
On Shortest Unique Substring Queries

Jian Pei 1, Wush Chi-Hsuan Wu ∗2, Mi-Yen Yeh ∗3

1School of Computing Science, Simon Fraser University

Burnaby, BC, Canada
jpei@cs.sfu.ca

∗Institute of Information Science, Academia Sinica

Taipei, Taiwan
2wush978@gmail.com

3miyen@iis.sinica.edu.tw

Abstract—In this paper, we tackle a novel type of interesting
queries — shortest unique substring queries. Given a (long)
string S and a query point q in the string, can we find a
shortest substring containing q that is unique in S? We illustrate
that shortest unique substring queries have many potential
applications, such as information retrieval, bioinformatics, and
event context analysis. We develop efficient algorithms for online
query answering. First, we present an algorithm to answer a
shortest unique substring query in O(n) time using a suffix tree
index, where n is the length of string S. Second, we show that,
using O(n · h) time and O(n) space, we can compute a shortest
unique substring for every position in a given string, where h is
variable theoretically in O(n) but on real data sets often much
smaller than n and can be treated as a constant. Once the shortest
unique substrings are pre-computed, shortest unique substring
queries can be answered online in constant time. In addition
to the solid algorithmic results, we empirically demonstrate the
effectiveness and efficiency of shortest unique substring queries
on real data sets.

I. INTRODUCTION

You are searching the Complete Works of William Shake-

speare using query term “king”. The term “king” occurs

1, 546 times in 1, 392 speeches within 40 works, even without

counting those related words like “king’s” and “kings”.1

Using modern information retrieval techniques, such as an

inverted index, one can find all occurrence positions of a query

word easily. How can a search engine, however, present an

informative list of the search results? Showing all occurrence

positions, i.e., the line and page numbers of the occurrences,

is likely not very helpful for a reader who is not a master of

Shakespeare’s works. As common practice, a modern search

engine may show a snippet for each occurrence, where the

length of snippets is predefined globally. On the one hand, if

the length is short, some snippets may be identical and thus

those occurrences still cannot be distinguished. On the other

Authors are listed alphabetically. Pei’s research in this paper was supported
in part by an NSERC Discovery Grant, a BCFRST NRAS Endowment Re-
search Team Program project, and a GRAND NCE project; and Wu and Yeh’s
by the National Science Council of Taiwan, R.O.C., under Contracts NSC100-
2221-E-001-023 and NSC101-2221-E-001-013. Yeh was also supported by an
Ebco/Epic Visiting Chair Fellowship of Simon Fraser University. All opinions,
findings, conclusions and recommendations in this paper are those of the
authors and do not necessarily reflect the views of the funding agencies.

1http://www.opensourceshakespeare.org/

hand, if the length is long, then the snippets may overwhelm

users. A smarter way is to present for each occurrence a

shortest snippet that contains the query term and is different

from all other snippets of the query term. In other words, we

should list for each occurrence a shortest unique snippet. Now,

the challenge is for each query position how we can quickly

find a shortest unique snippet.

The above simple yet effective application in document

search introduces an interesting novel problem to be tackled

in this paper. Given a (long) string S and a query point q in

S, we want to conduct a shortest unique substring query that

finds a shortest unique substring containing q.

Shortest unique substring queries have many potential ap-

plications. In addition to the above document search ex-

ample, shortest unique substring queries can be used in

bioinformatics. For example, unique substrings can help to

find the signature patterns and discover the distinctness be-

tween closely related organisms [1]. Moreover, finding shortest

unique substrings on DNA sequences can help polymerase

chain reaction (PCR) primer design in molecule biology. Also,

it can help to identify unique DNA signatures of closely related

species or organisms. As another example, in event analysis,

to understand how an event is different from many events

of the same kind in a long sequence of historical events,

it is useful to extract the context of the event. The shortest

unique substring of the event under investigation may serve

as a concrete working base of the event context.

Answering shortest unique substring queries efficiently is far

from trivial. A brute-force (heuristic) search may easily lead

to cost in time quadratic to the length of the string, which is

unacceptable in practice when the string is long and queries are

expected to be answered online. In this paper, we address the

problem of answering shortest unique substring queries from

the algorithmic point of view and make several contributions.

First, we model shortest unique substring queries and

explore their properties thoroughly. The properties clearly

distinguish shortest unique substring queries from the ex-

isting related problems, such as computing global minimal

substrings.

Second, we present an algorithm to answer a shortest unique

substring query in O(n) time using a suffix tree index, which

PREPRESS PROOF FILE CAUSAL PRODUCTIONS1

can be constructed in O(n) time and space, where n is the

length of string S.

Third, we show that, using O(n · h) time and O(n) space,

we can compute a shortest unique substring for every position

in a given string, where h is variable theoretically in O(n) but

on real data sets often much smaller than n and can be treated

as a constant.

Last, in addition to the solid algorithmic results, we empir-

ically demonstrate the effectiveness and efficiency of shortest

unique substring queries on real data sets.

The rest of the paper is organized as follows. We define

shortest unique substring queries in Section II, and review the

related work briefly in Section III. We present a query answer-

ing algorithm using suffix tree in Section IV. In Section V, we

give a constant time online query answering algorithm, which

precomputes shortest unique substrings efficiently. We report

the experimental results in Section VI, and conclude the paper

in Section VII.

II. SHORTEST UNIQUE SUBSTRING QUERIES

In this section, we formulate the shortest unique substring

queries, and discuss the properties of several critical concepts.

A. Shortest Unique Substring Queries

Let S be a string of length n, that is, |S| = n. Denote

by S[i] the value at the i-th position of S (1 ≤ i ≤ n),
and S[i, j] = S[i] · · ·S[j] (1 ≤ i ≤ j ≤ n) the substring

starting at position i and ending at position j. The length of

the substring is |S[i, j]| = j − i + 1. Substring S[i, j] is said

to contain position p if i ≤ p ≤ j. Moreover, substring S[i, j]
is said to contain substring S[i′, j′] if i ≤ i′ ≤ j′ ≤ j.

For two strings X and Y , X and Y are identical, denoted by

X = Y , if |X| = |Y | and for every 1 ≤ i ≤ |X|, X[i] = Y [i].
X is called a substring of Y , denoted by X ⊆ Y , if |X| ≤ |Y |
and there exists a number i such that 1 ≤ i ≤ |Y | − |X| + 1
and X = Y [i, i+ |X| − 1]. We call X a proper substring of

Y , denoted by X ⊂ Y , if X ⊆ Y but X 6= Y .

Definition 1 (Minimal unique substring (MUS)): A

substring S[i, j] is unique in S if there does not exist another

substring S[i′, j′] (i 6= i′, j 6= j′) such that S[i, j] = S[i′, j′].
S[i, j] is called a minimal unique substring (MUS for short)

if S[i, j] is unique and there is not any proper substring of

S[i, j] that is also unique, that is, every substring S[i′, j′] is

not unique, where i ≤ i′ ≤ j′ ≤ j and j − i > j′ − i′.

Example 1 (MUS): Let S = abbbcabb. |S| = 8. S[3, 6] =
bbca is a unique substring, but not minimal, since some proper

substrings of S[3, 6], such as S[4, 6] = bca, S[4, 5] = bc and

S[5, 6] = ca, are also unique. S[4, 5] = bc and S[5, 6] = ca

are minimal unique substrings.

Given a position p at string S, we are interested in a

substring S[i, j] containing position p, i.e., i ≤ p ≤ j, such

that S[i, j] is unique and as short as possible.

Definition 2 (Shortest unique substring (SUS)): Given a

string S and a position p in S, a substring S[i, j] is a shortest

unique substring (SUS for short) at position p if S[i, j]
is unique and contains p, and there does not exists another

MUS

S
p

RSUS(p) LSUS(p)

Fig. 1. The relationship among LSUS(p), RSUS(p) and the MUSs
containing p. Each arc represents a substring.

leftmost SUS

S
p

Fig. 2. The leftmost SUS at position p (the one in bold). Each arc represents
a SUS at position p. All the three SUSs have the same length.

unique substring S[i′, j′] such that S[i′, j′] also contains p

and j′ − i′ < j − i.

Example 2 (SUS): Consider string S = aabccabbcb. For

position p = 3, there are 3 shortest unique substrings contain-

ing position p, S[1, 3] = aab, S[2, 4] = abc, and S[3, 5] = bcc.

Interestingly, S[2, 4] = abc is a MUS, but S[1, 3] = aab

and S[3, 5] = bcc are not, since S[1, 2] = aa and S[4, 5] = cc,

respectively, are proper substrings that are unique.

As shown in Example 2, for a position p, there may exist

more than one SUS. We denote by SUS(p) the set of SUSs at

position p. Similarly, for a position p, we denote by MUS(p)
the set of MUSs containing p. Example 2 clearly shows that

MUSs and SUSs are different.

Definition 3 (Problem definition): Given a string S and a

position p (1 ≤ p ≤ |S|), the shortest unique substring

query (SUSQ for short) is to find a SUS at position p. Any

member in SUS(p) is a valid answer.

In our algorithm design, we often consider two types of

unique substrings that may be candidates of SUSs. We give

the definitions here and will pursue further discussion later.

Definition 4: Given a string S and a position p in S, a

substring S[p, j] is called the left-bound SUS (LSUS for

short) for position p, denoted by LSUS(p), if S[p, j] is unique

and no other substring S[p, j′] is also unique for p ≤ j′ < j.

Symmetrically, S[i, p] is called the right-bound SUS (RSUS

for short) for position p, denoted by RSUS(p), if S[i, p]
is unique and no other substring S[i′, p] is also unique for

i < i′ ≤ p.

Moreover, we define the leftmost SUS be the SUS whose

starting point is smallest, denoted by leftmost-SUS(p) =
argminS[i,j]∈SUS(p){i}.

Figure 1 shows the relationship among LSUS(p),
RSUS(p) and the MUSs containing p. Figure 2 illustrates

the concept of leftmost SUS.

It is easy to see the following property.

Property 1 (LSUS and RSUS): Given a string S, for every

position p in S, LSUS(p) and RSUS(p), if exist, are unique,

respectively.

In some cases, LSUSs or RSUSs may not exist. Moreover,

in some cases, LSUSs or RSUSs may not be SUSs.

Example 3 (LSUS and RSUS): In string S = aaaaa, nei-

ther LSUS(3) nor RSUS(3) exist, since a, aa, and aaa are

2

not unique.

Consider string S = abbbbc. LSUS(2) = S[2, 5] = bbbb

is the shortest unique substring starting from position 2.

This unique substring, however, is longer than S[1, 2] = ab

containing position 2, which is a SUS at position 2. Therefore,

LSUS(2) in this example is not a SUS.

B. Properties

In this section, we explore a series of interesting properties

related to shortest unique substring queries. We start with an

essential monotonicity of MUSs.

Lemma 1 (Monotonicity): In a string S, if S[i, j] is a MUS,

then any S[i′, j′] containing S[i, j] is also unique.

Proof: Suppose S[i′, j′] (i′ ≤ i, j ≤ j′) is not unique, that

is, there exists S[i′, j′] = S[i′′, j′′] such that i′ 6= i′′. Then,

S[i, j] = S[i′′ + i − i′ + 1, j′′ + j − i′ + 1]. This contradicts

the assumption that S[i, j] is a MUS, which is unique.

For a string S, do the MUSs cover the whole string?

Specifically, for a position p, denote by MUS(p) the set of

MUSs containing p. We have the following property.

Theorem 1: Given a string S, there exists at least one MUS.

For a position p in S (i.e., 1 ≤ p ≤ |S|),

0 ≤ |MUS(p)| ≤ ⌈
|S|

2
⌉ (1)

and the lower and upper bounds are reachable.

Proof: S itself is unique. Therefore, either at least one

substring of S or S itself is a MUS.

Consider string S = aabccabc. Every unique substring

containing position 3, such as aab, bcc, aabc and abcc, must

contain at least one proper substring that is unique in S but

does not contain position 3. Therefore, MUS(3) = ∅ and

|MUS(3)| = 0. Thus, the lower bound is reachable.

Apparently, for any two MUSs S[i, j] and S[i′, j′], i 6=
i′ and j 6= j′. Otherwise, one is a proper substring of the

other and thus violates the minimality requirement. A MUS

S[i, j] containing position p must satisfy i ≤ p ≤ j. Therefore,

position p can be contained in at most min{p, |S| − p + 1}
MUSs. Thus,

|MUS(p)| ≤
|S|
max
l=1
{min{l, |S| − l + 1}} = ⌈

|S|

2
⌉

Now, we show an example where the upper bound can be

reached. Consider string S = abba. Position 2 is contained in

MUSs S[1, 2] = ab and S[2, 3] = bb. That is, |MUS(2)| = 2
and reaches the upper bound.

Theorem 1 indicates that MUSs may overlap. Please note

that it is very likely that the upper bound in Equation 1 can

be improved. A strong hint is that we cannot construct an

example to reach the upper bound in Equation 1 for a string

of non-trivial length, say 10 or longer. Limited by space, we

omit the details here, and leave the improvement of the upper

bound to future work.

Interestingly, not every position is contained by at least

one MUS. Then, what is the relationship between MUSs and

SUSs?

p

S
i ji’ j’p

S
i ji’ j’

Fig. 3. SUS S[i, j] and MUS S[i′, j′] in the proof of Theorem 2.

Theorem 2 (SUS): Given a string S, for every position p in

S, SUS(p) 6= ∅. Moreover, for every SUS S[i, j] at position

p, S[i, j] contains a MUS S[i′, j′]. For every MUS S[i′, j′]
contained by S[i, j], i = i′ or j = j′.

Proof: Assume SUS(p) = ∅. Apparently, S itself

is unique and contains position p. A contradiction. Thus,

SUS(p) 6= ∅.
Suppose we have a SUS S[i, j] at position p, that is, i ≤

p ≤ j. S[i, j] must contain at least one MUS. Otherwise,

S[i, j] itself is a MUS.

Assume that S[i, j] is a SUS at position p and contains a

MUS S[i′, j′] such that i < i′ and j′ < j (Figure 3). Then,

|S[i, j]| ≥ 4, and either p ≤ j′ or p > j′. If p ≤ j′ (the

upper case in Figure 3), then S[i, j′] is unique since it is a

superstring of MUS S[i′, j′] (Lemma 1), and is shorter than

S[i, j]. Similarly, if p > j′ (the lower case in Figure 3), then

S[i′, j] is unique and shorter than S[i, j]. This contradicts the

assumption that S[i, j] is a SUS at position p.

III. RELATED WORK

String processing methods have drawn wide attention for

a long time as they have been extensively applied in many

applications, such as keyword search and text parsing in

documents, sequence analysis in bioinformatics, and event

stream processing in information systems. Some well stud-

ied string finding problems include locating all or the n-th

occurrence(s) of some given patterns, finding longest/shortest

common substrings, unique or repeated substrings.

To deal with the string operations efficiently, suffix trees [2]

and suffix arrays [3] are two powerful and frequently adapted

tools in existing methods. Both data structures can be con-

structed in linear time using linear space [4], [5], [6], [7]. In

this paper, we choose to use the suffix tree structure that can

obtain LSUS(p) in O(1) time for any position p (details in

Section IV).

Finding unique substrings is an important task in biological

applications as it can help to find the signature patterns or

discover the distinctness between closely related organisms.

For example, Haubold et al. [1] proposed to find the unique

shortest substrings to complete a number of sequence compari-

son tasks without doing time-consuming sequence alignments.

For each position i of a string S, they determine a substring

S[i, ...i+ x− 1] such that it is unique while S[i..i+ x− 2] is

not, essentially the LSUS(i) in our notation.

There are some critical differences between our work

and [1]. First, as shown in Example 3, the shortest unique

3

substring in [1], i.e., LSUS(p) in our notation, may not

even be a SUS. In our study, we find SUSs. LSUSs are

only used as possible candidates of SUSs. Second, Haubold

et al. [1] did not develop a new detection method but just

relied on the suffix tree method in [8]. They focused on the

utility of the unique shortest substrings in some biological

applications, such as unique genome region discovery, and

the probability distribution of those shortest unique substrings

on different biosequences. We expect that our new technique

in shortest unique substring finding may also help those

biological applications.

Ilie and Smyth [9] found minimum unique substrings and

maximum repeats in a string in linear time using suffix arrays.

The notion of minimum unique substring in [9] is the same as

our definition of MUS in this paper, while a maximum repeat

is a substring S[i, j] of S such that it occurs at least twice

in S but the strings S[i − 1, j] and S[i, j + 1], if defined,

do not. They found there was a duality relationship between

the minimum unique substrings and maximum repeats, which

means an algorithm for finding minimum unique substrings

can be easily transformed into one that can compute maximum

repeats, and vice versa. Our work does not find minimum

unique substrings. Instead, we find a shortest unique substring

at any position p in a sequence.

Recently, Ye et al. [10] proposed to find unique-m sub-

strings, which are patterns that each has only one single exact

match on one strand of the entire genome while all other

approximate matches must have more than m mismatches.

Clearly, they addressed a different problem from ours.

Chan et al. [11] and Ji et al. [12] proposed to find

emerging substrings and minimal distinguishing subsequences,

respectively, for sequence classification. Both the emerging

substrings and minimal distinguishing subsequences are those

frequent in one class but infrequent in the other, where each

class contains many strings/sequences. Therefore, the problem

is fundamentally different from ours.

Last but not least, our work of finding shortest unique sub-

sequence is just the opposite of those finding frequent patterns

in a given long string, such as mining sequence motifs [12],

frequent substring mining in a long string [13], and finding

maximal frequent word sequences in documents [14].

In summary, to the best of our knowledge, the problem

of shortest unique substring queries has not been identified

and tackled systematically in literature. The existing methods

cannot be straightforwardly adapted to tackle the problem.

IV. QUERY ANSWERING USING SUFFIX TREES

In this section, we first review suffix trees and the construc-

tion. Then, we discuss how to use a suffix tree as an index to

answer shortest unique substring queries.

A. Suffix Trees and Construction

A suffix tree is a data structure that concisely records all

possible suffixes of a given string and allows fast string search

operations. A string S of length n has n suffixes S[i, n],
i = 1, . . . , n. In the suffix tree of S, each edge represents

0 1

S=11011001

$1

$

01$ 0

01$

10

01$

1001$
11001$

11001$

Fig. 4. The suffix tree of S = 11011001.

a substring of S, and a path from the root to a leaf node

represents exactly one suffix of S.

Ukkonen [4] proposed a well-known suffix tree construction

method that requires only linear time and space when the

alphabet size of a string is a constant. Taking S = 11011001
as an example, we briefly show how to construct its suffix

tree, as shown in Figure 4, using Ukkonen’s algorithm. The

construction procedure is illustrated in Figure 5. Generally, the

suffix tree is built in |S| phases, 8 phases in this example. At

the end of phase i, we have the suffix tree of the prefix S[1, i].
To extend the suffix tree of S[1, i] to S[1, i+1], i.e., to ensure

that S[j, i + 1] is in the tree, we need to extend S[j, i] for

1 ≤ j ≤ i, with S[i+ 1]. There are three possible cases.

1) S[j, i] ends at a leaf node. Then, we pad S[i+1] to the

corresponding leaf edge.

2) S[j, i] does not end at a leaf node and is not followed

by S[i + 1]. Then, we split the edge and create a new

node.

3) S[j, i] does not end at a leaf node but followed by S[i+
1], i.e., S[j, i+1] already exists in the tree. In this case,

we do not need to do anything.

When we expand the tree from j = 1 to j = i during

phase i+ 1, the occurrences of this three phases follow some

properties. First, after case 2 or case 3 happen, then case 1

will never happen again. Moreover, case 2 will never happen

again after case 3 happens. With these properties, once we

meet case 3 at step j of phase i, we can immediately finish

the current phase and start the phase i+ 1 at step j.

To ensure O(n) construction time, Ukkonne’s algorithm

uses the suffix links and the skip/count technique during the

tree construction. A suffix link is a directed path from an in-

ternal node associated with substring S[i, j] to another internal

node associated with substring S[i + 1, j], which allows fast

jump to the next extension point in the tree. The skip/count

technique enables us to add the new character S[i+1] at phase

i+1 quickly. Instead of examining through each character, the

traversal from the root to a specific leaf node is linear in time

to the number of nodes in this path instead of the length of

the substrings represented by this path. To save more space,

instead of storing copies of substrings, we label edges using

start and end indexes. The end index of a leaf edge is omitted

and denoted by −. Finally, an end symbol $ is padded at each

4

[1,-] [1,-]

Phase 1

S[1,1]=1

Phase 2

S[1,2]=11

Phase 3-2

S[2,3]=10

S=11011001

[1,1]

[2,-][3,-]

Phase 3-3

S[3,3]=0

[1,1]

[2,-][3,-]

[3,-]

Phase 4-4

S[4,4]=1

[1,1]

[2,-][3,-]

[3,-]

Phase 5-4

S[4,5]=11

[1,1]

[2,-][3,-]

[3,-]

Phase 6-4

S[4,6]=110

[1,1]

[2,-][3,-]

[3,-]

Phase 7-4

S[4,7]=1100

[1,1]

[2,3][3,-]

[3,-]

[4,-]
[7,-]

Phase 7-5

S[5,7]=100

[1,1]

[2,3]
[3,3]

[3,-]

[4,-]
[7,-]

[7,-]
[4,-]

Phase 7-6

S[6,7]=00

[1,1]

[2,3]
[3,3]

[3,3]

[4,-]
[7,-]

[7,-]
[4,-]

[4,-][7,-]

Phase 7-7

S[7,7]=0

[1,1]

[2,3]
[3,3]

[3,3]

[4,-]
[7,-]

[7,-]
[4,-]

[4,-][7,-]

Phase 8-7

S[7,8]=01

[1,1]

[2,3]
[3,3]

[3,3]

[4,-]
[7,-]

[7,-]
[4,-]

[4,-][7,-]

0 1

S=11011001

Pad terminal character

$1

$

01$ 0

01$

10

01$

1001$
11001$

11001$

Fig. 5. The construction of the suffix tree of S = 11011001. Only the steps and phases that require new actions are shown.

path as a leaf node. As a result, the space used for a suffix

tree is reduced to O(n). Please refer to [4] for more details

about the suffix tree construction.

We use the libstree library (http://www.icir.org/

christian/libstree/) to implement a suffix tree.

B. Query Answering Using Suffix Trees

Given a string S, we first build its suffix tree in O(n) space

and O(n) time using Ukkonen’s algorithm [4]. We further

store all leaf nodes into an array so that we can access a

specific leaf node Leaf(i), its edge Edge(Leaf(i)) and its

associated string Sedge(Leaf(i)) in constant time.

Given a position p, the basic idea of using the suffix tree to

get a SUS containing position p is as follows.

We can use the suffix tree to get LSUS(p) in constant time,

as shown in Algorithm 1. We first target at the corresponding

leaf node of p in the suffix tree. Backtracking along the leaf

edge to this leaf node, we meet an internal node. Base on the

property of the suffix tree, the represented string from the root

to this internal node is a common prefix of different suffixes.

As a result, only one more character (the first character of the

Algorithm 1 The LSUS finding algorithm

Input: string S[1, n], a position p, and the suffix tree T of S

Output: LSUS(p)
1: find the leaf node of S[p, n] in T ; ⊲ the leaf node

can be indexed during the construction of the suffix tree,

so the access to the leaf node costs O(1) time.

2: if the label of the leaf edge is $ then return null;

3: end if

4: l← the length of the label of the leaf edge; ⊲ the

padded ternimal character is not counted into the length

of the leaf edge.

5: return S[p, n− l + 1];

leaf edge, say S[k]) should be added and make the substring

S[p, k] LSUS(p). If the leaf edge is $, meaning that no more

character can make the common prefix unique, the algorithm

then returns null meaning no LSUS(p) can be found.

With LSUS(p), we can now find a SUS containing position

p as shown in Algorithm 2. Let S[i, j] = LSUS(p). If

5

Algorithm 2 The baseline SUS finding algorithm

Input: string S, a position p, and the suffix tree T of S

Output: the leftmost SUS containing position p

1: findLSUS(p);
2: if LSUS(p) 6= null then

3: let S[i, j] be the LSUS(p);
4: else

5: let S[i, j] be S[1, n];
6: end if

7: for k ← p− 1;k > 0 and p− k ≤ j − i;k ← k − 1 do

8: if LSUS(k) is null then continue;

9: end if

10: Let S[k, r] be the LSUS(k);
11: if r < p then r ← p;

12: end if

13: if r − k ≤ j − i then i = r; j = k;

14: end if

15: end for

16: return S[i, j];

LSUS(p) does not exist, we set LSUS(p) to the whole string

S[1, n]. S[i, j] is the current candidate of a SUS containing

p. Then, we keep looking up LSUS(k) for k < p in k

descending order. We stop finding LSUS(k) for no later than

k = j − i, because any LSUS(k) (k < j − i) containing p

has a length longer than LSUS(p), and thus cannot be a SUS

containing p. For each LSUS(k) = S[k, r], if r < p, i.e., it

does not contain position p, we extend it to S[k, p] by making

r = p. Now, if |S[k, r]| ≤ |S[i, j]|, it means that we find a

new shorter unique substring containing position p, and we

update S[i, j] = S[k, r]. Finally, the shortest S[i, j] with the

smallest i is output as the answer that is a SUS containing p.

In fact, our algorithm outputs the leftmost SUS containing p.

Obviously, in the worst case, the algorithm has to test

LSUS(k) for every position in the string. Thus, the time

complexity to obtain a SUS containing a position p is O(n).
Example 4: Suppose we want to find a SUS containing

position 5 in the string S shown in Figure 4. First, we find

LSUS(5) = S[5, 7]. Then, we check LSUS(4) = S[4, 7],
which is longer than S[5, 7], so we try LSUS[3] = S[3, 5].
Although |S[3, 5]| = |S[5, 7]|, we return S[3, 5] as S[3, 5] is

more left. We do not have to check LSUS(2) because the

length of S[2, 5] is already larger than |S[3, 5]|. Therefore, the

final answer is S[3, 5].

V. A CONSTANT TIME ONLINE QUERY ANSWERING

ALGORITHM

In this section, we develop a method that precomputes the

leftmost SUS for every position using linear space. Then,

online query answering can be conducted in constant time.

Let us start with some critical ideas.

A. Ideas

We first observe that a SUS must fall into one of the

following three cases: a MUS, a LSUS, or a RSUS.

p
S

i j=j’

S
ji=i’ j’ p

i’

Fig. 6. SUS S[i, j] and MUS S[i′, j′] in the proof of Theorem 3.

p

p+1 ip
S

p+1p

ip ip+1pi −1
S

p+1

i

Fig. 7. LSUS(p) and LSUS(p+ 1) in the proof of Theorem 4.

Theorem 3: Given a string S and a position p in S, if S[i, j]
is a SUS at position p but not a MUS, then either i = p or

j = p.

Proof: We prove by contradiction. Assume i < p < j.

Since S[i, j] is a SUS but not a MUS, according to Theorem 2,

there must be a MUS S[i′, j′] contained in S[i, j] such that

either i = i′ or j = j′.

We first consider the case i = i′ (the upper case in Figure 6).

Since MUS S[i′, j′] is a proper substring of S[i, j], S[i′, j′]
cannot contain p. Otherwise, S[i, j] cannot be a SUS. Thus,

j′ < p. Then, S[i, p] is a superstring of MUS S[i′, j′], and

thus is unique according to Lemma 1. Since p < j, S[i, p] is

a proper substring of S[i, j]. This contradicts the assumption

that S[i, j] is a SUS at position p.

Similarly, we can show that in the case j = j′ (the lower

case in Figure 6), S[p, j] is a unique proper substring of S[i, j],
and is containing position p. This contradicts the assumption

that S[i, j] is a SUS.

Now, the question is how we can quickly determine whether

a SUS is a MUS. Recall that in Section IV we introduce a

method to find LSUS for any position in constant time using

a suffix tree. We have the following interesting result.

Theorem 4 (MUS determination): Given a string S and po-

sitions p and p + 1 (1 ≤ p < |S|), let LSUS(p) = S[p, ip]
and LSUS(p+ 1) = S[p+ 1, ip+1]. Then, S[p, ip] is a MUS

if and only if ip < ip+1.

Proof: (Necessity) We prove by contradiction. If ip ≥
ip+1 (the upper case in Figure 7), then S[p, ip] is a proper

superstring of S[p + 1, ip+1]. Since S[p + 1, ip+1] is unique,

S[p, ip] cannot be a MUS.

(Sufficiency) We prove by contradiction, too. Assume ip <

ip+1 but S[p, ip] is not a MUS. Then, S[p, ip] must have a

proper substring that is unique. There are only two possible

cases (the lower case in Figure 7). In the first case, S[p+1, ip]
is unique. This contradicts the assumption that S[p+ 1, ip+1]
is the LSUS at position p + 1 and ip < ip+1. In the second

case, S[p, ip−1] is unique. This contradicts that S[p, ip] is the

LSUS at position p. Thus, S[p, ip] is a MUS.

6

j
S

i

S
i i’ j’ p

pi’

Fig. 8. RSUS(p) = S[i, p] and MUS S[i′, j′] in the proof of Theorem 5.

Theorem 4 indicates that, by one scan of S and obtain

LSUS at each position, we can find all MUSs and LSUSs

that are not MUSs. To determine whether a SUS is a RSUS,

we have the following result.

Theorem 5 (RSUS): Given a string S and a position p, a

substring S[i, p] is RSUS(p) if and only if S[i, p] contains

only one MUS S[i, j] (j ≤ p).

Proof: (Necessity) We prove by contradiction. Since

RSUS(p) = S[i, p], according to Theorem 2, S[i, p] contains

at least one MUS. If S[i, p] contains two or more MUSs, then

at least one of them S[i′, j′] must satisfy i < i′ (the upper

case in Figure 8). Then, S[i′, p] is a shorter unique substring

than S[i, p] containing p. This contradicts the assumption that

S[i, p] is the RSUS. Thus, S[i, p] contains only one MUS.

Denote by S[i′, j′] the only MUS contained in S[i, p].
According to Theorem 2, if i 6= i′ then j′ = p. Then, S[i′, j′]
is a shorter unique substring containing p. A contradiction.

Thus, i = i′.

(Sufficiency) Since S[i, p] contains only one MUS S[i, j]
(j ≤ p), S[i, p] is unique (the lower case in Figure 8).

Moreover, every proper substring S[i′, p] (i′ > i) cannot

be unique, otherwise S[i′, p] contains a MUS different from

S[i, j]. Thus, S[i, p] is RSUS(p).

Last, as special cases, we have the results below following

the related definitions immediately.

Corollary 1 (LSUS(1) and RSUS(n)): Given a string S,

LSUS(1) is the only SUS containing position 1, and

RSUS(|S|) is the only SUS containing position |S|.

B. The Framework

Given a string S, our algorithm first constructs a suffix tree.

This takes O(|S|) time and O(|S|) space. For each position p,

our algorithm maintains a currently shortest MUS that contains

position p, denoted by p.cand. It also takes O(|S|) space to

store the information for all positions. Moreover, we keep

track of the SUS obtained at the last position. Therefore, our

algorithm needs only O(|S|) space overall.

Algorithm 3 shows the pesudo-code of our method.

At the beginning, we initialize p.cand to null for all

positions p. Our algorithm scans string S from the beginning

to the end. At position 1, LSUS(p) is the only SUS containing

position 1 (Corollary 1).

At each position p (p > 1), we compute LSUS(p) using

the suffix tree in constant time, as explained in Section IV. Let

S[iprev, jprev] be the SUS obtained at position p− 1. Since a

SUS must fall into one of the following three cases: a MUS,

RSUS(p)

previprev
S

pp−1x y j

Fig. 9. RSUS(p) when p ≤ jprev .

a LSUS, or a RSUS (Theorem 3). We only need to compare

three candidates as follows.

• LSUS(p).
• p.cand if it is not null, which records the shortest MUS

containing p.

• RSUS(p), which can be divided into two sub-cases.

– S[iprev, p] if p > jprev , which is RSUS(p); and

– S[iprev, jprev] if p ≤ jprev . In this case, if p = jprev ,

S[iprev, jprev] is RSUS(p) since it is unique and any

substring S[i′, jprev] is not unique (due to the fact

that S[iprev, jprev] is a SUS at position p− 1).

If p > jprev , as illustrated in Figure 9, RSUS(p)
must contain a MUS S[x, y] (x < p) and be S[x, p].
RSUS(p−1) = S[x, p−1]. Since S[x, p−1] is not

picked as the SUS at position p − 1, p − 1 − x ≥
jprev − iprev . Since p − x > p − 1 − x, the length

of RSUS(p) must be longer than S[iprev, jprev].
Thus, we do not need to consider RSUS(p). Instead,

we should consider S[iprev, jprev]. The reason is as

follows.

As a SUS at position p − 1, S[iprev, jprev] is a

MUS if iprec < p − 1, since S[iprev, jprev] is

neither RSUS(p) nor LSUS(p). If iprec = p − 1,

then by comparing the length of S[iprev, jprev] and

LSUS(p), S[iprev, jprev] will be eliminated if it is

longer and thus is not a MUS (Theorem 4).

We pick the shortest one as the SUS at position p. If there are

more than one substring having the shortest length, we pick

the leftmost one.

Before we move to the next position p + 1, we need to

update the currently shortest MUSs for some positions p′ > p

using the MUS found at the current position. Specifically, let

S[i, j] be the SUS computed as above at position p. There are

two types of updates.

• If p.cand = S[x, y] is not chosen as the SUS at position

p and y > j, then p.cand may still be a candidate MUS

for position (j + 1).cand. We need to propagate S[x, y]
to position j + 1.

• LSUS(p) is not chosen as the SUS at position p, using

LSUS(p) and LSUS(p+ 1), which can be extracted in

constant time, we can detect whether LSUS(p) is a MUS

based on Theorem 4. If it is a MUS, then it should be

considered as a candidate for position j + 1, and should

be propagated.

C. MUS Propagation

Although we reserve space to record the shortest MUS for

each position, we do not need to explicitly store one MUS at

each p.cand. Instead, we only need to store at those positions

7

Algorithm 3 The pre-computation algorithm.

Input: string S

Output: a SUS for each position p (1 ≤ p ≤ |S|)
1: build a suffix tree for string S;

2: initialize p.cand← null for 1 ≤ p ≤ |S|;
3: output LSUS(1), denoted by S[1, j] as the SUS at posi-

tion 1;

4: iprev ← 1, jprev ← j; ⊲ use LSUS(1) to initialize the

SUS at position p− 1
5: for p = 2 to |S| do
6: let S[l, r] be LSUS(p) obtained from the suffix tree;

7: let S[i, j] be the shortest substring among the follow-

ing 4 strings: (1) S[l, r], (2) p.cand if p.cand 6= null,

(3) S[iprev, p] if jprev < p, and (4) S[iprev, jprev] if

jprev ≥ p. If there are more than one substring having

the shortest length, pick the leftmost one. Output S[i, j]
as a SUS at position p;

8: suppose p.cand = S[x, y] if p.cand 6= null;

9: if p.cand 6= null and y > j then

10: call PROPAGATE(S[x, y], j + 1)
11: end if

12: if LSUS(p) = S[l, r] is a MUS and is not S[i, j], and

r > j then call PROPAGATE(S[l, r], j + 1)
13: end if

14: iprev ← i, jprev ← j;

15: end for

f
S

a dc eb

Fig. 10. MUS propagation.

p where the shortest MUS may not be obtained by LSUS(p)
and RSUS(p). We use an example to explain the idea.

Example 5 (MUS propagation): Consider Figure 10, where

S[a, d], S[b, e] and S[c, f] are MUSs such that |S[a, d]| ≤
|S[b, e]| ≤ |S[c, f]|. After MUS S[a, d] is detected, it is

propagated from a position p to the next position p+ 1 using

the item S[iprev, jprev] in the SUS selection step (Line 7 in

Algorithm 3).

At position b, S[b, e] is identified as a MUS. However, since

S[b, e] is longer than S[a, d], it cannot be used as the candidate

of SUS for positions before S[a, d] ends at d. We propagate

S[b, e] to (d+ 1).cand so that at position (d+ 1), this MUS

is not lost, as it cannot be obtained by RSUS(d + 1) or

LSUS(d+ 1).
At position c, MUS S[c, f] is found. Since S[c, f] is longer

than S[a, d], it is propagated to (d+1).cand, too. At this time,

(d+1).cand stores S[b, e]. Since S[b, e] is shorter than S[c, f],
S[c, f] has to be further propagated to (e+ 1).cand.

Algorithm 4 gives the pseudo-code of the propagation

procedure.

D. Analysis

As claimed at the beginning of Section V-B, our algorithm

takes O(n) space overall. On average, the space cost for each

Algorithm 4 The Propagation procedure.

1: procedure PROPAGATE(MUS S[i, j], the position k to

propagate)

2: if k < i or k > j then

3: ⊲ k is not in the range of [i, j]
4: return

5: else if k.cand is null then

6: k.cand← S[i, j]; return
7: end if

8: suppose k.cand = S[i′, j′];
9: if j′ − i′ > j − i then ⊲ k.cand is longer than S[i, j]

10: k.cand← S[i, j];
11: if j′ > j then ⊲ S[i, j] ends before k.cand

12: call PROPAGATE(S[i′, j′], j + 1);
13: end if

14: else if j′ − i′ < j − i and j′ < j then

15: ⊲ k.cand is shorter than S[i, j] and ends before

S[i, j]
16: call PROPAGATE(S[i, j], j′ + 1);
17: else ⊲ S[i, j] and k.cand have the same length

18: if i < i′ then

19: k.cand← S[i, j]
20: call PROPAGATE(S[i′, j′], j + 1)
21: else ⊲ i > i′

22: call PROPAGATE(S[i, j], j′ + 1)
23: end if

24: end if

25: return

26: end procedure

position is O(1).

Except for the propagation procedure, the algorithm takes

O(1) time to process each position. For a position p, a MUS

found at the position or p.cand may be propagated and cause

cascading propagations up to h = max
|S|
p=1{|MUS(p)| − 1}

times. For instance, in Example 5, position c is contained by

3 MUSs including S[c, f]. As shown in the example, S[c, f]
is propagated twice, first to position d+1 and then to position

e+ 1.

Equation 1 provides an upper bound for |MUS(p)|. Ac-

cordingly, the time complexity of the algorithm is O(n2),
the same as querying all positions using the baseline suffix

tree algorithm directly. As discussed, it is very likely that the

upper bound in Equation 1 can be improved. As shown in

Section VI, in practice, h is often a very small number and

can be empirically treated as a constant.

VI. EXPERIMENTS

We conducted extensive experiments on three real data sets

and a group of synthetic data sets to evaluate our methods.

All experiments were run on a PC with an Intel(R) Core(TM)

i7-2600 CPU 3.40GHz and 8G RAM using R and C++.

8

TABLE I

THE STATISTICS OF THE THREE REAL DATA SETS.

sequence length alphabet set distinct alphabet count word count
R-sequence 2,152 a-p, r-z, R, space 27 359
Mycoplasma 580,076 A, T, C, G 4 N/A

Bible 4,015,410 a-z, space 27 792,206

A. Settings

Three real data sets were used in our experiments. The

statistics are listed in Table I.

The first data set is an introduction of the R language,

appeared in section 2.1 of the FAQs on the R project website

(http://www.r-project.org/). We replaced all re-

turns, line feeds and special symbols with the space character.

If there are consecutive spaces after the replacement, we just

left one. All the characters are case insensitive, we only

distinguished the R’s that referring to the language name from

the normal character “r”. The resulting sequence is called R-

sequence hereafter.

The second real data set is the genome sequence of My-

coplasma genitalium, the pathogenic bacterium that has one

of the smallest genomes known for any free-living organism

[15]. The same data set was also used by Haubold et al. [1]

to analyze the distribution of shustring, which is equivalent

to LSUS in this paper. We downloaded the sequence from

the NCBI website (http://www.ncbi.nlm.nih.gov/

nuccore/NC_000908.2).

The third data is the Bible (King James Version) (http://

atschool.eduweb.co.uk/sbs777/bible/text/).

We concatenated the content of 66 chapters as one long

string. Then we preprocessed the sequence by replacing the

special character symbols with spaces, replacing consecutive

spaces with only one space, and making the sequence

case-insensitive.

B. SUS Queries

For the R-sequence, we chose the positions where the lan-

guage name R appeared as the query index. The corresponding

SUSs are shown in Figure 11. We can see that the length of

these SUSs are very short, from 2 to 3 words. This shows that

using SUSs as the context to distinguish different occurrences

of R’s is feasible and effective.

For a given sequence, we can compute one SUS at each

position. We wanted to observe the distribution of the SUS

counts over different SUS lengths on the R-sequence. In

addition to the original R-sequence itself, we further generated

three mutations with the same string length using the same

alphabet set. The first one was composed of characters that

were independently and uniformly drawn from the alphabet set

at each position, while the characters of the second one were

sampled according to their occurrence frequency in the origi-

nal R-sequence. The third one was generated by simulating the

1-lag correlation of the original article. We sampled the first

character according to the empirical character distribution of

the real article. Then, we sampled the next character according

R is a system for statistical computation and graphics it consists of a language
plus a run time environment with graphics a debugger access to certain system
functions and the ability to run programs stored in script files the design of R has
been heavily influenced by two existing languages becker chambers wilks s see
what is s and sussman s scheme whereas the resulting language is very similar
in appearance to s the underlying implementation and semantics are derived from
scheme see what are the differences between R and s for further details the core
ofR is an interpreted computer language which allows branching and looping as
well as modular programming using functions most of the user visible functions
in R are written in R it is possible for the user to interface to procedures written in
the c c or fortran languages for efficiency the R distribution contains functionality
for a large number of statistical procedures among these are linear and generalized
linear models nonlinear regression models time series analysis classical parametric
and nonparametric tests clustering and smoothing there is also a large set of
functions which provide a flexible graphical environment for creating various
kinds of data presentations additional modules add on packages are available for
a variety of specific purposes see R add on packages R was initially written by
ross ihaka and robert gentleman at the department of statistics of the university
of auckland in auckland new zealand in addition a large group of individuals
has contributed to R by sending code and bug reports since mid there has been a
core group the R core team who can modify the R source code archive the group
currently consists of doug bates john chambers peter dalgaard seth falcon robert
gentleman kurt hornik stefano iacus ross ihaka friedrich leisch uwe ligges thomas
lumley martin maechler duncan murdoch paul murrell martyn plummer brian ripley
deepayan sarkar duncan temple lang luke tierney and simon urbanek R has a home
page at http www R project org it is free software distributed under a gnu style
copyleft and an official part of the gnu project gnu s

Fig. 11. The SUSs of the queries at the positions of ”R”.

1 2 3 4 5 6 7 8

0
5

0
0

1
0

0
0

2
0

0
0

SUS length distribution

SUS length

C
o

u
n

t

uniform sample 95% C.I.
frequency−based sample 95% C.I.
1−lag coorelation−based sample 95% C.I.
real data

Fig. 12. The distribution of SUS length on the R introduction article.

to the empirical distribution of the character following the

first one and so on. For all three types of synthetic strings,

we sampled each of them 1, 000 times and plotted the 95%
confidence interval of the SUS counts over the corresponding

SUS lengths. The results are shown in Figure 12.

For the original R-sequence, most SUSs are of length of 3.

As the length increases, the corresponding counts decreases.

For the synthetic sequences, we did not see any SUS longer

than 5. Importantly, the distribution of the real R-sequence

does not lie in the confidence interval of the synthetic se-

quences. The uniform random sequence is most dissimilar

9

Mycoplasma genitalium

Length of SUS

C
o

u
n

t

10 40 60 80 100 120

1
0

0
1

0
1

1
0

2
1

0
3

1
0

4
1

0
5

1
0

6

Fig. 13. The distribution of SUS length on the Mycoplasma genitalium
sequence.

TABLE II

EXAMPLES OF LONG SUSS.

keyword example of query result chapter name
god think not to say within yourselves

we have abraham to our father for
i say unto you that god

Matthew

lord that hated me for they were too
strong for me they prevented me
in the day of my calamity but the
lord

2 Samuel

father kingdom for ever i will be his
father

2 Samuel

israel not let the children of israel go
out

Exodus

to the real R-sequence, while the 1-lag correlation sequence,

where the character distribution is closest to the original R-

sequence, is most similar to it. The original R-sequence has

much more relatively longer SUSs than the synthetic text

sequences. This shows that the distribution of SUSs can be

used to identify the real article with semantics and the random

generated synthetic text.

For the genome sequence of Mycoplasma genitalium, we

also analyzed the characteristics of its SUSs. We plotted the

count distribution of different SUS lengths in Figure 13. Most

SUSs were very short (length=10 has the highest count) and

only a few of them has a length up to 123.

For the Bible data, we tested by finding the SUSs for

the occurrences of some frequent keywords. As our SUS

queries are a kind of point queries, we first located all the

occurrences of the query keyword, and used the positions as

the query positions. Then, after finding the SUSs of those

query positions, we reported the complete words that each

SUS has spanned, and counted the word number as the SUS

length.2

Table II shows some long SUSs found using four differ-

ent keywords, and the chapters they appear in. To further

2In practice, alternatively, we can treat each word as a character. Since we
wanted to test the performance on long strings, we did not take this alternative.

TABLE III

PROCESSING TIME ON THREE REAL DATA SETS

Bible Rintro Mycoplasma

baseline offline (sec) 4.493 0.001 0.527
CTOQA offline (sec) 4.799 0.001 0.587
baseline online (sec) < 0.001 < 0.001 < 0.001
CTOQA online (sec) < 0.001 < 0.001 < 0.001

baseline total (sec) 5.051 0.001 0.618
CTOQA total (sec) 4.969 0.001 0.601

max h 8 4 11
avg h 2.337 1.488 5.525

understand the SUSs of those four keywords, we show the

SUS length distribution in Figure 14. The term frequencies

of father, israel, god, lord are 1127, 2577, 4471, and 7965,

respectively. For all four keywords, their length distributions

have long tails. That is, most SUSs are of small lengths while

only a small number of SUSs have long lengths. The larger the

term frequency, the longer the tail. For example, the maximum

length of the SUSs of the keyword ”lord”, which has the

highest term frequency among the four, is 44, which is the

largest among the four keywords. The phenomenon makes

sense because if a word appears frequently, there is a high

chance that we need more words to distinguish it from others

at different positions.

C. Scalability

In this section, we study the scalability of the baseline

method and the constant time online query answering algo-

rithm, which we denoted by CTOQA hereafter. We report three

types of processing time for each method: the offiline index

construction time, the average query time per query position,

and the total execution time. The offline index construction

time for the baseline method includes only the suffix tree

construction time while that for CTOQA includes both the

suffix tree construction time and the time of computing all

SUSs at each position. The online query time for the baseline

method includes the time to search the suffix tree, while that of

CTOQA is always constant. The total processing time includes

both the offline index construction time and computing SUSs

for all positions in the given string.

First, we report the processing time of the baseline method

and the CTOQA method on the three real data sets. The

results are shown in Table III. The online processing time

of both methods on the three real data sets was too small

to be recorded accurately. The offline processing time was

proportional to the string length. We also discovered that

the offline processing time of CTOQA was only slightly

bigger compared to the baseline method. This shows that pre-

computing SUSs was very efficient in practice. We also report

the maximum and average values of h, which is the overlap of

MUSs at the same position, when computing SUSs on those

three data sets. The values of h are very small on those data

sets. Finally, the total processing time was dominated by the

offline index construction time.

10

2 3 4 5 6 7 8 9 10 12 14

 father

Word Length

C
o
u
n
ts

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

(a) Lengths of SUSs at each position of keyword ”father”.

2 3 4 5 6 7 8 9 11 13 15

 israel

Word Length

C
o
u
n
ts

0
2
0
0

6
0
0

1
0
0
0

(b) Lengths of SUSs at each position of keyword ”israel”.

2 5 8 11 15 19 23 27 31 35 39

 god

Word Length

C
o
u
n
ts

0
5
0
0

1
0

0
0

1
5
0
0

2
0
0
0

(c) Lengths of SUSs at each position of keyword ”god”.

2 5 8 12 16 20 24 28 32 36 40 44

 lord

Word Length

C
o
u
n
ts

0
1
0
0
0

2
0
0
0

3
0
0
0

(d) Lengths of SUSs at each position of keyword ”lord”.

Fig. 14. SUSs lengths of the keywords in Bible

Next, we synthetically generated strings to show the pro-

cessing time versus the string length and the alphabet size.

The results of the online query time is in Figure 15. We

varied the length of the strings from 100, 000 to 500, 000
under 4 different alphabet sizes. The average query time for

each SUS was shown in logarithmic scale. Compared to the

baseline method, the query time of CTOQA was 10 times

faster (1 order smaller as shown in the figure). As CTOQA

is a constant time query method, its time cost is independent

from both the string length and the alphabet size. The time cost

of the baseline method increases as the string length increases.

However, as the alphabet size increases, the time cost of the

baseline method decreases. This was because in the baseline

method the cost of finding a SUS is linear to the string length.

A larger alphabet size increases the chance of shorter SUSs.

Figure 16 shows the offline index construction time of both

methods when the alphabet size is 10. The processing time for

both methods was linear to the string length. CTQOA costs

more time due to the pre-computation of all SUSs. As the

offline index construction is related with the value of h, we list

the corresponding max and average values of h under different

alphabet sizes and string lengths in Table IV. The h values are

independent from the string length but become lower when the

alphabet size increases. In general, the h value was very small

compared to the total sting length n, and can be treated as a

constant in practice.

Finally, the total processing time is reported in Figure 17.

Online Query Time

|S|

C
o

m
p

u
ta

ti
o

n
 T

im
e

 (
s
e

c
)

1
0

−
8

1
0

−
7

1
0

−
6

1
0

−
5

10
5

2 × 10
5

3 × 10
5

4 × 10
5

5 × 10
5

3 alphabets

5 alphabets

8 alphabets

10 alphabets
baseline

CTOQA

Fig. 15. Average online query time per SUS.

The two methods have very similar performance.

VII. CONCLUSIONS

In this paper, we formulated a novel type of interesting

queries — shortest unique substring queries, which have many

potential applications. We developed efficient algorithms and

verified the effectiveness and efficiency of our approach on

real data sets.

We believe that our study leads to a new direction on

string queries. As future work, it is interesting to extend

11

TABLE IV

THE h VALUES ON THE SYNTHETIC DATA

|S|=100000 |S|=180000 |S|=260000 |S|=340000 |S|=420000 |S|=500000
alphabet size: 3 max: 11 avg: 5.8 max: 11 avg: 6.1 max: 12 avg: 6.28 max: 12 avg: 6.42 max: 12 avg: 6.51 max: 12 avg: 6.6
alphabet size: 5 max: 8 avg: 4.8 max: 9 avg: 5.11 max: 9 avg: 5.26 max: 9 avg: 5.32 max: 9 avg: 5.36 max: 9 avg: 5.42
alphabet size: 8 max: 7 avg: 4.34 max: 7 avg: 4.34 max: 7 avg: 4.39 max: 7 avg: 4.52 max: 7 avg: 4.67 max: 8 avg: 4.82

alphabet size: 10 max: 6 avg: 3.82 max: 6 avg: 4.2 max: 6 avg: 4.45 max: 7 avg: 4.53 max: 7 avg: 4.51 max: 7 avg: 4.49

1e+05 2e+05 3e+05 4e+05 5e+05

0
.0

0
.2

0
.4

Offline Indexing Time

|S|

C
o

m
p

u
ta

ti
o

n
 T

im
e

 (
s
e

c
) CTOQA

baseline

Fig. 16. Offlne index building time.

1e+05 2e+05 3e+05 4e+05 5e+05

0
.0

0
.2

0
.4

Total Query Time

|S|

C
o

m
p

u
ta

ti
o

n
 T

im
e

 (
s
e

c
) CTOQA

baseline

Fig. 17. Total time of computing all SUSs.

and generalize shortest unique substring queries. For example,

given a string S and a position p in S, it is interesting to find

a shortest substring that contains p and appears at most k

times in S. Moreover, it is important to explore applications

of shortest unique substring queries, such as bioinformatics

applications.

REFERENCES

[1] B. Haubold, N. Pierstorff, F. Möller, and T. Wiehe, “Genome comparison
without alignment using shortest unique substrings,” BMC Bioinformat-

ics, vol. 6, no. 123, May 2005.
[2] P. Weiner, “Linear pattern matching algorithms,” in Proc. of the 14th

Annual Symposium on Switching and Automata Theory (swat 1973),
1973, pp. 1–11.

[3] U. Manber and G. Myers, “Suffix arrays: a new method for on-line string
searches,” in Proceedings of the first annual ACM-SIAM symposium on

Discrete algorithms, 1990, pp. 319–327.
[4] E. Ukkonen, “On-line construction of suffix trees,” Algorithmica, vol. 14,

pp. 249–260, 1995.
[5] M. Farach, “Optimal suffix tree construction with large alphabets,”

in Proc. of the 38th Annual Symposium on Foundations of Computer

Science (FOCS’97), 1997, pp. 137–.
[6] S. J. Puglisi, W. F. Smyth, and A. H. Turpin, “A taxonomy of suffix

array construction algorithms,” ACM Computer Survey, vol. 39, no. 2,
July 2007.

[7] G. Nong, S. Zhang, and W. H. Chan, “Linear time suffix array
construction using d-critical substrings,” in Proc. 20th Annual Symp.

Combinatorial Pattern Matching, 2009, pp. 54–67.
[8] D. Cusfield, Algorithms on Strings, Trees, and Sequences: Computer

Science and Computational Biology. Cambridge University Press, 1997.
[9] L. Ilie and W. F. Smyth, “Minimum unique substrings and maximum

repeats,” Fundamenta Informaticae, vol. 110, no. 1-4, pp. 183–195,
2011.

[10] K. Ye, Z. Jia, Y. Wang, P. Flicek, and R. Apweiler, “Mining unique-m
substrings from genomes,” Journal of Proteomics and Bioinformatics,
vol. 3, no. 3, pp. 99–100, 2010.

[11] S. Chan, B. Kao, C. L. Yip, and M. Tang, “Mining emerging substrings,”
in Proc. of the Eighth International Conference on Database Systems

for Advanced Applications (DASFAA’03), 2003, pp. 119–.
[12] X. Ji, J. Bailey, and G. Dong, “Mining minimal distinguishing subse-

quence patterns with gap constraints,” KNOWLEDGE AND INFORMA-

TION SYSTEMS, vol. 11, no. 3, pp. 259–286, 2007.
[13] K. Iwanuma, R. Ishihara, Y. Takano, and H. Nabeshima, “Extracting

frequent subsequences from a single long data sequence: A novel
anti-monotonic measure and a simple on-line algorithm,” in IEEE

International Conference on Data Mining, 2005, pp. 186–193.
[14] H. Ahonen-Myka, “Discovery of frequent word sequences in text,” in

Proceedings of the ESF Exploratory Workshop on Pattern Detection and

Discovery, 2002, pp. 180–189.
[15] C. M. Fraser, J. D. Gocayne, O. White, M. D. Adams, R. A. Clayton,

R. D. Fleischmann, C. J. Bult, A. R. Kerlavage, G. Sutton, J. M. Kelley,
J. L. Fritchman, J. F. Weidman, K. V. Small, M. Sandusky, J. Fuhrmann,
D. Nguyen, T. R. Utterback, D. M. Saudek, C. A. Phillips, J. M. Merrick,
J.-F. Tomb, B. A. Dougherty, K. F. Bott, P.-C. Hu, T. S. Lucier, S. N.
Peterson, H. O. Smith, C. A. H. III, and J. C. Venter, “The minimal
gene complement of mycoplasma genitalium,” Science, vol. 270, no.
5235, 1995.

12

	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Abstracts Book
	Abstracts Card for this Manuscript

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	Links to Other Manuscripts by the Authors

	**** PREPRESS PROOF FILE
	**** NOT FOR DISTRIBUTION
	**** BOOKMARKS ARE INACTIVE
