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Abstract—Many real-world networks are featured with dy-
namic changes, such as new nodes and edges, and modification
of the node content. Because changes are continuously intro-
duced to the network in a streaming fashion, we refer to such
dynamic networks as streaming networks. In this paper, we
propose a new classification method for streaming networks,
namely streaming network node classification (SNOC). For
streaming networks, the essential challenge is to properly
capture the dynamic changes of the node content and node
interactions to support node classification. While streaming
networks are dynamically evolving, for a short temporal
period, a subset of salient features are essentially tied to the
network content and structures, and therefore can be used
to characterize the network for classification. To achieve this
goal, we propose to carry out streaming network feature
selection (SNF) from the network, and use selected features as
gauge to classify unlabeled nodes. A Laplacian based quality
criterion is proposed to guide the node classification, where
the Laplacian matrix is generated based on node labels and
structures. Node classification is achieved by finding the class
that results in the minimal gauging value with respect to the
selected features. By frequently updating the features selected
from the network, node classification can quickly adapt to
the changes in the network for maximal performance gain.
Experiments demonstrate that SNOC is able to capture changes
in network structures and node content, and outperforms
baseline approaches with significant performance gain.

Keywords-Network; Classification; Feature Selection; Dy-
namic;

I. INTRODUCTION

Recent years have witnessed an increasing number of

applications involving networked data, where instances are

not only characterized by their feature values but are also

subject to dependency relationships. The mix node content

and structures raise many unique data mining tasks, such as

network node classification [2] where the goal is to classify

unlabeled nodes in the network. Applications of network

node classification include social spammer detection [14],

inferring personality from social network structures [13], and

image classification using social networks [11].

When classifying nodes in networks, existing methods

can be roughly categorized into three groups: (1) combining

content and structure features into new feature vector repre-

sentation, such as iterative collective classification [12], and

link-based classification [10]; (2) using network paths, such

as random walks [4], to determine node labels; and (3) using
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Figure 1. An example of streaming networks. Each color bar denotes a
feature (e.g., a keyword in an article). At time point t2, new nodes (e.g.,
4 and 5) and relevant edges join the network; At t3, Node 5 and the edge
between Nodes 1 and 2 are removed. Over the whole period, node content
may continuously change (e.g., the content change in Node 3).

content information to build additional structure nodes and

generate a new topology network for classification [1]. The

theme of all these methods is to leverage node content and

structures to infer correct labels for unlabeled nodes.

For existing node classification methods, they are carried

out in a static network setting, without considering evolving

network structures and node content. In reality, changes

are essential components in networks, mainly because user

participation, interactions, and responses to external factors

continuously introduce new nodes and edges to the network.

In addition, users may add/delete/modify online posts, re-

sulting in modified node content. In this paper, we refer to

this type of networks, where the network structures and node

content are continuous changing, as Streaming Networks. An

example of streaming networks is shown in Fig. 1, where

the structures and the node feature distributions are con-

stantly changing. Accurate node classification in a streaming

network setting is therefore much more challenging than

static networks. In summary, node classification in streaming

networks has at least three major challenges:

(a) Streaming network structures: Network structures

encode rich information about node interactions inside the

network, which should be considered for node classification.

In streaming networks, structures are constantly changing,

so node classification needs to rapidly capture and adapt to

such changes for maximal accuracy gain.

(b) Streaming node features: For each node in a streaming

network, its content may constantly evolve (e.g. user posts

or profile updating). As a result, the feature space used to

denote the node content is dynamically changing, resulting

in streaming features [15] with infinite feature space. To cap-
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Figure 2. An example of using feature selection to capture changes in
a streaming network. Nodes and edges with solid lines denote network
observed at time point t, while dashed circles and edges mean data arriving
at t + 1. Nodes and edges with curved lines are removed at t + 1, and
the underlined features (keywords) are also removed at t + 1. Nodes are
colored based on their classes, and white nodes mean unlabeled nodes.

ture changes, a feature selection method should timely select

the most effective features to ensure that node classification

can quickly adapt to the new network.

(c) Unlimited Network Node Space: Because node vol-

umes of streaming networks are dynamically increasing,

resulting in unlimited network node space and new nodes

may never appear in the network before. Node classification

needs to scale to the dynamic increasing node volumes

and incrementally updates models discovered from historical

data to accurately classify new nodes.

For streaming networks, changes are introduced through

two major channels (1) node content; and (2) topology

structures. To achieve maximum node classification accu-

racy, a fundamental issue is how to properly characterize

such changes. In this paper, we propose to address this

issue by using a feature driven framework, which uses

node content to model and capture network changes for

classification. Fig. 2 demonstrates how node features can be

used to characterize changes in the network. At time point t,
keywords “System” and “Network” are selected to represent

node content (assuming the number of selected features is

limited to 2) and classify nodes into two classes. At t + 1,

network changes structures and node content. By updating

selected features and using “Spectrum” to replace “System”,

the new features {“Network”, “Spectrum”} can effectively

classify unlabeled nodes into correct classes.

The above observations motivate the proposed research

that uses features to capture changes in streaming networks

for node classification. When a network is experiencing

changes, we can identify a set of important features best

revealing such changed network structures and node content.

Because in a networked world, nodes close to each other in

the network structure space tend to share common content

information [6], we can use selected features to design a

“similarity gauging” procedure to assess the consistency

between network node content and structures and determine

labels for unlabeled nodes. A smaller gauging value indicates

that the node content and structures has a better alignment

with the node label. So the gauging based classification is

carried out such that for an unlabeled node, its label is

the class which results in the minimal gauging value with

respect to the identified features. By updating the selected

features, the node classification can automatically adapt to

the changes in the streaming network for maximal accuracy

gain. The main contribution of the paper, compared to

existing works, is twofold:

• Streaming Network Node Classification: We propose a

new streaming network node classification (SNOC) method

that takes node content and structure similarity into consid-

eration to find important features to model changes in the

network for classification. SNOC is not only more accurate

than existing node classification approaches, but is also

effective to capture changes in streaming networks.

• Streaming Network Feature Selection: To timely capture

changes in the network, we introduce a novel streaming

network feature selection method to incrementally update

the evaluation score of an existing feature by accumulating

changes in the network. Our method is different from an

existing static network based feature selection method [7]

because we are handling streaming networks with changing

feature space and feature distributions.

II. PROBLEM DEFINITION AND FRAMEWORK

A streaming network contains a dynamic number of nodes

and edges, and the node content may also change in terms

of new features or new feature values. At a given time point

t, the network nodes are denoted by X = {(xi, yi)}nt
i=1,

where xi ∈ R
dt is the original feature vector of node i, and

yi ∈ Y = {0, 1, 2, . . . , c} is the label of node i. nt and dt
denote the number of nodes and the dimensionality of the

node feature space at time point t, which may vary with

time. Specifically, yi = 0 means that node i is unlabeled.

A ∈ R
nt×nt is the adjacency matrix of the data, where

Aij = 1 if there is an edge (link) between nodes i and j,

and Aij = 0 otherwise. A path Pij between nodes i and j
is a sequence of edges, starting at i and ending at j. The

length of a path is the number of edges on it. For each

adjacency matrix A, the element [Ak]ij of the kth power

matrix denotes the number of length-k paths from i to j in

the network [5].

To represent network node content, we use F =
{f1, . . . , fr, . . . , fdt} to denote node feature space at time

point t, where the feature dimension dt is dramatically

changing with time t. We use X = [x1, x2, . . . , xnt ] =
[f1, f2, . . . , fdt ]� ∈ R

dt×nt to represent the data matrix, and

C ∈ R
nt×nt represents the label relationship matrix of the

networked data, where Cij = 1 means nodes i and j are in

the same class, and Cij = 0 otherwise. We use fr to denote

a feature, and use bold-faced fr to represent indicator vector

of feature fr, where [fr]j records the actual value of feature

fr in node j. In a binary feature representation (such as

the bag-of-word for text), we have [fr]j = 1 if feature fr

appears in node j, and [fr]j = 0, otherwise. Obviously, fr

helps capture the distribution of feature fr in the network.
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Figure 3. The proposed streaming network node classification (SNOC) framework. Panel A: at time point t, the network is denoted by nodes and edges
with solid lines. Dashed nodes and edges denote new nodes and edges arriving at time point t+1. Colour bars in nodes mean different features and curved
bars mean that a feature appeared at t but is removed at t + 1, such as the purple bar in Node 3. Nodes and edges with curved lines exist at t, but are
removed at t + 1, like Node 4. Panel B: at time point t, candidate features and selected features are identified based on F-score qt(fr). At time point
t + 1, streaming network feature selection (SNF) updates the scores of old features (candidate features at t), and also calculates feature scores for new
features. Panel C: At time point t+ 1, SNOC uses selected features as gauge to test whether to classify an unlabeled Node 5 as positive (+) or negative
(-). The one with the smallest gauging value is used to label Node 5.

Streaming network node classification aims to classify

unlabeled nodes in the network, at any time point t, with

maximal accuracy. To capture dynamic changes of the net-

work, we propose to use feature selection to timely discover

a feature subset S of size m from F . When discovering

feature set S, both node content and network structures are

combined to find the most informative features at each time

point t. As a result, node classification can adapt to the

changes in the network to achieve maximal accuracy.

Fig. 3 shows the framework of SNOC. To capture changes

networks, an incremental streaming network feature selec-

tion method, SNF, is proposed to timely discover a set

of most informative features in the network. To classify

unlabeled nodes, SNOC takes both label similarity and

structure similarity into consideration and uses a quality

criterion to find most suitable label for each unlabeled node.

III. THE PROPOSED METHOD

To classify unlabeled nodes in a streaming network, our

theme is to let (1) nodes sharing the same class and having a

high structure similarity be close to each other, and (2) nodes

belonging to different classes and having a weak structure

relationship be far away from each other. This is motivated

by the commonly observed phenomenon [6] that nodes close

to each other in network structures tend to share common

content information. Our proposed theme is also consistent

with the relational collective inference modeling [8] that uses

relationships between classes and attributes of neighboring

objects for classification.

Following the above theme, we can regard streaming

network node classification as an optimization problem,

which tries to find the optimal class label assignment for

unlabeled node set X u, such that the assigned class labels

Yu ⊆ Y ensure the whole network to maximally comply

with the proposed theme, as defined in Eq. (1).

Yu∗ = argmin
Yu⊆Y

E(Yu) (1)

where Yu is an assignment of labels to unlabeled nodes

in the network, and Yu∗ is the optimal assignment, which

results in the minimal utility score E(Yu).
Following the node classification objective function in

Eq. (1), the key question is how to properly define utility

function E(·). Intuitively, node content provides valuable

information to determine the label of each node, so E(·)
should be defined using node content. In streaming net-

works, the feature space used to denote the node content is

continuously changing with new features or updated feature

values. Using all features to represent the network is clearly

suboptimal. If a set of good features can be found to capture

changes in the network, the node classification in Eq. (1)

will automatically adapt to the changes in the network for

maximal accuracy. So Eq. (1) is re-written as

Yu∗ = argmin
Yu⊆Y

E(Yu,S) (2)

where S is the selected feature set used to capture changes in

a streaming network. Because the utility function E(Yu,S)
is constrained by the selected features S, finding the optimal

S becomes the next challenge. Obviously, a good S should

properly capture network node relationships in terms of

node content, node labels, and structures. That means the

node content relationships assessed in Feature Space should

comply with (1) the label-based node similarity in the Label
Space; and (2) the structure-based node similarity in the

Structure Space.

Accordingly, node classification in Eq. (2) can be divided

into two major steps: (1) Finding an optimal feature set S;

(2) Finding an optimal assignment of labels to unlabeled

nodes such that the utility score E(Yu,S) calculated based

on the selected features S has the minimal value. Therefore,

we derive an evaluation criterion E(Yu,S) as follows:

E(Yu,S) = 1

2

∑
i∈Xu

∑
j∈X

h(i, j, yi)(DSxi −DSxj)
2

s.t. min(
1

2

∑
i,j∈X

h(i, j)(DSxi −DSxj)
2),S ⊆ F , |S| = m

(3)

where h(i, j) is the similarity between nodes i and j in
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the network structure space that will be formally defined in

Eq. (8). h(i, j, yi) is the similarity between nodes i and j
conditioned by setting the label of unlabeled node i as yi. In

Eq. (3), (DSxi−DSxj)
2 measures the feature based distance

between nodes i and j w.r.t. the current selected features S.

DS is a diagonal matrix indicating features that are selected

into the selected feature set S (from F), where

[DS ]ij =
{

1, if i = j and f i ∈ S;
0, otherwise.

In Eq. (3), we use network structure similarity h(i, j, yi)
as the weight value of the node feature distance (DSxi −
DSxj)2. If nodes i and j have a high structure similarity,

their feature distance will have a large weight value and

therefore plays a more important role in the objective

function. In an extreme case, if nodes i and j have a zero

structure similarity, their feature distance will not have any

impact on the objective function at all. By doing so, we

can effectively combine structure similarity and node content

distance to assess the consistency of the whole network.

For streaming networks, the selected feature set S should

be dynamically updated to capture changes in the network.

By using feature set S to guide the node classification,

Eq. (3) provides an efficient way to classify nodes in dy-

namic networks. This is mainly because that any significant

changes in the network will be captured by S , and by

using S as gauge for node classification, our method can

automatically adapt to changes in the network.

The solutions to the objective function in Eq. (3) require

optimization for both variables (DS and Yu). To solve

Eq. (3), we divide the process into two parts: (1) propose

a novel streaming network feature selection framework,

SNF, to take both network structures and node labels into

consideration to find optimal feature set S; and (2) propose

an Laplacian based quality criterion to grade an unlabeled

node with respect to different labels by using S as the gauge.

Finally, the node classification is achieved by finding best

labels that result in the minimal gauging values.

A. Streaming Network Feature Selection

Given a streaming network, the network observed at a

single time point t can be considered as a static network.

In this subsection, we first introduce feature selection on a

static network, and then extend to streaming networks.

1) Feature Selection on a Static Network: We first define

feature selection as an optimization problem. Our target is

to find an optimal set of features, which can best represent

network node content and structures.

Network edges and node labels both play important, yet

different, roles for node classification. We assume that the

optimal feature set should have the following properties:

• Label Similarity: a) labeled nodes in the same class

should be close to each other, and labeled nodes in different
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Figure 4. An example of using feature selection to capture structure
similarity. Left panel shows the network in original feature space and right
panel shows the network in selected feature space (which contains m = 6
features). On the right panel, Node 1 shares more paths with Node 3 than
with Node 7, and the paths between Node 1 and Node 3 are shorter than
the ones between Node 1 and Node 7. So Nodes 1 and 3 are closer to
each other than Nodes 1 and 7 from structure similarity perspective. The
structure similarity is tied to the representation of the nodes in selected
feature space. If two nodes have an edge, they will be close to each other
in the selected feature space (e.g. Node 1 and Node 5 have one edge, so
they have three common features in selected feature space).

classes should be far away from each other; b) unlabeled

nodes should be separated from each other.

• Structure Similarity: The structure similarity between

nodes i and j is closely tied to the number of paths and the

path length between them. The more the number of length-

l paths between i and j, and the shorter the path length

between two nodes, the higher their structure similarity is.

Note that Item b) in the first bullet incorporates the distri-

butions of unlabeled nodes, and tends to select features that

can separate nodes far from each other. This is similar to the

assumption of the Principle Component Analysis, which is

expressed as the average squared distance between unlabeled

samples [16]. Item b) intends to disfavor features that are too

rare or too frequent in the data set, because unlabeled nodes

cannot be separated from each other using these features [9].

The above two properties can be formalized as follows:

(1) Minimizing Label Similarity Objective Function:

JL(f
r) =

1

2

∑
Cij=1

(V�r xi − V�r xj)
2 − 1

2c

∑
Cij=0

(V�r xi − V�r xj)
2

(4)

where c is the total number of classes, and Vr is an indicating

vector showing that feature is selected, and its definition is

as [Vr]i = 1 if i = r, and [Vr]i = 0 otherwise.

(2) Minimizing Structure Similarity Objective Function:

JS(f
r) =

1

2

nt∑
i,j=1

Θij(V�r xi − V�r xj)
2

(5)

where Θij in Eq. (5) means the l-maximal length path

weight parameter between nodes i and j, which is defined

as follows:

Θ =

l∑
i=1

1

2i−1
Ai (6)

The number of paths between two nodes is a proved good

indicator of the node structure similarity. The shorter the

path between two nodes, the closer the two nodes are in

structure. So the weight in Eq. (6) will decrease with the

increase of the path length. An example is shown in Fig. 4.

In Eq. (5), Θ is used as a penalty factor for two nodes

that have high structure similarity but are far away from each
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other in feature space. Intuitively, nodes close in structure

have a high probability of sharing similar node content [6].

So if any two nodes i and j are close to each other in

structure but have a large distance in the original feature

space, their Θij value will increase the objective value and

thus encourages feature selection module to find similar

features for i and j. This provides a unique way to impose

network structures into the node feature selection process.

By combining the label similarity objective function in

Eq. (4) and structure similarity objective function in Eq. (5),

we can form a combined evaluation criterion for each feature

fr as follows:

J (fr) = ξ · JL(f
r) + (1− ξ) · JS(f

r) (7)

where ξ (0 ≤ ξ ≤ 1) is the weight parameter used to balance

the contributions of network structures and node labels. The

ξ values allow users to fine tune structure and label similarity

in the feature selection for networks from different domains.

In Section IV, we will report the algorithm performance w.r.t.
different ξ values on benchmark networks. An example of

using feature selection to capture structure similarity is also

shown in Figure 4.

By defining a weighted matrix W = [Wij ]
nt×nt as

Wij = [ξ, ξ/c] · [Cij ,Cij − 1]� + (1− ξ) ·Θij (8)

we can rewrite Eq. (7) as follows:

J (fr) =
1

2

nt∑
i,j=1

(V�r xi − V�r xj)
2Wij

=
1

2

nt∑
i,j=1

(fri − frj )
2Wij

= (fr)�Dfr − (fr)�Wfr = (fr)�Lfr

(9)

where D is a diagonal matrix whose entries are column sums

of W, i.e., Dii =
∑

j Wij . L = D−W is a Laplacian matrix.

In Eq. (8), Wij is equal to the structure similarity matrix

h(i, j) in Eq. (3), so the constraint part in Eq. (3) is equal

to minimizing
∑

fr∈S J (fr).
As a result, the problem of feature selection in a static

network is equal to finding a subset S containing m features

that satisfy:

min
∑
fr∈S

J (fr), s.t. S ⊆ F , |S| = m (10)

Definition 1: (F-Score) Let X = [f1, f2, . . . , fdt ]� rep-

resents the networked data, and W is a matrix defined as

Eq. (8). L is a Laplacian matrix defined as L = D − W,

where D is a diagonal matrix, Dii =
∑

j Wij . We define a

quality criterion q called F-Score, for a feature fr as

q(fr) = (fr)�Lfr (11)

The solution to Eq. (10) can be found by using F-Score
to assess features in the original feature space F . Suppose

the F-Score for all features are denoted by q(f1) ≤ q(f2) ≤

· · · ≤ q(fdt) in a sorted order, the solution of finding the m
most informative features is

S = {fr| r ≤ m} (12)

2) Feature Selection on Streaming Networks: When the

network continuously evolves at different time points T =
{t1, t2, . . . }, network structure, including edges and nodes,

and node features may change accordingly. So we need to

adjust the selected feature set S to characterize changed

network. Completely rerunning the feature selection at each

single time point from the scratch is time consuming, espe-

cially for large size networks. In this section, we introduce

an incremental feature selection method, which calculates

the score of an old feature based on new networked data

and then combines it with the old feature scores to update

the feature’s final score. Such an incremental feature selec-

tion process ensures our method to tackle the “Unlimited

Network Node Space” challenge as listed in Section I.

To incrementally update scores for old features, we sep-

arate networked data into two parts: a) nodes and edges

that already exist at time point t; and b) new emerged (or

disappeared) nodes and their relevant structures at t + 1.

After that, we use Part a) to obtain the changing parts of

feature distributions in the old networks and use Part b) to

calculate local incremental scores and update the scores of

existing features, respectively. If the changed score of an old

feature at t + 1 can be obtained by using Part a) and Part

b) efficiently, we can compute a feature score by combining

its old score at t and the changed score at t+ 1.

For ease of representation, we define following notations:

• A subscript t or t+ 1 of each matrix (or a vector) means

the time point t or t+ 1 of the matrix (or vector).

• frt and frt+1 denote indicator vectors of feature fr in the

network at time point t and t+ 1, respectively, where frt ∈
R

nt×1 and frt+1 ∈ R
nt+1×1. Then we define fr

′
t+1 ∈ R

nt×1

as [fr
′

t+1]i = [frt+1]i, where 1 ≤ i ≤ nt.

• Δn denotes the number of new arrived nodes (from time

point t to t+ 1).

• Wo denotes the weight matrix defined in Eq. (8) between

new nodes arrived at time point t + 1 and old nodes that

already existed at time point t.

• Wc denotes the changed weight matrix from time point t
to t+ 1 between old nodes that already existed at t.

• WΔn denotes the weight matrix between new nodes that

arrived at time point t+ 1.

So the weight matrix of the networked data at time point

t+ 1 is Wt+1, and the updated part between t and t+ 1 is

WΔ
t+1, i.e.

Wt+1 =

[
Wt + Wc Wo

W�
o WΔn

]
, WΔ

t+1 =

[
Wc Wo

W�
o WΔn

]
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Then the F -Score of an old feature fr at t+ 1 is,

qt+1(f
r)

=
1

2

nt+1∑
i,j=1

([frt+1]i − [frt+1]j)
2[Wt+1]ij

=
1

2

nt+1∑
i,j=1

([frt+1]i − [frt+1]j)
2(

[
Wt 0
0 0

]
ij

+ [WΔ
t+1]ij)

= (frt )
�Ltfrt + (fr

′
t+1 − frt )

�Lt(fr
′

t+1 − frt ) + (frt+1)
�LΔ

t+1frt+1

(13)

In Eq. (13), qt+1(f
r) contains three parts. The first term

is qt(f
r), and the last two terms are the changed scores at

t+1, which correspond to Part a) and Part b), respectively.

Formally,

qΔt+1(f
r) = (fr

′
t+1 − frt )

�Lt(fr
′

t+1 − frt ) + (frt+1)
�LΔ

t+1frt+1 (14)

where LΔ
t+1 is the Laplacian matrix of WΔ

t+1. We calculate

WΔ
t+1 by using changed part of the network (including nodes

and edges) as follows:

WΔ
t+1 = ξWΔ(L)

t+1 + (1− ξ)WΔ(S)
t+1

(15)

WΔ(L)
t+1 and WΔ(S)

t+1 are used to calculate the changed parts of

label relationships and structure relationships, respectively,

from time point t to t+ 1.

WΔ(L)
t+1 =

{
([1, 1/c] · [Cij ,Cij − 1]�, if i or j ∈ Δn;

0, otherwise.

and

WΔ(S)
t+1 = Θt+1 −Θt

[WΔ(L)
t+1 ]ij denotes the incremental weight parameter of label

similarity between nodes i and j, and [WΔ(S)
t+1 ]ij is the

incremental l-length path weight parameter between nodes i
and j. Both of them are “incrementally” calculated by only

using the changed parts of the streaming networks.

As a result, we can obtain a new score qt+1(f
r) by adding

qΔt+1(f
r) to qt(f

r), with the new scores of old features

being used in the final feature selection process. When the

streaming networks change with time, an old feature fr’s

new score, qΔt+1(f
r), can be incrementally calculated by

using the changed part of the network at t+ 1 compared to

qt(f
r) time point t, which allows SNF to efficiently update

feature scores for large scale dynamic networks.

For streaming features with an infinite feature space, it is

infeasible to keep all feature scores for future comparison.

So SNF maintains a small feature set, called candidate
feature set, for future comparisons, i.e. T = {f1, f2, . . . ,
fm, fm+1, . . . , fk}, where, q(f1) ≤ q(f2) ≤ · · · ≤ q(fk)
and q(fk) ≤ 2q(fm). This setting ensures that the discarded

features are very unlikely to be selected at the next time

point. So SNF always keeps a candidate feature set with

dynamic size k, and discard less informative features. For all

new features appearing in the new nodes, SNF will calculate

Algorithm 1 SNF: Steaming network feature selection

Input: (1) the network at time points t and t + 1: Xt and Xt+1,
(2) candidate feature set: Tt, (3) F-Score list of Tt: Ht, (4)
size of selected feature set: m, and (5) new feature set Vt+1.

Output: selected feature set: St+1 and candidate feature set Tt+1.
1: Initialize the score list Ht+1 = {} and generate the updated

Laplacian matrix LΔ
t+1;

2: for fr ∈ Vt+1 do
3: q(fr)← (fr)�Lt+1fr
4: Ht+1 ← q(fr) ∪Ht+1

5: end for
6: for fr ∈ Tt do
7: qΔt+1(f

r)← (fr
′

t+1 − frt )�Lt(fr
′

t+1 − frt ) + (frt+1)
�LΔ

t+1frt+1

8: qt(f
r)← Ht(f

r)
9: qt+1(f

r)← qt(f
r) + qΔt+1(f

r)
10: Ht+1 ← qt+1(f

r) ∪Ht+1

11: end for
12: Sort Ht+1 in an ascending order
13: St+1 ← top-m of Ht+1

14: Tt+1 ← top-k of Ht+1, where q(fk) ≤ 2q(fm)

their feature scores to ensure that important new features can

be discovered immediately after they emerge in the network.

Algorithm 1 lists the detailed SNF algorithm, which

incrementally compares scores of new features and old

features in T and selects top-m features to form the final

feature set.

It is worth noting that SNF can efficiently handle three

types of changes in streaming networks: (1) Feature distribu-
tion changes: For each feature fr, if its distributions change

from fr
t to fr

t+1, the first part of Eq. (14) is used to calculate

its changed score; (2) Node addition and structure changes:

For new nodes and their associated edge connections, the

second part of Eq. (14) will capture the topological structure

changes and the node addition information; and (3) Node
deletion: For nodes that are removed at t+1, we can set their

feature indicators to 0 to indicate that the nodes have empty

node content, and then use (1) to update feature scores.

B. Node Classification on Streaming Networks

Once the most informative m features are identified at

t (denoted by St = {f1, f2, · · · , fm}), the network nodes

can be represented by using selected features as:

Xt = [x1, x2, . . . , xnt
]⇒ XSt = [f1, f2, . . . , fm]� ∈ R

m×nt

The node classification is to provide accurate labels for un-

labeled nodes in the network at time point t. If an unlabeled

node u is correctly labeled, u should be right positioned

to other nodes w.r.t. the label and structure similarity as

defined in Eq. (3). So the quality criterion of Eq. (3) for each

unlabeled node u at a given t can be rewritten as follows,

E(yu,St) =
1

2

nt∑
i,j=1

(DStxi −DStxj)
2[Wyu ]ij (16)

where yu ∈ Y , and Wyu means the weight matrix generated

from Eq. (8) by setting the label of u to yu. DSt
is a diagonal
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Algorithm 2 SNOC: Streaming Network Node Classifica-

tion
Input: (1) network: Xt and Xt−1, (2) label list: Yt, (3) candidate

feature set at t − 1:Tt−1, (4) F-Score list of Tt−1: Ht−1, (5)
size of selected features: m, and (6) new feature set Vt.

Output: label list for unlabeled data: Yu
t .

1: (St, Tt)← SNF (Xt,Xt−1, Tt−1,Ht−1,Vt,m)
2: Mapping Xt into XSt by using St;
3: for each unlabeled node u do
4: y∗u = argmin

yu∈Y
(tr([XSt ]�LΔyuXSt))

5: end for

matrix indicating features that are selected into the feature

set from F to St.
Because the quality criterion is only affected by the

changed part of weight matrix, and the changes in node

labels only affect the label similarity part, we can define the

changed weight matrix as:

[WΔyu ]ij =

⎧⎪⎨
⎪⎩

1, if j = u, yi = yu or i = u, yj = yu;

−1

c
, if j = u, yi �= yu or i = u, yj �= yu;

0, if j �= u and i �= u. (17)

So the quality criterion in Eq. (16) can be replaced by

E′(yu,St) =
1

2

nt∑
i,j=1

(DSt
xi −DSt

xj)
2[WΔyu ]ij (18)

Then we can calculate E(yu,St) as

E′(yu,St) = tr(D�
St

Xt(DΔyu −WΔyu)X�
t DSt)

= tr([XSt ]�LΔyuXSt)
(19)

where tr(·) is the trace of a matrix, and LΔyu is the

Laplacian matrix of WΔyu .

So our target is to select a label for an unlabeled node u
to ensure:

min
yu∈Y

E′(yu,St) (20)

Definition 2: (SNC) Let XSt = [f1, f2, . . . , fm]� repre-

sents the mapped network nodes in the selected feature

space. Suppose WΔyu is a matrix defined as Eq. (17). LΔyu

is a Laplacian matrix defined as LΔyu = DΔyu − WΔyu ,

where DΔyu is a diagonal matrix, [DΔyu ]ii =
∑

j [W
Δyu ]ij .

We define a labeling criterion, called streaming network

criterion SNC, for each unlabeled node u as follows,

y∗u = argmin
yu∈Y

(tr([XSt ]�LΔyuXSt)) (21)

Through the SNC criterion, Eq. (1) can be achieved by

calculating yu for each single unlabeled node. As shown in

Algorithm 2, the class label of an unlabeled node is the one

that results in the minimal gauging value with respect to the

selected features.

IV. EXPERIMENTS

In this section, we conduct extensive experiments to

evaluate the efficiency and effectiveness of SNOC for node

classification in both static and streaming networks.

A. Experimental Settings

We validate the performance of SNOC on the following

four real-world networks. The statistics of these networks

are summarized in Table I.

Table I
STATISTICS OF FOUR REAL-WORKD NETWORKS.

Data sets # Nodes # Edges # Features # Classes

Cora1 2,708 5,429 1,433 7

CiteSeer1 3,312 4,732 3,703 6

PubMed Diabetes1 19,717 44,338 500 3

DBLP2 2,084,055 2,244,018 3,000 6

To evaluate the performance of SNOC for streaming

networks, we first test the algorithm performance on static

networks by using three networks (Cora, CiteSeer and

PubMed Diabetes). Then we use DBLP and PubMed Di-

abetes networks as our streaming network test bed (because

the sizes of CiteSeer and Cora networks are too small for

testing in streaming network settings). DBLP is inherently

a streaming network, because publications are continuously

updated and top keywords are also continuously changing

with respect to the time. For DBLP network with streaming

network setting, we choose 2,000 publications for each year

and build a streaming network covering the time period from

1991 to 2010. We also use PubMed Diabetes network to

simulate a streaming network with 1,000 random nodes to

be included for each time point t.

For most experiments, we randomly label 40% of nodes

in the network and use the remaining nodes as test data (this

is a reasonable setting because real-world networks always

have more unlabeled nodes than the number of labeled

ones). In addition, we also report the algorithm performance

with respect to different percentages of training/test nodes

(detailed in Fig. 6(c)). For streaming network experiments,

the accuracy is tested on new nodes arrived at each time

point. The default size of selected feature set is m = 100, the

default value of weight parameter ξ = 0.7, and the default

maximal path length in Eq. 6 is set to l = 3.

Baseline Methods: We compare the performance of SNOC

with four baselines:

Information Gain+SVM (IG+SVM): This method ignores

link structures in the network and uses Information Gain (IG)

to select the top-m features from all nodes (using content

information in the original bag-of-feature representation).

LIBSVM [3] is used as the learning algorithm to train

classifiers for node classification.

Link Structure+SVM (LS+SVM): This method ignores

label information of labeled nodes and only uses structure
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similarity to construct the weight matrix (W) and then cal-

culates the feature score in a similar way as SNF. LIBSVM

is also used as the learning algorithm to train classifiers.

Collective Classification (GS+LR): This method refers to

the combined classification of interlinked objects including

the correlation between node label and node content [12]. It

uses a simplified Gibbs sampling (GS) as the approximate

inference procedures for networked data, with Logistic Re-

gression (LR) being used as classifiers.

DYCOS: It is considered the state-of-the-art classification

method in dynamic networks [1]. A random walk approach

in conjunction with the content of the network is used for

node classification. This results in a new approach to handle

variations in content and linkage structures. gini-index is

used to select features in this method.

All experiments are conducted on a cluster machine with

16GB RAM and Intel CoreTM i7 3.20 GHZ CPU.

Table II
ACCURACY RESULTS ON STATIC NETWORK.

Data sets Cora CiteSeer PubMed

IG+SVM 50.34%±1.42% 57.21%±1.59% 65.24%±1.33%

LS+SVM 27.37%±2.85% 39.64%±2.66% 43.06%±2.75%

DYCOS 53.57%±1.24% 64.38%±1.29% 64.53%±1.86%

GS+LR 55.17%±1.09% 65.93%±2.37% 72.88%±2.05%

SNOC 62.66%±1.57% 73.81%±1.46% 81.09%±2.37%

B. Performance on Static Networks

Table II reports the performance of different methods on

three static networks (Cora, CiteSeer and PubMed Diabetes).

The results show that SNOC outperforms other four baseline

methods on all three networks with significant performance

gain. Although DYCOS indeed considers network linkage

information and GS+LR considers the correlation between

node labels and node content, they do not take into account

the impact of deep structure information for both feature

selection and classification process. So their performance is

inferior to SNOC. Noticeably, even though DYCOS takes

structure information into account, the actual contributions

of label similarity and structure similarity have not been

optimized in those methods, to achieve best feature selection

results for networked data. This partially explain why the

accuracies of DYCOS cannot match IG+SVM for PubMed

data set. In comparison, SNOC considers both labeled and

unlabelled nodes, and combines node label similarity and

node structure similarity to find effective features. All these

designs help SNOC outperform all other baseline methods.

In Fig. 5, we report the algorithm performance with

respect to different numbers of selected features on three

networks. Overall, SNOC achieves the highest accuracy on

all three networks with different feature sizes. LS-SVM

has the lowest accuracies because network structure alone

provides very little useful information (compared to the

node content) for node classification. The accuracies of

all methods become close to each other with the number

of selected features continuously increase. This is because

50 100 200 300
20

25

30

35

40

45

50

55

60

65

70

# of selected features (m)

A
cc

ur
ac

y 
%

 

 

IG+SVM
LS+SVM
DYCOS
GS+LR
SNOC

(a) Cora

50 100 200 300
30

40

50

60

70

80

90

# of selected features (m)

A
cc

ur
ac

y 
%

 

 

IG+SVM
LS+SVM
DYCOS
GS+LR
SNOC

(b) CiteSeer

50 100 200 300
30

40

50

60

70

80

90

100

# of selected features (m)

A
cc

ur
ac

y 
%

 

 

IG+SVM
LS+SVM
DYCOS
GS+LR
SNOC

(c) PubMed Diabetes

Figure 5. The accuracies on three real-world static networks w.r.t. different
numbers of selected features (from 50 to 300).

that including more features may introduce interference and

dilute the significance of important node features, so the

benefit of feature selection is becoming less significant.

Because SNOC balances the label and structure information

to feature space for node classification, it still outperforms

other baseline methods.

In Fig. 6(a), we report the accuracies w.r.t. different

maximal lengths of path to calculate Eq. 6. The results show

the accuracies decrease if the path lengths are too long.

This is because even though the path between two nodes is

relevant to the structure similarity, if the path length is too

long, the similarity maybe deteriorated by special paths like

cycles and become inaccurate to capture the node similarity.

Fig. 6(b) reports the algorithm performance w.r.t. different

weight parameter values ξ. According to the definition in

Eq. (7), ξ is used to balance the contribution of network

structures and node labels. The results from Fig. 6(b) show

that node labels play a more important role than network

structures. For Cora network, the accuracy reaches the

peak when ξ = 0.6, while the highest accuracies appear

on ξ = 0.7 for CiteSeer and PubMed data, respectively.

This suggests that network structures and node labels have

different contributions to feature selection for networks from

different domains.

In previous experiments, the percentage of labeled nodes

is fixed to 40% of the network. In reality, the percentage of

labeled nodes in networks may vary, so in this subsection,

we study the performance of all methods with different

percentages of labeled nodes (due to page limitations, we

only report the results on Cora).

The results in Fig. 6(c) show that when the number of

labelled nodes in the network increases, all methods achieve

accuracy gains. After majority nodes are labeled, all four

methods except LS-SVM achieve similar accuracies. This is

because labeled nodes provide sufficient content information

for classification. Interestingly, our results show that when

the network contains a small percentage of labeled nodes,

e.g. 30% or less, SNOC can achieve much more significant

accuracy gains compared to other methods. This observation

indicates that SNOC is more suitable for networks with

few labeled nodes. This is mainly attributed to the fact

that SNOC can integrate node labels and network structures

(which also include unlabeled nodes) to find most effective

features to characterize the network node content and topol-
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Figure 6. The accuracy on three networks w.r.t. (a) different maximal lengths of path l (from 1 to 5), (b) different values of weight parameter ξ (from 0
to 1), and (c) different percentages of labeled nodes.

ogy information. In addition, the similarity gauging process

also tries to find optimal node labels for unlabeled nodes

to ensure the distance evaluated in the feature space are

consistent with the network structures.

C. Performance on Streaming Networks

Because only DYCOS and GS+LR are designed for clas-

sifying networked data, in the following, we only compare

SNOC with DYCOS and GS+LR on streaming networks.

In Figs. 7 (a) and (b), we report accuracies on DBLP

and PubMed networks in a streaming network setting. In

addition, Fig. 8 further reports the runtime of different

methods. Because GS+LR is designed for static networks,

it needs to be rerun at each time point. Both DYCOS and

SNOC can handle streaming networks.

For DBLP network, the results show that SNOC out-

performs all other methods in streaming network setting.

An exception is on 1997, GS+LR method, which is more

time-consuming as shown in Fig. 8, can match SNOC.

This shows that a good balance between node content and

network structure is very important for node classification.

Although GS+LR emphasizes on node content information

and DYCOS emphasizes on network structures, both of

them, however, fail to capture changes in streaming net-

works. Meanwhile, the runtime performance in Fig. 8 shows

that DYCOS is as fast as SNOC but its accuracy is inferior to

SNOC because DYCOS uses a random walk to predict node

labels. Because random walks are inherently uncertain and

contain many randomness in the classification process, the

node classification results of DYCOS are inferior to both

SNOC and GS+LR. Meanwhile, as the time steps t con-

tinuously increase, the runtime curve of DYCOS increases

much quicker than SNOC. This is because SNOC only

needs to consider the changed part of the network for both

node classification and feature selection. Although GS+LR

obtains better accuracies compared to DYCOS, it is much

more time-consuming compared to SNOC and DYCOS. This

is mainly because GS+LR is an iterative algorithm designed

for static networks which needs to be rerun at each time

step.

To validate the performances of different methods on

streaming networks with all types of changes (including

dynamic node features, addition and deletion nodes and

edges), we allow each node (i.e., paper) to include its

reference’s title into the node content. For example, if a

paper pi is cited by a paper pj at a particular time point t,
we will include pj’s title into node pi’s content. By doing

so, we can introduce dynamic changing features to nodes in

the network. In addition, we also continuously remove old

papers in the network to maintain papers published within a

five-year period. This will result in node/edge deletion and

feature removal for the whole network. All these settings

result in a highly complicated streaming network setting for

node classification. We denote this network as full streaming

DBLP network, and report the results in Fig. 7(c). The re-

sults show that SNOC clearly outperforms all other methods

in complicated network setting. Specifically, at 1996, the

accuracies of all methods deteriorate with significant drops.

This is mainly because that 1996 is the first time that old

nodes are removed from the network. Our method achieves

smallest decline-slope compared to other two methods.

Interestingly, when comparing the results in Fig. 7(a) and

Fig. 7(c), the average accuracies of SNOC and GS+LR on

networks containing all publications (Fig. 7(a)) are higher

than the accuracies on networks only containing publications

with a 5-year period (Fig. 7(c)). Notice that the former

contains a much higher node and edge density, so when

the same sets of nodes are given for classification, the rich

structures in a dense network will help algorithm improve

the node classification accuracies. For DYCOS, its average

accuracy in Fig. 7(a) is 1.5% lower than the average accuracy

in Fig. 7(c). Notice that DYCOS uses random walks for node

classification. For dense networks, random walks contain

many irrelevant paths, which deteriorate the classification

accuracy. So its accuracy on 5-year networks are actually

better than the accuracy on the whole networks.
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Figure 8. The cumulative runtime on DBLP and PubMed Diabetes
networks corresponding to Fig. 5.
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(c) extended DBLP
Figure 7. The accuracy on streaming networks: (a) accuracy on DBLP citation network from 1991 to 2010, (b) accuracy on PubMed Diabetes network
for 15 time points, and (c) accuracy on extended DBLP citation network from 1991 to 2010.

D. Case Study
In Fig. 9, we use a case study to demonstrate the per-

formance of the three methods (SNOC, DYCOS and GS-

LR) in handling cases with abrupt network changes. In our

experiments, from time points 1 to 3, the network only con-

tains nodes from four classes (Hardware and Architecture,

Applications and Media, System Technology, and others).

From time point 4 to 6, nodes from a new class (DataBases)

are included into the network (including unlabeled nodes).

From time points 7 to 9, new nodes from another new class

(Artificial Intelligence) are introduced into the network.
The results in Fig. 9 show that, due to the abrupt inclusion

of new class nodes, the accuracies of all methods decrease.

When nodes from the new class continuously arrive, SNOC’s

accuracy can quickly recover, because SNF in SNOC can

find ideal features to represent changes in the network and

then adjust the node classification. As a result, SNOC can

adapt to the changes in the network for node classification.
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Figure 9. Case study on DBLP citation network.

V. CONCLUSIONS

In this paper, we proposed a novel node classification

method for streaming networks. Our method takes network

structure and node labels into consideration to find an

optimal subset of features to represent the network. Based

on the selected features, a streaming network node classi-

fication method, SNOC, is proposed to classify unlabeled

nodes through the alignment of the network node similarity

assessed in the feature space and the network structure space.

The key innovation of the paper compared to the existing

methods is twofold: (1) a new node classification method

for handling streaming networks; and (2) a streaming feature

selection method for networked data.
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