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ABSTRACT
Given a sequence database, can we have a non-trivial upper
bound on the number of sequential patterns? The prob-
lem of bounding sequential patterns is very challenging in
theory due to the combinatorial complexity of sequences,
even given some inspiring results on bounding itemsets in
frequent itemset mining. Moreover, the problem is highly
meaningful in practice, since the upper bound can be used
in many applications such as space allocation in building
sequence data warehouses.
In this paper, we tackle the problem of bounding sequen-

tial patterns by presenting, for the first time in the field of
sequential pattern mining, strong combinatorial results on
computing the number of possible sequential patterns that
can be generated at a given length k. We introduce, as a
case study, two novel techniques to estimate the number of
candidate sequences. An extensive empirical study on both
real data and synthetic data verifies the effectiveness of our
methods.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data Mining ; G.2.1 [Discrete Mathematics]: Combina-
torics—Counting problems, generating functions

General Terms
Theory, Algorithms
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1. INTRODUCTION
Sequence data is widely used in many applications. Con-

sequently, mining sequential patterns and other types of
knowledge from sequence data has become an important
data mining task. The main emphasis has been on develop-
ing efficient mining algorithms and effective pattern repre-
sentation [5]. However, an important fundamental problem
still remains open: given a sequence database, can we have
an upper bound on the number of sequential patterns in the
database?

Any non-trivial answer to the question can find immedi-
ate applications in many sequence mining scenarios. For
example, one issue in sequential pattern mining is that the
runtime cannot be well estimated. That is, when a sequen-
tial pattern mining algorithm starts to run on a sequence
database and keeps generating sequential patterns, one can-
not tell how many more patterns will be generated and when
the algorithm will stop. The progress of the mining algo-
rithm cannot be estimated. If an upper bound on the num-
ber of sequential patterns can be obtained, the upper bound
can be used to estimate the progress of the mining.

As another application example, building sequence data
warehouses and conducting OLAP on sequences have found
applications in, for example, web search [27], customer tra-
jectory analysis [15], workflow analysis [9], and bioinformat-
ics [4]. Space is one of the central issues in building a se-
quence data warehouse. How much space does a data ware-
house need on a given sequence database?

The problem of bounding sequential patterns is very chal-
lenging due to the combinatorial complexity of sequences.
Unlike bounding frequent itemsets [8], where each item can
appear at most once in an itemset, an item may appear mul-
tiple times in a sequential pattern, which make the possible
combinations much more numerous and complicated. To the
best of our knowledge, no solid result has been reported in
literature. Moreover, the difficulty of the problem has been
well recognized. For example, Zaki [25] affirmed, “It is diffi-
cult to derive a closed-form expression for the exact number
of k-sequences”.

In this paper, we tackle the problem of bounding sequen-
tial patterns. We make two significant contributions. First,
we present, for the first time in the field of sequential pat-
tern mining, strong combinatorial results on bounding the
number of possible sequential patterns that can be gener-
ated for a given length k. Second, we introduce, as a case



study, two novel techniques to estimate the number of can-
didate sequences. Fundamentally, our method is different
from the results on bounding frequent itemsets [8], since the
Kruskal-Katona theorem [11, 12], which is the major tool
in bounding frequent itemsets, cannot be applied globally
to sequences. We build different combinatorial tools based
on the Whitney numbers of the poset of sequences and on
prefix-itemset partitions. Using these combinatorial results,
any sequence mining algorithm can efficiently compute up-
per bounds on the number of candidates to be searched. An
extensive empirical study on both real data and synthetic
data verifies the effectiveness of our methods. We believe
that the results reported in this paper are a major break-
through in the theory and foundation of sequential pattern
mining, and may have a broad impact on other pattern min-
ing problems.
The rest of the paper is organized as follows. Section 2

reviews the related work. Section 3 briefly reviews the pre-
liminaries needed in our development. Section 4 introduces
our new combinatorial results. In Section 5, we show how
to apply our combinatorial results in different ways to de-
rive an upper bound on the number of candidate sequences.
An experimental study is reported in Section 6. We con-
clude our work and discuss several interesting directions in
Section 7.

2. RELATED WORK
Since Agrawal and Srikant [2] introduced the problem of

sequential pattern mining, many studies focused on develop-
ing efficient algorithms for sequential pattern mining, such
as AprioriAll [2], GSP [21] and SPADE [25]. Several effec-
tive representations of sequential patterns have been pro-
posed [24, 22]. However, to the best of our knowledge, no
previous work obtains non-trivial results on estimating the
number of candidates for sequential patterns.
A problem highly related to bounding sequential patterns

is to bound frequent itemsets. A seminal paper by Geerts
et al. [8] shed light on the pure combinatorial problem that
lies behind the estimation of candidates in frequent itemset
mining [1]. Using a well-known extremal combinatorics re-
sult, the Kruskal-Katona theorem [11, 12], Geerts et al. [8]
provided hard and tight combinatorial upper bounds on the
number of candidates. This result is also a theoretical basis
for what is known as the inverse mining problem [19, 20],
where the same Kruskal-Katona theorem is used to charac-
terize properties of length distributions of frequent itemsets
and their synthetic generation.
One may expect that the Kruskal-Katona theorem can be

also used to tackle the sequential pattern bounding problem.
Unfortunately, Leck [13] affirmed that there is no theorem of
the Kruskal-Katona type for sequential patterns. Therefore,
in this paper, we explore other fundamentally different ap-
proaches to tackle the problem of bounding sequential pat-
terns.

3. PRELIMINARIES
Let I = {i1, i2 . . . im} be a finite set of items. An itemset

X ⊆ I is a non-empty subset of I. A sequence S over
I is an ordered list ⟨X1 · · ·Xn⟩, where Xi (1 ≤ i ≤ n) is
an itemset. The length of a sequence S, denoted by |S|,
is
∑n

i=1 |Xi|. A k-sequence is a sequence of length k. We
denote by T(I) the (infinite) set of all possible sequences

over I. A sequence database D over I is a finite set of pairs
(SID, T ), where SID ∈ {1, 2, . . . , |D|} is an identifier and
T ∈ T(I) a sequence over I.

Definition 1 (Subsequence). A sequence S′ =
⟨X ′

1 · · ·X ′
n⟩ is a subsequence of another sequence S =

⟨X1 . . . Xm⟩, denoted by S′ ≼ S, if n ≤ m and there exist
1 ≤ i1 < i2 < · · · < in ≤ m such that X ′

j ⊆ Xij (1 ≤ j ≤ n).
S is said to be a supersequence of S′. S′ is called a proper
subsequence of S, denoted by S′ ≺ S, if S′ ≼ S and S′ ̸= S.

Immediately, we have the following property.

Property 1. The set T(I) with the binary relation ≼ is
a partially ordered set (i.e., it is reflexive, antisymmetric
and transitive).

Following with Property 1, we call (T(I),≼) the partially
ordered sequence set.

Definition 2 (Whitney numbers). In the context of
the partially ordered sequence set (T(I),≼), the Whitney
numbers wi (i ≥ 1) are the numbers of i-sequences.

Definition 3 (Concatenation and merge). For
sequences S = ⟨X1 · · ·Xn⟩ and S′ = ⟨X ′

1 · · ·X ′
m⟩,

we define the concatenation operator ◦ such that
S ◦ S′ = ⟨X1 · · ·XnX

′
1 · · ·X ′

m⟩. S ◦ S′ is called a concate-
nation supersequence of S. We also define the merge
operator ⋄ such that S ⋄ S′ = ⟨X1 · · · (Xn ∪ X ′

1) · · ·X ′
m⟩.

S ⋄ S′ is called a merge supersequence of S.

Definition 4 (Prefix equivalence). Two sequences
S = ⟨X1 · · ·Xn⟩ and S′ = ⟨X ′

1 · · ·X ′
n⟩ are said to be pre-

fix equivalent, denoted by S ≡π S′, if |S| = |S′| and for
(1 ≤ i < n), Xi = X ′

i.
Let C be a set of sequences. We denote by [S]π(C) the set

of the last itemsets of the prefix equivalence class of
S, which is the set of the last itemsets in the sequences in C
equivalent to S, i.e., [S]π(C) = {X|S ≡π S′ ◦X,S′ ◦X ∈ C}.

For instance, ⟨{a}{a, b}{a}⟩ ≡π ⟨{a}{a, b}{b}⟩,
but ⟨{a}{a, b}{a}⟩ ̸≡π ⟨{a}{a, b}{b}{a}⟩ be-
cause they do not have the same length. Let
C = {⟨{a}{a}⟩ , ⟨{a}{b}⟩ , ⟨{a}{c}⟩ , ⟨{a}{d}⟩}. The
set of last itemsets of the prefix equivalence class for
sequence ⟨{a}{a}⟩ is [⟨{a}{a}⟩]π(C) = {{a}, {b}, {c}, {d}}.

Definition 5 (Support and frequency). The sup-
port of a sequence S in a sequence database D is
Support(S,D) = |{(SID, T ) ∈ D|S ≼ T}|. The frequency

of S in D is freqDS = Support(S,D)
|D| .

Given a minimum frequency threshold σ, sequential pat-
tern mining finds all sequences S such that freqDS ≥ σ,
which are called the sequential patterns. We denote by
FD,σ = {S|freqDS ≥ σ} the set of all sequential patterns,
and by Fk

D,σ the set of sequential patterns of length k.

Example 1 (Running Example). In this paper, we
use the sequence database Dex in Table 1 as a running
example. It contains 8 data sequences with I = {a, b, c, d}.
Given a minimum frequency threshold σ = 5

8
, FD,σ =

{⟨{a}⟩ , ⟨{b}⟩ , ⟨{c}⟩ , ⟨{d}⟩ , ⟨{a}{a}⟩ , ⟨{a}{b}⟩ , ⟨{b}{a}⟩,
⟨{a, b}⟩ , ⟨{a}{c}⟩ , ⟨{a}{d}⟩ , ⟨{c}{a}⟩ , ⟨{a, c}⟩ , ⟨{c}{b}⟩,
⟨{b}{b}⟩ , ⟨{b}{c}⟩ , ⟨{a}{a}{a})⟩ , ⟨{a}{a}{b}⟩ , ⟨{a}{a, b}⟩,
⟨{a}{a}{c}⟩ , ⟨{b}{a}{b}⟩ , ⟨{c}{a}{b}⟩ , ⟨{c}{a, b}⟩}.



Dex =

S1 ⟨{a, b, c}{a}{a, b}{d}⟩
S2 ⟨{a, b, c}{a, b, c, d}{d}{a, b, c})⟩
S3 ⟨{a, b}{d}{c}⟩
S4 ⟨{b}{a}{c}{a, b}{c}{b}{b}{c}{d}⟩
S5 ⟨{a, b, c, d}{a}{a, b}⟩
S6 ⟨{a}{c}{d}{b}{c}{b}{a}{b}{c}⟩
S7 ⟨{a, c}{a}{a, b, c}⟩
S8 ⟨{a}{a, b}{a, c}⟩

Table 1: The sequence database used as the running
example

4. COMBINATORIAL RESULTS
To find an upper bound on the number of sequential pat-

terns, we start from calculating an upper bound on the num-
ber of potential sequential patterns of length k for every pos-
itive integer k. We tackle this problem by calculating the
Whitney numbers for partially ordered sequence set.
The number of potential sequential patterns of length k is

closely related to the number of different combinations made
using the sequence extensions introduced in Definition 3.
However, a direct estimation is difficult because it has to
take into account the redundancy of some combinations. For
instance, ⟨{a}{b, c, d}{a, b}⟩ can be constructed in many dif-
ferent ways: ⟨{a}{b}⟩⋄⟨{c, d}{a, b}⟩, ⟨{a}{b, c}⟩⋄⟨{d}{a, b}⟩,
⟨{a}⟩ ◦ ⟨{b, c, d}{a, b}⟩, etc. Developing a combinatorial for-
mula that takes into account those redundancies is very dif-
ficult, if possible at all.
A simple observation can help to deal with the problem.

A k-sequence S can only contain at most k itemsets. In
fact, the number of possible k-sequences can be calculated
by the number of concatenation extensions. For instance,
for I = {a, b}, the number of 2-sequences is the number of
sequences that are obtained from the following two ways.

• The concatenation extension from the empty sequence
using a 2-itemset: ⟨∅⟩ ◦ ⟨{a, b}⟩; and

• The sequences of 2 length-1 itemsets, which are con-
catenation extensions of all possible sequences with 1-
itemsets: ⟨{a}⟩ ◦ ⟨{a}⟩, ⟨{a}⟩ ◦ ⟨{b}⟩, ⟨{b}⟩ ◦ ⟨{a}⟩ and
⟨{b}⟩ ◦ ⟨{b}⟩.

Clearly, this way of enumerating the sequences avoids the
redundancy problem described earlier. The correctness was
established as part of the PrefixSpan algorithm [17]. Using
this observation, counting the number of k-sequences can be
described by the following recurrence relation:

wk =

k−1∑
i=0

wi

(
n

k − i

)
, (1)

where n = |I|, w0 = 1, w1 = n, and k ≥ 01.
When |I| and k are both small, the above recurrence rela-

tion may be efficient for calculation. However, we would like
to obtain an explicit formula. From the combinatorial point
of view, this formula may help us understand the relations
between counting sequential patterns and some other well-
known combinatorial problems. The understanding may lay
down new ways of handling the sequential pattern mining
problem.

1Note that:
(
n
k

)
= 0 if k > n

In order to obtain such a formula, we want to represent
the Whitney numbers wk in a generating function [23, 7]2

S(x) =
∑
k

wkx
k (2)

From Equation (2), it follows that

wk =
Sk(0)

k!
, (3)

where Sk(x) is the kth derivative of S(x).
Obtaining the generating function in our case is far from

trivial. One of the popular methods to find generating func-
tions is to compute the discrete convolution of two formal
power series, in other words, their Cauchy product. Recall
that for two formal power series

∑
k akx

k and
∑

k bkx
k, their

Cauchy product is
∑∞

k=0 zkx
k with zk =

∑k
i=0 aibk−i. As

noted by Wilf [23]: “It is certainly this product rule that
accounts for the wide applicability of series methods in com-
binatorial problems”.

In our case, we use one known formal power series, which
can be trivially derived from the binomial theorem:

n∑
i=0

(
n

i

)
xn−i = (1 + x)n = D(x). (4)

We apply the Cauchy product with S(x):∑
k

zkx
k = S(x) ·D(x)

= (
∑
k

wkx
k) · (

n∑
i=0

(
n

i

)
xn−i)

=
∞∑

k=0

k∑
i=0

wi

(
n

k − i

)
xk (5)

Thus, we have,

zk =

k∑
i=0

wi

(
n

k − i

)
(6)

Two cases are possible for zk, depending on the value of
k. First, if k = 0, then z0 = w0. Second, if k > 0, then,
from Equation (1), we have

zk = wk +

k−1∑
i=0

wi

(
n

k − i

)
= 2wk (7)

Using (5), we can exhibit the generating function S(x):∑
k

zkx
k = S(x) · (1 + x)n

= z0 +
∑
k≥1

2wkx
k

= w0 + 2
∑
k≥1

wkx
k

= 1 + 2(S(x)− 1) (8)

Finally,

S(x) =
1

2− (1 + x)n
(9)

2For a brief introduction to generating functions, please refer
to http://en.wikipedia.org/wiki/Generating_function.



From this generating function, we can deduce an expres-
sion on the number of k-sequences that can be formed using
n = |I| different items. From (9) it follows

S(x) = 1
2

(
1

1− 1
2
(1+x)n

)
= 1

2

(
1

1−Z

)
= 1

2

∑
i≥0

Zi

with Z =
1

2
(1 + x)n,

= 1
2

∑
i≥0

1

2i
(1 + x)ni (10)

Therefore, the kth derivative of S(x) is:

Sk(x) =
∑
i≥0

ni!
(ni−k)!

(1 + x)ni−k

2i+1

= k!
∑
i≥0

ni!
(ni−k)!k!

(1 + x)ni−k

2i+1

= k!
∑
i≥0

(
ni
k

)
(1 + x)ni−k

2i+1
(11)

From Equation (3), we have

wk =
∑
i≥0

(
ni
k

)
2i+1

(12)

We do not discuss the convergence case for the series S(x)
with x = 0. In fact, the analytic nature of the generating
function does not interest us here. Thus, we limit our view
of a generating function to serving as only a formal power
series, i.e., as an algebraic object rather than as an ana-
lytic one. The multiple links between the previous expres-
sion and well-known combinatorial problems are discussed
in Section 7.

Example 2. Let I = {a, b}. The number of possible 2-
sequences can be calculated using the recurrence relation in
Equation (1):

w2 = w0

(
2

2

)
+ w1

(
2

1

)
= 1 + 4 = 5

The same result can be obtained with Equation (12): w2 =∑
i≥0

(2i2 )
2i+1 = 5.

Likewise, the number of possible 3-sequences can be com-
puted through the recurrence relation in Equation (1):

w3 = w0

(
2

3

)
+ w1

(
2

2

)
+ w2

(
2

1

)
= 0 + 2 + 10 = 12

Using the formula in Equation (12), we have w3 =∑
i≥0

(2i3 )
2i+1 = 12. The set of all 3-sequences is

{ ⟨{a}{a}{a}⟩ , ⟨{a}{a}{b}⟩ , ⟨{a}{b}{a}⟩ , ⟨{a}{b}{b}⟩ ,
⟨{b}{a}{a}⟩ , ⟨{b}{a}{b}⟩ , ⟨{b}{b}{a}⟩ , ⟨{b}{b}{b}⟩ ,
⟨{a, b}{a}⟩ , ⟨{a, b}{b}⟩ , ⟨{a}{a, b}⟩ , ⟨{b}{a, b}⟩ }

5. ESTIMATION OF CANDIDATES
In this section, we use the combinatorial results to com-

pute the upper bounds on the number of candidates in
sequential pattern mining, which are naturally the upper
bounds on the number of sequential patterns. We discuss
two techniques.

5.1 A Basic Upper Bound
The first technique relies on the recurrence relation in

Equation (1). Instead of using the Whitney numbers wi

(0 ≤ i < k) to compute the number of candidate k-
sequences, we use the number of sequential patterns of every
length i. Formally, we define Ck, an upper bound on the
number of k-sequence candidates as follows.

Ck =

k−1∑
i=0

|F i
D,σ|

(
|F 1

D,σ|
k − i

)
with |F 0

D,σ| = 1 (13)

Example 3. Consider our running example using the
database Dex in Table 1. Suppose σ = 5

8
. The

set of length-1 sequential patterns in Dex is F 1
D,σ =

{⟨{a}⟩ , ⟨{b}⟩ , ⟨{c}⟩ , ⟨{d}⟩}. Accordingly, an upper bound
on the number of length-2 candidates that can be generated
from these 1-sequences is

C2 = |F 0
D,σ|

(|F1
D,σ|
2

)
+ |F 1

D,σ|
(|F1

D,σ|
1

)
= |F 0

D,σ| · 6 + |F 1
D,σ| · 4

= 6 + 16 = 22

The number 22 includes the 6 possible 2-sequences with
only 1 itemset: {⟨{a, b}⟩ , ⟨{a, c}⟩ , ⟨{a, d}⟩ , ⟨{b, c}⟩ , ⟨{b, d}⟩,
⟨{c, d}⟩}, and the 16 2-sequences with 2 itemsets, such
as ⟨{a}{a}⟩ , ⟨{a}{b}⟩ , ⟨{d}{a}⟩, etc. Unsurprisingly, any
breadth-first search algorithm based on the Apriori paradigm
generates exactly those 22 sequences. In such a case, the
upper bound is tight and realizable.

Similarly, we have

C3 = |F 0
D,σ|

(|F1
D,σ|
3

)
+ |F 1

D,σ|
(|F1

D,σ|
2

)
+ |F 2

D,σ|
(|F1

D,σ|
1

)
= |F 0

D,σ| · 4 + |F 1
D,σ| · 6 + |F 2

D,σ| · 4
= 4 + 24 + 44
= 72

Notice that this basic upper bound is effective for sequence
databases of a small number of items, that is, n = |I| is
small, since it only relies on multiplying binomial coeffi-
cients. However, for real-world data sets containing thou-
sands of items, this bound may be very loose.

5.2 Prefix-based Bound
The bounding method discussed in Section 5.1 is easy to

implement in any breadth-first search sequence mining al-
gorithm. However, it only uses very little information in
bounding, and can be improved substantially. In sequential
pattern mining, an algorithm often can access to more in-
formation than just the number of sequential patterns of a
certain length. Often, all sequential patterns up to a certain
length k are available. We develop a prefix-based bound to
make use of this extra information to achieve a better esti-
mation by locally applying the Kruskal-Katona theorem.

Theorem 1 (l-binomial representation [11, 12]).
Given two positive integers m and l, there exists a unique



representation of m in the form

m =

(
al

l

)
+

(
al−1

l − 1

)
+ . . .+

(
at

t

)
where al > al−1 > . . . > at ≥ t ≥ 1.

For instance, when m = 26 and l = 4, we have 26 =(
6
4

)
+
(
5
3

)
+
(
2
2

)
.

Definition 6 (Shade). An itemset X ⊆ I is a k-
subset if |X| = k. Let A be a set of k-subsets of I,
where k < |I|. The set ▽pA = {D ⊆ I : |D| =
k + p, ∀ k-subset D′ ⊂ D → D′ ∈ A} is called the shade
of A, where p ≥ 1.

Let B be a set of k-sequences such that B ⊆ T(I). The set
▽pB = {S ∈ T(I) : |S| = k+p,∀S′ ≺ S, |S′| = k → S′ ∈ B}
is called the shade of B. In other words, ▽pB consists of all
(k+ p)-sequences that can be constructed by using operators
◦ and ⋄ on the set of sequences B.

For instance, let I = {a, b, c, d} and A =
{{a, b}, {a, c}, {a, d}, {b, c}, {b, d}} then ▽1A =
{{a, b, c}, {a, b, d}} and {a, c, d} ̸∈ ▽1A because {c, d} ̸∈ A.
The next theorem, the Kruskal-Katona theorem, gives a

tighter upper bound on the size of the shade for a set of
k-subsets.

Theorem 2 (Kruskal-Katona Theorem [11, 12]).
Let A be a set of k-subsets of I (k < |I|). |A| can be written
as a k-binomial representation:

|A| = m =

(
ak

k

)
+

(
ak−1

k − 1

)
+ . . .+

(
at

t

)
.

The cardinality of ▽pA is bounded by

| ▽p A| ≤

(
ak

k + p

)
+

(
ak−1

k − 1 + p

)
+ . . .+

(
at

t+ p

)
No other bounds can be tighter.

For instance, let I = {a, b, c, d} and A =
{{a, b}, {a, c}, {a, d}, {b, c}, {b, d}}. Then, |A| = 5 =

(
3
2

)
+(

2
1

)
. Moreover, | ▽1 A| ≤

(
3
3

)
+
(
2
2

)
= 2, which is a tight

upper bound because ▽1A = {{a, b, c}, {a, b, d}}.
To understand the prefix-based technique, recall that a

candidate sequence can be generated through the sequence
extension operators. However, with the recurrence relation
in Equation (13), some of the candidate sequences that are
counted are obviously infrequent.

Example 4. To count the number of candidates C3 in

Example 3, |F 1
D,σ|

(|F1
D,σ|
2

)
is used to compute the number of

1-sequences extended with itemsets of size 2. In this case,
⟨{b}{a, d}⟩, ⟨{b}{b, d}⟩,⟨{b}{c, d}⟩ are counted as possible
candidates, however, ⟨{b}{d}⟩ is not frequent. In fact, the
number of sequences of length 1 extended with itemsets of
cardinality 2 should be constrained by the sequences of length
2 and with 2 itemsets: ⟨{b}{a}⟩, ⟨{b}{b}⟩, ⟨{b}{c}⟩, which
are from the prefix equivalence class of sequence ⟨{b}{a}⟩.

In order to reflect this condition and generalize it to k-
sequences, we will use locally the Kruskal-Katona theorem,
since it computes efficiently a tight upper bound on the
shade of the set of the last itemsets for a given prefix equiv-
alence class. Let us look at an example.

Procedure PB(): regrouping the sequences in prefix
equivalence classes.

Data: Fk
D,σ

Result: Prefix-based upper bound value for the
number of candidate k + 1-sequences

PB ← 0;1

foreach set A = [⟨S⟩]π(Fk
D,σ) do2

local← Compute the upper bound ▽1A;3

PB ← PB + local;4

PB ← PB + |Fk
D,σ| · |F 1

D,σ|;5

Return PB;6

Example 5. Let PBk be the prefix-based upper bound on
the size of k-sequences candidates. To compute PB3, we
need to compute the bounds on the sequences generated from
the length-2 sequential patterns with extension operators ◦
and ⋄, respectively.

The ⋄-extension case: there are 4 prefix equivalence classes
in F 2

D,σ: 1 prefix equivalence class based on the sequences
containing 1 itemset with cardinality 2, and 3 prefix equiva-
lence classes based on the sequences of 2 itemsets:

(i) U = {⟨{a, b}⟩ , ⟨{a, c}⟩}
(ii) V = {⟨{a}{a}⟩ , ⟨{a}{b}⟩ , ⟨{a}{c}⟩ , ⟨{a}{d}⟩}
(iii) W = {⟨{b}{a}⟩ , ⟨{b}{b}⟩ , ⟨{b}{c}⟩}
(iv) X = {⟨{c}{a}⟩ , ⟨{c}{b}⟩}

For each of these equivalence classes, we compute an upper
bound based on the Kruska-Katona theorem. This theorem
can be applied because the elements of the set [⟨S⟩]π(V) are
sets. For instance, from (ii), |[⟨{a}(a}⟩]π(F 2

D,σ)| =
(
4
1

)
= 4.

The cardinality of ▽1V is bounded by

| ▽1 V| ≤

(
4

1 + 1

)
= 6

Similarly, | ▽1 U| ≤ 0, | ▽1 W| ≤ 3 and | ▽1 X| ≤ 1.
Thus, the upper bound on the number of sequences that can
be generated using the operator ⋄ is 0 + 6 + 3 + 1 = 10.

The ◦-extension case: Each of the sequences in F 2
D,σ

can be extended with one of the frequent items present in
F 1

D,σ = {⟨{a}⟩ , ⟨{b}⟩ , ⟨{c}⟩ , ⟨(d}⟩}. In this example, the
upper bound on the number of sequences that can be gener-
ated using the operator ◦ is |F 2

D,σ| · |F 1
D,σ| = 11 · 4 = 44.

In conclusion, PB3 = 10 + 44 = 54. That is, the max-
imum number of candidate patterns of length 3 that can be
generated is at most 54, smaller than C3 in Example 3.

The only requirement for this approach is to regroup the
sequences in prefix equivalence classes. This is usually im-
plicitly done thanks to the data structures used in the se-
quential pattern mining algorithms, such as prefix-trees (i.e.,
trie structures). The pseudocode of the procedure is given
in Procedure PB().

Further Improvements
The prefix-based upper bound works well with any breadth-
first search algorithms. Still, some further improvements are
possible.

One may notice that handling the case of the operator ◦
is quite trivial as it involves multiplying the number of fre-
quent k-sequences with the number of frequent 1-sequences.



However, this way allows some false positives since not all
2-sequences of 2 items are frequent. Recall that any min-
ing algorithm has access to the sequences in the database.
Instead of blindly multiplying with the cardinality of the
frequent 1-sequences, we can multiply only with the cardi-
nality of the 2-sequences that can really result in sequence
expansions. Let us illustrate this improvement using an ex-
ample.

Example 6. Suppose that we want to extend
the sequences from the prefix equivalence class
A = {⟨{a, b}⟩ , ⟨{a, c}⟩} with the operator ◦. Based
on Procedure PB(), this equivalence class generates
|A| · |F 1

D,σ| = 8 candidate sequences, which are

{ ⟨{a, b}{a}⟩ , ⟨{a, b}{b}⟩ , ⟨{a, b}{c}⟩ , ⟨{a, b}{d}⟩ ,
⟨{a, c}{a}⟩ , ⟨{a, c}{b}⟩ , ⟨{a, c}{c}⟩ , ⟨{a, c}{d}⟩ }

Yet, some of the sequences should not be generated as their
sub-sequences are infrequent. For instance, ⟨{b}{d}⟩ is in-
frequent. However, ⟨{a, b}{d}⟩ is counted as a possible can-
didate sequence. ⟨{a, b}⟩ should be extended only with the
items in the set {a, b, c}, since only ⟨{a}{a}⟩, ⟨{a}{b}⟩,
⟨{a}{c}⟩, ⟨{b}{a}⟩, ⟨{b}{b}⟩, and ⟨{b}{c}⟩ are frequent (no-
tice how item d is not expanded here). Applying the same
process to each element of the equivalence classes yields the
following

|{⟨{a, b}⟩}| · 3 + |{⟨{a, c}⟩}| · 2 + |{⟨{a}{a}⟩}| · 4 +
|{⟨{a}{b}⟩}| · 3 + |{⟨{a}{c}⟩} · 2 + |{⟨{a}{d}⟩}| · 0 +
|{⟨{b}{a}⟩}| · 3 + |{⟨{b}{b}⟩}| · 3 + |{⟨{b}{c}⟩}| · 2 +
|{⟨{c}{a}⟩}| · 2 + |{⟨{c}{b}⟩}| · 2 = 26

The improved prefix-based upper bound in this case is
PBimp

3 = 10 + 26 = 36.

The implementation of this improvement bears negligible
overhead in practice because all the needed sequences along
with their extensions are already present in the data struc-
tures used by many sequence mining algorithms.

6. EMPIRICAL STUDY
In this section, we report an extensive empirical evaluation

of our bounding techniques using real and synthetic data
sets. All experiments were performed on an Apple MacBook
computer with 2.8 Ghz Intel Core 2 Duo CPU and 4 Gb main
memory, running Mac OS X 10.6.6 operating system. The
bounding procedures were implemented in C++ along with
a version of the algorithm SPADE using the Data Mining
Template Library [26]. All the mathematical computation
was processed using the GNU Multiple Precision Arithmetic
Library3. The source code and the data sets are available
at http://www.loria.fr/~raissi/.
Data sets. In our experiments, we used one real data set

and a group of synthetic data sets generated by the QUEST
software4. The Amazon data set consists of a collection
of 100, 000 product reviews from the website amazon.com.
This is a sample of the data set used in [10]. Each review
is a data sequence that has been lemmatized and grammat-
ically filtered to remove uninteresting terms. Each sentence

3http://gmplib.org/
4http://www.almaden.ibm.com/cs/projects/iis/hdb/
Projects/data_mining/

Amazon data set, σ = 0.15%.
Length k Cand. gen. time Ck PBk PBopt

k

1 16.4534 0 0 0
2 117.57 0.000003 0.001984 0.001984
3 778.726 0.000025 0.013382 0.045356
4 24.5185 0.000006 0.002798 0.004168
5 0.0618551 0.000009 0.001266 0.002395

C100T4I10 data set, σ = 8%.
Length k Cand. gen. time Ck PBk PBopt

k

1 16.1838 0 0 0
2 77.9223 0.000005 0.000124 0.000124
3 285.861 0.000005 0.006093 0.032533
4 352.146 0.000006 0.240952 0.169538
5 283.433 0.000006 0.039826 0.340521
6 121.09 0.000006 0.035317 0.329862
7 32.4553 0.0000010 0.019776 0.147073
8 5.18174 0.0000010 0.007598 0.039192
9 0.624778 0.0000012 0.003519 0.007164
10 0.0670125 0.0000010 0.002802 0.001828

Table 2: Candidate generation time vs. upper
bound computation time (in seconds).

in a review is transformed into an itemset. The data set
is very dense and contains 32, 140 items. The average se-
quence length is 8. For synthetic data sets, various kinds
of parameters and distributions were used to generate dif-
ferent data sets. We used the following convention to name
the synthetic data sets: Cx means that the data set contains
x× 1, 000 sequences, Ty means that the average number of
items in an itemset is y, and Iz means that the data set
contains z × 1, 000 distinct items.

Efficiency. The first batch of experiments focused on ef-
ficiency. As previously discussed, the upper bound compu-
tation depends on the number of sequential patterns. How
does the computation time change when the number of se-
quential patterns increases? Using the Amazon data set, we
varied the minimal support threshold and recorded for each
bounding method its total computation time and the total
number of sequential patterns. 240 thresholds were tried.
Figure 1 shows these results. The experimental results ver-
ify the theoretical analysis. The three bounding methods
scale linearly with respect to the number of sequential pat-
terns.

We also compared the runtime of the bounding methods
with respect to the candidate generation runtime in SPADE.
If the bounding procedures are too slow comparing to the
candidate generation time, then bounding candidates of se-
quential patterns would not help much in improving sequen-
tial pattern mining efficiency. Table 2 shows the results.
Clearly, the computation cost for the upper bounds is neg-
ligible comparing to the candidate generation process.

Accuracy. Our second batch of experiments focused on
the accuracy of the bounds. Figure 2 shows the results
on two different synthetic data sets. As discussed in Sec-
tion 5, the basic upper bound is much looser. For instance,
on data set C500T4I10 with a minimal frequency threshold
σ = 10%, at level k = 3, the number of generated candidates
by SPADE is 2, 265 but the basic bound is 167, 567, 925, 000.
At the same level, the prefix-based bound is 2, 599, which is
very close to the actual number of generated candidates.
This observation is further confirmed by the rest of our
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Figure 1: Time needed to compute the three upper bounds vs. the number of frequent sequences.
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experiments, and indicates that the prefix-based bound is
viable and useful. Surprisingly, the improved prefix-based
bound is 847, dramatically less than the number of candi-
dates generated by SPADE, and much closer to the num-
ber of sequential patterns. In fact, in more than 89% of the
cases in our experiments, the improved prefix-based bound is
lower than the number of candidates generated by SPADE,
and is closer to the actual number of sequential patterns.
To further test the effectiveness of the improved prefix-

based bound, we compared it with some other representa-
tive sequential pattern mining methods. We selected two
algorithms that have radically different candidate genera-
tion strategies: SPAM [3] and PSP [16]. Please note that
SPAM is a depth-first search method and is reported to out-
perform PrefixSpan. The results are shown in Figure 3. Our
improved prefix-based bound is lower than what is actually
generated by the SPADE and SPAM algorithms. Two ex-
planations are possible. First, SPAM is a depth-first algo-
rithm and thus cannot fully use the Apriori principle in prun-
ing unfruitful candidates. Second, the candidate generation
process in SPADE produces some false positive candidates.
Recall that the candidate generation method in SPADE is
based on a prefix equivalence constraint. For example, let
S1 = ⟨{a}{b}{a}⟩ and S2 = ⟨{a}{b}{b}⟩, then three candi-
dates, ⟨{a}{b}{a}{b}⟩ , ⟨{a}{b}{b}{a}⟩, and ⟨{a}{b}{a, b}⟩,
are generated. However, no prior check is done to see if
⟨{a, b}⟩ is actually frequent. This kind of candidates are
quite often generated in many sequential pattern mining
algorithms. Our improved prefix-based bound avoids such
candidates in counting.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we reported a breakthrough in the theory

and foundation of sequential pattern mining. We presented,
for the first time in the field of sequential pattern mining,
strong combinatorial results on computing the number of
possible sequences that can be generated at a given length
k. Two novel techniques were developed to estimate the
number of candidate sequences. The effectiveness and ef-
ficiency of our methods were well verified by an extensive
empirical study on both real data and synthetic data.
Motivated by the theoretical challenge of computing the

Whitney numbers for sequential patterns, we provided in
this paper novel ways of bounding sequential patterns. How-
ever, our findings are not solely restricted to this unique pur-
pose. In this section, we discuss as future work several other
applications in the domains of combinatorics, data mining
and machine learning that can benefit from this study.
Bridging combinatorial problems and sequence

mining problems. Closed form expressions and generat-
ing functions act like identification cards for combinatorial
problems. Using 12, we notice that for n = 2 (i.e., 2 items),
the first few terms of the sequence of Whitney numbers are
1, 2, 5, 12, 29, 70, 169, 408, 985, 2378, . . . which are known as
the“Pell numbers”(A000129 in OEIS5). In fact, counting the
number of sequences on I = {a, b} is similar to counting the
number of 132-avoiding two-stack sortable permutations [6],
which is a special type of pattern-avoiding permutations.
We believe our work may help to investigate combinatorial
techniques associated with pattern-avoidance problems and

5On-Line Encyclopedia of Integer Sequences: http://oeis.
org.

applying them for constrained sequence mining [18].
Generalized spectrum kernel. Leslie et al. [14] intro-

duced a new sequence-similarity kernel, the spectrum kernel,
to deal with classification of protein sequences with support-
vector machines (SVMs) and other kernel methods. The
basic idea of applying SVMs on sequence data is to map
sequences into feature spaces by means of kernel functions
and compute the maximum-margin hyperplane to separate
two classes. The k-spectrum of a sequence is the set of all
length-k contiguous subsequences that it contains. The fea-
ture map is indexed by all possible length-k subsequences
(i.e., k-mers) from I and its dimensionality is |I|k. Notice
that this kernel works for simple sequences (i.e., ordered list
of items). To generalize this kernel to sequential patterns we
have to, first, be able to count the size of the feature map,
and, second, develop an efficient computation method based
on the “kernel trick”, that is, mapping sequences into an in-
ner product space. For the first task, it is easy to notice that
for a given length k, the size of the feature map is equal to
wk defined in Equations (1) and (12). For the second task,
efficient computation could be carried by a traversal of a trie
data structure like the one used by several sequential pattern
mining algorithms. So far, the overall complexity of com-
puting the kernel of 2 sequences remains an open problem.
We believe that based on our work, further research on the
generalization of the sequence kernels could be applied in
natural language processing applications where sequential
patterns may represent different sentences or grammatical
groups (for instance, a nominal group could be represented
in a sequence by its own itemset).

Sequence inverse mining problem and privacy is-
sues. From the privacy point of view, data owners may not
want to share their original data sets. Instead, they may con-
sider sharing some anonymized or synthetic data sets that
respect the same pattern distribution. However, one concern
is how many data sets exist that respect the same pattern
distribution, and how much they can be different from each
other. Can an attacker “enumerate” or “characterize” such
data sets sufficiently precisely? In frequent pattern mining,
the performance of frequent itemset mining algorithms de-
pends on the length distribution of the patterns. To improve
the experimental procedures, data miners may want to gen-
erate data sets (i.e., benchmarks) with a given distribution
on the number of patterns. This approach was successfully
applied to itemset mining in [19, 20] and is mainly based on
the Kruskal-Katona theorem. With the theoretical results
in this paper, the reverse mining problem for sequential pat-
terns can be investigated with a strong theoretical basis. For
instance, suppose that I = {a, b} and we want to generate a
data set that contains exactly 2 sequential patterns of length
1, 7 patterns of length-2, and 1 patterns of length 3. The up-
per bound feasability condition [19] can be answered simply
using Equation (1). In this case, the answer is “no” because,
with n = 2 and w2 = 5, one cannot generate 7 different
2-sequences. However, the lower bound feasibility condition
remains an open problem.
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