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Abstract Uncertain data is inherent in a few important
applications. It is far from trivial to extend ranking queries
(also known as top-k queries), a popular type of queries on
certain data, to uncertain data. In this paper, we cast rank-
ing queries on uncertain data using three parameters: rank
threshold k, probability threshold p, and answer set size
threshold l. Systematically, we identify four types of rank-
ing queries on uncertain data. First, a probability threshold
top-k query computes the uncertain records taking a proba-
bility of at least p to be in the top-k list. Second, a top-(k, l)
query returns the top-l uncertain records whose probabili-
ties of being ranked among top-k are the largest. Third, the
p-rank of an uncertain record is the smallest number k such
that the record takes a probability of at least p to be ranked
in the top-k list. A rank threshold top-k query retrieves the
records whose p-ranks are at most k. Last, a top-(p, l) query
returns the top-l uncertain records with the smallest p-ranks.
To answer such ranking queries, we present an efficient
exact algorithm, a fast sampling algorithm, and a Poisson
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approximation-based algorithm. To answer top-(k, l) que-
ries and top-(p, l) queries, we propose PRist+, a compact
index. An efficient index construction algorithm and effica-
cious query answering methods are developed for PRist+.
An empirical study using real and synthetic data sets verifies
the effectiveness of the probabilistic ranking queries and the
efficiency of our methods.

Keywords Uncertain data · Probabilistic ranking queries ·
Query processing

1 Introduction

In a few emerging important applications such as envi-
ronmental surveillance using large-scale sensor networks,
uncertainty is inherent in data due to various factors like
incompleteness of data, limitations of equipment, and delay
or loss in data transfer. In those applications, ranking queries
(also known as top-k queries) are often natural and useful in
analyzing uncertain data.

Example 1 (Motivation) Sensors are often used to detect
presence of endangered, threatened, or special concern risk
categories of animals in remote or preserved regions. Due to
limitations of sensors, detections cannot be accurate all the
time. Instead, detection confidence is often estimated.

Table 1 lists a set of synthesized records of presence of
pandas detected by sensors. Once a sensor detects a suspect
of presence, it records the duration that the suspect stays in
the detection range of the sensor.

In some locations where the targets are active, multiple
sensors are deployed to improve the detection quality. Two
sensors in the same location (e.g., S206 and S231, as well
as S063 and S732 in Table 1) may detect the presence of a
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Table 1 Panda presence
records

Generation rules: R2 ⊕ R3,
R5 ⊕ R6

RID Loc. Time Sensor-id Duration Conf.

(a) Panda presence records
R1 A 6/2/06 2:14 S101 25 min 0.3

R2 B 7/3/06 4:07 S206 21 min 0.4

R3 B 7/3/06 4:09 S231 13 min 0.5

R4 A 4/12/06 20:32 S101 12 min 1.0

R5 E 3/13/06 22:31 S063 17 min 0.8

R6 E 3/13/06 22:28 S732 11 min 0.2

Possible world Probability Top-2 on duration

(b) The possible worlds of Table 1a
W 1 = {R1, R2, R4, R5} 0.096 R1, R2

W 2 = {R1, R2, R4, R6} 0.024 R1, R2

W 3 = {R1, R3, R4, R5} 0.12 R1, R5

W 4 = {R1, R3, R4, R6} 0.03 R1, R3

W 5 = {R1, R4, R5} 0.024 R1, R5

W 6 = {R1, R4, R6} 0.006 R1, R4

W 7 = {R2, R4, R5} 0.224 R2, R5

W 8 = {R2, R4, R6} 0.056 R2, R4

W 9 = {R3, R4, R5} 0.28 R5, R3

W 10 = {R3, R4, R6} 0.07 R3, R4

W 11 = {R4, R5} 0.056 R5, R4

W 12 = {R4, R6} 0.014 R4, R6

RID R1 R2 R3 R4 R5 R6

(c) The top-2 probability values of records in Table 1a
Probability 0.3 0.4 0.38 0.202 0.704 0.014

suspect at the (approximately) same time, such as records R2
and R3, as well as R5 and R6. In such a case, if the durations
detected by multiple sensors are inconsistent, at most one
sensor can be correct.

The uncertain data in Table 1 carries the possible world
semantics [1,13,23,36]. The data can be viewed as the sum-
mary of a set of possible worlds. The possible worlds are
governed by some underlying generation rules which con-
strain the presence of record instances. In Table 1, the fact
that R2 and R3 cannot be true at the same time can be cap-
tured by a generation rule R2 ⊕ R3. Another generation rule
is R5 ⊕ R6. Table 1b shows all possible worlds and their
existence probability values.

Ranking queries can be used to analyze uncertain data.
For example, a scientist may be interested in the top-2 lon-
gest durations that a suspect stays in a location at a time.
In different possible worlds, the answers to this question are
different. The third column of Table 1b lists the top-2 records
in all possible worlds according to the duration attribute.

It is interesting to examine the probability that a record
is in the top-2 lists of all possible worlds (defined as “top-k
probability” in Sect. 2.2). It can be calculated by summing

up the probabilities of all possible worlds where the record
is ranked among top-2. Table 1c shows the top-2 probability
of each record in Table 1. More detailed discussion on how
to calculate top-k probabilities will be provided in Sect. 2.

To answer the top-2 query on the uncertain data, it is help-
ful to find the records whose probability values in the top-2
lists are at least p, where p is a user-specified probability
threshold. This leads to a probabilistic threshold top-k query
[21,22]. In this example, if p = 0.35, then {R2, R3, R5}
should be returned.

Alternatively, we can specify the number of records we
want in the answer set. For example, a top-(2, l) query [37]
retrieves the top-l records of the largest top-2 probabilities.
If l = 2, then {R5, R2} is returned.

In addition, we can compute the top-k probability for k =
1, 2, 3, 4, as shown in Table 2. Since there are at most 4
records in a possible world, the largest possible rank for a
record is 4. Interestingly, for a record Ri , we can plot the pair
(k, the top-k probability of Ri ) on a two-dimensional graph.
Figure 1 shows the top-k probabilities of R2, R3 and R5

(we omit other records to make the figure readable). Various
queries can be asked on Fig. 1. For example, a probabilistic
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Table 2 Top-k probabilities of the records in Table 1a

TID Top-k probabilities

k = 1 k = 2 k = 3 k = 4

R1 0.3 0.3 0.3 0.3

R2 0.28 0.4 0.4 0.4

R3 0.35 0.5 0.5 0.5

R4 0.014 0.202 0.784 1

R5 0.056 0.584 0.8 0.8

R6 0.0 0.014 0.146 0.2
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Fig. 1 The top-k probability distribution of R3 and R4 in Table 1a

threshold top-2 query with probability threshold 0.35 can be
represented by a point Q1 : (2, 0.35). As the answers to
the query, the top-k probability curves of R2, R3 and R5 lie
northeast to Q1 or pass Q1. A top-(2, l) query can be rep-
resented as a vertical line Q2 : k = 2 in Fig. 1. The answer
set includes the 2 curves which have the highest intersection
points with Q2.

Moreover, we can draw a horizontal line Q3 : p = 0.2.
Q3 intersects with the curve of R5 at rank 2. This means, only
when k ≥ 2, R5 has a probability of at least 0.2 to be ranked
among-k. This value k is called the p-rank of R2 for p =
0.2. If a scientist needs to find the tuples ranked high with a
probability of at least 0.5 but does not have any requirement
on the actual rank, then the scientist may issue a top-(p, 3)

query (p = 0.5) to retrieve the top-3 records of the smallest
0.5-ranks. In this example, {R5, R3, R4} should be returned.
Top-(p, l) queries are conjugal queries of top-(k, l) queries.

Example 1 demonstrates the ideas of ranking queries on
uncertain data. Different from the situation on certain data,
ranking queries on uncertain data poses several interesting
challenges that will be addressed in this study.

Challenge 1: What does a probabilistic ranking query
mean? Various ranking queries may be formulated on uncer-
tain data to address different application scenarios, such as
U-Topk queries and U-K Ranks queries [39]. We will review
the existing ranking queries on uncertain data in Sect. 9.

We address an application scenario other than the recent
proposals. Given a probability threshold p, a probabilistic

threshold top-k query finds the set of records where each
takes a probability of at least p to be in the top-k lists in the
possible worlds. In addition, we discuss top-(k, l) queries
and top-(p, l) queries to address the application needs when
users do not have specific requirements on confidence level
or ranks, respectively. The three kinds of proposed queries
provide the flexibility to retrieve top-k results with different
requirements.

Challenge 2: How can ranking queries on uncertain data
be answered efficiently? A naïve query evaluation method
can examine the top-k list in every possible world and derive
the final answer. However, the naïve method can be very
costly on a large uncertain data set where the number of pos-
sible worlds can be huge.

We develop efficient methods to tackle the problem. First,
we give an exact algorithm which avoids unfolding all possi-
ble worlds. It computes the exact top-k probability for each
tuple by scanning the sorted list of all tuples only once.
The rule-tuple compression technique is proposed to han-
dle generation rules. The prefix sharing technique reuses the
computation for different tuples. Several pruning techniques
are proposed to further improve the efficiency. Second, we
devise an effective sampling method to estimates the top-
k probabilities. Third, we develop a Poisson approximation
based method to answer probabilistic threshold top-k que-
ries in linear time. The proposed query evaluation methods
can be extended to answer top-(k, l) queries and top-(p, l)
queries.

Challenge 3: Can we develop an efficient method to
achieve online query answering? To achieve the best anal-
ysis results, users may be interested in applying different
queries on uncertain data with varying query parameter val-
ues. Such real-time interaction requires online processing of
probabilistic ranking queries.

We develop PRist+, an index structure which can be used
to answer probabilistic threshold top-k queries, top-(k, l)
queries and top-(p, l) queries efficiently. We develop an
efficient construction method for PRist+. Query answering
methods for probabilistic threshold top-k queries, top-(k, l)
queries and top-(p, l) queries using PRist+ are discussed.

The rest of the paper is organized as follows. In Sect. 2,
we formulate the three types of probabilistic ranking que-
ries. How to compute the exact top-k probabilities of tuples
is discussed in Sect. 3. We develop an exact query answer-
ing algorithm in Sect. 4. We devise a sampling method in
Sect. 5. The statistical properties of the top-k probability, a
general stopping condition of query answering algorithms,
and a Poisson approximation-based algorithm are discussed
in Sect. 6. Section 7 discusses the PRist+ index and the query
evaluation methods based on PRist+. We review the related
work in Sect. 9. A systematic empirical evaluation is reported
in Sect. 8. The paper is concluded in Sect. 10.
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2 Probabilistic databases and ranking queries

In this section, we review the basic notions in uncertain and
probabilistic data processing, and define the queries to be
addressed in the paper.

2.1 Probabilistic databases and possible worlds

We consider uncertain data in the possible worlds seman-
tics model [1,13,23,36], which has been extensively adopted
by the recent studies on uncertain data processing, such as
[5,34,39].

Generally, an uncertain table T contains a set of (uncer-
tain) tuples, where each tuple t ∈ T is associated with a
membership probability value Pr(t) > 0. When there is no
confusion, we also call an uncertain table simply a table.

A generation rule on a table T specifies a constraint on
a set of tuples in the form of R : tr1 , . . . , trm where tri ∈ T
(1 ≤ i ≤ m). We consider the following two kinds of con-
straints discussed in [28,36].

A mutual exclusion constraint (denoted by ⊕) specifies
the mutual exclusiveness among the tuples in the same rule.
exclusive rule R⊕ = tr1 ⊕ · · · ⊕ trm (

∑m
i=1 Pr(tri ) ≤ 1)

constraints that, among all tuples tr1 , . . . , trm involved in the
rule, at most one tuple can appear in a possible world. The
probability of an exclusive rule is the sum of the membership
probability values of all tuples involved in the rule, denoted
by Pr(R⊕) = ∑

t∈R⊕ Pr(t). The set of exclusive rules in T
is R⊕.

A mutual inclusion constraint (denoted by ≡) specifies the
coexistence of the tuples involved in the same rule. For exam-
ple, herd animals such as zebras often live in groups. Sim-
ilar to the scenario in Example 1, sensors may be deployed
to monitor the presence of zebras. Each record returned by
sensors can be considered as an uncertain tuple. If external
evidence shows that a small group of zebras stayed together
during the time of monitoring, then this external knowledge
can be described as a mutual inclusion constraint. An inclu-
sive rule R≡ : tr1 ≡ · · · ≡ trm restricts that, among all tuples
tr1 , . . . , trm involved in the same rule, either no tuple appears
or all tuples appear in a possible world. All tuples in R≡
have the same membership probability value, which is also
the probability of rule R≡, denoted by Pr(R≡) = Pr(tr1)=
· · ·= Pr(trm ). The set of inclusive rules in T is R≡.

Following [5,39], we assume that each tuple is involved in
at most one generation rule. For a tuple t not involved in any
generation rule, we can make up a trivial rule Rt : t whose
probability Pr(Rt ) = Pr(t). The set of trivial rules in T
is Rt . Therefore, conceptually, an uncertain table T comes
with a set of generation rules R = R⊕ ∪ R≡ ∪ Rt such that
each tuple is involved in one and only one generation rule in
R. We write t ∈ R if tuple t is involved in rule R.

The length of a rule is the number of tuples involved in
the rule, denoted by |R| = |{t |t ∈ R}|. A generation rule
R is a singleton rule if |R| = 1. R is a multi-tuple rule if
|R| > 1. In the rest of the paper, we also call a multi-tuple
rule a generation rule, for the sake of simplicity. A tuple is
dependent if it is involved in a multi-tuple rule, otherwise, it
is independent.

For a subset of tuples S ⊆ T and a generation rule R, we
denote the tuples involved in R and appearing in S by R ∩ S.
A possible world W is a subset of T satisfying R ∩ W ∈
Domain(R) for each generation rule R, where Domain(R)

is the set of all valid tuples in a possible world defined as
follows.

1. If R is an exclusive rule in R⊕, then

Domain(R) =
{ {{t}|t ∈ R}, if Pr(R) = 1;

{{t}|t ∈ R} ∪ {∅}, if Pr(R) < 1.

2. If R is an inclusive rule in R≡, then

Domain(R) =
{ {R}, if Pr(R) = 1;

{∅, R}, if Pr(R) < 1.

We denote by W the set of all possible worlds. Clearly, for
an uncertain table T with a set of generation rules R, the num-
ber of all possible worlds is |W| = ∏

R∈R |Domain(R)|.
Each possible world is associated with an existence prob-

ability Pr(W ) that the possible world happens. Following
from the basic probability principles, we have Pr(W ) =∏

R∈R,|R∩W |≥1 Pr(R ∩ W )
∏

R∈R,R∩W=∅(1 − Pr(R)).
Apparently, for a possible world W , Pr(W ) > 0. More-

over,
∑

W∈W Pr(W ) = 1.

2.2 Probabilistic ranking queries

Top-k queries (also known as ranking queries) [15,17,32,33]
are a category of important queries in data analysis. Given
a set of tuples and a ranking function f , all tuples can be
ranked according to the ranking function. For tuples t1 and t2,
t1 � f t2 if t1 is ranked higher than or equal to t2 according
to f . The ranking order � f is a total order on all tuples. Ties
can be broken arbitrarily.

Given a set of certain tuples, a top-k query Qk
f returns the

top-k tuples ranked higher than the other tuples in the ranking
order � f . We often denote a top-k query by Qk or Q when
the predicate and the ranking function are unimportant in our
discussion.

How can we apply top-k queries to probabilistic tables?
Consider a top-k query Qk

f on an uncertain table T . All tuples
can be ranked according to f . In a possible world W , let
W f ( j) be the tuple ranked at the j-th position in W according
to f .
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For a tuples t ∈ T , the position probability Pr(t, j)
is the probability that t is ranked at the j-th position
in possible worlds according to f . That is, Pr(t, j) =∑

W∈W s.t. t=W f ( j) Pr(W ).

Moreover, for a tuple t , the top-k probability Prk(t) is
the probability that t is ranked among-k in possible worlds
according to f , that is, Prk(t) = ∑k

j=1 Pr(t, j).
Given a rank parameter k > 0 and a probability threshold

p ∈ (0, 1], a probabilistic threshold top-k query (PT-k query
for short) [21,22] finds the tuples whose top-k probabilities
are at least p.

Alternatively, a user can use an answer set size constraint
l > 0 to replace the probability threshold p and issue a prob-
abilistic top-(k, l) query [37,44], which finds the top-l tuples
with the highest top-k probabilities.

Now, let us consider the conjugal queries of PT-k queries
and top-(k, l) queries.

For a tuple t ∈ T , given a probability threshold p ∈ (0, 1],
the p-rank of t is the minimum k such that Prk(t) ≥ p. That
is, M Rp(t) = min{k|Prk(t) ≥ p}.

Given a probability threshold p ∈ (0, 1] and a rank thresh-
old k > 0, a rank threshold top-k query (RT-k query for short)
retrieves the tuples whose p-ranks are at most k. RT-k queries
are conjugal queries of PT-k queries.

Alternatively, a user can replace the rank threshold k
by an answer set size constraint l > 0 and issue a top-
(p, l) query, which returns the top-l tuples with the smallest
p-ranks. Clearly, top-(p, l) queries are conjugal queries of
top-(k, l) queries.

The answers to a PT-k query and a RT-k query with the
same parameter values are identical. However, for top-(k, l)
queries and top-(p, l) queries, even they share the same value
on l, the answers generally may not be the same.

3 Exact position probability computation

In this section, we first introduce how to compute the exact
position probability values. Top-k probabilities and p-ranks
can be directly derived from position probabilities.

For a tuple t ∈ T and a possible world W such that t ∈ W ,
whether t ∈ W f (k) depends only on how many other tuples
in T ranked higher than t appear in W . Technically, for a
tuple t ∈ T , the dominant set of t is the subset of tuples in T
that are ranked higher than t , i.e., St = {t ′|t ′ ∈ T ∧ t ′ ≺ f t}.
Theorem 1 (Dominant set) For a tuple t ∈ T , Prk

Q,T (t) =
Prk

Q,St
(t).

Using the dominant set property, we scan the tuples in T
in the ranking order and derive the position probabilities for
each tuple t ∈ T based on the tuples preceding t . Generation
rules involving multiple tuples are handled by the rule-tuple
compression technique developed later in this section.

Table 3 Top-k probabilities of a set of tuples

TID Rank Prob. Top-k probabilities

k = 1 k = 2 k = 3 k = 4

t1 1 0.5 0.5 0.5 0.5 0.5

t2 2 0.3 0.15 0.3 0.3 0.3

t3 3 0.7 0.245 0.595 0.7 0.7

t4 4 0.9 0.0945 0.45 0.8055 0.9

3.1 The basic case

We start with the basic case, where we assume that all tuples
are independent. Let L = t1 . . . tn be the list of all tuples in
table T in the ranking order. Then, in a possible world W ,
a tuple ti ∈ W (1 ≤ i ≤ n) is ranked at the j-th ( j > 0)

position if and only if exactly ( j − 1) tuples in the dominant
set Sti = {t1, . . . , ti−1} also appear in W . The subset proba-
bility Pr(Sti , j) is the probability that j tuples in Sti appear
in possible worlds.

Trivially, we have Pr(∅, 0) = 1 and Pr(∅, j) = 0 for
0 < j ≤ n. Then, Pr(ti , j)= Pr(ti )Pr(Sti , j − 1). Appar-
ently, the top-k probability of ti is given by Prk(ti ) =
∑k

j=1 Pr(ti , j) = Pr(ti )
∑k

j=1 Pr(Sti , j −1). Particularly,

when i ≤ k, we have Prk(ti ) = Pr(ti ).
The following theorem can be used to compute the top-k

probability values efficiently.

Theorem 2 (Poisson binomial recurrence [24]) In the basic
case, for 1 ≤ i, j ≤ |T |,

1. Pr(Sti , 0) = Pr(Sti−1 , 0)(1 − Pr(ti )) = ∏i
j=1(1 −

Pr(ti ));
2. Pr(Sti , j) = Pr(Sti−1, j − 1)Pr(ti )+ Pr(Sti−1, j)(1 −

Pr(ti )).

Proof In the basic case, all tuples are independent. The the-
orem follows with the basic probability principles. It is also
called the Poisson binomial recurrence in [24]. ��

Theorem 2 can be used to compute the top-k probability
values efficiently, as illustrated in the following example.

Example 2 (The basic case) Consider the uncertain tuples in
Table 3 and a top-k query Q. Suppose t1, . . . , t4 are in the
ranking order according to f and all tuples are independent.

To compute the top-3 probability of each tuple, we first
initialize Pr(∅, 0) = 1, Pr(∅, 1) = 0 and Pr(∅, 2) = 0.
Then, we scan the ranked list.

For t j (1 ≤ j ≤ 3), Pr3(t j ) = Pr(t j ). Thus, Pr3(t1) =
0.5, Pr3(t2) = 0.3, and Pr3(t3) = 0.7.

To compute Pr3(t4), we first compute Pr(St4 , 0) =
0.105, Pr(St4 , 1) = 0.395, and Pr(St4 , 2) = 0.395 using
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Theorem 2. Then, we have Pr3(t4) = Pr(t4)(Pr(St4 , 0) +
Pr(St4 , 1) + Pr(St4 , 2)) = 0.8055.

3.2 Handling generation rules

In general, a probabilistic table may contain some multi-tuple
generation rules (generation rules or rules for short). For a
tuple t ∈ T , two situations due to the presence of generation
rules complicate the computation.

First, there may be a rule R such that some tuples involved
in R are ranked higher than t . Second, t itself may be involved
in a generation rule R. In both cases, some tuples in St are
dependent and thus Theorem 2 cannot be applied directly.
Can dependent tuples in St be transformed to independent
ones so that Theorem 2 can still be used?

Let T = t1 . . . tn be in the ranking order, i.e., ti � f t j for
i < j . We compute Prk(ti ) for a tuple ti ∈ T . A multi-tuple
generation rule R : tr1 , . . . , trm (1 ≤ r1 < · · · < rm ≤ n)

can be handled in one of the following cases

Case 1: ti � f tr1 , i.e., ti is ranked higher than or equal to all
tuples in R. According to Theorem 1, R can be ignored.

Case 2: trm ≺ f ti , i.e., ti is ranked lower than all tuples in
R. R is called completed with respect to ti .

Case 3: tr1 ≺ f ti � f trm , i.e., ti is ranked in between tuples
in R. R is called open with respect to ti . Among the tuples
in R ranked better than ti , let trm0

∈ R be the lowest ranked
tuple i.e., rm0 = maxm

l=1{rl < i}. The tuples involved in R
can be divided into two parts: Rle f t = {tr1, . . . , trm0

} and

Rright = {trm0 +1, . . . , trm }. Prk(ti ) is affected by tuples in
Rle f t only and not by those in Rright . Two subcases may
arise, according to whether t belongs in R or not: in sub-
case 1, ti �∈ R; in subcase 2, ti ∈ R, i.e., ti = trm0 +1.

Since in Case 1, generation rule R can be ignored, in the
rest of this section, we mainly discuss how to handle exclu-
sive rules and inclusive rules in Case 2 and Case 3.

3.2.1 Handling exclusive rules

We first consider computing Prk(ti ) when an exclusive rule
R : tr1 ⊕ · · · ⊕ trm (1 ≤ r1 < · · · < rm ≤ n) is involved.

In Case 2, ti is ranked lower than all tuples in R. At most
one tuple in R can appear in a possible world. According to
Theorem 1, we can combine all tuples in R into an exclusive
rule-tuple tR with membership probability Pr(R).

Corollary 1 (Exclusive rule-tuple compression) For a tuple
t ∈ T and a multi-tuple exclusive rule R, if ∀t ′ ∈ R,
t ′ ≺ f t , then Prk

Q,T (t) = Prk
Q,T (R)(t) where T (R) =

(T − {t |t ∈ R}) ∪ {tR}, tuple tR takes any value such that
tR ≺ f t , Pr(tR) = Pr(R), and other generation rules in T
remain the same in T (R).

rule−tuple
compression

rule−tuple
compression

Case 2: t  is ranked lower than all tuples in R

exclusive rule R exclusive rule−tuple, Pr(tR)=Pr(R)

tR_left

exclusive rule Rexclusive rule R

Case 3 (Subcase 1): t  is ranked between tuples in R and t  is not in R

t

tR t

t

t i i

i

i i

ii

Fig. 2 Computing Prk(ti ) for one tuple ti

In Case 3, ti is ranked between the tuples in R, which can
be further divided into two subcases. First, if ti �∈ R, sim-
ilar to Case 2, we can compress all tuples in Rle f t into an
exclusive rule-tuple tr1,...,rm0

where membership probability

Pr(tr1,...,rm0
) = ∑m0

j=1 Pr(tr j ), and compute Prk(ti ) using
Corollary 1.

Second, if ti ∈ R, in a possible world where ti appears,
any tuples in R cannot appear. Thus, to determine Prk(ti ),
according to Theorem 1, we only need to consider the tuples
ranked higher than ti and not in R, i.e., Sti − {t ′|t ′ ∈ R}.
Corollary 2 (Tuple in exclusive rule) For a tuple t ∈ R such
that |R| > 1, Prk

Q,T (t) = Prk
Q,T ′(t) where uncertain table

T ′ = (Sti − {t ′|t ′ ∈ R}) ∪ {t}.
For a tuple t and its dominant set St , we can check t

against the multi-tuple exclusive rules one by one. Each
multi-tuple exclusive rule can be handled by one of the above
two cases as illustrated in Fig. 2, and the dependent tuples
in St can be either compressed into some exclusive rule-
tuples or removed due to the involvement in the same exclu-
sive rule as t . After the exclusive rule-tuple compression,
the resulting set is called the compressed dominant set of t ,
denoted by T (t). Based on the aforementioned discussion,
for a tuple t ∈ T , all tuples in T (t) ∪ {t} are independent,
Prk

Q,T (t) = Prk
Q,T (t)∪{t}(t). We can apply Theorem 2 to

calculate Prk(t) by scanning T (t) once.

Example 3 (Exclusive rule-tuple compression) Consider a
list of tuples t1, . . . , t11 in the ranking order. Suppose we
have two multi-tuple exclusive rules: R1 = t2 ⊕ t4 ⊕ t9 and
R2 = t5 ⊕ t7. Let us consider how to compute Pr3(t6) and
Pr3(t7).

Tuple t6 is ranked between tuples in R1, but t6 �∈ R1. The
first subcase of Case 3 should be applied. Thus, we compress
R1le f t = {t2, t4} into an exclusive rule-tuple t2,4 with mem-
bership probability Pr(t2,4) = Pr(t2)+ Pr(t4). Similarly, t6
is also ranked between tuples in R2 and t6 �∈ R2, but R2le f t =
{t5}. The compression does not remove any tuple. After the
compression, T (t6) = {t1, t2,4, t3, t5}. Since the tuples in
T (t6) ∪ {t6} are independent, we can apply Theorem 2 to
compute Pr3(t6) using T (t6).

123



Ranking queries on uncertain data 135

Since t7 ∈ R2, the tuples in R2 except for t7 itself should
be removed. Thus, we have T (t7) = {t1, t2,4, t3, t6}.

We can sort all tuples in T into a sorted list L in the ranking
order. For each tuple ti , by one scan of the tuples in L before
ti , we obtain the compressed dominant set T (ti ) where all
tuples are independent. Then, we can compute Prk(ti ) on
T (ti ) ∪ {ti } using Theorem 2.

3.2.2 Handling inclusive rules

Then, let us consider how to handle an inclusive rule R :
tr1 ≡ · · · ≡ trm (tr j ∈ T (ti ) for 1 ≤ j ≤ m) in T . Again, we
only need to consider Case 2 and Case 3.

In Case 2, ti is ranked lower than all tuples in R. Either 0
or |R| tuples in R appear in a possible world. We combine
all tuples in R into an inclusive rule-tuple tR with member-
ship probability Pr(R). Different from exclusive rule-tuples
discussed in Sect. 3.2, an inclusive rule-tuple takes |R| posi-
tions in T (ti ). Therefore, the subset probability computation
for T (ti ) containing an inclusive rule-tuple is different from
Theorem 2.

Corollary 3 (Inclusive rule-tuples) Given a tuple t ∈ T and
a multi-tuple inclusive rule R, if ∀t ′ ∈ R, t ′ ≺ f t , let T (R) =
St −{t ′|t ′ ∈ R}+{tR} where Pr(tR) = Pr(R) and tR ≺ f t ,
then for 1 ≤ j ≤ |T |, Pr(St , j) = Pr(T (R), j). Moreover,

1. Pr(St , 0) = Pr(T (R) − {tR}, 0)(1 − Pr(tR));
2. Pr(St , j) = Pr(T (R) − {tR}, j)(1 − Pr(tR)) for 0 <

j < |R|;
3. Pr(St , j) = Pr(T (R) − {tR}, j − |R|)Pr(tR)

+Pr(T (R) − {tR}, j)(1 − Pr(tR)) for j ≥ |R|.

Proof From the definition of inclusive rules, we have
Pr(tr1 , . . . , trm ) = Pr(R). The results follow with basic
probability principles. ��

In Case 3, ti is ranked between tuples in R. We again con-
sider two subcases. First, if ti �∈ R, we compress all tuples in
Rle f t into an inclusive rule-tuple tRle f t , which takes |Rle f t |
positions and has membership probability Pr(tRle f t ) =
Pr(R). Corollary 3 can be used to compute Prk(ti ).

Second, if ti ∈ R, then whenever ti appears in a possi-
ble world, all tuples in R also appear in the same possible
world. Moreover, ti is always ranked lower than the tuples
in Rle f t (i.e., the tuples in R that are ranked higher than ti )
when it appears. The top-k probability of ti in T equals to
the top-(k − |Rle f t |) probability of ti in T − Rle f t .

Corollary 4 (Tuple in inclusive rule) For a tuple t ∈ T and
a multi-tuple inclusive rule R such that t ∈ R, Prk

Q,T (t) =
Pr

k−|Rle f t |
Q,T ′ (t) where uncertain table T ′ = (Sti − {t ′|t ′ ∈

R}) ∪ {t}.
Example 4 (Inclusive rule-tuple compression) Consider a
list of tuples t1, . . . , t11 in the ranking order. Now, suppose
we have two multi-tuple inclusive rules: R1 : t6 ≡ t8 and
R2 : t7 ≡ t9, whose probabilities are 0.8 and 0.1, respec-
tively. Let us consider how to compute Pr4(t9).

The dominant set St9 is {t1, t2, t3, t4, t5, t6, t7, t8}. First,
since t7 is in the same inclusive rule with t9, the second sub-
case of Case 3 applies. We remove t7 from the dominant set
of t9, and compute the top-3 probability of t9 using S′

t9 =
{t1, t2, t3, t4, t5, t6, t8}, denoted by Pr3(t9)′.

Second, all tuples in R1 are ranked higher than t9, so Case 2
applies. We combine t6 and t8 to an inclusive rule-tuple t6,8

whose membership probability Pr(t6,8) = Pr(t6). Now the
dominant set of t9 becomes S′′

t9 = {t1, t2, t3, t4, t5, t6,8} where
t6,8 takes two positions in S′′

t9 . Let S = S′′
t9 − t6,8. We first

calculate Pr(S, j) for 0 ≤ j ≤ 2 using Theorem 2 since no
generation rules are involved in S. Then, we can use Corol-
lary 3 to calculate Pr(S′′

t9, j) for 0 ≤ j ≤ 2.

For any tuple ti , we can scan its dominant set Sti once and
derive the compressed dominant set T (ti ) where both exclu-
sive rules and inclusive rules are properly processed so that all
tuples in the compressed dominant set are independent. Then,
Prk(ti ) can be computed using either Theorem 2 or Corol-
lary 3, depending on whether inclusive rules are involved
or not.

4 Exact query answering methods

Straightforwardly, to answer a PT-k query with probability
threshold p, we simply scan all tuples in T in the ranking
order and compute the top-k probability of each tuple. The
tuples whose top-k probabilities passing the threshold p are
returned as the answers. Top-(k, l) queries and top-(p, l) que-
ries can be answered similarly.

Can we further improve the efficiency of the query answer-
ing methods? In Sect. 4.1, we discuss how to reuse subset
probability calculation during computing the top-k proba-
bility values for all tuples. In Sect. 4.2, we develop several
effective pruning techniques.

4.1 Scan reduction by prefix sharing

We scan the dominant set Sti of each tuple ti ∈ T once and
compute the subset probabilities Pr(Sti , j). Can we reduce
the number of scans of the sorted tuples to improve the
efficiency of query evaluation?
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To compute Prk(ti ) using subset probability Pr(Sti , j),
the order of tuples in Sti does not matter. This gives us the
flexibility to order tuples in compressed dominant sets of
different tuples so that the prefixes and the corresponding
subset probability values can be shared as much as possi-
ble. In this section, we introduce two reordering methods to
achieve good sharing.

4.1.1 Aggressive reordering

Consider the list L = t1 . . . tn of all tuples in T and a tuple
ti in L . Two observations help the reordering.

First, for a tuple t that is independent or is a rule-tuple of
a completed rule with respect to ti (Case 2 in Sect. 3.2), t
is in T (t ′) for any tuple t ′ � f ti . Thus, t should be ordered
before any rule-tuple of a rule open with respect to ti (Case 3
in Sect. 3.2).

Second, there can be multiple rules open with respect to
ti . Each such rule R j has a rule-tuple tR j le f t

, which will be

combined with the next tuple t ′ ∈ R j to update the rule-tuple.
Thus, if t ′ is close to ti , tR j le f t

should be ordered close to the
rear so that the rule-tuple compression affects the shared pre-
fix as little as possible. In other words, those rule-tuples of
rules open with respect to ti should be ordered in their next
tuple indices in descending order.

An aggressive reordering method to reorder the tuples
is to always put all independent tuples and rule-tuples of
completed rules before rule-tuples of open rules, and order
rule-tuples of open rules according to their next tuples in the
rules.

We scan all tuples in T in the ranking order. Two buffer
lists, Lcomplete and Lopen, are used to help aggressive reorder-
ing. Lcomplete contains all independent tuples or completed
rule-tuples, while Lopen contains all open rule-tuples during
the scan. Both Lcomplete and Lopen are initialized to ∅ before
the scan.

When scanning tuple ti , we compute the compressed dom-
inant set of ti , and update Lcomplete and Lopen according to
the following two cases.

Case 1: If ti is an independent tuple, then the compressed
dominant set of ti contains all tuples in Lcomplete and Lopen.
Moreover, we put ti into Lcomplete, meaning that ti will appear
in the compressed dominant set of all tuples ranked lower
than ti .

Case 2: If ti is involved in a multi-tuple generation rule
R : tr1 , . . . , trm , then the compressed dominant set of ti con-
tains all tuples in Lcomplete and Lopen, except for the rule-tuple
tRle f t in Lopen, where tRle f t is the rule-tuple compressed from
all tuples in R that are ranked higher than ti .

In order to update Lcomplete and Lopen, the following two
subcases arise. First, if ti is not the last tuple in R (i.e., ti =
trm0

where 1 ≤ m0 < m), then we update rule-tuple tRle f t

Table 4 Results of reordering techniques

Tuple Aggressive reordering Lazy reordering

Prefix Cost Prefix Cost

t1 ∅ 0 ∅ 0

t2 ∅ 0 ∅ 0

t3 t1,2 1 t1,2 1

t4 t3t1,2 2 t1,2t3 1

t5 t3t1,2 0 t1,2t3 0

t6 t3t4,5t1,2 2 t1,2t3t4,5 1

t7 t3t6t4,5t1,2 3 t1,2t3t4,5t6 1

t8 t3t6t7t4,5 2 t3t6t7t4,5 4

t9 t3t6t7t1,2,8t4,5 2 t3t6t7t4,5t1,2,8 1

t10 t3t6t7t9t1,2,8 2 t3t6t7t9t1,2,8 2

t11 t3t6t7t9t4,5,10 1 t3t6t7t9t4,5,10 1

Total cost: 15 Total cost: 12

by compressing ti into tRle f t , using the methods discussed in
Sect. 3.2. If tRle f t is not in Lopen, then we add tRle f t into Lopen.
Moreover, we sort the rule-tuples in Lopen in their next tuple
indices descending order. Second, if ti is the last tuple in
R, which means that the rule-tuple tR will never be updated
later. Therefore, we remove tRle f t from Lopen, and add tR into
Lcomplete.

The subset probabilities of the tuples in Lcomplete only need
to be calculated once and can be reused by all tuples ranked
lower than them. In contrast, the rule-tuples in Lopen may
be updated when other tuples in the same rule are scanned.
Therefore, only part of the subset probabilities can be reused.

For two consecutive tuples ti and ti+1 in the sorted list L of
all tuples in T , let L(ti ) and L(ti+1) be the sorted lists of the
tuples in T (ti ) and T (ti+1), respectively, given by the aggres-
sive reordering method. Let Pre f i x(L(ti ), L(ti+1)) be the
longest common prefix between L(ti ) and L(ti+1). The total
number of subset probability values needed to be calculated
is Cost = ∑n−1

i=1 (|L(ti+1)| − |Pre f i x(L(ti ), L(ti+1))|).
Example 5 (Aggressive reordering) Consider a list of ranked
tuples t1, . . . , t11 with two multi-tuple rules R1 : t1 ⊕ t2 ⊕
t8 ⊕ t11 and R2 : t4 ≡ t5 ≡ t10. The compressed dominant
sets of tuples in the orders made by the aggressive reordering
method is listed in Table 4.

For example, before scanning t6, Lcomplete contains inde-
pendent tuple t3 and Lopen contains rule-tuples t4,5 and t1,2.
t4,5 is ranked before t1,2, since the next tuple in R2, t10, is
ranked lower than R1’s next tuple t8. Since t6 is independent,
the compressed dominant set of t6 includes all 3 tuples in
Lcomplete and Lopen. T (t6) and T (t5) only share the common
prefix t3, therefore, the cost of calculating the subset proba-
bilities for T (t6) is 3 − 1 = 2. After scanning t6, t6 is added
into Lcomplete.
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The total cost by using the aggressive reordering method
is Costaggressive = 15. As a comparison, without reordering,
the total number of subset probability values needed to be
calculated is the sum of lengths of all compressed dominant
sets, which is 31.

4.1.2 Lazy reordering

On the other hand, a lazy method always reuses the longest
common prefix in the compressed dominant set of the last
tuple scanned, and reorders only the tuples not in the common
prefix using the two observations discussed in Sect. 4.1.1.

We scan the tuples in T in the ranking order. During the
scan, we maintain the compressed dominant set of the last
scanned tuple. When processing tuple ti , one of the following
two cases may apply.

Case 1: If ti is an independent tuple, or ti is the first tuple
scanned in a multi-tuple generation rule R, then the com-
pressed dominant set of ti can be computed by one of the
following two subcases.

First, if ti−1 is independent, then T (ti ) can be obtained by
adding ti−1 to the rear of T (ti−1).

Second, if ti−1 is involved in a multi-tuple generation rule
R′, then T (ti ) is computed by adding tR′

le f t
to the rear of

T (ti−1).

Case 2: If ti is involved in a multi-tuple generation rule R
but not the first tuple scanned in R, then there are three sub-
cases.

First, if ti−1 is involved in the same rule with ti , then
T (ti ) = T (ti−1).

Second, if ti−1 is an independent tuple, then T (ti−1) must
contain a rule-tuple tRle f t corresponding to rule R, which
should not be included in T (ti ). Moreover, ti−1 should be
added at the rear of T (ti−1). In that case, the longest com-
mon prefix of T (ti−1) and T (ti ) includes the tuples ranked
before tRle f t in T (ti−1). The subset probabilities for the tuples
in the longest common prefix can be reused. For those tuples
or rule-tuples not in the longest common prefix, we reorder
them so that the independent tuples are always sorted before
the rule-tuples and the rule-tuples are sorted in their next
tuple indices descending order.

Third, if ti−1 is involved in another rule R′ �= R, then there
are two differences between T (ti−1) and T (ti ): (1) T (ti−1)

contains tRle f t but T (ti ) does not; (2) T (ti ) includes tR′
le f t

but

T (ti−1) does not. Therefore, we first add tR′
le f t

to the rear of
tR′

le f t
. Then, as discussed in the second subcase, we can reuse

the longest common prefix of T (ti−1) and T (ti ), and reorder
the tuples not in the longest common prefix.

Example 6 (Lazy reordering) Consider a list of ranked tuples
t1, . . . , t11 with multi-tuple rules R1 : t1 ⊕ t2 ⊕ t8 ⊕ t11 and

R2 : t4 ≡ t5 ≡ t10 again. The compressed dominant sets of
tuples in the orders made by the lazy reordering method is
listed in Table 4.

The lazy reordering method orders the compressed domi-
nant sets in the same way as the aggressive reordering method
for t1, t2 and t3.

For t4, the aggressive method orders t3, an independent
tuple, before t1,2, the rule-tuple for rule R1 which is open
with respect to t4. The subset probability values computed
in T (t3) cannot be reused. The lazy method reuses the prefix
t1,2 from T (t3), and appends t3 after t1,2. All subset proba-
bility values computed in T (t3) can be reused. The total cost
of the lazy reordering method is 12.

We can show that the lazy method is never worse than the
aggressive method.

Theorem 3 (Effectiveness of lazy reordering) Given a
ranked list of tuples in T , let Cost (agg) and Cost (lazy)

be the total number of subset probability values needed to
be calculated by the aggressive reordering method and the
lazy reordering method, respectively. Then, Cost (agg) ≥
Cost (lazy).

Proof For two consecutive tuples ti and ti+1 in T (1 ≤ i ≤
|T | − 1), we consider the following three cases.

First, if ti and ti+1 are involved in the same generation rule,
then the cost of computing T (ti+1) is 0 using either aggres-
sive reordering or lazy reordering, since T (ti+1) contains the
same set of tuples in T (ti ).

Second, if ti+1 is an independent tuple or the first tuple in
a generation rule R, then the cost of computing T (ti+1) using
lazy reordering is 1, since a tuple ti (if ti is independent) or
rule-tuple tR′

left
(if ti is involved in R′) should be added into

T (ti ) to form T (ti+1). The cost of computing T (ti+1) using
aggressive reordering is at least 1.

Third, if ti+1 is involved in rule R but is not the first tuple
in R, then tRleft must be removed from T (ti ). Moreover, ti
or tR′

left
should be added into T (ti ), as discussed in the sec-

ond case. Let L reorder be the set of tuples or rule-tuples in
T (ti ) that are ranked lower than tRleft , then the cost of com-
puting T (ti+1) is |L reorder| + 1. Now let us show that, using
aggressive reordering, the same amount of cost is also needed
before scanning ti+1. For each tuple t ∈ L reorder, one of
the following two subcases may arise: (1) t is an indepen-
dent tuple or a completed rule-tuple, then t must be put into
Lcomplete using aggressive reordering. The subset probability
of tR need to be recomputed once Lcomplete is updated. Thus,
1 cost is required. (2) t is an open-rule tuple, then it must be
put into Lopen using aggressive reordering. The subset prob-
ability of t needs to be recomputed after removing L R , which
requires a cost of 1.

Therefore, in any of the three cases, the cost of lazy reor-
dering is not more than the cost of aggressive reordering. The
conclusion holds. ��
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4.2 Pruning techniques

So far, we implicitly have a requirement: all tuples in T are
scanned in the ranking order. However, a probabilistic rank-
ing query or conjugal query is interested in only those tuples
passing the query requirement. Can we avoid retrieving or
checking all tuples satisfying the query predicates?

Some existing methods such as the well-known TA algo-
rithm [17] can retrieve in batch tuples satisfying the predicate
in the ranking order. Using such a method, we can retrieve
tuples in T progressively in the ranking order. Now, the prob-
lem becomes how we can use the tuples seen so far to prune
some tuples ranked lower in the ranking order.

Consider rank parameter k and probability threshold p.
We give the following pruning rules: Theorems 4 and 5 can
avoid checking some tuples that cannot satisfy the probability
threshold, and Theorems 6 and 7 specify stopping conditions.
The tuple retrieval method ( e.g., an adaption of the TA algo-
rithm [17]) uses the pruning rules in the retrieval. Once it
can determine all remaining tuples in T fail the probability
threshold, the retrieval can stop.

Please note that we still have to retrieve a tuple t failing
the probability threshold if some tuples ranked lower than t
may satisfy the threshold, since t may be in the compressed
dominant sets of those promising tuples.

Theorem 4 (Pruning by membership probability) For a
tuple t ∈ T , Prk(t) ≤ Pr(t). Moreover, if t is an inde-
pendent tuple and Prk(t) < p, then

1. for any independent tuple t ′ such that t � f t ′ and
Pr(t ′) ≤ Pr(t), Prk(t ′) < p; and

2. for any multi-tuple rule R such that t is ranked higher
than all tuples in R and Pr(R) ≤ Pr(t), Prk(t ′′) < p
for any t ′′ ∈ R.

Proof To prove the first item, we only need to show that
St ⊂ St ′ , then

∑
0≤i≤k Pr(St , i) ≥ ∑

0≤ j≤k Pr(St ′ , j).
Thus, the conclusion holds. The second item can be proved
similarly. ��

To use Theorem 4, we maintain the largest membership
probability pmember of all independent tuples and rule-tuples
for completed rules checked so far whose top-k probability
values fail the probability threshold. All tuples identified by
the above pruning rule should be marked failed.

A tuple involved in a multi-tuple rule may be pruned using
the other tuples in the same rule.

Theorem 5 (Pruning by tuples in the same rule) For tuples
t and t ′ in the same multi-tuple rule R, if t � f t ′, Pr(t) ≥
Pr(t ′), and Prk(t) < p, then Prk(t ′) < p.

Proof Since t and t ′ are in the same rule and t � f t ′, we
have St ⊆ St ′ . The conclusion holds following the similar
proof of Theorem 4. ��

Based on the above pruning rule, for each rule R open
with respect to the current tuple, we maintain the largest
membership probability of the tuples seen so far in R whose
top-k probability values fail the threshold. Any tuples in R
that have not been seen should be tested against this largest
membership probability.

Our last pruning rule is based on the observation that the
sum of the top-k probability values of all tuples is exactly k.
That is

∑
t∈T Prk(t) = k.

Theorem 6 (Pruning by total top-k probability) Let A be a
set of tuples whose top-k probability values have been com-
puted. If

∑
t∈A Prk(t) > k − p, then for every tuple t ′ �∈ A,

Prk(t ′) < p.

Proof For each 1 ≤ j ≤ k,
∑

t∈A Pr(t, j) = 1. Therefore,
∑

t∈A Prk(t) = k. ��
Each pruning rule has its own edge. Theorem 4 is very

effective for pruning independent tuples and the rule-tuples
as a whole. Theorem 5 targets at the tuples in the same rule.
Both Theorems 4 and 5 are based on the condition that, there
is a tuple t failing the query condition and a tuple t ′ has a
smaller membership probability than t . When this condition
does not meet, we can consider using the third pruning rule,
Theorem 6. By utilizing the three pruning rules together, we
can capture more situations where an early stop of the scan
is possible.

Moreover, we have a tight stopping condition as follows.

Theorem 7 (A tight stopping condition) Let t1, . . . ,
tm, . . . , tn be the tuples in the ranking order. Assume L =
t1, . . . , tm are read. Let L R be the set of open rules with
respect to tm+1. For any tuple ti (i > m),

1. if ti is not in any rule in L R, the top-k probability of ti

Prk(ti ) ≤
k−1∑

j=0

Pr(L , j);

2. if ti is in a rule in L R, the top-k probability of ti Prk(ti ) ≤
max
R∈L R

(1 − Pr(tRleft ))

k−1∑

j=0

Pr(L − tRleft , j).

Proof For item (1), consider the compressed dominant set
T (ti ) of ti . L ⊆ T (ti ). Therefore,

Prk(ti ) = Pr(ti )
k−1∑

j=0

Pr(T (ti ), j) ≤
k−1∑

j=0

Pr(L , j).

The equality holds if tuple tm+1 is independent with mem-
bership probability 1.

123



Ranking queries on uncertain data 139

Algorithm 1 The exact algorithm with reordering and
pruning techniques
Input: an uncertain table T , a set of generation rules R, a top-k query

Qk
f , and a probability threshold p

Output: Answer(Q, p, T )

Method:
1: retrieve tuples in T in the ranking order one by one
2: for all ti ∈ T do
3: compute T (ti ) by rule-tuple compression and reordering
4: compute subset probability values and Prk(ti )
5: if Prk(ti ) ≥ p then
6: output ti
7: end if
8: check whether ti can be used to prune future tuples
9: if all remaining tuples in T fail the probability threshold then
10: exit
11: end if
12: end for

For item (2), suppose ti is involved in an open rule R ∈
L R. Pr(ti ) ≤ 1 − Pr(tRleft ). Moreover, for the compressed
dominant set T (ti ) of ti , (L − tRleft ) ⊆ T (ti ). Therefore,

Prk(ti ) = Pr(ti )
k−1∑

j=0

Pr(T (ti ), j)

≤ (1 − Pr(tRleft ))

k−1∑

j=0

Pr(L − tRleft , j)

The equality holds when tuple tm+1 is involved in rule R′
with membership probability 1 − Pr(tR′

le f t ), where

R′ = arg max
R∈L R

(1 − Pr(tRleft ))

k−1∑

j=0

Pr(L − tRleft , j).

��
Theorem 7 provides two upper bounds for tuples that have

not been seen yet. If the upper bounds are both lower than the
probability threshold p, then the unseen tuples do not need
to be checked.

In summary, the exact algorithm for PT-k query answering
is shown in Algorithm 1. We analyze the complexity of the
algorithm as follows.

For a multi-tuple rule R : tr1, . . . , trm where tr1 , . . . , trm

are in the ranking order, let span(R) = rm − r1. When tuple
trl (1 < l ≤ m) is processed, we need to remove rule-tuple
tr1,...,rl−1 and compute the subset probability values of the
updated compressed dominant sets. When the next tuple not
involved in R is processed, tr1,...,rl−1 and trl are combined.
Thus, in the worst case, each multi-tuple rule causes the com-
putation of O(2k · span(R)) subset probability values. Each
subset probability value can be computed based on the previ-
ously computed subset probability values using Theorem 2,
which takes O(1) time. Moreover, in the worst case where all
tuples in T pass the probability threshold, all tuples in T have
to be read at least once. The time complexity of the whole

algorithm is O(kn + k
∑

R∈R span(R)). It is a polynomial
time algorithm.

As indicated by our experimental results, in practice the
pruning rules are effective. Often, only a very small portion
of the tuples in T are retrieved and checked before the exact
answer to a PT-k query is obtained.

Interestingly, since PT-k query answering methods can be
extended to evaluate top-(k, l) queries and top-(p, l) que-
ries, the pruning techniques introduced in this section can be
applied to answering top-(k, l) queries and top-(p, l) queries
as well.

5 A sampling method

One may trade-off the accuracy of answers against the effi-
ciency. In this section, we present a simple yet effective sam-
pling method for estimating top-k probabilities of tuples.

For a tuple t , let Xt be a random variable as an indica-
tor to the event that t is ranked among-k in possible worlds.
Xt = 1 if t is ranked in the top-k list, and Xt = 0 otherwise.
Apparently, the top-k probability of t is the expectation of
Xt , i.e., Prk(t) = E[Xt ]. Our objective is to draw a set of
samples S of possible worlds, and compute the mean of Xt

in S, namely ES[Xt ], as the approximation of E[Xt ].
We use uniform sampling with replacement. For table T =

{t1, . . . , tn} and the set of generation rules R, a sample unit
(i.e., an observation) is a possible world. We generate the
sample units under the distribution of T : to pick a sample
unit s, we scan T once. An independent tuple ti is included
in s with probability Pr(ti ). For a multi-tuple exclusive rule
R : tr1 ⊕ · · · ⊕ trm , s takes a probability of Pr(R) to include
one tuple involved in R. If s takes a tuple in R, then tuple trl

(1 ≤ l ≤ m) is chosen with probability
Pr(trl )

Pr(R)
. s can contain

at most 1 tuple from any exclusive rule. For a multi-tuple
inclusive rule R : tr1 ≡ · · · ≡ trm , s takes a probability of
Pr(R) to include all tuples involved in R.

Once a sample unit s is generated, we compute the top-k
tuples in s. For each tuple t in the top-k list, Xt = 1. The
indicators for other tuples are set to 0.

The above sample generation process can be repeated so
that a sample S is obtained. Then, ES[Xt ] can be used to
approximate E[Xt ]. When the sample size is large enough,
the approximation quality can be guaranteed.

Theorem 8 (Sample size) For any δ ∈ (0, 1), ε > 0, and

a sample S of possible worlds, if |S| ≥ 3 ln 2
δ

ε2 , then for any
tuple t , Pr{|ES[Xt ] − E[Xt ]| > εE[Xt ]} ≤ δ.

Proof The theorem follows with the well known Chernoff-
Hoeffding bound [3]. ��

We can implement the sampling method efficiently using
the following two techniques, as verified by our experiments.
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First, we can sort all tuples in T in the ranking order into
a sorted list L . The first k tuples in a sample unit are the
top-k answers in the unit. Thus, when generating a sample
unit, instead of scanning the whole table T , we only need
to scan L from the beginning and generate the tuples in the
sample as described before. However, once the sample unit
has k tuples, the generation of this unit can stop. In this way,
we reduce the cost of generating sample units without los-
ing the quality of the sample. For example, when all tuples
are independent, if the average membership probability is μ,
the expected number of tuples we need to scan to generate
a sample unit is � k

μ
�, which can be much smaller than |T |

when k � |T |.
Second, in practice, the actual approximation quality may

converge well before the sample size reaches the bound given
in Theorem 8. Thus, progressive sampling can be adopted:
we generate sample units one by one and compute the esti-
mated top-k probability of tuples after each unit is drawn. For
given parameters d > 0 and φ > 0, the sampling process
stops if in the last d sample units the change of the estimated
Xt for any tuple t is smaller than φ.

To answer a PT-k query with probability threshold p, we
first run the above sampling algorithm. Then, we scan the
tuples in L and output the tuples whose estimated top-k prob-
abilities are at least p.

After obtaining estimated top-k probabilities of tuples
using the above sampling method, top-(k, l) queries and top-
(p, l) queries can be answered similarly.

6 A poisson approximation-based method

In this section, we further analyze the properties of top-k
probability from the statistics aspect and derive a general
stopping condition for query answering algorithms which
depends on parameter k and threshold p only and is inde-
pendent from data set size. We also devise an approxima-
tion method based on the Poisson approximation [19]. Since
the PT-k query answering methods can be extended to eval-
uate top-(k, l) queries and top-(p, l) queries, the Poisson
approximation-based method can be used to answer top-(k, l)
queries and top-(p, l) queries too. We omit the details to
avoid redundance.

6.1 Distribution of Top-k Probability

Let X1, . . . , Xn be a set of independent random variables,
such that Pr(Xi = 1) = pi and Pr(Xi = 0) = 1 − pi (1 ≤
i ≤ n). Let X = ∑n

i=1 Xi . Then, E[X ] = ∑n
i=1 pi . If all

pi ’s are identical, X1, . . . , Xn are called Bernoulli trials, and
X follows a binomial distribution; otherwise, X1, . . . , Xn are
called Poisson trials, and X follows a Poisson binomial dis-
tribution.

For a tuple t ∈ T , the top-k probability of t is
Prk(t) = Pr(t)

∑k
j=1 Pr(T (t), j − 1), where Pr(t) is the

membership probability of t , T (t) is the compressed dom-
inant set of t . Moreover, the probability that fewer than k
tuples appear in T (t) is

∑k
j=1 Pr(T (t), j − 1).

If there is any tuple or exclusive rule-tuple in T (t) with
probability 1, we can remove the tuple from T (t), and
compute the top-(k − 1) probability of t . For an inclusive
rule-tuple R with probability 1, we remove it from T (t) and
compute the top-(k − |R|) probability of t . Thus, we can
assume that the membership probability of any tuple or rule-
tuple in T (t) is smaller than 1.

To compute Prk(t), we construct a set of Poisson
trials corresponding to T (t) as follows. For each indepen-
dent tuple t ′ ∈ T (t), we construct a random trial Xt ′ whose
success probability Pr(Xt ′ = 1) = Pr(t ′). For each multi-
tuple exclusive rule R⊕ (R⊕ ∩ T (t) �= ∅), we combine
the tuples in R⊕ ∩ T (t) into a rule-tuple tR⊕ such that
Pr(tR⊕) = ∑

t ′∈R⊕∩T (t) Pr(t ′), and construct a random trial
XtR⊕ whose success probability Pr(XtR⊕ = 1) = Pr(tR⊕).
For each multi-tuple inclusive R≡ (R≡ ∩ T (t) �= ∅), we con-
struct two sets of trials: one contains all tuples in R≡ and we
compute the top-(k − |R≡|) probability of t ; the other sets
of trials do not contain any tuple in R≡ and we compute the
top-k probability of t . Therefore, hereafter, we only focus on
the trials without multi-tuple inclusive rules.

Let X1, . . . , Xn be the resulting trials. Since the inde-
pendent tuples and rule-tuples in T (t) are independent and
their membership probabilities vary in general, X1, . . . , Xn

are independent and have unequal success probability val-
ues. They are Poisson trials. Let X = ∑n

i=1 Xi . Then,
Pr(T (t), j) = Pr(X = j) (0 ≤ j ≤ n) where Pr(X = j)
is the probability of j successes. Thus, the probability that
t is ranked the k-th is Pr(t, k) = Pr(t)Pr(X = k − 1).
Moreover, the top-k probability of t is given by Prk(t) =
Pr(t)Pr(X < k).

X follows the Poisson binomial distribution. Therefore,
Pr(t, k) also follows the Poisson binomial distribution,
and Prk(t) follows the cumulative distribution function of
Pr(t, k).

In a Poisson binomial distribution X , the probability den-
sity of X is unimodal (i.e., first increasing then decreasing)
and attains its maximum at μ = E[X ] [20]. Therefore, when
the query parameter k varies from 1 to |T (t)| + 1, Pr(t, k)

follows the similar trend.

Corollary 5 (Distribution of position probability) For a
tuple t ∈ T ,

1. Pr(t, k)

⎧
⎨

⎩

= 0, if k > |T (t)| + 1;
< Pr(t, k + 1), if k ≤ μ − 1;
> Pr(t, k + 1), if k ≥ μ.
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2. arg max|T (t)|+1
j=1 Pr(t, j) = μ + 1,

where μ = ∑
t ′∈T (t) Pr(t ′).

6.2 A general stopping condition

Corollary 5 shows that, given a tuple t and its compressed
dominant set T (t), the most likely ranks of t are around μ+1.
In other words, if k � μ+1, then the top-k probability of t is
small. Now, let us use this property to derive a general stop-
ping condition for query answering algorithms progressively
reading tuples in the ranking order. That is, once the stopping
condition holds, all unread tuples cannot satisfy the query and
can be pruned. The stopping condition is independent from
the number of tuples in the data set and dependent on only
the query parameter k and the probability threshold p.

Theorem 9 (A General Stopping Condition) Given a top-k
query Qk( f ) and probability threshold p, for a tuple t ∈ T ,
let μ = ∑

t ′∈T (t) Pr(t ′). Then, Prk(t) < p if μ ≥ k+ln 1
p +

√
ln2 1

p + 2k ln 1
p .

Proof To prove Theorem 9, we need Theorem 4.2 in [31].
��

Lemma 1 (Chernoff Bound of Poisson Trials [31])Let
X1, . . . , Xn be independent Poisson trials such that, for
1 ≤ i ≤ n, Pr [Xi = 1] = pi , where 0 < pi < 1. Then, for
X = ∑n

i=1 Xi , μ = E[X ] = ∑n
i=1 pi , and 0 < ε ≤ 1, we

have

Pr [X < (1 − ε)μ] < e− με2

2 .

As discussed in Sect. 6.1, we can construct a set of Poisson
trials corresponding to the tuples in T (t) such that, for each
tuple or rule-tuple t ′ ∈ T (t), there is a corresponding trial
whose success probability is the same as Pr(t ′). Moreover,

k−1∑

j=0

Pr(T (t), j) = Pr [X < k].

For 0 < ε ≤ 1, inequality Pr [X < k] ≤ Pr [X <

(1 − ε)μ] holds when

k ≤ (1 − ε)μ (1)

Using Lemma 1, we have

Pr [X < k] ≤ Pr [X < (1 − ε)μ] < e− με2

2

Pr [X < k] < p holds if

e− με2

2 ≤ p (2)

Combining inequality 1 and 2, we get 2 ln 1
p ≤ μ(1− k

μ
)2.

The inequality in Theorem 9 is the solution to the above
inequality.

Since μ = ∑
t ′∈T (t) Pr(t ′), the μ value is monotonically

increasing if tuples are sorted in the ranking order. Using
Theorem 9 an algorithm can stop and avoid retrieving
further tuples in the rear of the sorted list if the μ value
of the current tuple satisfies the condition in Theorem 9.

The value of parameter k is typically set to much smaller
than the number of tuples in the whole data set. Moreover,
since a user is interested in the tuples with a high probability
to be ranked in top-k, the probability threshold p is often
not too small. Consequently, μ is often a small value. For
example, if k = 100, p = 0.3, then the stopping condition
is μ ≥ 117.

In the experiments, we show in Fig. 6 that the exact algo-
rithm and the sampling algorithm stop close to the general
stopping condition. The results verify the tightness of the
stopping condition.

6.3 A poisson approximation-based method

When the success probability is small and the number of
Poisson trials is large, Poisson binomial distribution can be
approximated well by Poisson distribution [19].

For a set of Poisson trials X1, . . . , Xn such that Pr(Xi =
1) = pi , let X = ∑n

i=1 Xi . X follows a Poisson binomial
distribution. Let μ = E[X ] = ∑n

i=0 pi . The probability of
X = k can be approximated by Pr(X = k) ≈ f (k, μ) =
μk

k! e−μ, where f (k, μ) is the Poisson probability mass func-
tion. Thus, the probability of X < k can be approximated
by Pr(X < k) ≈ F(k, μ) = �(�k+1�,μ)

�k�! , where F(k, μ)

is the cumulative distribution function corresponding to
f (k, μ), and �(x, y) = ∫ ∞

y t x−1e−t dt is the upper incom-
plete gamma function. Theoretically, Le Cam [8] showed
that the quality of the approximation has the upper bound

sup0≤l≤n

∣
∣
∣
∑l

k=0 Pr(X =k) − ∑l
k=0 f (k, μ)

∣
∣
∣≤9 maxi {pi }.

The above upper bound depends on only the maxi-
mum success probability in the Poisson trials. In the worst
case where maxi {pi } = 1, the error bound is very loose.
However, our experimental results (Fig. 8) show that the
Poisson approximation method achieves very good approxi-
mation quality in practice.

To use Poisson approximation to evaluate a top-k query
Qk( f ), we scan the tuples in T in the ranking order. The sum
of membership probabilities of the scanned tuples is main-
tained in μ. Moreover, for each generation rule R, let Rleft be
the set of tuples in R that are already scanned. Correspond-
ingly, let μR be the sum of membership probabilities of the
tuples in Rleft.

When a tuple t is scanned, if t is an independent tuple, then
the top-k probability of t can be estimated using Pr(t)F(k −
1, μ) = Pr(t)�(k,μ)

(k−1)! . If t belongs to a generation rule R, then
the top-k probability of t can be estimated by Pr(t)F(k −
1, μ′) = Pr(t)�(k,μ′)

(k−1)! , where μ′ = μ − μR . t is output
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if the estimated probability Prk(t) passes the probability
threshold p. The scan stops when the general stopping con-
dition in Theorem 9 is satisfied.

In the Poisson approximation-based method, we need to
maintain the running μ and μR for each open rule R. Thus,
the space requirement of the Poisson approximation-based
method is O(|R| + 1), where R is the set of generation
rules. The time complexity is O(n′), where n′ is the num-
ber of tuples read before the general stopping condition is
satisfied, which depends on parameter k, probability thresh-
old p and the probability distribution of the tuples and is
independent from the size of the uncertain table.

7 Online query answering

Since probabilistic ranking queries involve several parame-
ters, a user may be interested in how query results change as
parameters vary. To support the interactive analysis, online
query answering is highly desirable. In this section, we
develop PRist+ (for probabilistic ranking lists), an index for
online answering probabilistic ranking queries on uncertain
data, which is compact in space and efficient in construction.

7.1 The PRist index

To answer probabilistic ranking queries, for a tuple t ∈ T , a
rank parameter k and a probability threshold p, we often need
to conduct the following two types of checking operations.

– Top-k probability checking: is the top-k probability of t
at least p?

– p-rank checking: is the p-rank of t at most k?

To support online query answering, we need to index
the top-k probabilities and the p-ranks of tuples so that the
checking operations can be conducted efficiently. One critical
observation is that, for a tuple, the top-k probabilities and the
p-ranks can be derived from each other. We propose PRist, a
list of probability intervals, to store the rank information for
tuples.

Example 7 (Indexing top-k probabilities) Consider the
uncertain tuples in Table 3. Suppose all tuples are indepen-
dent. Figure 3a shows the top-k probabilities of tuple t4 with
respect to different values of k. Interestingly, it can also be
used to retrieve the p-rank of t4: for a given probability p, we
can draw a horizontal line for top-k probability p, and then
check where the horizontal line cuts the curve in Fig. 3a. The
point right below the horizontal line gives the answer k.

Storing the top-k probabilities for all possible k can be
costly. To save space, we divide the domain of top-k proba-
bilities (0, 1] into h prob-intervals.
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Fig. 3 The index entries in PRist for tuple t4

In Fig. 3a, we partition the probability range (0,1] to
5 prob-intervals: (0,0.2], (0.2,0.4], (0.4,0.6], (0.6,0.8], and
(0.8,1.0]. For each interval, we record for each tuple a lower
bound and an upper bound of the ranks whose corresponding
top-k probabilities lie in the prob-interval. The lower bounds
and upper bounds are stored in an L-list and a U -list, respec-
tively. Figure 4a shows the constructed index for the tuples
in Table 3.

Formally, given a set of uncertain tuples T and a granu-
larity parameter h > 0, a PRist index for T contains a set of
prob-intervals {b1, . . . , bh}, where bi =( i−1

h , i
h ] (1≤ i ≤h).

Each prob-interval bi (2 ≤ i ≤ h − 1) is associated with
two lists: a U -list and an L-list.

An entry in the U -list of bi corresponds to a tuple t and
consists of two items: the tuple id t and an upper rank of t in
bi , denoted by t.Ui , such that one of the following holds: (1)
Prt.Ui (t) > i

h and Prt.Ui −1 ≤ i
h when Prm(t) > i

h ; or (2)
t.Ui = m when Prm(t) ≤ i

h . Each tuple t ∈ T has an entry
in the U -list. All entries in the U -list are sorted in ascending
order of the upper ranks.

An entry in the L-list of bi corresponds to a tuple t and
consists of two items: the tuple id t and a lower rank of t
in bi , denoted by t.Li , such that one of the following holds:
(1) Prt.Li (t) ≤ i−1

h and Prt.Li +1(t) > i−1
h when Prm(t) >

i−1
h ; or (2) t.Li = m when Prm(t) ≤ i−1

h . Each tuple t ∈ T
has an entry in the L-list. All entries in the L-list are sorted
in ascending order of the lower ranks.

The space cost of a PRist is O(2hn), where n is the num-
ber of tuples and h is the number of prob-intervals. To reduce
the space cost of PRist, if an entry (o, rank) appears in the
U -list of prob-interval bi and the L-list of prob-interval bi+1

(1 ≤ i < h), we can let the two lists share the entry. More-
over, if multiple entries in a list have the same rank, we can
compress those entries into one which carries one rank and
multiple tuple ids. A compressed PRist index is shown in
Fig. 4b.
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Fig. 4 A PRist index for the
uncertain tuples in Table 3 (0.8,1.0]
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To construct a PRist index, we compute the top-k
probabilities for all tuples (1 ≤ k ≤ m) in T , where m is
the number of rules in T . This takes O(m2n) time. Then, the
U -lists and L-lists for prob-intervals can be constructed by
scanning the tuples and their top-k probabilities. The over-
all time complexity of the basic construction algorithm is
O(m2n + mn + 2hn log n) = O(m2n + 2hn log n).

7.2 PRist+ and a fast construction algorithm

To reduce the index construction time of PRist, we bound
top-k probabilities using the binomial distribution. Without
loss of generality, we assume that the membership probabil-
ity of any tuple or rule-tuple in T is smaller than 1.

Theorem 10 (Bounding the probability) For a tuple t ∈ T ,
let T (t) be the compressed dominant set of t . Then,

F(k, N , pmax) ≤
∑

0≤ j≤k

Pr(T (t), j) ≤ F(k, N , pmin) (3)

where pmax and pmin are the greatest and the smallest prob-
abilities of the tuples/rule-tuples in T (t) (0 < pmin ≤ pmax

< 1), N is the number of tuples/rule-tuples in T (t), and F
is the cumulative distribution function of the binomial distri-
bution.

Proof We first prove the left side of inequality 3. For a tuple
set S, let Pr(S,≤ k) denote

∑
0≤ j≤k Pr(S, j). For any tuple

t ′ ∈ T (t), Pr(t ′) ≤ pmax.
Consider tuple set S = T (t) − {t ′} and T ′(t) = S + tmax

where Pr(tmax) = pmax. From Theorem 2

Pr(T (t),≤ k) = Pr(t ′)Pr(S,≤ k − 1)

+(1 − Pr(t ′))Pr(S,≤ k); and

Pr(T ′(t),≤ k) = Pr(tmax)Pr(S,≤ k − 1)

+(1 − Pr(tmax))Pr(S,≤ k).

Then,

Pr(T (t),≤ k) − Pr(T ′(t),≤ k)

= [Pr(t ′) − Pr(tmax)] × [Pr(S,≤ k − 1) − Pr(S,≤ k)]

Since Pr(t ′) ≤ Pr(tmax) and Pr(S,≤ k−1) ≤ Pr(S,≤ k),
we have Pr(T (t),≤ k) ≥ Pr(T ′(t),≤ k).

By replacing each tuple/rule-tuple in T (t) with tmax,
we obtain a set of tuples with the same probability pmax,
whose subset probabilities follows the binomial distribution
F(k, N , pmax). Thus, the left side of Inequality 3 is proved.

The right side of Inequality 3 can be proved similarly. ��
Moreover, Hoeffding [20] gave the following bound.

Theorem 11 (Extrema [20]) For a tuple t ∈ T and its com-
pressed dominant set T (t), let μ = ∑

t ′∈T (t) Pr(t ′ ≺ f t).
Then,

1.
∑k

j=0 Pr(T (t), j) ≤ F(k, N ,
μ
N ) when 0 ≤ k ≤ μ−1;

and
2.

∑k
j=0 Pr(T (t), j) ≥ F(k, N ,

μ
N ) when μ ≤ k ≤ N,

where N is the number of tuples and rule-tuples in T (t),
and F is the cumulative distribution function of the binomial
distribution.

Based on Theorems 10 and 11, we derive the following
bound for the top-k probability of tuple t ∈ T .

Theorem 12 (Bounds of top-k probabilities) For a tuple t ∈
T , the top-k probability of t satisfies

1. Pr(t)F(k − 1, N , pmax) ≤ Prk(t) ≤ Pr(t)F(k −
1, N ,

μ
N ) for 1 ≤ k ≤ μ;

2. Pr(t)F(k − 1, N ,
μ
N )≤ Prk(t) ≤ Pr(t)F(k −

1, N , pmin) for μ + 1 ≤ k ≤ N + 1.

Proof The conclusion follows from Theorems 10 and 11
directly. ��

Since the cumulative probability distribution of the bino-
mial distribution is easier to calculate than top-k probabili-
ties, we propose PRist+, a variant of PRist using the binomial
distribution bounding technique.
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The only difference between PRist+ and PRist is the upper
and lower ranks in the U -lists and L-lists. In PRist+, we com-
pute the upper and lower bounds of the top-k probabilities of
tuples using the binomial distributions. Then, the upper and
lower ranks are derived from the upper and lower bounds of
the top-k probabilities.

Take the U -list in prob-interval bi as an example. In PRist,
an entry in the U -list consists of the tuple id t and the upper
rank t.Ui , such that Prt.Ui (t) > i

h (if Prm(t) > i
h ). Once the

top-i probabilities of all ranks 1 ≤ i ≤ m for t are computed,
t.Ui can be obtained by one scan.

In PRist+, we store the upper rank t.Ui as the small-
est rank x such that the lower bound of Pr x (t) is greater
than i

h . Following with Theorem 12, the upper rank can
be calculated by x = F−1( i

h·Pr(t) , N ,
μ
N ) + 1 or x =

F−1( i
h·Pr(t) , N , pmax) + 1, where F−1 is the binomial

inverse cumulative distribution function. The lower rank of
t can be obtained similarly using Theorem 12.

Computing the upper and lower ranks for t in bi requires
O(1) time. Thus, the overall complexity of computing the
upper and lower ranks of all tuples in all prob-intervals is
O(2hn), where n is the total number of tuples. The com-
plexity of sorting the bound lists is O(2hn log n). The overall
time complexity of constructing a PRist+ index is O(2hn +
2hn log n) = O(hn log n).

Clearly, the construction time of PRist+ is much lower
than PRist. The tradeoff is that the bounds of ranks in PRist+
are slightly looser than the rank bounds in PRist. The looser
rank bounds in PRist+ do not affect the accuracy of the
answers. They only make a very minor difference in query
answering time in our experiments (as shown in Fig. 13).
Therefore, in real applications, PRist+ is often more prefer-
able than PRist.

7.3 Query evaluation based on PRist

In this section, we first discuss the evaluation of PT-k queries
based on PRist. Then, we briefly discuss how other queries
can be answered.

7.3.1 Answering PT-k queries

Example 8 (Answering PT-k queries) Consider the uncer-
tain tuples indexed in Fig. 4 again, and a PT-k query with
k = 3 and p = 0.45.

To find the tuples satisfying the query, we only need to
look at the prob-interval containing p = 0.45, which is b3 =
(0.4, 0.6]. In the U -list of b3, we find that t3.U3 = 3 and
t4.U3 = 3, which means that Pr3(t3) > 0.6 and Pr3(t4) >

0.6. Therefore, t3 and t4 can be added into the answer set with-
out calculating their exact top-k probabilities. In the L-list

of b3, we find that t2.L3 = 4, which means Pr4(t2) ≤ 0.4.
Therefore, t2 can be pruned.

Thus, only the top-3 probability of t1 needs to be calcu-
lated in order to further verify if t1 is an answer to the query.
Since Pr3(t1) = 0.5, it can be added into the answer set. The
final answer is {t1, t3, t4}.

Generally, a PT-k query can be evaluated following three
steps.

First, we use Corollary 6 to determine whether the top-k
probability of t lies in bi .

Corollary 6 (Bounding top-k probabilities) Let T be a
set of uncertain tuples indexed by PRist+ with granularity
parameter h. For a tuple t ∈ T and a positive integer k, if bi

(1 ≤ i ≤ h) is the prob-interval such that t.Li < k < t.Ui ,
then i−1

h < Prk(t) ≤ i
h .

Proof According to the definition of P Rist+, we have
Prt.Li (t)≤ i−1

h and Prt.Li +1(t)> i−1
h . Since k >

t.Li , Prk(t)≥ Prt.Li +1(t)> i−1
h . On the other hand,

Prt.Ui (t)> i
h and Prt.Ui −1(t)≤ i

h . Since k < t.Ui , we
have Prk(t)≤ Prt.Ui −1(t)≤ i

h . ��
Second, a tuple may be pruned or validated by checking

its lower rank Li or upper rank Ui in the prob-interval con-
taining the probability threshold, as stated in Theorem 13.

Theorem 13 (Answering PT-k queries) Let T be a set of
uncertain tuples indexed by PRist+ with granularity parame-
ter h. For a tuple t ∈ T and a PT-k query Qk

f with probability

threshold p ∈ bi = ( i−1
h , i

h ]:

1. Pruning: if t.Li > k, then Prk(t) < p;
2. Validating: if t.Ui ≤ k, then Prk(t) > p.

Proof The top-k probability distribution of a tuple t increases
monotonically with respect to k. Therefore, the conclusions
hold. ��

Last, we only need to compute the exact top-k probabil-
ities for those tuples that cannot be validated or pruned by
Theorem 13.

In the U -list of the prob-interval containing the probability
threshold, finding the tuples whose upper ranks are less than
or equal to k requires O(log n) time, where n is the number of
tuples in T . Similarly, in the L-list, finding the tuples whose
lower ranks are larger than k also takes O(log n) time. Let d
be the number of tuples that cannot be pruned or validated.
Computing the top-k probabilities of those tuples requires
O(kmd) time, where m is the number of rules in T .

7.3.2 Answering Top-(k, l) and Top-(p, l) queries

To answer a top-(k, l) query Q, we want to scan the tuples in
the descending order of their top-k probabilities. However,
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PRist+ does not store any exact top-k probabilities. We scan
the prob-intervals in the top-down manner instead. For each
prob-interval, we retrieve the tuples whose top-k probabilities
lie in the prob-interval. Obviously, for two prob-intervals bi

and b j (i > j), the top-k probabilities falling in bi is always
greater than the top-k probabilities in b j .

To answer a top-(p, l) query, we only need to check the
prob-intervals containing p. Let bi be the prob-interval con-
taining p. We use the l-th rank k in list bi .U as a pruning
condition. Any tuple t ′ whose lower rank in bi is at least k
can be pruned. Moreover, for any tuple t , if there are fewer
than l tuples whose lower ranks in bi is smaller than the upper
rank of t in bi , then t can be validated.

8 Experimental results

We conducted a systematic empirical study using a real data
set and some synthetic data sets on a PC computer with a
3.0 GHz Pentium 4 CPU, 1.0 GB main memory, and a 160 GB
hard disk, running the Microsoft Windows XP Professional
Edition operating system. Our algorithms were implemented
in Microsoft Visual C++ V6.0.

8.1 Results on IIP iceberg database

We use the International Ice Patrol (IIP) Iceberg Sightings
Database (http://nsidc.org/data/g00807.html) to examine the
effectiveness of top-k queries on uncertain data in real appli-
cations. The International Ice Patrol (IIP) Iceberg Sightings
Database collects information on iceberg activities in the
North Atlantic. The mission is to monitor iceberg danger near
the Grand Banks of Newfoundland by sighting icebergs, plot-
ting and predicting iceberg drift, and broadcasting all known
ice to prevent icebergs threatening.

In the database, each sighting record contains the sighting
date, sighting location and number of days drifted. Among
them, the number of days drifted is crucial in determining the
status of icebergs. It is interesting to find the icebergs drifting
for a long period.

However, each sighting record in the database is associ-
ated with a confidence level according to the source of sight-
ing, including: R/V (radar and visual), VIS (visual only),
RAD(radar only), SAT-L(low earth orbit satellite), SAT-M
(medium earth orbit satellite) and SAT-H (high earth orbit
satellite). In order to quantify the confidence, we assign con-
fidence values 0.8, 0.7, 0.6, 0.5, 0.4 and 0.3 to the above six
confidence levels, respectively.

Moreover, generation rules are defined in the following
way. For the sightings with the same time stamp, if the sight-
ing locations are very close—differences in latitude and lon-
gitude are both smaller than 0.01 (i.e., 0.02 miles), they are
considered referring to the same iceberg, and only one of the

sightings is correct. All tuples involved in such a sighting
form a multi-tuple rule. For a rule R : tr1 ⊕ · · · ⊕ trm ,
Pr(R) is set to the maximum confidence among the mem-
bership probability values of tuples in the rule. Then, the
membership probability of a tuple is adjusted to Pr(trl ) =

con f (trl )∑
1≤i≤m con f (tri )

Pr(R) (1 ≤ l ≤ m), where con f (trl ) is the

confidence of trl . After the above preprocessing, the database
contains 4,231 tuples and 825 multi-tuple rules. The number
of tuples involved in a rule varies from 2 to 10. We name
the tuples in the number of drifted days descending order.
For example, tuple R1 has the largest value and R2 has the
second largest value on the attribute (Table 5).

8.1.1 Comparing PT-k queries, U-Topk queries and
U-K Ranks Queries

We applied a PT-k query, a U-TopK query and a
U-K Ranks query on the database by setting k = 10 and
p = 0.5. The ranking order is the number of drifted
days descending order. The PT-k query returns a set of
10 records {R1, R2, R3, R4, R5, R6, R9, R10, R11, R14}.
The U-Topk query returns a vector 〈R1, R2, R3, R4,

R5, R6, R7, R9, R10, R11〉 with probability 0.0299. The
U-K Ranks query returns 10 tuples shown in Table 6.

The PT-k query captures some important tuples missed
by the U-TopK query and the U-K Ranks query. For exam-
ple, R4, R10 and R14 have high probabilities to be ranked
among-10, but they are not captured by the U-TopK query
or the U-K Ranks query.

To compare the difference between the ranking results,
we compute the normalized Kendall distance [18], as sug-
gested in [27]. Given two ranked list R1 and R2, let K1 and
K2 be the corresponding top-k query results, the normalized
Kendall distance is defined as:

dis(K1,K2) = 1

k2

∑

(i1,i2)∈P(K1,K2)

K (i, j)

where P(K1,K2) is the set of all unordered pairs in K1

and K2. K (i, j) = 1 if i and j are in opposite order in
R1 and R2; K (i, j) = 0 otherwise. A larger dis(K1,K2)

indicates more disagreement between the two answers. Let
KPT −k , KU−T opK and KU−K Ranks be the results returned
by the PT-k query, the U-TopK query and the U-K Ranks
query, respectively. Then, dis(KPT −k,KU−T opK ) = 0.19,
dis(KPT −k,KU−K Ranks)= 0.31, and dis(KU−T opK ,

KU−K Ranks) = 0.31.

8.1.2 Answering top-(k, l) queries and top-(p, l) queries

Moreover, We conducted top-(k, l) queries, PT-k queries and
top-(p, l) queries on the database.
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Table 5 Some tuples in the IIP Iceberg Sightings Database 2006

Tuple R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R14 R18

Drifted days 435.8 341.7 335.7 323.9 284.7 266.8 259.5 240.4 233.6 233.3 232.6 230.9 229.3

Membership prob. 0.8 0.8 0.8 0.6 0.8 0.8 0.4 0.15 0.8 0.7 0.8 0.6 0.8

Top-10 prob. 0.8 0.8 0.8 0.6 0.8 0.8 0.4 0.15 0.8 0.7 0.79 0.52 0.359

Table 6 The answers to the
U-K Ranks query Rank 1 2 3 4 5 6 7 8 9 10

Tuple R1 R2 R3 R5 R6 R9 R9 R11 R11 R18

Pr(t, j) 0.8 0.64 0.512 0.348 0.328 0.258 0.224 0.234 0.158 0.163

Table 7 Results of top-(k, l)
queries on the IIP iceberg
sighting database (l = 10)

k = 5 k = 20

RID Top-5 prob. # of days drifted RID Top-20 prob. # of days drifted

R1 0.8 435.8 R1 0.8 435.8

R2 0.8 341.7 R2 0.8 341.7

R3 0.8 335.7 R3 0.8 335.7

R5 0.8 284.7 R5 0.8 284.7

R6 0.61 266.8 R6 0.8 266.8

R4 0.6 323.9 R9 0.8 233.6

R9 0.22 233.6 R11 0.8 232.6

R7 0.17 259.5 R18 0.8 229.3

R10 0.09 233.3 R23 0.79 227.2

R8 0.05 240.4 R33 0.75 222.2

Table 8 Results of top-(p, l)
queries on the IIP iceberg
sighting database (l = 10)

p = 0.5 p = 0.7

RID 0.5-rank # of days drifted RID 0.7-rank # of days drifted

R1 2 435.8 R1 2 435.8

R2 2 341.7 R2 2 341.7

R3 3 335.7 R3 3 335.7

R4 4 323.9 R5 5 284.7

R5 4 284.7 R6 6 266.8

R6 5 266.8 R9 7 233.6

R9 7 233.6 R11 9 232.6

R10 8 233.3 R10 10 233.3

R11 8 232.6 R18 13 229.3

R14 10 231.1 R23 15 227.2

Table 7 shows the results of a top-(5, 10) query and a
top-(20, 10) query. Some records returned by the top-(5, 10)

are not in the results of the top-(20, 10) query, such as R4,
R7, R10 and R8. Moreover, R11, R18, R23 and R33 are
returned by the top-(20, 10) query but are not in the results
of the top-(5, 10) query. Comparing two rank parameters k1

and k2 (k1 < k2), the records only appearing in the answers

to the top-(k1, l) query may have higher scores and lower
probabilities than the records only appearing in the answers
to the top-(k2, l) query.

The results to a top-(0.5,10) query and a top-(0.7,10) query
are listed in Table 8. By varying p in a top-(p, l) query, we
can see the tradeoff between the confidence and the highest
ranks a tuple can get with the confidence.
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Fig. 5 Efficiency on real data sets

8.1.3 Efficiency on real data sets

We evaluate the efficiency of the query evaluation algorithms
on the IIP Iceberg Database. Limited by space, only the
experimental results on PT-k queries are shown in this sec-
tion. A more thorough performance evaluation using syn-
thetic data sets will be presented in Sect. 8.2. For the exact
algorithm, we compare three versions: RC (using rule-tuple
compression and pruning techniques only), RC+AR (using
aggressive reordering), and RC+LR (using lazy reordering).
The sampling method uses the two improvements described
in Sect. 5. The query evaluation method based on PRist+
index is denoted by PRist+ query.

We first fix the probability threshold to 0.3 and test the effi-
ciency of the query evaluation algorithms on different rank
parameter values. Then, we fix the rank parameter to 400
and increase the probability threshold values from 0.3 to 0.7.
The results are shown in Fig. 5a and b, respectively. Clearly,
the exact algorithm using lazy reordering achieves the best
efficiency among the exact algorithms without indexing. The
query evaluation based on PRist+ is the most efficient among
all exact algorithms. The runtime increase of the sampling
method is very mild when k becomes larger. The runtime
of the Poisson approximation-based method is always less
than one second, so we omit the curves for the sake of the
readability of the figures.

8.2 Results on synthetic data sets

To evaluate the query answering quality and the scalability of
our algorithms, we generate various synthetic data sets. The
membership probability values of independent tuples and
multi-tuple generation rules follow the normal distribution
N (μPt , σPt ) and N (μPR , σPR ), respectively. The rule com-
plexity, i.e., the number of tuples involved in a rule, follows
the normal distribution N (μ|R|, σ|R|).

By default, a synthetic data set contains 20,000 tuples and
2,000 multi-tuple generation rules: 1,500 exclusive rules and
500 inclusive rules. The number of tuples involved in each
multi-tuple generation rule follows the normal distribution
N (5, 2). The probability values of independent tuples and
multi-tuple generation rules follow the normal distribution

N (0.5, 0.2) and N (0.7, 0.2), respectively. We test the prob-
ability threshold top-k queries with k = 200 and p = 0.3.

Since ranking queries are extensively supported by mod-
ern database management systems, we treat the generation of
a ranked list of tuples as a black box, and test our algorithms
on top of the ranked list.

First, to evaluate the efficient top-k probability computa-
tion techniques, we compare the exact algorithm, the sam-
pling method, and the Poisson approximation-based method
for evaluating PT-k queries. The experimental results for top-
(k, l) queries and top-(p, l) queries are similar to the results
for PT-k queries. Therefore, we omit the details.

8.2.1 Scan depth

We test the number of tuples scanned by the methods (Fig. 6).
We count the number of distinct tuples read by the exact algo-
rithm and the sample length as the average number of tuples
read by the sampling algorithm to generate a sample unit. For
reference, we also plot the number of tuples in the answer
set, i.e., the tuples satisfying the probabilistic threshold top-k
queries, and the number of tuples computed by the general
stopping condition discussed in Sect. 6.

In Fig. 6a, when the expected membership probability is
high, the tuples at the beginning of the ranked list likely
appear, which reduce the probabilities of the lower ranked
tuples to be ranked in the top-k lists in possible worlds. If the
membership probability of each tuple is very close to 1, then
very likely we can prune all the tuples after the first k tuples
are scanned. In contrary, if the expectation of the member-
ship probability is low, then more tuples have a chance to be
in the top-k lists of some possible worlds. Consequently, the
methods have to check more tuples.

In Fig. 6b, when the rule complexity increases, more tuples
are involved in a rule. The average membership probabil-
ity of those tuples decreases, and thus more tuples need
to be scanned to answer the query. In Fig. 6c, both the
scan depth and the answer set size increase linearly when
k increases, which is intuitive. In Fig. 6d, the size of the
answer set decreases linearly as the probability threshold p
increases. However, the number of tuples scanned decreases
much slower. As discussed in Sect. 4.2, a tuple t failing the
probability threshold still has to be retrieved if some tuples
ranked lower than t may satisfy the threshold.

Figure 6 verifies the effectiveness of the pruning tech-
niques discussed in Sect. 4.2. With the pruning techniques,
the exact algorithm only accesses a small portion of the tuples
in the data set. Interestingly, the average sample length is
close to the number of tuples scanned in the exact algorithm,
which verifies the effectiveness of our sampling techniques.
Moreover, the exact algorithm and the sampling algorithm
access fewer tuples than the number computed by the gen-
eral stopping condition, while the number computed by the

123



148 M. Hua et al.

 0
 200
 400
 600
 800

 1000
 1200
 1400

 0.1  0.3  0.5  0.7  0.9

N
um

be
r 

of
 tu

pl
es

Expectation of membership probability

Stopping condition
Avg sample length

Exact algo
Answer set

 0
 100
 200
 300
 400
 500
 600
 700
 800

 5  10  15  20  25

N
um

be
r 

of
 tu

pl
es

Average number of tuples in a rule

Stopping condition
Exact algo

Avg sample length
Answer set

(a) (b)

 0
 800

 1600
 2400
 3200
 4000
 4800

 200  400  600  800  1000

N
um

be
r 

of
 tu

pl
es

Parameter k

Stopping condition
Exact algo

Avg sample length
Answer set

 0
 100
 200
 300
 400
 500
 600
 700
 800

 0.2  0.3  0.4  0.5  0.6  0.7

N
um

be
r 

of
 tu

pl
es

Probability threshold p

Stopping condition
Exact algo

Avg sample length
Answer set

(c) (d)

Fig. 6 Scan depth (each test data set contains 20,000 tuples and 2,000 generation rules)
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Fig. 7 Efficiency (same settings as in Fig. 6)
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Fig. 8 The approximation quality of the sampling method and the Poisson approximation-based method

stopping condition is close to the real stopping point, which
shows the effectiveness of the stopping condition.

8.2.2 Efficiency and approximation quality

Figure 7 compares the runtime of the three versions of the
exact algorithm and the sampling algorithm with respect to
the four aspects tested in Fig. 6. The runtime of the Poisson
approximation-based method is always less than one second,
so we omit it in Fig. 7 for the sake of the readability of the
figures. We also count the number of times in the three ver-
sions of the exact algorithm that subset probability values
are computed. The trends are exactly the same as their run-
time. Limited by space, we omit the figures here. The results
confirm that the rule-tuple compression technique and the
reordering techniques speed up the exact algorithm substan-
tially. Lazy reordering always outperforms aggressive reor-
dering substantially.

Compared to the exact algorithm, the sampling method
is generally more stable in runtime. Interestingly, the exact
algorithm (RC+LR) and the sampling algorithm each has
its edge. For example, when k is small, the exact algo-
rithm is faster. The sampling method is the winner when
k is large. As k increases, more tuples need to be scanned

in the exact algorithm, and those tuples may be revisited in
subset probability computation. But the only overhead in the
sampling method is to scan more tuples when generating a
sample unit, which is linear in k. This justifies the need for
both the exact algorithm and the sampling algorithm.

Figure 8 compares the precision and the recall of the sam-
pling method and the Poisson approximation-based method.
The sampling method achieves better results in general.
However, the precision and the recall of the Poisson approx-
imation based method is always higher than 85% with the
runtime less than one second. Thus, it is a good choice when
the efficiency is a concern.

The recall of the Poisson approximation-based method
increases significantly when the query parameter k increases.
As indicated in [19], the Poisson distribution approximates
the Poisson binomial distribution well when the number
of Poisson trials is large. When the parameter k increases,
more tuples are read before the stopping condition is
satisfied. Thus, the Poisson approximation-based method
provides better approximation for the top-k probability val-
ues.

Figure 9a tests the average error rate of the top-k proba-
bility approximation using the sampling method. Suppose
the top-k probability of tuple t is Prk(t), and the top-k
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Fig. 9 The approximation quality of the sampling method
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Fig. 10 The approximation quality of the sampling method versus
data distributions

probability estimated by the sampling method is P̂rk(t), the
average error rate is defined as

∑
Prk (t)>p |Prk(t) − P̂rk(t)|/Prk(t)

|{t |Prk(t) > p}| .

For reference, we also plot the error bound calculated from
the Chernoff-Hoeffding bound [3] given the sample size. We
can clearly see that the error rate of the sampling method in
practice is much better than the theoretical upper bound.

Moreover, Fig. 9b shows the precision and recall of the
sampling method. The precision is the percentage of tuples
returned by the sampling method that are in the actual top-k
list returned by the exact algorithm. The recall is the per-
centage of tuples returned by the exact method that are also
returned by the sampling method. The results show that the
sampling method only needs to draw a small number of sam-
ples to achieve good precision and recall. With a larger k
value, more samples have to be drawn to achieve the same
quality.

Figure 10 shows the approximation quality of the
sampling method with respect to different probability dis-
tributions of tuples. One data set contains the tuples whose
membership probability follows the uniform distribution
between [0.01, 0.99], whose mean is 0.5. The other data
set contains the tuples whose membership probability fol-
lows the Gamma distribution �

(
μ
θ
, θ

)
, where μ = 0.5 and

θ = 0.2. The approximation quality is very similar to that
on the data set with the Normal distribution, since the sam-
pling method does not make any assumption on the tuples
membership probability distribution.
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Fig. 11 Scalability

8.2.3 Scalability

Last, Fig. 11 shows the scalability of the exact algorithm
and the sampling algorithm. In Fig. 11a, we vary the num-
ber of tuples from 20,000 to 1,00,000, and set the number
of multi-tuple rules to 10% of the number of tuples. We set
k = 200 and p = 0.3. The runtime increases mildly when
the database size increases. Due to the pruning rules and
the improvement on extracting sample units, the scan depth
(i.e., the number of tuples read) in the exact algorithm and the
sampling algorithm mainly depends on k and is insensible to
the total number of tuples in the data set.

In Fig. 11b, we fix the number of tuples to 20,000, and
vary the number of rules from 500 to 2,500. The runtime
of the algorithms increases since more rules lead to smaller
tuple probabilities and more scans tuples back and forth in the
span of rules. However, the reordering techniques can handle
the rule complexity nicely, and make RC+AR and RC+LR
scalable.

In all the above situations, the runtime of the Poisson
approximation-based method is insensitive to those factors,
and remains within 1 second.

8.3 Answering U-K Ranks queries

In [39], Soliman et al. propose a U-K Ranks query that finds
the tuple of the highest probability at each ranking position.
Simultaneously with our study, Yi et al. [42,43] proposed
efficient algorithms to answer U-K Ranks queries (denoted
by U-K Ranks Algo in this section). The U-K Ranks Algo
also uses the Poisson binomial recurrence [24] which is used
in our exact algorithm (see Theorem 2 in Sect. 3.1). More-
over, the U-K Ranks Algo handles generation rules using the
similar techniques as our rule-tuple compression discussed
in Sect. 3.2.1.

Interestingly, the query evaluation techniques developed
in this paper can be used to answer U-K Ranks queries with
minor changes. We scan the ranked list of tuples in the rank-
ing order and compute the position probability of each tuple.
For each rank i (1 ≤ i ≤ k), the tuple t with the larg-
est position probability Pr(t, i) is stored and updated dur-
ing the scan. The prefix-sharing technique can be used to
reduce the computational cost. The algorithm stops when for
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Fig. 12 Performance on U-K Ranks queries

any remaining tuple t and each rank i , the subset probability
Pr(St , i − 1) is already smaller than the largest position
probability at rank i (1 ≤ i ≤ k). Similarly, the sampling
algorithm and the Poisson approximation based method can
be adopted to estimate the position probability of each tuple,
and thus find the answers to U-K Ranks queries.

We compare our exact algorithm (RC+L R), the sampling
method, and the Poisson approximation-based method with
the U-K Ranks Algo. The source code of U-K Ranks Algo
and the data sets are downloaded from http://www.cs.fsu.
edu/~lifeifei/utopk/. As shown in Fig. 12a, our exact algo-
rithm achieves better efficiency than the U-K Ranks Algo.
This is because our exact algorithm adopts the prefix shar-
ing technique discussed in Sect. 4.1, which reuses the subset
probability computation for different tuples and thus reduces
the computational cost.

Figure 12b shows the approximation quality of the sam-
pling algorithm and the Poisson approximation-based algo-
rithm. The approximation quality is measured by
∑

1≤i≤k Correct (i)

k
× 100%

where Correct (i) = 1 if the answers at rank i returned by
the exact algorithm and that returned by the approximation
algorithm are identical. Both algorithms have high approxi-
mation quality.

8.3.1 Online query answering

We evaluate the performance of the PRist and PRist+ indices
in answering PT-k queries, top-(k, l) queries, and top-(p, l)
queries.

Figure 13a–c compare the construction time and average
query answering time of PRist and PRist+. Clearly, PRist+
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Fig. 14 Runtime of PT-k queries

can be constructed much more efficiently than PRist without
sacrificing much efficiency in query answering.

The memory usage of the PRist+ and compressed PRist+
is shown in Fig. 13d. PRist+ uses the compression techniques
illustrated in Fig. 4b. The space to fully materialize the top-k
probability for each tuple at each rank k is 8.3 MB. It shows
that PRist+ and PRist are much more space efficient than the
full materialization method. The memory usage of PRist is
similar to the memory usage of PRist+, since they both store
the same amount of information and use the same compres-
sion techniques. We omit the experimental results for PRist
for the interest of space.

We test the efficiency of the query evaluation methods.
Since the query answering time based on PRist and PRist+
is similar, here we only compare the efficiency of the follow-
ing three methods: the query evaluation methods based on
PRist+, the query evaluation without index (RC + L R), and
the sampling method. PT-k queries, top-(k, l) queries and
top-(p, l) queries are tested in Figs. 14, 15 and 16, respec-
tively. The construction time of PRist+ is also plotted in those
figures. There are 10, 000 tuples, 500 exclusive rules and 500
inclusive rules. The number of tuples in a rule follows the
normal distribution N (5, 2). Clearly, the query evaluation
methods based on PRist+ have a dramatic advantage over
the query answering methods without the index. Interest-
ingly, even we construct a PRist+ index on-the-fly to answer
a query, in most cases it is still substantially faster than the
query evaluation methods without indices.

Last, we test the scalability of the PRist+ construction
method and the query evaluation methods with respect to the
number of tuples and the number of tuples in rules, respec-
tively. Figure 17 shows that the methods are scalable and
much more efficient than query answering without index.
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9 Related work

In this section, we review the highly related work briefly from
three aspects.

9.1 Top-k queries on uncertain data

In [39], Soliman et al. considered ranking queries on uncer-
tain data as we do here. The answer to a U-Topk query is
always a top-k tuple list in some valid possible worlds, and
the exact positions of the tuples in the list are preserved.
A U-K Ranks query finds the tuple of the highest probabil-
ity at each ranking position. Lian and Chen developed the
spatial and probabilistic pruning techniques for U-K Ranks
queries [29]. Simultaneously with our study, Yi et al. [42,43]
proposed efficient algorithms to answer U-Topk queries and
U-K Ranks queries. In Sect. 8.3, we present a detailed dis-
cussion and empirical evaluation on the difference between
our query answering methods and the algorithm proposed in
[42,43].

More recently, Cormode et al. [11] proposed to rank prob-
abilistic tuples by expected ranks. The expected rank of a
tuple t is the expectation of t’s ranks in all possible worlds.
For example, consider a probabilistic table containing three
tuples t1, t2 and t3, with membership probabilities 0.6,

1 and 1, respectively. Suppose the ranking order on the three
tuples based on their scores is t1 ≺ t2 ≺ t3. There are two
possible worlds W1 = {t1, t2, t3} and W2 = {t2, t3}, with
probabilities 0.6 and 0.4, respectively. The expected rank of
t1 is 0 × 0.6 + 2 × 0.4 = 0.8. The expected ranks of t2
and t3 are 0.6 and 1.6, respectively. A top-1 query based
on expected ranks returns t2 as the result, since t2 has the
smallest expected rank. However, is t2 the most likely tuple
to be ranked among-1? The top-1 probabilities of t1, t2 and
t3 are 0.6, 0.4 and 0, respectively. Clearly, t1 has the highest
probability to be ranked among-1. A top-(k, l) query with
k = 1 and l = 1 returns t1 as the result. Therefore, rank-
ing by expected ranks cannot capture the semantics of the
probabilistic ranking queries discussed in this paper.

In [35], Ré et al. considered arbitrary SQL queries and
the ranking is on the probability that a tuple satisfies the
query instead of using a ranking function. [35] and our study
address essentially different queries and applications. Silber-
stein et al. [37] model each sensor in a sensor network as an
uncertain object whose values follow some unknown distri-
bution. Then, a top-k query in the sensor network returns the
top-k sensors such that the probability of each sensor whose
values are ranked among-k in any timestep is the greatest.
Meanwhile, Zhang and Chomicki developed the global top-
k semantics on uncertain data which returns k tuples having
the largest probability in the top-k list, and gave a dynamic
programming algorithm [44]. Li et al. [26] discussed the
problem of ranking distributed probabilistic data. The goal
is to minimize the communication cost while retrieve the
top-k tuples with expected ranks from distributed probabi-
listic data sets. In [27], ranking in probabilistic databases is
modeled as a multi-criteria optimization problem. A general
ranking function of a tuple t is defined as the weighted sum
of the position probabilities of t . This allows users to explore
the possible ranking functions space. Moreover, how to
learn the weight parameters of different position probabilities
from user preference data was discussed. Li and Deshpande
[28] consider finding the “consensus” answer to queries on
uncertain data represented by and/xor trees. An and/xor tree
specifies two types of correlations, mutual exclusion and
coexistence, among uncertain tuples. Given a query, the
“consensus” answer is an answer that is closest in expec-
tation to the answers of the possible worlds. It is shown that,
using symmetric difference metric to measure the difference
between two top-k answers, the “consensus” answer to a
top-k query is the set of k tuples with the largest top-k proba-
bilities, which can be computed by the algorithms discussed
in this paper.

The probabilistic threshold top-k queries discussed in this
paper are substantially different from the existing work on
both query type and semantics. Most recently, the concept of
probabilistic threshold top-k queries is touched in [21,22].
However, in this paper, we consider more types of generation
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rules in addition to exclusive rules studied in [21,22].
Moreover, we propose top-(p, l) queries that are not consid-
ered by any previous studies. We also develop a new index
structure to support online ranking query answering on uncer-
tain data. Our query evaluation methods are different from
the methods discussed above.

9.2 Probabilistic data and query answering

Modeling and querying uncertain data has been a fast grow-
ing research direction [4,16,25,36].

The working model for uncertain data proposed in [36]
describes the existence probability of a tuple in an uncer-
tain data set and the constraints (i.e., mutual exclusion and
inclusion) on the uncertain tuples, which is essentially the
uncertain model adopted in this study. Trio1 is a database
management system that adopts the same uncertain data
model. Trio is based on an extended relational model called
ULDBs and supports a SQL-based query language.

MayBMS2 [2] is another probabilistic database manage-
ment system that adopts the possible worlds semantics. It
uses the probabilistic world-set algebra, which consists of
the relational algebra operations, tuple confidence computa-
tion, and an operation that constructs possible worlds.

Cheng et al. [9] provided a general classification of proba-
bilistic queries and evaluation algorithms over uncertain data
sets. Different from the query answering in traditional data
sets, a probabilistic quality estimate was proposed to evaluate
the quality of results in probabilistic query answering. Dalvi
and Suciu [14] proposed an efficient algorithm to evaluate
arbitrary SQL queries on probabilistic databases and rank
the results by their probability. Later, they showed in [12]
that the conjunctive queries on tuple independent probabilis-
tic databases can be partitioned into “easy” queries (PTIME
data complexity) and “hard” queries (the data complexity is
#P-Complete). The “easy” queries are the ones having safe
query plans. A safe query plan computes the probabilities
using the extended relational algebra. MystiQ [7] is a sys-
tem developed by Sucio et al.3 that adopts efficient query
processing techniques for large probabilistic databases.

9.3 Indexing uncertain data

Tao et al. [40,41] proposed a U-tree index to facilitate prob-
abilistic range queries on uncertain objects represented by
multi-dimensional probability density functions. The major
advantage of U-tree is to reduce the multidimensional prob-
ability calculation to one-dimensional probability distribu-
tion. U-tree may not help answering probabilistic ranking

1 http://infolab.stanford.edu/trio/.
2 http://www.cs.cornell.edu/bigreddata/maybms/.
3 http://www.cs.washington.edu/homes/suciu/project-mystiq.html.

queries, since the top-k probability distribution is already a
single dimensional probability distribution.

Ljosa et al. [30] developed an APLA-tree index for
uncertain objects with arbitrary probability distributions
using linear approximation. Cheng et al. [10] developed PTI,
probability thresholding index, to index uncertain objects
with one dimensional uncertain values. Bohm et al. [6] devel-
oped an index for uncertain objects whose probability den-
sity functions are Gaussian functions. Moreover, Singh et al.
[38] extended the inverted index and signature tree to index
uncertain categorical data.

Different from the above work, the index structure devel-
oped in our study supports probabilistic ranking queries.
Therefore, the distributions of ranks are indexed, instead of
probability density functions.

Can we treat the set of (k, Prk(t)) pairs as points in a two-
dimensional space and index them using the traditional spa-
tial indices such as KD-trees and MVB-trees? As KD-trees
and MVB-trees are designed for indexing a set of indepen-
dent points, while the top-k probabilities for each tuple fol-
low a discrete probability distribution. Treating those points
as independent points may not allow efficient space compres-
sion. The space requirement for storing all top-k probabilities
is O(mn), where m is the number of rules and n is the number
of tuples in the data set.

The PRist+ index approximates the top-k probabilities
based on Theorem 16. The time complexity of construct-
ing a PRist+ index is O(hn log n). Moreover, it only stores
the top-k probability bounds for h prob-intervals. The space
required for PRist+ is O(hn). Therefore, both the time and
the space complexity are greatly reduced. This distinguishes
PRist+ from other existing spatial indices.

10 Conclusions

In this paper, we studied several novel probabilistic rank-
ing queries on uncertain data, which are different in seman-
tics from the recent proposals of top-k queries on uncertain
data. An exact algorithm, a sampling method, and a Poisson
approximation-based method were developed and examined
empirically. Moreover, an index structure is developed to sup-
port online evaluation of probabilistic ranking queries.

It is interesting to extend our study to more sophisticated
uncertain data models. In addition, different kinds of ranking
and preference queries on uncertain data can be considered
as future study.
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