) Introduction to algorithms. The MIT Press, Cambridge
8. Dellis E, Seeger B (2007) Efficient computation of reverse skyline queries. In: Proceedings of VLDB,

pp 291–302
9. Godfrey P, Shipley R, Gryz J (2005) Maximal vector computation in large data sets. In: Proceedings of

the 31st international conference on very large data bases, VLDB’05, VLDB Endowment, pp 229–240
10. Jiang B, Pei J (2009) Online interval skyline queries on time series. In: Proceedings of the 2009 IEEE

international conference on data engineering, Washington, DC, USA. IEEE Computer Society, pp 1036–
1047

11. Jiang B, Pei J, Lin X, Cheung DW, Han J (2008) Mining preferences from superior and inferior examples.
In: Proceeding of the 14th ACM SIGKDD international conference on knowledge discovery and data
mining, KDD’08, New York, NY, USA, ACM, pp 390–398

12. Kim Y, You G-W, Hwang S-W (2008) Escaping a dominance region at minimum cost. In: Proceedings
of the 19th international conference on database and expert systems applications, DEXA’08, Springer,
Berlin, Heidelberg, pp 800–807

13. Kossmann D, Ramsak F, Rost S (2002) Shooting stars in the sky: an online algorithm for skyline que-
ries. In: Proceedings of the 28th international conference on very large data bases, VLDB’02, VLDB
Endowment, pp 275–286

14. Lian X, Chen L (2008) Monochromatic and bichromatic reverse skyline search over uncertain dat-
abases. In: Proceedings of the 2008 ACM SIGMOD international conference on management of data,
SIGMOD’08, New York, NY, USA, ACM, pp 213–226

15. Lin X, Yuan Y, Wang W, Lu H (2005) Stabbing the sky: efficient skyline computation over sliding win-
dows. In: Proceedings of the 21st international conference on data engineering, ICDE’05, Washington,
DC, USA, IEEE Computer Society, pp 502–513

16. Luo C, Jiang Z, Hou W-C, He S, Zhu Q (2011) A sampling approach for skyline query cardinality
estimation. Knowl Inf Syst, 1–21. doi:10.1007/s10115-011-0441-1

17. Mindolin D, Chomick J (2009) Discovering relative importance of skyline attributes. In: Proceedings of
the 35th international conference on very large data bases, VLDB Endowment, August, vol 2, pp 610–621

18. Morse M, Patel JM, Grosky WI (2007) Efficient continuous skyline computation. Inf Sci 177:3411–3437
19. Papadias D, Tao Y, Fu G, Seeger B (2003) An optimal and progressive algorithm for skyline queries. In:

Proceedings of the 2003 ACM SIGMOD international conference on management of data, SIGMOD’03,
New York, NY, USA, ACM, pp 467–478

20. Papadias D, Tao Y, Fu G, Seeger B (2005) Progressive skyline computation in database systems. ACM
Trans Database Syst 30:41–82

21. Pei J, Jiang B, Lin X, Yuan Y (2007) Probabilistic skylines on uncertain data. In: Proceedings of the 33rd
international conference on very large data bases, VLDB’07, VLDB Endowment, pp 15–26

22. Sacharidis D, Papadopoulos S, Papadias D (2009) Topologically sorted skylines for partially ordered
domains. In: Proceedings of the 2009 IEEE international conference on data engineering, Washington,
DC, USA, IEEE Computer Society, pp 1072–1083

23. Sharifzadeh M, Shahabi C (2006) The spatial skyline queries. In: Proceedings of the 32nd international
conference on very large data bases, VLDB’06, VLDB Endowment, pp 751–762

24. Sun S, Huang Z, Zhong H, Dai D, Liu H, Li J (2010) Efficient monitoring of skyline queries over distrib-
uted data streams. Knowl Inf Syst 25: 575–606. doi:10.1007/s10115-009-0269-0

25. Tan K-L, Eng P-K, Ooi BC (2001) Efficient progressive skyline computation. In: Proceedings of the
27th international conference on very large data bases, VLDB’01, Morgan Kaufmann Publishers Inc, San
Francisco, CA, USA, pp 301–310

26. Tao Y, Papadias D (2006) Maintaining sliding window skylines on data streams. IEEE Trans Knowl Data
Eng 18:377–391

27. Tao Y, Xiao X, Pei J (2006) Subsky: efficient computation of skylines in subspaces. In: Proceedings of the
22nd international conference on data engineering, ICDE ’06, Washington, DC, USA, IEEE Computer
Society, p 65

28. Wan Q, Wong RCW, Ilyas Ihab F, Tamer Özsu M, Peng Y (2009) Creating competitive products. Proc
VLDB Endow 2:898–909

123

http://dx.doi.org/10.1007/s10115-011-0441-1
http://dx.doi.org/10.1007/s10115-009-0269-0

Skyline distance: a measure of multidimensional competence

29. Wong RCW, Pei J, Fu AWC, Wang K (2007) Mining favorable facets. In: Proceedings of the 13th ACM
SIGKDD international conference on knowledge discovery and data mining, KDD’07, New York, NY,
USA, ACM, pp 804–813

30. Wu P, Agrawal D, Egecioglu O, Abbadi AE (2007) Deltasky: optimal maintenance of skyline deletions
without exclusive dominance region generation. In: Proceedings of the 23rd international conference on
data engineering, ICDE 2007, April 15–20, 2007, The Marmara Hotel, Istanbul, Turkey, IEEE, pp 486–495

31. Yuan Y, Lin X, Liu Q, Wang W, Yu JX, Zhang Q (2005) Efficient computation of the skyline cube. In:
Proceedings of the 31st international conference on very large data bases, VLDB’05, VLDB Endowment,
pp 241–252

32. Zhang Z, Cheng R, Papadias D, Tung AKH (2009) Minimizing the communication cost for continuous
skyline maintenance. In: Proceedings of the 35th SIGMOD international conference on management of
data, SIGMOD’09, New York, NY, USA, ACM, pp 495–508

33. Zhenjie Z, Yin Y, Ruichu C, Papadias D, Tung A (2009) Kernel-based skyline cardinality estimation. In:
Proceedings of the 35th SIGMOD international conference on management of data, SIGMOD’09, New
York, NY, USA, ACM, pp 509–522

34. Zhu L, Li C, Tung A, Wang S (2011) Microeconomic analysis using dominant relationship analysis.
Knowl Inf Syst, 1–33. doi:10.1007/s10115-010-0337-5

Author Biographies

Jin Huang received his ME and Ph.D. degrees, both in Computer
Science, from Sun Yat-Sen University, China, in 2004 and 2010,
respectively. Currently, he is postdoctoral researcher of South China
Normal University, China. His current research interests cover data-
base, data mining, and information retrieval.

Bin Jiang is a Research Scientist at Facebook. Bin has published in
premier academic journals and conferences. He served as a reviewer
for TKDE and in the program committees of several international
conferences such as SIGKDD and ICDM. Bin holds a Ph.D. degree in
Computer Science from Simon Fraser University, Canada, and received
his B.Sc., and M.Sc., degrees from Peking University, China, and Uni-
versity of New South Wales, Australia, respectively.

123

http://dx.doi.org/10.1007/s10115-010-0337-5

J. Huang et al.

Jian Pei is a Professor at the School of Computing Science, Simon
Fraser University, Canada. He is interested in researching, develop-
ing, and deploying effective and efficient data analysis techniques for
novel data intensive applications, including data mining, Web search,
data warehousing and online analytic processing, database systems,
and their applications in social networks and media, health-informatics,
business, and bioinformatics. His research has been extensively sup-
ported in part by governmental funding agencies and industry partners.
He is also active in developing industry relations and collaboration,
transferring technologies developed in his group to industry applica-
tions, and developing proof-of-concept prototypes. Since 2000, he has
published 1 textbook, 2 monographs, and over 170 research papers in
refereed journals and conferences, which have been cited thousands of
times. He has served in the organization committees and the program
committees of over 160 international conferences and workshops. He
is the associate editor-in-chief of IEEE Transactions of Knowledge and

Data Engineering (TKDE), and an associate editor or editorial board member of the premier academic jour-
nals in his fields. He is an ACM Distinguished Speaker and a senior member of Association for Computing
Machinery ACM and IEEE. He is the recipient of several prestigious awards.

Jian Chen received her BS and Ph.D. degrees, both in Computer
Science, from Sun Yat-Sen University, China, in 2000 and 2005,
respectively. She is currently an associate professor and director of the
Data Mining Group in SSE (SCUT). Her research interests include
database, data mining, social networks and their related applications.
She has served as a PC member for international conferences such as
PAKDD and CIKM.

Yong Tang is currently Professor in the School of Computer Science
and Director of Research Center of Software Technology for Infor-
mation Service at South China Normal University. His main research
interests in database, service computing, and social network service; he
has authored over 150 technical papers.

123

	Skyline distance: a measure of multidimensional competence
	Abstract
	1 Introduction
	2 Problem definition
	3 Related work
	4 Dynamic programming
	4.1 An example and visualization of the dynamic programming method
	4.2 The correctness of the dynamic programming method

	5 Skyline boundary
	6 The sort-projection method
	6.1 The 2-dimensional case
	6.2 The higher dimensional cases
	6.3 Complexity analysis

	7 A space partitioning method
	8 Empirical studies
	8.1 Results on the synthetic data sets
	8.1.1 Number of local optimal points
	8.1.2 Comparing the three methods
	8.1.3 Analysis of the space partitioning method

	8.2 Results on the NBA data set

	9 Discussion and conclusions
	Acknowledgments
	References

