
Mining Statistically Significant Sequential Patterns

Cécile Low-Kam
Montreal Heart Institute
Université de Montréal

Montréal, QC
clowkam@gmail.com

Chedy Raı̈ssi
INRIA Nancy - Grand Est

Villers-lès-Nancy
F-54600, France

chedy.raissi@inria.fr

Mehdi Kaytoue
INSA-Lyon, CNRS
LIRIS UMR5205
F-69621, France

mehdi.kaytoue@insa-lyon.fr

Jian Pei
School of Computing Science

Simon Fraser University
Burnaby, BC, Canada

jpei@cs.sfu.ca

Abstract—Recent developments in the frequent pattern mining
framework uses additional measures of interest to reduce the
set of discovered patterns. We introduce a rigorous and efficient
approach to mine statistically significant, unexpected patterns in
sequences of itemsets. The proposed methodology is based on a
null model for sequences and on a multiple testing procedure to
extract patterns of interest. Experiments on sequences of replays
of a video game demonstrate the scalability and the efficiency of
the method to discover unexpected game strategies.

Keywords—Sequential pattern; null model; significance test;

I. INTRODUCTION

Sequential pattern mining [1] is an important data mining
task with many real applications. Most of the existing stud-
ies, such as [14], [23], [33], [6], [25], focused on efficient
algorithms and effective pattern representations. In the existing
work, absolute or relative frequency (also known as support) is
used as the sole criterion in selecting frequent patterns. While
frequency often serves as a good preliminary filter to remove
noise patterns of very low popularity, in many applications, one
has to find relevant patterns whose interestingness is defined
in a statistical way, and cannot be specified using only a
support threshold. A pattern of high frequency may not be
interesting if it is statistically expectable from other patterns.
At the same time, a pattern of low frequency may be interesting
if it is statistically unexpected. Since a low support threshold
often leads to a huge number of patterns, asking a user to
select from patterns extracted using a low support threshold is
overwhelming and impractical. This is a problem common not
to only sequential patterns, but to frequent patterns in general.

To echo this challenge, several recent studies [20], [30], [3],
[12] try to find patterns (i.e., itemsets or sequences) using some
alternative interestingness measures or sampling representative
patterns. A general idea, which is a framework of finding
unexpected patterns, is to extract patterns whose characteristic
on a given measure, such as the frequency, or more rarely the
length [29], strongly deviates from its expected value under
a null model. The frequency of a pattern is considered as a
random variable, whose distribution under the null model has
to be calculated or approximated. Then, the significance of
the pattern is assessed through a statistical test that compares
the expected frequency under the null model to the observed
frequency. One of the key-points of this family of approaches
is to choose an appropriate null model. It will ideally be
a trade-off between adjustment to the data and simplicity:
the model should capture some characteristics of the data,
to integrate prior knowledge, without overfitting, to allow for
relevant patterns discovery. A simple model, with low-order

dependency, often results in faster computations and clear
interpretation of the unexpected patterns.

Specifically, Gallo et al. [9], Hämäläinen and
Nykänen [13], and Mampaey et al. [19] extracted itemsets of
unexpected frequencies in non-sequential data. On sequence
data, finding over-represented substrings in strings has been
extensively studied in statistics, with interesting applications
in biology, as these patterns were found to coincide with
binding sites in DNA sequences [24]. Here, every element in
a string is a simple item (no itemsets). When itemsets are
allowed in sequence data, the order dimension introduces
serious complexity in computing the expected frequency, since
a pattern can have numerous and overlapping occurrences,
and sequences can have different lengths. To the best of our
knowledge, Gwadera and Crestani [12] gave the only approach
that extends the unexpected pattern finding framework to
sequence data, which ranks subsequences of itemsets with
respect to their significance given a null model. Their model
is a mixture model obtained by conditioning on the length of
the sequence combined with a maximal entropy model. This
approach, while theoretically sound, may become inefficient
with a large set of items, and does not include a complete
statistical testing procedure for global significance.

In this paper, we develop a rigorous and efficient frame-
work to mine statistically significant, unexpected patterns in
sequences of itemsets. We make several contributions.

First, we develop an approach that allows us to avoid
considering overlapping occurrences or conditioning on the
length of the sequence. This method, which is combinatorial
in nature, permits the development of an elegant dynamic
computation procedure based on the expected frequency of
the prefix of each pattern, and therefore considerably speeds
up the computations. Second, we investigate the theoretical
properties of the expected frequency under the null model
and relate them to a very well-known concise representation,
closed sequential patterns [33], to obtain a more parsimonious
and less redundant set of patterns. In addition, we provide
and discuss multiple procedures to test for the significance of
the extracted sequences combined with correction procedures
to control the error rate at a global level. Last, we evaluate
our approach on synthetic and real large-scale sequence data.
We discuss in length the use of our algorithm SigSpan in
an electronic-sport use case. We mine several large sequence
bases of replays of Starcraft 2, a real-time strategy video game
(Blizzard Entertainment). Our assessment shows an effective
and scalable method. Helped by professional gamers, our
framework is able to detect unexpected game strategies.

The rest of the paper is organized as follows. Section II
reviews the related work. Section III briefly reviews the
preliminaries needed in our development. Section IV intro-
duces our null model. In Sections IV,V and VI, we discuss
the computation of the expected support of a sequence, the
significance tests and the algorithmic details. An experimental
study is reported in Section VII. We conclude our work and
discuss several interesting directions in Section VIII.

II. RELATED WORK

A number of works have explored various notions of sta-
tistical significance for itemsets and have proposed novel and
efficient methods for their extraction. In [13], an approach is
developed to mine for statistically significant association rules,
under an independence assumption between the condition and
the consequence of the rule. The expected frequency for the
condition and consequence is derived analytically, based on
the marginal frequencies of the dataset. In [9], the authors use
two null models to calculate the expected frequencies. The first
is an independence model, where items are mutually indepen-
dent and their probabilities of occurrence are their observed
marginal relative frequencies. The second one is obtained
by considering a distinct distribution for each transaction,
where each of the items has the same transaction-dependent
probability of occurrence. This second model consider large
transactions as less interesting, because two such transactions
are likely to share items by chance. As the expected frequency
is anti-monotone (the expected frequency of an itemset is
greater than the expected frequencies of its subsets), the au-
thors only consider closed itemsets (itemsets having no super-
set with the same observed frequency). They then introduce
the MINI algorithm to mine for non-redundant unexpected
itemsets, by penalizing itemsets overlapping with itemsets
with the highest p-values. An alternative to the independence
model is the maximum entropy model used in [21]. A related
framework is developed in [19], where unexpected itemsets
given a maximum entropy model are iteratively used to update
the model, resulting in a large coverage of the database and
minimal redundancy between the itemsets.
In statistics, mining for over-represented patterns in sequences
of items has been mainly developed for applications in biology,
to find binding sites in DNA [24]. Because of the structure of
DNA, where coding regions are usually made of consecutive
bases, the patterns considered in these approaches are usually
words (consecutive items), and the frequence considered is
the total number of occurrences along the sequence. Under
a Markov model, in [24] and [27], expected frequencies are
computed given an exhaustive statistic for the model, in [22],
by means of a convenient sequence associated to each word,
and in [7], through generating functions. Note that [7] also
considers words formed of items with variable-length gaps
between them, the so-called “hidden patterns”. In [26], the
objective is to find specific patterns called structured motifs
of unexpected frequencies in a set of DNA sequences given a
Markov model. Structured motifs are formed of two boxes of
consecutive nucleotides separated by a gap of variable length,
but bounded. The probability of occurrence for one such motif
at a given position is approximated by considering the past
up to a fixed order. [34] extend this last work by using the
inclusion-exclusion principle, but only for structured motifs
with a fixed length gap. In both approaches, the probabilities of

occurrence are then compared to observed frequencies through
a binomial test, as all sequences of the base are of the same
length.

In the data mining community, a similar approach was
developed by [11] to determine interesting frequent episodes in
event sequences, i.e. subsequences with variable length gaps in
sequences of items. Under an independence model, the authors
use a sliding window to count all possible occurrences of
an episode. Because of the dependency between overlapping
occurrences, significance bounds for the frequency are set by
using an asymptotic approximation for the variance and the
Central Limit Theorem. In [16], the interest of subsequences
is assessed by the difference between their observed and
predicted frequencies, instead of the associated p-values. The
most promising subsequences are then used to update a hidden
Markov model through dynamic programming. Other solutions
to reduce the set of frequent patterns to a smaller set of infor-
mative patterns include Minimum Description Length (MDL)-
based approaches [18], [31]. Both approaches are conceived
as a framework to summarize data.

To the best of our knowledge, the only approach that
extends the null model based pattern extraction framework to
sequences of itemsets is [12]. In this work, the null model
is obtained by combining two models at different levels:
itemset-wise and sequence-wise. The sequence-wise model is
a mixture model obtained by conditioning on the length of
the sequence, as a subsequence is more likely to occur in a
longer sequence. The weights of the mixture are determined by
the proportion of sequences of the same length in the dataset.
For all the elements of the mixture, the authors use the same
independence model as in their previous work [11], replacing
items with itemsets. For the itemset-wise model, the authors
choose a maximal entropy model, like in [21], as it makes
mimimal assumptions about dependency between items, while
setting the probability of an empty itemset to zero, unlike
a simple independence model. The General Iterative Scaling
Algorithm [4] can be used to calculate the expected frequencies
of the itemsets under the maximum entropy model. The
expected frequency of a sequential pattern is then obtained by
combining the frequencies of its itemsets using the sequence-
wise model. Finally, sequential patterns are ranked by a two-
step algorithm which first searches for frequent patterns, then
for each pattern, computes the expected frequency and uses
the z-score for ranking unexpected patterns. As previously
described in [19], the main difficulty of this approach is in
the inference of an itemset’s probability which is infeasible
to do for a large number of items. In fact, the author of [28]
shows that querying the maximum entropy model is PP-hard.

III. PRELIMINARIES

Let I = {σ1, σ2, . . . , σm} be a finite set of items. An
itemset X is a non-empty subset of I. A sequence s over I is
an ordered list 〈s1, . . . , s`〉, where ` > 0, si is an itemset for
1 ≤ i ≤ `. ` is called the length of the sequence s, denoted by
|s|= `. Please note that the length of a sequence is the number
of itemsets in it, instead of the number of item occurrences.

We denote by T(I) the set of all possible sequences over
I. A sequence database D of size n over I is a set of n
sequences over I. Note that the sequences in a database can

s1 {a,b,c} {a,b} {b}
s2 {a} {a,c} {a}
s3 {a,b} {b,c}

TABLE I: A sequence
database.

X1 X2 X3

X11 X12 X13 X21 X22 X23 X31 X32 X33

s1 1 1 1 1 1 0 0 1 0
s2 1 0 0 1 0 1 1 0 0
s3 1 1 0 0 1 1

TABLE II: The Bernoulli binary representation of the sequence database in Table I.

have different lengths. We denote by `max the length of the
longest sequence of D, that is, `max = maxs∈D{|s|}.

Definition 1 (Subsequence): A sequence s = 〈s1, . . . , sk〉
is a subsequence of sequence s′ = 〈s′1, . . . , s′k′〉, denoted by
s � s′ if k ≤ k′ and there exist 1 ≤ r1 < r2 < · · · < rk ≤ k′
such that sj ⊆ s′rj for all 1 ≤ j ≤ k. We also say that s is
contained in s′, s′ supports s. We call s′ a supersequence
of s. The greater prefix of a sequence s of size k denotes the
subsequence 〈s1 . . . sk−1〉.

Definition 2 (Support and frequency): The support of a
sequence s in a database D, denoted by Support(s,D) is the
number of sequences in D that support s, that is,

Support(s,D) = |{s′ | s′ ∈ D, s � s′}| (1)

The frequency of s, denoted by Freq(s,D) = Support(s,D)
n ,

is the relative support.

We often omit the sequence database D if it is clear from
context.

Definition 3 (Sequential pattern mining): Given a mini-
mal frequency threshold 0 < minFreq ≤ 1, the problem
of sequential pattern mining is to find all sequences s such
that Support(s,D) ≥ minFreq. Every sequence s such that
Support(s,D) ≥ minFreq is called a sequential pattern.
We also say s is to be frequent.

Definition 4 (Frequent closed sequence): A sequential
pattern s is a frequent closed sequence if there does
not exist a proper supersequence s′ such that s ≺ s′ and
Support(s,D) = Support(s′,D). Frequent closed sequences
directly provide the frequency of their subsequences and no
additional processing is needed to extract this information.
This concept of closure can be seen as a lossless compression
of frequent patterns.

We illustrate definitions in the following running example.

Example 1: Consider the sequence database D in Table
I on the alphabet I = {a, b, c}. The size of D is n =
3. The longest sequence length is `max = 3. Sequence
〈{a, b}{b}〉 is contained in both s1 and s3, but not in s2.
Therefore, Support(〈{a, b}{b}〉) = 2. The greater prefix of
〈{a, b}{b}〉 is 〈{a, b}〉. Given minFreq = 2

3 , 〈{a, b}{b}〉 is
a sequential pattern. The set of frequent closed sequences is
{〈{a}〉 , 〈{c}〉 , 〈{a}{c}〉 , 〈{a, b}{b}〉 , 〈{a, c}{a}〉}.

The anti-monotonicity is an important property of sequen-
tial patterns.

Property 3.1 (Anti-monotonicity): For any sequences s
and s′ such that s � s′, Support(s) ≥ Support(s′). If s
is infrequent, so is s′.

IV. A NULL MODEL

Let X = 〈X1, X2, . . .〉 be a stationary stochastic process
of random vectors, where each vector

Xi = (Xi1, . . . , Xim) (2)

contains m = |I| random variables of Bernoulli distribution
(one for each item). This model corresponds to the unex-
pected sequential pattern framework introduced and discussed
in Section I. Then, each sequence s ∈ D, written under a
binary representation, is an independent realization x of X , of
maximal length `max.

Example 2: Table II shows the Bernoulli binary represen-
tation of the database D in Table I. For example, for i = 1, 2, 3,
variable Xi1 indicates the presence or absence of item a in the
corresponding itemset.

This binary representation is more convenient from a sta-
tistical perspective. The null model for sequences of itemsets
is then naturally decomposed into a model for items in each
itemset, and a model for itemsets in sequence.

We choose a global independence model. We assume that
itemsets X1, X2, . . . , X` are independent and identically
distributed (i.i.d.). Therefore,

P (X) = P (X1)P (X2) · · ·P (X`) (3)

We further assume that items are also independent. Thus,

P (Xi) = P (Xi1) · · ·P (Xim) (4)

for all i = 1, . . . , `. The indicator random variables
Xi1, . . . , Xim are independent Bernoulli distributed, of param-
eter p1, . . . , pm, the marginal observed probabilities of each
item in the dataset.

Using the independence models for itemsets is not new,
Gallo et al. [10] and Gionis et al. [9] successfully apply it.
Such an independence model allows useful interpretation as
it can help identifying frequent co-occurrences of items that
cannot be explained by their marginal frequencies. However,
under independence assumptions, the null itemset has proba-
bility (1− p1)× ...× (1− pm), a non-null quantity unless one
of the items is present in each itemset. The maximum entropy
(or log-linear) model [12] relaxes this constraint at the expense
of much more costly computation. However, under the log-
linear model, only one entry is removed from the sample space,
with minimal effect on the remaining probabilities. Therefore,
we choose the independance model which also respects the
marginal frequencies of items and has a lower complexity.

V. EXPECTED FREQUENCY

Let x = 〈x1 . . . xk〉 = 〈(x11, . . . , x1m) . . . (xk1, . . . , xkm)〉
be a sequential pattern of k itemsets, under the binary repre-
sentation. For example, if I = {a, b, c}, sequential pattern

X1 X2 X3 X4

x1 x2 . .
x1 xc

2 x2 .
x1 xc

2 xc
2 x2

xc
1 x1 x2 .

xc
1 x1 xc

2 x2

xc
1 xc

1 x1 x2

TABLE III: Possible positions of itemsets of x in S.

〈{a, b}{b}〉 can be rewritten as 〈(1, 1, 0)(0, 1, 0)〉. Denote by

µxj
= P (Xjr = xjr, r = 1, . . . ,m, xjr = 1) (5)

the probability of itemset xj under the null model, for all
j ∈ {1, . . . , k}. For example, the event “occurrence of itemset
{a, b}” means that either {a, b} or {a, b, c} was observed, and
the associated probability is µ{1,1,0} = P (X.1 = 1, X.2 = 1).

Example 3: Using the marginal frequencies of items in the
dataset of Table II, under the independence model, we have
P (a) = µ{1,0,0} = P (X.1 = 1) = 3

4 , as the item a appears
in 6 itemsets out of 8, P (b) = P (X.2 = 1) = 5

8 and P (c) =
P (X.3 = 1) = 3

8 . Therefore P ({a, b, c}) = µ{1,1,1} =
45
256 .

The expected frequency of sequential pattern x in a single
sequence, given the model defined above, is

p`(x) = P (∃ Xi1 , . . . , Xik , 1 ≤ i1 < . . . < ik ≤ `,
x1 � Xi1 . . . , xk � Xik) , (6)

where xj � Xij if Xijr = 1 for all r ∈ {1, . . . ,m}
such that xjr = 1. In other words, probability p`(x) is the
probability that there exist k ordered itemsets in sequence X
containing the itemsets of x. It depends on `, since the longer
the sequence, the greater the chance it supports x.

When the probability of all itemsets under the null model
is known, computing the expected frequency p`(x) is a com-
binatorial problem, where we have to enumerate all possible
occurrences of x in a sequence, while adjusting for multiple
occurrences in a same sequence. We adopt a counting strategy
where all mutually exclusive occurrences of x are listed
according to the first occurrence of each of its itemsets.

To fix the ideas, we describe this enumeration for a
sequential pattern x = 〈x1x2〉 of length 2 and a random
sequence X = 〈X1 · · ·X4〉 of length 4, such that X supports
x. For each itemset xj , we denote by xcj the set of all possible
itemsets that do not contain xj . Note that this set includes
itemsets that contain some items of xj but not all of them.
We use a meta character “.” to represent the set of all possible
itemsets. Then X can be written as one and only one of the
lines of Table III. The first possible configuration is that X1

supports x1 and X2 supports x2 (the first line of Table 2).
Note that x1 and x2 may occur further in the sequence. The
next possible configuration is that X1 supports x1, X2 does
not support x2 but X3 does (the second line). This case does
not overlap with the previous one. The last possible case is that
X2 and X3 do not support x2, but X4 does (the third line). A
similar technique is used when the first occurrence of x1 is in
X2 (the fourth and fifth lines) and in X3 (the sixth line). Thus,
all possible occurrences are counted, without redundancy.

This procedure is easily extended to the general case of a
pattern of length k and a sequence of length `, where ` ≥ k.

First, note that if ` < k, p`(x) = 0. Then, for 1 ≤ j ≤ k, let
qxj (i) be the probability that the first occurrence of itemset xj
is at the ith position of the sequence. Then,

 qxj
(1) = P (xj � X1) ,

qxj (i) = P (xj � Xi, xj � Xi′ , 1 ≤ i′ < i) ,
for 2 ≤ i ≤ `.

(7)

Using the notation defined in Equation (5), we have{
qxj

(i) =
(
1− µxj

)i−1
µxj

,
for 1 ≤ i ≤ `. (8)

By stationarity and independence of the stochastic process,
qxj

(i) is also the probability that xj first occurs at the ith

position after x′j , for any itemset x′j . Note that for each itemset,
this quantity can be computed by recurrence, since for i ≥ 2,

qxj (i) =
(
1− µxj

)
qxj (i− 1). (9)

Example 4: From Table II, q{1,1,1}(1) = µ{1,1,1} =
45
256 ≈

0.18, q{1,1,1}(2) = (1−µ{1,1,1})µ{1,1,1} = (1− 45
256)×

45
256 ≈

0.14, and q{1,1,1}(3) = (1− µ{1,1,1})q{1,1,1}(2) ≈ 0.12.

Listing all possible occurrences, the probability for x to
occur in S is then

(10)p`(x) =
∑

i1∈I1,i2∈I2,...,ik∈Ik

qx1
(i1)qx2

(i2) . . . qxk
(ik),

where Ij = {1, 2, . . . , `+ j − k − 1− ij−1} is the set of all
possible positions for itemset xj . As first occurrences events
are mutually exclusive, there are no compensating terms in this
sum, unlike the inclusion-exclusion formula. This is the major
advantage of the counting strategy presented above.

Example 5: The probability of occurrence of
〈{a, b, c}{a, b}〉 in a sequence of length ` = 3
can be calculated as follows. First, we note that
µ{1,1,1} = 45

256 ≈ 0.18 and µ{1,1,0} = 15
32 ≈ 0.47. Then

q{1,1,1}(2) = (1 − 45
256) ×

45
256 = 9495

65536 ≈ 0.14 and
q{1,1,0}(2) = (1− 15/32)× 15

32 = 255
1024 ≈ 0.25. Therefore,

p3({1, 1, 1}{1, 1, 0}) = q{1,1,1}(1)q{1,1,0}(1)

+q{1,1,1}(1)q{1,1,0}(2)

+q{1,1,1}(2)q{1,1,0}(1)

≈ 0.18× 0.47 + 0.18× 0.25

+0.14× 0.47 ≈ 0.20. (11)

The probability of occurrence p`(x) of each pattern x under
the independence model can be calculated explicitly using
Equation (10).

In the next section, we describe a dynamic strategy that
calculates the support of any pattern given the support of its
greater prefix, to reduce computational cost.

VI. SIGSPAN: AN ALGORITHM FOR UNEXPECTED
SEQUENTIAL PATTERNS EXTRACTION

In this section, we propose an algorithm that integrates
dynamic expected support computations and comparisons to
observed support to extract patterns of unexpected frequency.

A. Dynamic Programming

For x = 〈x1 . . . xk〉, let Qx(i) be the probability that the
first occurrence of x ends at the ith position of the sequence.
Let Qx be the vector of length ` − k + 1 such that Qx =
(Qx(i))|x|≤i≤`. Then,

p`(x) =
∑̀
i=|x|

Qx(i), (12)

by reordering the terms of sum (10).

Example 6: The probability that the first occurrence of
〈{a, b, c}{a, b}〉 ends at position 2 is

Q{1,1,1}{1,1,0}(2) = q{1,1,1}(1)q{1,1,0}(1). (13)

The probability that it ends at position 3 is

Q{1,1,1}{1,1,0}(3) = q{1,1,1}(1)q{1,1,0}(2)

+q{1,1,1}(2)q{1,1,0}(1). (14)

Summing these two quantities gives (11)

We now turn to the computation of Qx(i), for all 1 ≤ i ≤
`− k + 1:

• if k = 1: then x is reduced to a single itemset and
Qx = (qx(i))1≤i≤` is obtained as in (8).

• if 1 < k ≤ `: then if x− denotes 〈x1...xk−1〉, the
largest prefix of x, then for k ≤ i ≤ `,

Qx(i) =

i−1∑
j=|x|−1

Qx−(j)qxk
(i− j), (15)

which allows for using previous calculations for
greater prefix x−. Therefore, the expected support
computation framework is easily integrated in the
prefix tree structure for frequent patterns extraction
of Section III.

Probability (15) is calculated as follows: let

Mx− =

Qx−(|x| − 1) Qx−(|x|) · · · Qx−(`− 1)

0 Qx−(|x| − 1) · · · Qx−(`− 2)
0 0 · · · Qx−(`− 3)
...

...
. . .

...
0 0 · · · Qx−(|x| − 1)

.

(16)

Then, Qx is obtained as the matrix product of this matrix
and the vector

(qxk
((`− |x|+ 1)), ..., qxk

(2), qxk
(1))

T (17)

Given the support of its greater suffix, the calculation of
the expected support of x is reduced to its two last itemsets’
positions enumeration, resulting in a complexity in O(`2).
Replacing ` with the maximal length `max, and noting that
p`(x) is obtained as a partial sum on the terms of p`max(x)
for all ` ≤ `max, the final complexity of computing p`(x) for
all ` ∈ {1, ..., `max} is O(`2max) for each x.

The expected frequencies are then compared to observed
frequencies to extract unexpected sequential patterns.

B. Statistically Significant Patterns

For a sequential pattern x, and i = 1, ..., n, let Zi
x be the

Bernoulli random variable such that:{
Zi
x = 1 if the ith sequence supports x,

Zi
x = 0 if not.

(18)

If all sequences have the same length `, Zi
x = 1 with the

probability p`(x) for all i and Support(x) is the sum of these
i.i.d. random variables. The expected support of x under the
null model is n × p`(x) = E (Support(x)), and Support(x)
has a binomial distribution.

In the general case, however, sequences of D have dif-
ferent lengths and Support(x) is a sum of independent,
non identically distributed variables of Bernoulli distribution
B(p`i(x)), and of expectation E(Support(x)) =

∑n
i=1 p`i(x).

The exact distribution of Support(x) can be calculated with a
simple procedure of quadratic complexity. Instead of the exact
distribution, we use Hoeffding’s concentration inequality ([15])
for sums of bounded, independent random variables:

(19)P {Support(x) ≥ Supportobs(x)}

≤ exp(− 2

n
(Supportobs(x)− E(Support(x)))2),

This gives an upper bound for the p-value associated to the
sequential pattern x. The drawback of this method is that the
bound is not tight for small-variance random variables. If we
fix a critical threshold ε, if

(20)Supportobs(x)− E(Support(x)) ≥
√
−n
2
log ε,

then x is statistically over-represented at level ε. For example,
a data analyst may consider that sequences are significant if
Supportobs(x)−E(Support(x)) ≥ 1000 in a data set of size
100, 000. Then the analyst needs to choose ε such that ε ≥ 1

e20 .

As all frequent patterns are tested simultaneously, we apply
a correction procedure for multiple testing. The Bonferroni
correction controls the family-wise error rate by performing
individual tests with a threshold of ε/N , where N is the
number of tests. As Bonferroni correction is known to be very
conservative, more recent and powerful methodologies propose
to control the false discovery rate (FDR), i.e. the expected pro-
portion of false positives. The Benjamini-Hochberg-Yekutieli
procedure [2] allows for controlling the FDR at level ε for
dependent tests by finding the largest q such that

α(q) ≤ q

N
∑N

q′=1
1
q′

ε, (21)

where α(1), ..., α(N) are the N ordered p-values for all frequent
patterns. If we use Hoeffding’s approximation, we have a
sequence of bounds β(1), ..., β(N) from (19) such that α(q) ≤
β(q) for all q = 1, ..., N , and replacing α(q) with β(q) in (21)
still allows for controlling the FDR. As N is only known
once all frequent patterns are discovered, both corrections are
applied a posteriori.

Using the difference between the observed support and
the expected one has a bias due to the scale of the observed

support. To overcome the issue, an alternative measure is to
use the deviation in percentage, that is,

Supportobs(x)− E(Support(x))
E(Support(x))

. (22)

Algorithm 1: SigSpan
Data: A database DB, a minimal support minSupp and

a threshold ε
Result: SF , a collection of unexpected sequential

patterns

SF ← ∅;1
Compute probabilities of first occurrence qxk

(i);2

/* mine frequent closed sequences */
CF ← ClosSpan(DB,minSupp);3

/* test if the closed sequences are
significantly over-represented */

for ∀s ∈ CF do4
/* Using dynamic programming */
es := ComputeExpectedSupport(s)5
if s is significant then6

/* significance with Bonferroni
test:
Support(s)− es ≥

√
− |DB|

2 log ε
|CF|, or

FDR tests (see Equation 21)
*/

SF ← SF ∪ s7
end8

end9
return SF10

C. Closed Unexpected Sequential Patterns

Most of the algorithms for discovering sequential patterns
use the antimonotonicity property of the frequence described
in Section III. But the measure of interest defined in (20) is
not anti-monotone: a supersequence of a non over-represented
sequential pattern can be over-represented. However,

Lemma 6.1: The expected support is antimonotone.

Proof: For all ` ≥ 2, let x be a sequential pattern of
length greater than 2, and x− its greater prefix. We have
defined a probabilistic framework, where the event “x occurs
in sequence S” is included in the event “x− occurs in S”,
therefore, p`(x) ≤ p`(x−).

This property means that we can use the subset of closed
unexpected sequential patterns as a summary of all the unex-
pected sequential patterns, without losing information: let us
suppose that for a sequential pattern x,

Supportobs(x−) = Supportobs(x), (23)

where x− is the greater prefix of x. As we are interested in
over-represented sequential patterns, we also suppose that

(24)Supportobs(x) > E(Support(x−))
≥ E(Support(x)).

Then,

(25)Supportobs(x−)− E(Support(x−))
≤ Supportobs(x)− E(Support(x)).

Therefore, we can restrict the search to the set of closed
sequential patterns, as they are always more interesting in the
sense of (20) than their subsequences.

Algorithm 1 lists the different steps of SigSpan in order
to extract unexpected sequential patterns, given a minimum
support minSupp, and a threshold ε for the p-values. The
algorithm starts by computing the probabilities of first oc-
currence qxk

then it calls the CloSpan algorithm to mine
frequent closed sequences. Then, SigSpan does a depth-first
traversal of the prefix tree of closed sequential patterns. For
each pattern s, its support according to the model is computed
using the support of its greater prefix. Therefore, we need to
store the vector Qs− of the greater suffix of s. However, these
vectors are discarded as we progress further on the tree. The
different tests discussed in the previous section are evaluated
for each closed sequence and if a sequence is significantly
over-represented, it is stored in SF and outputted at the end.

VII. EXPERIMENTS

In this section, we report an extensive empirical evaluation
of our algorithm SigSpan using real and synthetic datasets. All
experiments are performed on a 1.8 GHz Intel Core i5 with
8 GB main memory running Mac OS X 10.7.5. We started
from the original C++ version of CloSpan to implement the
algorithm SigSpan (compiled with g++ and -03 optimization).
All the mathematical computations were processed using the
uBlas Library1. The source code and the data sets are available
at http://www.loria.fr/∼raissi.

A. Synthetic Dataset

Finding injected patterns hidden in a generated dataset.

In order to assess the significance of our results, we
check how SigSpan recognizes the unexpected sequence we
introduced in a synthetic dataset on an alphabet of 1000 items.
In this synthetic data set the items’ probabilities distributions
are generated following a Beta distribution and the length
of the sequences follows a Poisson distribution to allow a
maximal of flexibility in the datasets generation process2. We
then introduce 〈{a, b, c}{a, b, c}〉 in 60% of the sequences.
The independence assumption of the null model means that it
should account for the high supports of items a, b, and c, but
not for their co-occurrence in the pattern 〈{a, b, c}{a, b, c}〉.
For each threshold, true positives are the number of sequences
including 〈{a, b, c}{a, b, c}〉 that are considered unexpected by
SigSpan, false positives are other unexpected patterns, false
negatives are patterns including 〈{a, b, c}{a, b, c}〉 which are
not outlined by the algorithm, and true negatives are the
rest of the patterns. We draw a ROC curve on Figure 1 for
different minimal frequency thresholds, with critical thresholds
ε ranging from 10−100 to 10−1, using our algorithm. This

1http://www.boost.org/libs/numeric/
2Due to space limitations, only the experiments with |D|= 100000, α =

0.001, β = 2 and λ = 7 are reported. The data generator along with some
other datasets is provided with the SigSpan downloadable implementation.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

T
ru

e
 p

o
si

tiv
e

 r
a

te

False positive rate

60%
50%
40%

random

Fig. 1: ROC curve

D
at

a

|D
|

|I
|

l m
a
x

l a
v
g

m
a
x
(|
s
i
|)

a
v
g
(|
s
i
|)

PvP 6,668 1,161 57 11,47 17 2,13
PvT 18,754 3,656 70 19,03 23 2,48
PvZ 22,784 3,749 94 19,59 28 2,66
TvT 7,457 2,202 67 20,73 18 2,56
TvZ 23,638 4,493 75 22,52 29 2,55
ZvZ 9,554 1,690 60 14,18 16 2,08

TABLE IV: Real world datasets

curves represent the fraction of true positives with respect
to the fraction of false positives and provide a measure for
precision and recall. The best possible prediction would be
the point (0, 1) corresponding to no false positives and no
false negatives. Figure 1 shows that the performance of the
algorithm depends on the minimal frequency threshold, but not
on ε, as all points overlap for all curves. All three curves are
above the random guess line, thus demonstrating the accuracy
of the algorithm. As expected, the curve for minFreq = 60%
performs better.

B. The StarCraft II Use Case

Context Opponents modeling aims at simulating player
behaviors. This study domain started in the seventies and
focused on chess strategies [8] before shifting in recent years
to video games, one of the most lucrative leisure activities.
Models of players behaviors are used within automated agents,
to personalize a game environment for a specific user, to
predict future actions of an opponent, etc. To tackle some
of these problems, an important sub-problem is the automatic
discovery of strategic patterns in a competitive video game
environment [5]. We study one of the most competitive real-
time strategy games (RTS) [17], StarCraft II (Blizzard Enter-
tainment, 2010) which has its own world-wide players ranking
system (ELO) and annual world cup competition series (WCS)
with a US$1.6 millions prize pool for the year 2013 (among
others premier tournaments).

A game of StarCraft II involves two players. Each player
chooses a faction among Zerg (Z), Protoss (P) and Terran
(T). As such, there are 6 different possible match-ups with
different strategies of game. During a game, two players are

battling on a map (aerial view), controlling buildings and units
to gather supply, build an army with the final goal of winning
by destroying the opponent’s forces3. Such actions (training,
building, moving, attacking) are done in real-time, see Figure 2
for an example. Each faction (Z,P,T) allows different units and
buildings with distinctive weaknesses and strengths following
a rock-paper-scissors principle. A strategy is hidden in large
sequences of actions generated by players and called replays.
Our goal is to mine significantly over-represented patterns to
detect surprising strategies in this game.

Fig. 2: An example of build-actions realized during a game.

Processing raw data We collected more that 300,000 replays
from specialized repositories, and filtered them to keep the
90, 678 replays from professional players. We focus only on
buildings order sequences (such as in Figure 2), the pillar
elements of a strategy on which unit production type and
attack timings depend [32]. All raw replays are partitioned into
6 datasets, one for each match-up. For each dataset, we derive
one sequence for each replay: a sequence is seen as an ordered
list of itemsets of buildings from B, where an itemset denotes
a window of time of 30 seconds (the ordering of two items
over a small period of time is insignificant in terms of strategy,
hence the use of itemsets). Furthermore, both players actions
are mixed in a sequence. Indeed, actions of both players are
strongly correlated. We choose to distinguish both players
within a sequence by adding the winner information. As such,
an itemset of a sequence is a set of (B × {winner, looser}).
Finally, since timings are very important in a strategy, we
encode the window’s identifier for each item. As such, an
itemset is a set of I = N × B × {winner, looser}. The first
three itemsets built from the sample replay in Figure 2 are
〈{(1, pylon, looser)}, {(2, gateway, looser), (2, spanningpool, winner)},
{(3, assimilator, looser), (3, pylon, looser)}}〉 . Table IV summarizes
the main characteristics of the different datasets. For example,
the dataset labeled “PvT” encodes all sequences played by a
Protoss player against a Terran player. The resulting datasets
are described in Table IV. The sequences length distribution
is given by Figure 3.

C. Quantitative Experiments

Performance and scalability Figures 5 and 4(a) give the
execution times of SigSpan with different minimum supports.
The closed pattern extraction time is separated from the
statistical computation time. In general, we observed that the
statistical model computation is moderate except for extremely
low supports (≤ 1%). The scalability tests reported by Figure 7
show that the total execution time grows linearly with the size
of the data set when replicated (i.e. the same set of closed or

3http://en.wikipedia.org/wiki/Real-time˙strategy

 0

 100

 200

 300

 400

 500

 600

 700

 0 5 10 15 20 25 30 35 40 45 50 55

Sequence length

PvP
ZvZ
TvT

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 5 10 15 20 25 30 35 40 45 50 55

Sequence length

TvZ
PvZ
PvT

Fig. 3: Sequence length distribution of the StarCraft II datasets (sequence count in Y-axis).

significant patterns). For example, Figure 7(f) shows that the
200 times replicated ZvZ data set (2 millions of sequences) can
be mined in less than 500 seconds with minSupp = 0.5%.

Closed vs. significant counts when fixing ε and vary-
ing minimal frequency For each dataset, we set ε so that
Supportobs(x) − E(Support(x)) ≥ 500 in equation (20).
Figures 6 and 4 (c,d,e,f) reports the number of closed pat-
terns and of significant closed patterns with several minimum
supports. As expected, the number of closed patterns grows
exponentially. Interestingly the number of closed significant
patterns is several order of magnitude lower with low supports,
and stays approximately constant. This is a very important
remark as this collection of patterns can still be humanly
processed and analyzed.

Closed vs. significant counts when fixing minimal frequency
and varying ε. We now re-iterate the same experiment, this
time fixing the frequency for our datasets4. Figure 8 reports
these experiments. The number of frequent closed sequences
remains constant. Both the number of unexpected sequences
and ε decrease exponentially together.

D. Qualitative Interpretation

To assess the quality of the extracted patterns representing
players tactics, we contacted a game expert. Our qualitative
experiment is two-fold. Firstly, we show that classic and well-
known strategy openings in StarCraft II are expected patterns.
Second, we show that some risky strategies are unexpected
with high potentials for professional players.

Known Strategies, Expected Sequences Like in chess,
Starcraft II openings are generally well-known and codified
(given a name). We would like to observe if known openings
in StarCraft II are translated as expected sequences (i.e., least
unexpected sequences). We started with the TvZ dataset and
extracted all closed patterns with minimum support higher
than 0.4%, i.e. about 700, 000 patterns. We sorted them
according to the ratio given by Equation (22): the closer the
ratio to zero, the more expected the pattern and finally selected
the top-100 expected patterns. According to the expert, most
of these patterns (with a ratio lower than 0.5) are either known
openings or standard actions the players need to do to develop
normally their economy (i.e. non significant). The first pattern
is 〈{(5, winner,Barracks)}, {(7, winner,Barracks)}〉 is

4Due to space limitations, only ZvZ dataset results are reported.

a classical opening where the player favors a special kind of
unit composition that appears only in the ”Barracks” building.
Another known opening is translated and found in the pattern
〈{(6, looser, ComCenter)}, {(7, looser, ComCenter)}〉
(ranked 22). This strategy is called ”double expand”.
Consider now another scenario: the Terran (T) player
has build a bunker (a defensive building). What is
he expected to do next? We kept the 30, 414 patterns
containing at least two items among one involving the
bunker building. The most expected pattern is the following
〈{(6, winner,Bunker)}, {(7, winner, CommandCenter)}〉
with an observed support of 113, and expected support of
67 (out of 22, 784 sequences in the original dataset). For
the expert, this pattern clearly indicates either a so-called
defensive-expand strategy in the early stage of the game,
or an enemy rush (an all-in strategy that is deadly if not
countered, equivalent to a blitz attack in chess on the f7 or
f2 square early in the game, putting the king in check5).
In those examples, elements of the patterns are expected to
occur together.

Surprising Strategies, Unexpected Sequences The so-called
DT-rush is a risky Protoss gambling strategy that leads often
to a win of the game when the opponent does not detected
it (although it requires a strong technology coupled with
long minutes of vulnerability). It is generally well detected
and expected by the opponent given the information she
gets by scouting the map. However, in the PvZ matchup,
Protoss tends to use it, since Zerg needs some time to react
to this piece of information. We mined the PvZ dataset
accordingly with a minimum support of 0.04%. We kept only
the patterns involving the building unlocking these invisible
units (DT’s). On 14 remaining patterns, 12 patterns are of
size 1 (only one itemset), and involve the target building
in late state of the game with expected values almost iden-
tical to the observed values. This is not surprising since
all technologies are generally unlocked in mid/end game.
The 2 last patterns however, involve the target building in
the early stage of the game leading to a victory. Both pat-
terns 〈{(6, winner, Canon)}, {(11, winner,DarkS)}〉 and
〈{(11, winner, Concil)}, {(12, winner,DarkS)}〉 have an
observed support of 94 while an expected support of 3 and
17. They however do not correspond to known timings of the
DT rush (which occurs earlier). These patterns highlight an
unexpected strategy that the expert calls “delayed DT rush”.

5http://en.wikipedia.org/wiki/Fast chess

 0

 2

 4

 6

 8

 10

 12

 14

 0.01 0.1 1 10 100

Minimum supports (%)

CloSpan
Model+check

(a) Performance

 10

 100

 1000

 10000

 100000

 1e+06

 0.01 0.1 1 10 100

Minimum supports (%)

Closed
Significant

(b) Count

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1e-36 1e-27 1e-18 1e-09 1

Significant
Closed

(c) 50%

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 1e-36 1e-27 1e-18 1e-09 1

Significant
Closed

(d) 25%

 0

 100

 200

 300

 400

 500

 600

 700

 1e-36 1e-27 1e-18 1e-09 1

Significant
Closed

(e) 10%

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1e-36 1e-27 1e-18 1e-09 1

Significant
Closed

(f) 5%

Fig. 4: Synthetic dataset

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

 0.1 1 10

Minimum supports (%)

CloSpan
Model+check

(a) PvP

 0

 100

 200

 300

 400

 500

 600

 0.1 1 10

Minimum supports (%)

CloSpan
Model+check

(b) TvT

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

 0.1 1 10

Minimum supports (%)

CloSpan
Model+check

(c) ZvZ

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0.1 1 10

Minimum supports (%)

CloSpan
Model+check

(d) PvZ

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0.1 1 10

Minimum supports (%)

CloSpan
Model+check

(e) PvT

 0

 50

 100

 150

 200

 250

 300

 350

 0.1 1 10

Minimum supports (%)

CloSpan
Model+check

(f) TvZ

Fig. 5: Performance (Y-axis in seconds)

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0.1 1 10

Minimum supports (%)

Closed
Significant

(a) PvP

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0.1 1 10

Minimum supports (%)

Closed
Significant

(b) TvT

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0.1 1 10

Minimum supports (%)

Closed
Significant

(c) ZvZ

100

1000

10000

100000

1e+06

1e+07

0.1 1 10

Minimum supports (%)

Closed
Significant

(d) PvZ

100

1000

10000

100000

1e+06

1e+07

0.1 1 10

Minimum supports (%)

Closed
Significant

(e) PvT

100

1000

10000

100000

1e+06

1e+07

0.1 1 10

Minimum supports (%)

Closed
Significant

(f) TvZ

Fig. 6: Pattern count

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 50 100 150 200

n

minFreq=0.2

(a) 20%

 0

 2

 4

 6

 8

 10

 12

 0 50 100 150 200

n

minFreq=0.1

(b) 10%

 0

 5

 10

 15

 20

 25

 30

 0 50 100 150 200

n

minFreq=0.05

(c) 5%

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 50 100 150 200

n

minFreq=0.025

(d) 2.5%

 0

 50

 100

 150

 200

 250

 0 50 100 150 200

n

minFreq=0.01

(e) 1%

 0

 5

 10

 15

 20

 25

 30

 0 50 100 150 200

n

minFreq=0.05

(f) 0.05%

Fig. 7: Scalability test with dataset ZvZ replicated n times with different minimum support (Y-axis in seconds)

 100

 1000

 1e-240 1e-120

Significant
Closed

(a) 5%

 100

 1000

 1e-240 1e-120

Significant
Closed

(b) 4%

 10

 100

 1000

 10000

 1e-240 1e-120

Significant
Closed

(c) 3%

 1

 10

 100

 1000

 10000

 1e-240 1e-120

Significant
Closed

(d) 2%

 1

 10

 100

 1000

 10000

 1e-120

Significant
Closed

(e) 1.5%

 10

 100

 1000

 10000

 100000

 1e+06

 1e-33 1e-22 1e-11 1

Significant
Closed

(f) 0.3%

Fig. 8: Closed vs. significant pattern counts for different minimum support (subfigures) and ε parameters (X-axis).

We contrasted this result with the PvT dataset: Terran is the
only faction that has a counter to the DT-rush early in the
game, with almost no technology required. For a minimum
support of 0.04%, the one and only pattern that involves
the target building is 〈{9, looser,DarkS}〉 with an observed
support of 95 and expected support of 94.7. This corroborates
the fact given by the expert stating that DT-rush is not a
viable strategy in the PvT matchup, but could be sometimes a
surprising winning strategy in PvZ when delayed.

VIII. CONCLUSION

In this paper, we developed a new approach for extract-
ing statistically significant sequential patterns. The proposed
methodology is based on a null model for sequences of
data and a combinatorial enumeration process of possible
positions for the itemset of each subsequence. A statistical
test is performed to determine over-represented sequential
patterns, and an upper bound on the associated p-value is
provided for greater efficiency. This probabilistic framework
is seamlessly integrated to the tree structure of traditional
frequent patterns mining algorithms. Correction procedures
account for multiplicity of tests. Experimental results show
the relevance of discovered patterns.

Acknowledgments. The third author was partially supported by the
MI CNRS Mastodons program.

REFERENCES

[1] R. Agrawal and R. Srikant. Mining sequential patterns. In Proceedings
of the Eleventh International Conference on Data Engineering, ICDE
’95, pages 3–14, Washington, DC, USA, 1995. IEEE Computer Society.

[2] Y. Benjamini and D. Yekutieli. The control of the false discovery rate in
multiple testing under dependency. Annals of Statistics, 29:1165–1188,
2001.

[3] M. Boley, T. Horváth, and S. Wrobel. Efficient discovery of interesting
patterns based on strong closedness. Statistical Analysis and Data
Mining, 2(5-6):346–360, 2009.

[4] J. N. Darroch and D. Ratcliff. Generalized iterative scaling for log-
linear models. In The Annals of Mathematical Statistics, volume 43,
pages 1470–1480, 1972.

[5] E. Dereszynski, J. Hostetler, A. Fern, T. Dietterich, T.-T. Hoang,
and M. Udarbe. Learning probabilistic behavior models in real-time
strategy games. In Seventh Artificial Intelligence and Interactive Digital
Entertainment Conference, 2011.

[6] B. Ding, D. Lo, J. Han, and S.-C. Khoo. Efficient mining of closed
repetitive gapped subsequences from a sequence database. In Y. E.
Ioannidis, D. L. Lee, and R. T. Ng, editors, ICDE, pages 1024–1035.
IEEE, 2009.

[7] P. Flajolet, W. Szpankowski, and B. Vallée. Hidden word statistics. J.
ACM, 53(1):147–183, 2006.

[8] J. Fürnkranz and M. Kubat. Machine learning in games: A survey.
Machines that learn to Play Games, pages 11–59, 2001.

[9] A. Gallo, T. D. Bie, and N. Cristianini. Mini: Mining informative non-
redundant itemsets. In PKDD, pages 438–445, 2007.

[10] A. Gionis, H. Mannila, T. Mielikäinen, and P. Tsaparas. Assessing data
mining results via swap randomization. In KDD 2006, pages 167–176,
2006.

[11] R. Gwadera, M. J. Atallah, and W. Szpankowski. Reliable detection of
episodes in event sequences. Knowl. Inf. Syst., 7(4):415–437, 2005.

[12] R. Gwadera and F. Crestani. Ranking sequential patterns with respect
to significance. In PAKDD (1), pages 286–299, 2010.

[13] W. Hämäläinen and M. Nykänen. Efficient discovery of statistically
significant association rules. In ICDM ’08: Proceedings of the 2008
Eighth IEEE International Conference on Data Mining, pages 203–212,
Washington, DC, USA, 2008. IEEE Computer Society.

[14] J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal, and M. Hsu.
Freespan: frequent pattern-projected sequential pattern mining. In
R. Ramakrishnan, S. J. Stolfo, R. J. Bayardo, and I. Parsa, editors,
KDD, pages 355–359. ACM, 2000.

[15] W. Hoeffding. Probability inequalities for sums of bounded random
variables. Journal of the American Statistical Association, 58:13–30,
1963.

[16] S. Jaroszewicz. Interactive HMM construction based on interesting
sequences. In Proc. of Local Patterns to Global Models (LeGo’08)
Workshop at the 12th European Conference on Principles and Prac-
tice of Knowledge Discovery in Databases (PKDD’08), pages 82–91,
Antwerp, Belgium, 2008.

[17] M. Kaytoue, A. Silva, L. Cerf, W. Meira Jr., and C. Raı̈ssi. Watch me
playing, i am a professional: a first study on video game live streaming.
In A. Mille, F. L. Gandon, J. Misselis, M. Rabinovich, and S. Staab,
editors, WWW 2012 (Companion Volume), pages 1181–1188. ACM,
2012.

[18] H. T. Lam, F. Moerchen, D. Fradkin, and T. Calders. Mining compress-
ing sequential patterns. In SDM, pages 319–330. SIAM / Omnipress,
2012.

[19] M. Mampaey, N. Tatti, and J. Vreeken. Tell me what i need to know:
succinctly summarizing data with itemsets. In KDD, pages 573–581,
2011.

[20] M. Mampaey, J. Vreeken, and N. Tatti. Summarizing data succinctly
with the most informative itemsets. TKDD, 6(4):16, 2012.

[21] H. Mannila and H. Toivonen. Multiple uses of frequent sets and
condensed representations. In In Proc. KDD Int. Conf. Knowledge
Discovery in Databases, pages 189–194. AAAI Press, 1996.

[22] G. Nuel. Pattern markov chains: optimal markov chain embedding
through deterministic finite automata. Journal of Applied Probability,
1:226–243, 2008.

[23] J. Pei, J. Han, M. B. Asl, H. Pinto, Q. Chen, U. Dayal, and M. C. Hsu.
Prefixspan mining sequential patterns efficiently by prefix projected
pattern growth. In Proc.17th Int’l Conf. on Data Eng., pages 215–226,
2001.

[24] B. Prum, F. Rodolphe, and . de Turckheim. Finding words with
unexpected frequencies in DNA sequences. J. R. Statist. Soc. B, 57:205–
220, 1995.

[25] C. Raı̈ssi, T. Calders, and P. Poncelet. Mining conjunctive sequential
patterns. Data Min. Knowl. Discov., 17(1):77–93, 2008.

[26] S. Robin, J.-J. Daudin, H. Richard, M.-F. Sagot, and S. Schbath. Oc-
currence probability of structured motifs in random sequences. Journal
of Computational Biology, 9(6):761–774, 2002.

[27] S. Schbath. An efficient statistic to detect over- and under-represented
words in DNA sequences. Journal of Computational Biology, 4:189–
192., 1997.

[28] N. Tatti. Computational complexity of queries based on itemsets. Inf.
Process. Lett., 98(5):183–187, 2006.

[29] N. Tatti. Significance of episodes based on minimal windows. In ICDM,
pages 513–522. IEEE Computer Society, 2009.

[30] N. Tatti and M. Mampaey. Using background knowledge to rank
itemsets. Data Min. Knowl. Discov., 21(2):293–309, 2010.

[31] N. Tatti and J. Vreeken. The long and the short of it: summarising event
sequences with serial episodes. In Q. Yang, D. Agarwal, and J. Pei,
editors, KDD, pages 462–470. ACM, 2012.

[32] B. G. Weber and M. Mateas. A data mining approach to strategy pre-
diction. In P. L. Lanzi, editor, In Proc. of the 2009 IEEE Symposium on
Computational Intelligence and Games,Milano, Italy, 7-10 September,
pages 140–147. IEEE, 2009.

[33] X. Yan, J. Han, and R. Afshar. Clospan: Mining closed sequential
patterns in large databases. In D. Barbará and C. Kamath, editors,
SDM. SIAM, 2003.

[34] J. Zhang, B. Jiang, M. Li, J. Tromp, X. Zhang, and M. Q. Zhang.
Computing exact P-values for DNA motifs. Bioinformatics, 23(5):531–
537, 2007.

