
Contents lists available at ScienceDirect
Information Systems

Information Systems 36 (2011) 898–915
0306-43

doi:10.1

� Cor

E-m

zhangw

bjiang@
journal homepage: www.elsevier.com/locate/infosys
Ranking uncertain sky: The probabilistic top-k skyline operator
Ying Zhang a,�, Wenjie Zhang a, Xuemin Lin a, Bin Jiang b, Jian Pei b

a The University of New South Wale & NICTA, Australia
b Simon Fraser University, Canada
a r t i c l e i n f o

Article history:

Received 16 October 2008

Received in revised form

2 September 2010

Accepted 23 March 2011
Recommended by: P. O’Neil
discrete and continuous cases. In this paper, firstly an efficient exact algorithm for
Available online 31 March 2011

Keywords:

Skyline

Uncertain

Top-k
79/$ - see front matter & 2011 Elsevier B.V. A

016/j.is.2011.03.008

responding author.

ail addresses: yingz@cse.unsw.edu.au (Y. Zhan

@cse.unsw.edu.au (W. Zhang), lxue@cse.unsw

cs.sfu.ca (B. Jiang), jpei@cs.sfu.ca (J. Pei).
a b s t r a c t

Many recent applications involve processing and analyzing uncertain data. In this

paper, we combine the feature of top-k objects with that of skyline to model the

problem of top-k skyline objects against uncertain data. The problem of efficiently

computing top-k skyline objects on large uncertain datasets is challenging in both

computing the top-k skyline objects is developed for discrete cases. To address

applications where each object may have a massive set of instances or a continuous

probability density function, we also develop an efficient randomized algorithm with an

E-approximation guarantee. Moreover, our algorithms can be immediately extended to

efficiently compute p-skyline; that is, retrieving the uncertain objects with skyline

probabilities above a given threshold. Our extensive experiments on synthetic and real

data demonstrate the efficiency of both algorithms and the randomized algorithm is

highly accurate. They also show that our techniques significantly outperform the

existing techniques for computing p-skyline.

& 2011 Elsevier B.V. All rights reserved.
1. Introduction

Driven by many recent applications such as environ-
mental surveillance, market analysis, quantitative eco-
nomics research, WWW, and large sensor networks, a
rapidly growing amount of research has been dedicated to
managing uncertain data (see Section 8 for a brief review).
Uncertainty is inherent in such applications because of
various factors including data randomness and incomple-
teness, limitations of measuring equipments, delayed data
updates, etc. As more and more uncertain data accumu-
lated, it is highly desirable to conduct advanced data
analysis over uncertain data.

Skyline analysis (e.g., [2,3,15,19,24,28,34,38]) has been
demonstrated very useful in multi-criteria decision mak-
ing applications. In a multi-dimensional space where a
ll rights reserved.

g),

.edu.au (X. Lin),
preference order is given in each dimension (e.g., low
price and high quality are preferred in dimensions price
and quality), a point u1 dominates another point u2 if u1 is
not worse than u2 in every dimension, and is better than
u2 in at least one dimension according to the preference.
Point u is a skyline point if there is no any other point u0

such that u0 dominates u. Given a set of certain points, the
skyline consisting of all skyline points presents all best
possible tradeoffs among different user preferences—

modeled by monotonic scoring functions.
Skyline analysis is also meaningful on uncertain data.

To motivate our study, let us consider an example.
Suppose that the service performance of a realtor regard-
ing a property sold by her/him is evaluated against the
two aspects: the percentage of the actual price incre-
ments against the reserve price (dimension P)—the higher
the better, and the service quality ranked by the property
owner (dimension E) where scores 1–5 are given for
ranking purposes—the lower the better. The performance
of a realtor may fluctuate from one sale to another sale
due to various reasons. Therefore, evaluating a realtor to

www.elsevier.com/locate/infosys
dx.doi.org/10.1016/j.is.2011.03.008
mailto:yingz@cse.unsw.edu.au
mailto:zhangw@cse.unsw.edu.au
mailto:lxue@cse.unsw.edu.au
mailto:bjiang@cs.sfu.ca
mailto:jpei@cs.sfu.ca
dx.doi.org/10.1016/j.is.2011.03.008

Y. Zhang et al. / Information Systems 36 (2011) 898–915 899
reflect the statistic distribution of her sale records is an
effective way to predict her performance. For this pur-
pose, the performance of a realtor may be modeled as an
uncertain object in the two-dimensional space (P, E), and
each successful sale record can be viewed as an instance
of the uncertain object.

There can be a large number of realtors doing business
in an area. Therefore, a new customer (property owner)
often likes to receive recommendations of realtors who
are good in both aspects—high value of P and lower value
of E. Unfortunately, in practice it is often impossible for
one realtor to dominate all other realtors in both aspects
against all sale records. Thus, skyline analysis against
uncertain data makes sense here.

While skyline on certain data is well defined, finding
skyline of realtors as uncertain objects is not straightfor-
ward. Consider two realtors A and B and their instances in
Fig. 1 where we record multiplicative inverse of the price
incremental percentage on dimension P and assume that
coordinate values are all positive without loss of general-
ity. Instances a1 and a2 of A dominate instance b2 of B.
Instance b1 of B dominates instance a3 of A. Moreover, a1
Fig. 1. Instances of two realtor uncertain objects.

Fig. 2. Rating re
neither dominates nor is dominated by b1, b3. Clearly, A

neither dominates nor is dominated by B completely. In
fact, A takes a probability of 2

9 dominating B, and B takes a
probability of 1

9 dominating A, assuming each instance
takes the same probability to appear.

Generally, a realtor as an uncertain object takes a
probability not being dominated by any other realtors. We
are particularly interested in the skyline probability—the
probability that a realtor is not dominated by any other
realtors. As a quality measure of the realtor’s performance,
the skyline probability quantifies the likelihood of a realtor
is not worse than any other realtors. Due to a large number
of realtors in the market, a new customer may often ask for
only viewing a small portion of realtors who are less likely
worse than other realtors, that is, higher skyline probabil-
ities. While setting a skyline probability threshold p to
retrieve realtors with skyline probability greater than p is
also unable to control the size of realtors to be viewed,
finding the top-k realtors who have the highest skyline
probabilities is a natural way to control the size of realtors
to be viewed. This is an example of computing top-k skyline
objects from uncertain data.

The computation of top-k skyline objects is very useful
in many other applications where ranking uncertain
objects in a multi-dimensional space is involved. Fig. 2
shows a popular web site (http://www.restaurantratingz.
com) in which each restaurant (uncertain object) may be
evaluated by different customers with different knowl-
edge levels (experiences) against food, ambience, and
service, where knowledge level may be normalized to a
probability value to represent the occurrence of each
instance (food-rate, ambience-rate, service-rate) regard-
ing each restaurant. Pei et al. [23] show that NBA players
may be ranked using skyline against their game-by-game
statistics, where each player is an uncertain object and
the game-by-game statistics of each player are regarded
staurants.

http://www.restaurantratingz.com
http://www.restaurantratingz.com

Y. Zhang et al. / Information Systems 36 (2011) 898–915900
as the instances with the same probability to occur
regarding each player (uncertain object). As demonstrated
in [30], in many applications, the distances of an object
from different facilities are important for the decision
making. For example, in order to choose good observation
points for forest fire management, we need to consider
their distances to hydrology, roadways and fire points
[37]. Due to the imprecision of the locations of the objects
which is not uncommon in spatial database, systems
often assume the locations of the objects follow particular
distributions and hence the distance between a facility
and an object is uncertain.

As demonstrated by the example (Table 2) in [23],
computing the skyline probability of each uncertain object
(NBA player) is different from computing the skyline of
uncertain object using aggregates (e.g., the average scores)
on the instances. Using aggregates like the average scores,
the distribution information of instances is lost. On the
contrary, the skyline probability of an uncertain object
considers the relative distribution of the instances of the
object against instances of other object. While the probabil-
istic model, p-skyline, formally define the probabilistic sky-
line against uncertain data, the algorithms to compute
p-skyline are not applicable to the computation of top-k

skyline objects. This is because that the algorithm for
computing p-skyline outputs the objects with lower-bounds
and upper-bounds of the corresponding skyline probabilities;
nevertheless as shown in the experiment part in Section 7,
higher lower- and upper-bounds do not necessaries imply
higher skyline probability values. To the best of our knowl-
edge, we are the first to investigate the problem of efficiently
computing top-k skyline objects on uncertain data. In this
paper, our investigation includes both discrete and contin-
uous cases. Our principal contributions can be summarized
as follows.
�
 We develop an efficient, threshold-based algorithm to
compute the exact top-k skyline objects. The algorithm
is based on a set of novel techniques to calculate
skyline probabilities and prune objects.

�
 To address the applications with a large number of

instances per object or a given continuous probability
density function (PDF) per object, we develop an
efficient randomized algorithm with an accuracy guar-
antee, E-approximation. It follows the framework of
our exact algorithm to effectively remove non-top-k

skyline objects.
Fig. 3. certain data.
We evaluate the effectiveness and the efficiency of our
techniques for computing top-k skyline objects on uncer-
tain data. Our experiment results demonstrate the effi-
ciency of both algorithms and also show that the
randomized algorithm is highly accurate in practice.
Moreover, our algorithms can be immediately applied to
finding uncertain objects with skyline probabilities above
a given threshold (p-skyline). While the randomized
algorithm is the first technique to compute p-skyline
regarding the continuous case with an E-approximation
guarantee, our exact algorithm significantly outperforms
the existing techniques in [23].
The remainder of the paper is structured as follows. In
Section 2, we model the problem and present prelimin-
aries. Section 3 presents a framework to be adopted in the
exact algorithm and randomized algorithm, as well as
discrete and continuous cases. Section 4 applies the
framework to our exact algorithm, while Section 5 pre-
sents novel techniques for the randomized algorithm. In
Section 6, we extend our techniques to compute p-sky-
line. Section 7 reports the experiment results. This is
followed by related work in Section 8. We conclude the
paper in Section 9.

2. Background information

Points and/or instances referred in this paper, by default,
are in a d-dimensional numeric space D¼ fD1, . . . ,Ddg,
where Di denotes the i-th dimension. For two points u and
v, u dominates v, denoted by u!v, if u:Dirv:Di for every
Di 2 D, and there exists a dimension Dj 2 D where
u:Djov:Dj. Given a set of points, the skyline consists of all
points which are not dominated by any other point.

Example 1. Consider a set of points in Fig. 3. The skyline
consists of a, b, and c, where b dominates d and e.

An uncertain object may be described by a probability
density function (PDF) fU such that

R
u2UfUðuÞ du¼ 1 where

fUðuÞZ0; this is also referred as the continuous case.
Nevertheless, in many applications PDFs are not always
available. Instead, an uncertain object U is represented by
a set of instances (points) such that each instance u 2 U

has a probability pu to appear. Such a representation, also
referred as the discrete case, has the property that
0opur1 and

P
u2Upu ¼ 1. In this paper, we investigate

both discrete and continuous cases.

2.1. Problem definition

Discrete case. Given a set of uncertain objects U ¼
fU1, . . . ,Ung, a possible world W ¼ fu1, . . . ,ung is a set of
instances with one instance from each uncertain object.
The probability of W to appear is PrðWÞ ¼

Qn
i ¼ 1 pui

. Let O
be the set of all possible worlds, then

P
W2OPrðWÞ ¼ 1.

Fig. 4. uncertain data.

Table 1
The summary of notations.

Notation Definition

U, V Uncertain objects

u, v Instances of uncertain objects

fU(u) Probability density function of U

pu The probability of u to appear

M(U) The weighted centroid of U, i.e.,
P

u2Upu � u

U.MBB The minimum bounding box of U

Umax (Umin) The upper (lower) corner of U.MBB

Psky(U) Skyline probability of U

Psky(u) Skyline probability of u

PskyðUÞjU Skyline probability of U in U [U
Pr(U) The probability of U

PD(U) The set of objects partially dominating U

nU The number of instances in U

fully dominate

y

x

partially dominate

not dominate

2

3

1

4

Fig. 5. Dominance relationships.

Y. Zhang et al. / Information Systems 36 (2011) 898–915 901
We use SKY (W) to denote the set of objects such that
for each object U 2 SKYðWÞ, U has an instance in the
skyline of a possible world W. The probability that U

appears in the skylines of the possible worlds is
PskyðUÞ ¼

P
U2SKYðWÞ,W2OPðWÞ. Psky(U) is called the skyline

probability of U.

Example 2. Fig. 4 plots a set of uncertain objects. Assume
all instances take the probability 0.5 to appear. We have
eight possible worlds in total. Psky(A)¼1 since a1 and a2

are in the skyline of every possible world.
Note that c1 is dominated by every instance of A and c2

is dominated by every instance of B; consequently, there
is no possible world where C is in the skyline. Thus, Psky

(C)¼0.
Note that B is in the skylines of four possible worlds {a1,

b1, c1}, {a1, b1, c2}, {a1, b2, c1}, and {a1, b2, c2}. Therefore,
PskyðBÞ ¼ 4� ð0:5� 0:5� 0:5Þ ¼ 0:5.

By the above definition, it can be immediately verified
that for each instance u of U 2 U , the total probability of
the possible worlds, in which instance u is in the skyline,
is pu �

Q
V2ðU�UÞð1�

P
v2V ,v!upvÞ. Let

PskyðuÞ ¼
Y

V2ðU�UÞ

1�
X

v2V ,v!u

pv

 !
:

Psky(u) is called the skyline probability of u, which is a
conditional probability computed when we only consider
the possible worlds containing instance u. It is also
immediate that the skyline probability Psky(U) of U can
be rewritten below:

PskyðUÞ ¼
X
u2U

pu � PskyðuÞ ¼
X
u2U

pu �
Y

V2ðU�UÞ

1�
X

v2V ,v!u

pv

 ! !
:

ð1Þ

Continuous case. Similarly, given a set of uncertain
objects U ¼ fU1, . . . ,Ung such that each Ui has a PDF fUi

defined on Ui. The possible world semantic can be
extended to cover the continuous case as follows. A
possible world W¼{u1, u2,y, un} is a point in the space
O¼

Qn
i ¼ 1 Ui such that

R
W2O

Qn
i ¼ 1 fUi

ðuiÞdu1du2 . . . dun ¼ 1.
Similarly, we define SKY(W) by including the

objects with a point in the skyline of W. The skyline
probability of U is

PskyðUÞ ¼

Z
U2SKYðWÞ,W2O

Yn

i ¼ 1

fUi
ðuiÞdu1du2 . . .dun: ð2Þ

This can be rewritten as

PskyðUÞ ¼

Z
u2U

fUðuÞ
Y

VaU

1�

Z
v!u,v2V

fV ðvÞ dv

� �
du: ð3Þ

Problem statement. In this paper, we investigate the
problem of finding top-k skyline objects on uncertain data
(top-k SOUND); it is formally defined below.

Definition 1 (Top-k SOUND). Given a set U of uncertain
objects and an integer k, retrieve the k uncertain objects
with the highest skyline probabilities.

Table 1 summarizes the notations used in this paper.

2.2. Preliminaries

Dominance relationships. A pair U, V of uncertain
objects may have three kinds of dominance relationships
as illustrated in Fig. 5.

Let U.MBB denote the minimum bounding box of the
instances of an uncertain object U. Umax and Umin are the
upper-right and lower-left corners of U.MBB, respectively.
An object U is fully dominated by another object V if Umin is
dominated by Vmax or Umin¼Vmax with the property that
there is no instance from U allocated at Umin or there is no
instance from V allocated at Vmax. U is partially dominated

by V if Umax is dominated by Vmin but U is not fully
dominated by V. Otherwise, U is not dominated by V. As

Y. Zhang et al. / Information Systems 36 (2011) 898–915902
depicted in Fig. 5, U is fully dominated by V1, partially
dominated by V2 and V3, and is not dominated by V4. Note
that when U degenerates to one instance, the above
concepts are immediately extendible if a point is treated
as a special case of MBB.

An object is redundant if it is fully dominated by another
object. Pei et al. [23] shows the following theorem.

Theorem 1. Regarding the discrete case, a redundant object

U has 0 skyline probability, and any instance from another

object V dominated by an instance of U is fully dominated by

a non-redundant object, and thus has 0 skyline probability.

Theorem 1 immediately implies that any redundant
object can be immediately removed. This is because that
any instance dominated by an instance from a redundant
object must be fully dominated by another non-redun-
dant object.

Weighted centroids. Generally, the skyline probability
of an object is determined by the distribution of its
instances (intra relationships) and its relationships to
the distributions of the instances of other objects (inter

relationships). In our algorithms, we use the weighted (by
probabilities) centroid M(U) of instances to approximately
represent the distribution of instances in object U to
determine the processing order of objects. Formally,
MðUÞ ¼

P
u2Upu � u.

R-tree. An initial computation in our algorithms is
index-based, making use of the existing techniques. We
assume that the minimum bounding boxes MBBs of
objects’ instances are indexed by an R-tree [11]. A node
of an R-tree contains a set of entries. Each entry in a leaf
node is in the form /obj,obj:MBBS where obj refers to the
object ID and obj.MBB is the MBB of the object’s instances.
Each entry in a non-leaf node has form /child,child:MBBS
where child refers to a child node, and child.MBB is the
minimum bounding box of this child node. Fig. 6(a)
illustrates an R-tree built on MBBs of nine uncertain
objects. The root has three entries E1, E2, and E3. Each
child of the root encapsulate three objects, respectively.
1

3

5

7

9

1 1

1 3

1 5

1 7

1 9

1 3 5 7 9 1 1 1 3 1 5 1 7 1 9 2 1 2 3

2 1

1

3

5

7

9

1 1

1 3

1 5

1 7

1 9

2 1

Fig. 6. Example. (a) Set of objec
BBS algorithm. BBS algorithm [21] will be used and
modified in the initial computation phase of our algo-
rithms. Given a set of points indexed by an R-tree, BBS
algorithm traverses an R-tree (built on points) to compute
the skyline. It maintains a min-heap H built against the
mindist (minimum distance to the origin of the data
space) of every entry (node). The algorithm goes itera-
tively. At the beginning, entries of the root are inserted
into H. In each iteration, the top element e of H is
processed. If e is fully dominated (i.e., the minimum
corner of e is dominated) by an already computed skyline
point, then e is discarded. Otherwise, if e is a data point,
then it is output as a skyline point; if not, e is discarded
and those entries of e which are not fully dominated by
any already computed skyline point are inserted into H.
An in-memory R-tree on already computed skyline points
is maintained in order to facilitate examining the dom-
inance relationship. The algorithm terminates when H

is empty.
BBS ensures that each output point is in the skyline

and it is I/O optimal.
3. Framework for top-k SOUND

Naively computing the skyline probability of each
object is expensive and takes time Oð

P
8U,V nU � nV Þ for

the discrete case, where nU and nV are the number of
instances in objects U and V, respectively. The computa-
tion regarding the continuous case may be even more
expensive due to integrating PDFs.

In the light of efficiently computing top-k queries (i.e.,
pruning away none top-k objects as soon as possible), below
we present a framework to efficiently support both exact
computation and randomized computation. It consists of
three steps: preprocessing–seeding–final computation.

Step 1: Preprocessing. Remove redundant objects.
Step 2: Seeding. Select k objects and compute their

skyline probabilities.
Step 3: Final computation. Finalize the computation of

top-k SOUND.
1 3 5 7 9 1 1 1 3 1 5 1 7 1 9 2 1 2 3

ts. (b) After removing E3.

Y. Zhang et al. / Information Systems 36 (2011) 898–915 903
Note that after Step 1, if the number of objects left is
not greater than k, then we can terminate the algorithm.
Without loss of generality, we assume that there are more
than k objects left after Step 1 in the rest of this section.
Below, we present details in Steps 1–3.

3.1. Step 1: Preprocessing

As discussed in Section 2.2, Theorem 1 guarantees the
correctness by removing redundant objects without
affecting the skyline probability computation of remain-
ing uncertain objects in discrete cases. Theorem 1 can be
immediately extended to cover continuous cases. Note
that if u!v, there must exist two small regions ru and rv

surrounding u and v, respectively, such that ru fully
dominates rv.

Theorem 2. In continuous cases, a redundant object U also

has 0 skyline probability. Moreover, any region in an

uncertain object V fully dominated by a region in U is fully

dominated by a non-redundant object, and hence has 0
skyline probability.

Theorem 2 can be immediately verified according to
the definitions. It implies that we can also remove the
redundant objects regarding continuous cases without
affecting the skyline probability computation for remain-
ing objects.

We modify the original BBS algorithm to conduct the
preprocessing. Below are some details of our modified
BBS algorithm.
�
 An R-tree is built on MBBs; that is the unit data are
MBBs of objects instead of points in the original BBS.

�
 Replace the dominance relationships among points by

the fully dominance relationship among MBBs of objects
in the modified BBS.

�
 In modified BBS, for every data entry in the R-tree we

adopt the distance dM(U) between the centroid M(U)
and the origin as mindist to serve as the key of the
heap, while for an internal node (entry) in the R-tree,
the minimum of such distances among the objects
(data entries) contained is used as mindist; we assume
that they are recorded in the R-tree.

It can be immediately verified that for two objects U

and V, if dMðUÞodMðVÞ then U will not be fully dominated
by V. This guarantees no false positive and hence the
modified BBS algorithm can remove all redundant objects.

The Algorithm 1 illustrates the details of the modified
BBS. Regarding the objects in Fig. 6(a), after Step 1, only
the objects in Fig. 6(b) remain.

Algorithm 1. Modified BBS
Input:
R: R-tree on MMBs of the objects;
Output:
Rnr: an in-memory R-tree index of non-redundant objects;
Rs: an in-memory R-tree index of skyline of the weighted

centroid of non-redundant objects;
Description:

1:
 H :¼ |;Rs :¼ |; Rnr :¼ |;
2:
 push root of R into heapH;
3:
 while Ha| do

4:
 e : ¼H:deheapðÞ;
5:
 if e.MBB is not fully dominated by MMB of any object in Rnr

then

6:
 if e is MBB of an object U then

7:
 Put e to Rnr;
8:
 Put M(U)to Rs if it is not dominated by any points in Rs;
9:
 else

10:
 Push all child entries of e into H;
11:
 return Rnr, Rs
3.2. Step 2: seeding

The aim is to initially choose k objects with large
skyline probabilities as a threshold to quickly prune away
objects with small skyline probabilities without conduct-
ing the entire computation of their skyline probabilities.
Intuitively, an object U with M(U) as a skyline point, of all
weighted centroids, may have more instances not being
dominated by other objects’ instances; thus, it has a good
chance to have a high skyline probability value. Moreover,
we also give the preference to M(U) with the smallest
dM(U) since intuitively, smaller dM(U), less chance U being
dominated by others. Note that the selection of k objects
does not affect the correctness of the Algorithm 2. Never-
theless, a good selection might help to avoid computing
skyline probabilities of many objects.

Algorithm 2. Seeding
Choose the k objects U such that:
�
 M(U) are skyline points with smallest dM(U), and
�
 if there are not enough skyline points M(U), then choose the

remaining objects V with the smallest dM(V) to make total k

objects.
Algorithm 2 involves the computation of the skyline of
the weighted centroids of non-redundant objects. This
could be separately conducted by first computing all non-
redundant objects and then retrieving skylines of their
weighted centroids. In our algorithm, we conduct this
simultaneously by executing the original BBS on centroids
while computing non-redundant objects at the same time.
This can share the computational costs since in our
modified BBS dM(U) (8U) is already used as mindist; that
is, we only need to maintain one heap.

Note that BBS, so does the modified BBS, always
generates objects sorted increasingly on the search key
mindist (dM(U)) as a by-product. Thus, after running the
modified BBS on objects and the original BBS on weighted
centroids, the non-redundant objects {U} are sorted as a
sorted list L2 on dM(U) (non-decreasingly) and the objects
with M(U) as skyline points are also sorted as a sorted list
L1 against dM(U) (non-decreasingly). Clearly, L2 contains
all objects in L1. Nevertheless, we can remove from L2 the
objects in L1, while running BBS on the centroids and
modified BBS simultaneously, as the objects are processed
in the same order in these two algorithms. Algorithm 2 is
thus executed in linear time O(k).

Computing the skyline probability. The last phase of
Step 2 (seeding) is to compute skyline probability for
each seeded object, totally k objects. The computation is
different for the exact algorithm and the randomized

1

3

5

7

9

1 1

1 3

1 5

1 7

1 9

1 3 5 7 9 1 1 1 3 1 5 1 7 1 9 2 1 2 3

2 1

Fig. 7. Data distributions.

Y. Zhang et al. / Information Systems 36 (2011) 898–915904
algorithm. Our computation techniques will be intro-
duced in Sections 4 and 5, respectively.

3.3. Step 3: final computation

The framework regarding this step is outlined below.
We iteratively process each object U as follows.

Filtering. If PskyðUÞrPk, then U is not a candidate of
top-k SOUND. Here, Pk is the smallest skyline probability
of the current top-k objects. Note that current objects
refer to the objects processed for their skyline probability
computation so far, including the objects chosen as
seeds.

Refinement. Otherwise replace by U the object V, with
the skyline probability Pk, in the current top-k objects.
Update Pk.

Suppose that for each object U, PD(U) denotes the set
of objects each of which partially dominates U. Clearly,
computing Psky(U) takes time ðnU � ð

P
V2PDðUÞjnV jÞÞ if PD(U)

is already obtained.
An object is called a master object when we compute

its skyline probability in the final-computation phase.
Then objects in PD(U) are called associated objects to the
master object U since they will be employed to compute
Psky(U). There are two key issues.
1.
 By which order are the associated objects (i.e., objects
in PD(U)) accessed against a master object?
2.
 By which order are objects accessed as master objects?

Our experiments demonstrate that a random selection
towards these two issues leads to the computation time
an order of magnitude slower than the techniques
developed below.

Order of associated objects. The main goal of this step is
to develop efficient and effective techniques to prune
away a master object U as earlier as possible; that is,
access as less as possible the objects in PD(U). The
following theorem is immediate from the definitions.

Theorem 3. Suppose that U 0 is a subset of the set U of objects.

Then, PskyðUÞjU 0ZPskyðUÞjU , where PskyðUÞjU (PskyðUÞjU 0)
denotes the skyline probability of U regarding the set fUg [U
(fUg [U 0) of objects.

The monotonic property in Theorem 3 implies that
for the skyline probability computation of object U, we
only need to access objects U 0 if PskyðUÞjU 0rPk since
U can be safely excluded from top-k SOUND by only
considering U 0.

Pruning Rule 1. For an object U, let U be a subset of PD(U).
U can be excluded from the candidates of Top-k SOUND if

PskyðUÞjUrPk.

Example 3. Regarding the example in Fig. 6(b), suppose
that k¼2 and objects U1 and U4 are initially chosen. When
computing the probability value of U5, we may find that
the PskyðU5ÞjU4

is already smaller than Pk. Thus, we no
longer need to do a further computation between U5 and
U6, nor U5 and U1.
Continuing this example, suppose that the distributions
of instances in U1, U5, U4, and U6, respectively, are as what
illustrated in Fig. 7. Clearly, it is better to start with the pair
of U4 and U5 as the PskyðU5ÞjU4

is intuitively smaller than
PskyðU5ÞjU1

or PskyðU5ÞjU6
. Thus, there is a great chance to

eliminate U5 by computing PskyðU5ÞjU4
only.

Ideally we would like to find a perfect permutation,
fUi : 1r ir jPDðUÞjg, of the objects in PD(U) such that, for
each 1r ir jPDðUÞj, PskyðUÞjfU1 ,...,Uig

is minimum among
any subset of PD(U) with i objects. That is, when U is
pruned away from the candidates, the number of objects
accessed from PD(U) is always minimized. Nevertheless,
such a permutation does not always exist.

Example 4. For example, suppose that there are four
objects U, U1, U2, and U3, where U is the master object
and has only two instances u1 and u2 with the equal
probability 0.5 such that:
�
 the probabilities that u1 is not dominated by U1, U2,
and U3 are 0.15, 0.3, and 0.4, respectively;

�
 the probabilities that u2 is not dominated by U1, U2,

and U3 are 0.9, 0.8, and 0.7, respectively.

It can be immediately verified that to follow the property
specified above for each i in a perfect permutation, the
first associated object has to be accessed is U1. Never-
theless when i ¼2, the skyline probability of U against U2

and U3 is the minimum. Therefore, such a perfect permu-
tation does not exist.

Below we develop a ranking function based on Eq. (4)
to order associated objects so that a good permutation
may be obtained. It is based on the following observation.
Let U and V be two uncertain objects where U is a master
object. Consider that M(U) approximately represents the
instance distribution of object U. Intuitively, when M(U) is
dominated by an M(V), we may expect that U has more
chances to be dominated by V; in this case, the further the

Y. Zhang et al. / Information Systems 36 (2011) 898–915 905
distance between M(U) and M(V) is, the larger the chance
that the probability of U dominated by V has a larger value
(i.e., the smaller the skyline probability of U).

DðU,VÞ ¼ dðU,VÞdðMðUÞ,MðVÞÞ: ð4Þ

Here, d is a distance metric; Manhattan distance is used in
our implementation; dðU,VÞ ¼ 1 if MðVÞ!MðUÞ, otherwise
�1. Based on the above observations, in our algorithm we
choose associated objects one-by-one increasingly
according to D values.

Order of master objects. The goal is to make Pk increase
as quickly as possible to reach the k-th largest skyline
probability. Sharing with the same intuition in seeding
algorithm (Algorithm 2), we choose a master object
according to the priority described in Algorithm 2.

Algorithm. We present our algorithm to determine the
final top-k according to the above discussions.

Algorithm 3. Final computation
Input:
L1: a sorted list of remaining objects (with the weighted centroids

as skyline points) on dM(U);
L2: a sorted list of remaining objects (with the weighted centroids

as non-skyline points) on dM(U);
Output: TOPk: min-heap on the skyline probabilities of k objects,

together with the corresponding object IDs;

Description:

1:
 for each U of initial k objects do TOPk.push (U);
2:
 Pk : ¼ TOPk :top:key;
3:
 for each U 2 L1 [L2 do

4:
 if ProbBðU,UNRÞ4Pk then

5:
 TOPk :popð Þ;
 TOPk:pushðUÞ;
6:
 Pk :¼ TOPk:to
p:key;
7:
 return TOPk
As described in the seeding phase (Section 3.2), L1 is a
by-product of BBS algorithm, while L2 is a by-product of
the modified BBS. In Algorithm 3, UNR is the set of non-
redundant objects from a given set U of objects. We
accessing L1 [L2 by firstly accessing L1 and then accessing
L2 according to their sorted order, respectively.

To save the storage space, in TOPk we only keep object
IDs and their corresponding skyline probabilities. The
method ProbBðU,UNRÞ is employed to calculate the skyline
probability of the object U. Note that U might be pruned
based on probabilistic threshold Pk during the computa-
tion. This procedure is different for the exact algorithm
and the randomized algorithm since different pruning
techniques will be employed. Details of method
ProbBðU,UNRÞ will be presented in the next two sections.

4. Exactly computing top-K SOUND

The exact algorithm for discrete cases follows the
framework of three steps in Section 3. In this section,
we present the details of computing the skyline prob-
ability in Step 2—Section 3.2, and our pruning strategies
in Step 3—Section 3.3.

Computing the skyline probability. The last part of Step 2
computes the skyline probabilities of the initially chosen k

objects.
Note that an in-memory R-tree on MBBs of non-
redundant objects has been built as a by-product of our
modified BBS, corresponding to the in-memory R-tree on
skyline points in the original BBS.

For each U of these initially chosen k objects, our
algorithm to compute its skyline probability is conducted
in two stages. At stage 1, it iteratively traverses the in-
memory R-tree in a depth-first manner to search for
objects with MBBs partially dominating U; that is, search
for objects in PD(U). Once such an object V is found, it
performs an update of the skyline probability of each
instance of U. In our implementation, the synchronous

traversal (ST) join paradigm ST(U,V) [14] is adopted
instead of trivially comparing each pair of instances
from U and V. Let CHR denote the set of children of the
root of R. Algorithm 4 presents our algorithm to update
the skyline probability. Note that there are only two
relationships among non-redundant objects: partially
dominating or not dominating. If R0 does not (partially)
dominate U, then R0 can be simply passed-over since each
u 2 U has the probability 1 not being dominated by any
object in R0.

Algorithm 4. Prob (U, R)
Input:
R: an in-memory R-tree index of non-redundant objects;
U: an object;
Output: PskyðUÞ

Description:

1:
 Q :¼ CHR;
2:
 remove entries from Q that do not (partially) dominate U;
3:
 while Qa| do

4:
 R0 :¼ Q :popðÞ;
5:
 if R0 :MBB does not (partially) dominate U then

6:
 Pass-over R0;
7:
 else

8:
 if R0 is an object VaU then

9:
 STðU,VÞ;
10:
 U :¼ REMOVE_ZEROðUÞ;
11:
 else

12:
 Q :¼ Q [CHR0 �fR

0g;
13:
 PskyðUÞ :¼
P

u2Upu � PskyðuÞ;
14:
 return PskyðUÞ
In Algorithm 4, Q is maintained as a queue. To facilitate
the synchronous traversal join paradigm, the instances in
each object are pre-organized by an in-memory R-tree
data structure such that at each node E, we also record pE

—the summation of the probabilities of the instances
which are descendant of E in the R-tree. ST(U,V) is a
simple modification of the synchronous traversal join
algorithm to conduct an in-memory update of the skyline
probability of each instance in U due to an addition of
object V. We only need to modify the join condition to
‘‘one rectangle (point) fully dominates another rectangle
(point)’’. In ST(U, V), for a pair of node E 2 U and node
E0 2 V , there are three cases below.

Case 1: If E0 does not dominate E, pass-over E0.
Case 2: If E0 fully dominates E, then PrðEÞ :¼ PrðEÞþpE0 .

Note that Pr(E) is initiated to 0 when a new object is
added, and is the summation of the occurrence probabil-
ities of instances in an E0 which is captured in ST(U,V) to
fully dominate E.

1

3

5

7

9

1 1

1 3

1 5

1 7

1 9

1 3 5 7 9 1 1 1 3 1 5 1 7 1 9 2 1 2 3

2 1

Fig. 8. Dealing IU.

Y. Zhang et al. / Information Systems 36 (2011) 898–915906
Case 3: Otherwise (E0 partially dominates E), put (not
Case 1) pairs of children of E0 and E in a queue for further
traversal.

To compute the skyline probability correctly, after per-
forming ST(U, V) for an object V, we push down Pr(E) from
each internal node E to the leaf nodes (instances) along the
tree path. That is, PrðuÞ ¼

P
E2lu

PrðEÞ, where lu is the path
from the root to the leaf u. Note that the whole push-down
computation can be performed in linear time if it is
executed in a top-down fashion. Moreover, after push-
down, we update Psky(u) to PskyðuÞ :¼ PskyðuÞð1�PrðuÞÞ1, and
then reset Pr(E)¼0 for each entry E in the R-tree,
including leafs.

Remove instances with skyline probability 0 by REMO-

VE_ZERO (U). The following Theorem is fundamental.

Theorem 4. Suppose that an instance u has 0 skyline

probability. Then, there must be a non-redundant object V

such that u is fully dominated by V; that is, each instance of V

fully dominates u. Moreover, no instance from V has skyline

probability 0.

Proof 1. Suppose that PS is the set of objects such that the
right-upper corners of all objects in U 2 PS form the skyline
against all those of the non-redundant objects. It can be
immediately verified that one object from PS must fully
dominate u. Moreover, it is also immediate that none of
instances in an object U in PS has 0 skyline probability. &

Instances with skyline probability 0 can be removed
from U from further considerations. Firstly, removing
them from U implies that while computing the skyline
probability of U, these instances will not be counted. This
is equivalent to counting their probabilities as 0. Secondly,
removing them from U will not affect the computation of
skyline probabilities of other objects. This is because any
instance v fully dominated by an instance u with skyline
probability 0 must be fully dominated by a non-redun-
dant object V 0 without any instance removed according to
Theorem 4. Consequently, the 0 skyline probability can be
discovered from the relationship between V 0 and u.
Thirdly, removing these instances not only saves
the memory space for the scalability but also reduces
the computation costs when U is used in computing the
skyline probabilities of other objects.

Example 5. Regarding the example in Fig. 7, once the
instances in U6 with skyline probability 0 are removed, we
no longer need to use them when update the skyline
probability of U5 by adding U6.

In REMOVE_ZEROðUÞ, we remove the instances with 0
skyline probability; if an entry in the R-tree on U’s
instances only contains the instances with 0 skyline
probability, then the entry is removed as well. We do
not re-balance the R-tree of U as our initial experiment
demonstrates that such re-balance costs cannot be paid
off. Note that we do not physically remove instances or
entries from a pre-built in-memory R-tree; instead, we
1 Note that Psky(u) is initialized to 1.
mark out those ‘‘removed’’ instances and entries to pre-
vent them from being involved in further computation.

Processing ProbBðU,UNRÞ. It can be done exactly in the
same way as Algorithm 4. However, as implied by
Theorem 3, we do not have to always conduct the entire
computation of PskyðUÞjUNR

. To facilitate this, we always
choose an entry with the largest D value. As discussed
above, UNR is the set of non-redundant objects that are
indexed by an in-memory R-tree as a by-product of our
modified algorithm.

It can be immediately verified that Theorem 3 also holds
for the situation where instances with skyline probability 0
are removed; this together with Theorem 3 yields that we
can add associated objects one-by-one to calculate skyline
probability and prune away a master object U against a
subset of PD (U) based on Pruning Rule 1.

Prob B ðU,UNRÞ modifies Prob(U,R) (Algorithm 4) as
follows.
�
 In Prob B ðU,UNRÞ, we maintain a max-heap Q based on
D values of the R-tree entries instead of a queue where
D values are calculated on the fly. To retain the
monotonic property that for each internal entry E, its
D value is the maximum of D values of the entries/
objects contained,

for each entry E, we record uE, M which is the lower-
left corner of the minimum bounding box of the
weighted centroids of objects contained in E; then
compute the D value using M(U) and uE,M.
�
 Between lines 10 and 11 in Algorithm 4, we calculate
the current skyline probability after adding one asso-
ciated object; that is, add

P
u2UpuPskyðuÞ. If it is already

not larger than Pk, then we terminate Prob B (U, R);
consequently U is excluded from the candidates of top-
k SOUND; that is, the condition in line 4 of Algorithm 3
does not hold.

Remark. A non-redundant object may have 0 skyline
probability for every instance. As illustrated in Fig. 9, U

is a non-redundant object. Nevertheless, the skyline

Fig. 9. Multiple dominance relationships.

Y. Zhang et al. / Information Systems 36 (2011) 898–915 907
probability of U is zero if its instances are located in the
two black-colored boxes only.

Generally, an object U may have a subset IU of
instances such that each instance in IU has 0 skyline
probability. IU can be removed from U without further
consideration, as explained before. This can be done by
using window query techniques to detect the instances
dominated by the skyline points on the upper-right
corners of MBBs of non-redundant objects. However, our
initial experiments suggest that such pre-computation
costs cannot be paid off.

In our algorithm, we only remove a subset of instances,
captured with 0 skyline probability on the fly, in examin-
ing its top-k candidature. For instance, regarding the
example in Fig. 8, U5 may be excluded from a top-k

candidate after computing PskyðU5ÞjU4 without examining
U10. Consequently, before U5 is excluded from a further
consideration (i.e., examining U10, etc.) as a master object
we are only able to capture the set of instances in U5 fully
dominated by U4 but not those fully dominated by
U10 only.

5. Randomized algorithm

In this section, we present a randomized algorithm to
deal with both continuous (with the assumption that
PDFs are continuous functions) and discrete cases. Let
U ¼ fUjj1r jrng be the set of non-redundant objects.
The basic idea is to sample all possible worlds,

Qn
i ¼ 1 Uj,

by m possible worlds Si; that is, each sample Si (1r irm)
consists of n randomly chosen points for the continuous
case (or instances for the discrete case)—one per each
object. Then, we use mU=m as the approximation of the
skyline probability of an object U to determine the
solution for top-k SOUND. Here, mU is the number of
times that object U is involved as the skyline points in
these m samples (worlds).

Example 6. Consider the example in Fig. 4. Regarding two
samples (worlds) (i.e., m¼2) (a1, b1, c2) and (a2, b1, c1),
mB¼1).

Algorithm 5. Randomized algorithm

ite domain, we can
2 For a PDF of an uncertain object U with an infin
ery small probability
Input: U ¼ fUij1r irng; m: an integer.

Output: Tk: k objects.
simply cut the infinite part of the domain with a v

x0U . Then, the following analysis still holds.
Description:

1:
 for i :¼ 1 to m do

2:
 for j :¼ 1 to n do

3:
ui,j : ¼ randomðUjÞ;
4:
 Sky-COUNT ðfui,jj1r irm,1r jrngÞ;
5:
 TK :¼ the k objects U with the largest mU=m;
6:
 return Tk
In Algorithm 5, regarding the discrete case we use
random (Uj) to randomly select an instance from Uj such
that each instance u 2 Uj has the probability pu to be
selected. Regarding a continuous case, we first divide the
whole data space, the MBB of U, into very small regions
such that in each region, the difference of values of a PDF
is bounded by a very small value x. Then, random (Uj)
randomly selects a point from a region r with probability
Pr(r). Sky-COUNT ðfui,jj1r irm,1r jrngÞ computes mU

for each object U. Computing the skyline of each sample
Si ¼ fui,jj1r jrng (for 1r irm) to get each mU is expen-
sive, even more expensive than the exact algorithm, when
m is reasonably large. Below, we will present an efficient
counting technique. First, we present the accuracy guar-
antee of Algorithm 5.
5.1. Accuracy guarantee

For each object Uj, in Algorithm 5 the events whether
ui, j¼random(Uj) is a skyline point of Si is described by the
following totally independent random variable:

Xi,j ¼
1 if ui,j is a skyline in sample i

0 otherwise

�
ð5Þ

It is immediate that EðXi,jÞ ¼
P

u2Uj
puPskyðuÞ in a discrete

case for each i and j. For a continuous case, without loss of
generality we may assume that for each object U its PDF
domain is a finite region and S is the maximum of the

region volumes of these n uncertain objects.2 We choose x
such that xoE=ð2n

� S� 4Þ. Consequently, it is immediate

that EðXi,jÞ ¼
R

u2Uj
fUj
ðuÞ
Q

VaUj
ð1�

R
v!u,v2V fV ðvÞ dv duÞþxUj

where for each U, 0r jxU joE=4; that is, EðXi,jÞ¼PskyðUjÞþ

xUj
. Let

Xj ¼

Pm
i ¼ 1 Xi,j

m
ð6Þ

We have mUj
=m¼ Xj and EðXjÞ ¼ PskyðUjÞþx00Uj

, where
jx00Uj
jrE=8. Given a set of objects, for 1r lrk let Pl denote

the skyline probability of the object with the l-th largest
skyline probability. Suppose that for 1r lrk, Ujl

is ranked
as the top l-th object by Algorithm 5. Note that the object
Ujl

could be different than the real top l-th object (with
skyline probability Pl). Nevertheless, the following theo-
rem states that when the sample size m is sufficiently
large, Xjl

(¼mUjl
=m) will be an E-approximation of Pl with

confidence 1�d.

Fig. 10. Example of samples.

Y. Zhang et al. / Information Systems 36 (2011) 898–915908
Theorem 5. Given an E (0oEo1), a d (0odo1), and n

non-redundant objects, if m¼Oðð1=E2Þlogn=dÞ and x is

chosen with xoE=ð8� 2n
� SÞ, then

Pr
k̂

l ¼ 1

fjXjl
�PljrEg

 !
Z1�d:

To prove Theorem 5, we need the following Lemmas.
By the Chernoff/Hoeffding bound (Theorem 2.7 in [10]), the
following Lemma is immediate. It implies that when the
sample size is sufficiently large, Xj is very close to the
skyline probability of Uj with a high confidence.

Lemma 1. PrðjXj�PskyðUjÞjZlÞr2exp�2mðl�E=8Þ2 (0olr
1) 8j 2 ½1,n�.

The following lemma states that if the sample size is
sufficiently large, then with a high confidence, Algorithm
5 can only reverse the order, against their skyline prob-
abilities, of two objects with a small difference between
their skyline probabilities.

Lemma 2. For j and j0, suppose that PskyðUjÞoPskyðUj0 Þ.
Then, PrðXjZXj0 Þrexp�mðPskyðUj

0
Þ�PskyðUjÞ�E=4Þ2=2.

Proof 2. Let Z ¼ Xj�Xj0 . We have PrðXjZXj0 Þr
PrðZ�EðZÞ4PskyðUj0 Þ�PskyðUjÞ�E=4Þ. By Hoeffding inequal-
ity (Theorem 2 in [13]), the lemma is immediate. &

Proof of Theorem 5. Without loss of generality, suppose
that for an l 2 ½1,k�, the object Ul has the l-th largest
skyline probability Pl (i.e., Psky(Ul)¼Pl). For each object Ujl

(ranked the l-th by Algorithm 5), we prove the probability
of the following three events to appear is small when m is
chosen appropriately.
Event 1: PskyðUlÞ�PskyðUjl Þ4E=2.
Event 2: PskyðUjl Þ�PskyðUlÞ4E=2.
Event 3: jXjl

�PskyðUjl
Þj4E=2.
3 An instance may appear in several samples especially in the

discrete case.
Let m¼ ð8=E2Þlog2ðnþ1Þk2=d.
If Event 1 occurs, then (Ui such that PskyðUiÞZPl (i.e.,

ir l) and XirXjl . This implies that Ui and Ujl
change their

order by Algorithm 5. Consider that there are l such objects.
Consequently, from Lemma 2, the total probabilities that Ujl

change the order with these l objects is bounded by
ld=4k2ðnþ1Þ. Therefore, PrðEvent1Þr ld=4k2ðnþ1Þ.

If Event 2 occurs, then (Ui such that PskyðUiÞrPl (i.e.,
iZ l) and XiZXjl . Note that there are ðn�lþ1Þ such
objects. Similarly, from Lemma 2, we have PrðEvent2Þr
ðn�lþ1Þd=4k2ðnþ1Þ.

Let l¼ E=2. By Lemma 1, PrðEvent 3Þod=2k.
Therefore, for all l (1r lrk) the probability of that one

of these 3k events occurs is not greater than d. Conse-
quently, the theorem holds since ð16=E2Þlog2ðnþ1Þ
k2=d¼ Oðð1=E2Þlogn=dÞ.

Discussions. Note that the sample size in Theorem 5 is
irrelevant to the number of instances in an object. If
we run the seeding phase, and choose E as E1Pk if Pka0,
then we can guarantee a relative E-approximation theo-
retically. Theoretically, to guarantee E-approximation, we
need a sample size as stated in Theorem 5; nevertheless,
our experiment demonstrate that m¼1000 can provide a
quite accurate solution to top-k SOUND.
5.2. Efficient algorithm

The Sky-COUNT in Algorithm 5 follows the framework in
Section 3; that is, three steps: preprocessing, seeding, and
final computation. While others are exactly the same as
those in the exact algorithm, we present efficient techniques
to compute mU=m (corresponding to Algorithm 4—Prob())
for the initially chosen k objects in the seeding phase and
execute Prob B () in Algorithm 3 in Step 3. We aim to
directly compute mU for each object U by avoiding comput-
ing the skyline for each sample.

In our techniques, we organize sampled instances
(points) of each object U as a list U.list to save the storage
space by removing duplicates.3 Initially, the i-th node of
this linked list contains the integer i, and the reference
referring to the instance of U in the i-th sample. For
instance, regarding the example in Fig. 4, three samples
are dropped, S1¼{a1, c1, b1}, S2¼{a2, c2, b1}, and S3¼{a1,
c2, b1}. Their linked lists are illustrated in Fig. 10.

The basic idea of our counting algorithm is as follows.
If a sampled instance (point) u of an object U is dominated
by a sampled instance (point) of another object V from the
same sample, we simply remove the sampled instance u

from the linked list. In the end, the number of sampled
instances remained in each object U is mU. Regarding the
above example in Figs. 4 and 10, in A.list three sampled
instances {a1, a2, a1} are left after our algorithm; thus
mA¼3. In C.list and B.list, 0 and 2 sampled instances ({b1,
b1}) are left, respectively; thus mC¼0 and mB¼2.

While our counting techniques follow the framework
of EXACT algorithm except that Prob (U, V) and Prob B (U,
V) are executed differently. We do not use a tree-like data
structure to organize the sampled instances (points).
Consequently, we replace the ST(U,V) in both Prob(U,V)
and Prob B(U, V) by dominance check DC(U,V) which checks
the dominance relationship between the instances of U

and V within the same sample.
In DC(U,V) where U is a master object, we adopt the

same traversal strategy as the sort-merge join between
U.list and V.list since they are sorted on sample subin-
dexes. Once u and v are found in the same sample
(by their corresponding sample subindexes), we remove
the sampled instance (point) from U.list if v!u, or remove

4 Forest cover dataset, UCI KDD Archive. http://kdd.ics.uci.edu

Y. Zhang et al. / Information Systems 36 (2011) 898–915 909
the sampled instance (point) from V.list if u!v. An
instance (point) is removed if there is no sampled
instance (point) referring to it any more.

Example 7. In the example in Fig. 10, in DC(C,A) after
checking against the first sample index 1, element 1 is
removed from C.list. Since instance c1 only has element 1
referring to it, instance c1 is also removed.

Clearly, the complexity of DC(U,V) is O (dm) where d is
the dimensionality. Moreover, Sky-COUNT runs in time
Oðd� n�m� aþdnF ðnÞÞ. Here, a is the average number
of associated objects to a master object and F ðnÞ repre-
sents the average costs for one master object to obtain
associated objects. Consequently, if a is a constant and m

is a constant (say, 1000), then the time complexity of our
Sky-COUNT is OðdnF ðnÞÞ. While there is no theoretical
guarantee on F ðnÞ regarding an R-tree, we could expect
that F ðnÞ is poly-log (n) in practice in a low dimensional
space when a is a constant.

6. Computing p-skyline

Our exact and randomized algorithms can be immedi-
ately extended to compute p-skyline proposed in [23];
that is, for a given threshold p ð0rpr1Þ, compute all
uncertain objects U such that PskyðUÞZp. Below are the
modifications.

Regarding the framework in Section 3, in our exact and
randomized algorithms for computing p-skyline we keep
Step 1 but do not use Step 2. In Step 3 of both algorithms,
we prune away the objects U with skyline probabilities
(or mU=m) below a pre-given threshold p, the Step 3 of
both exact and randomized algorithms can be immedi-
ately applied to compute the p-skyline. The modified
algorithms are named p-EXACT and p-RAND, respectively.

It can be immediately verified that the p-EXACT is
correct. Moreover, by the Chernoff/Hoeffding bound (The-
orem 2.7 in [10]) together with the fact that for each
output object U ðmU=mÞZp, the following theorem
regarding accuracy immediately holds.

Theorem 6. Given an E (0oEo1) and a d (0odo1), let

m¼ Oð1=E2logð1=dÞÞ (the sample size in p-RAND). For each

object U output by p-RAND, PrðPskyðUÞ�po�EÞZ1�d,
where p is a given probability threshold in the problem of

p-skyline.

Theorem 6 states that with confidence 1�d, the objects
output by the algorithm p-RAND with the skyline prob-
ability not less than p�E. Note that Theorem 6 immedi-
ately implies that if we replace m¼Oð1=E2logð1=dÞÞ by
Oð1=ðpEÞ2logð1=dÞÞ, then we will have a relative E-approx-
imation guarantee, that is, with confidence 1�d, the
objects output by the algorithm p-RAND with the skyline
probability not less than ð1�EÞp.

Following similar arguments to those in TOP-k SOUND,
the algorithm p-RAND is immediately applicable to the
continuous case with the above accuracy guarantee.

Beside the theoretical guarantee of accuracy as above,
our experiment demonstrated that p-RAND has already
been very accurate when m reaches 1000.
7. Performance evaluation

We report an extensive empirical study to evaluate the
effectiveness and the efficiency of our algorithms. All
algorithms are implemented in Cþþ and compiled by
GNU GCC. Experiments are conducted on PCs with Intel
P4 2.8 GHz CPU and 2G memory under Debian Linux.

The following algorithms are implemented and evaluated.
1.
 EXACT: the exact algorithm proposed in Sections 3 and 4.

2.
 TEXACT: the trivial version of the exact algorithm in

which the order of accessing master objects and
associated objects of a given master object is randomly
conducted instead of being arranged as described in
Sections 3 and 4.
3.
 RAND: the randomized algorithm proposed in Section 5.

4.
 TRAND: the trivial randomized algorithm using SFS

algorithm [6] to compute the skyline of each sample.
Our experiments are conducted on the real dataset and
synthetic datasets.

Real datasets. We use the NBA game-by-game techni-
que statistics from 1991 to 2005. The NBA dataset is
downloaded from www.nba.com and consists of 339,721
records (instances) of 1313 players. We treat each player
as an uncertain object and the records of a player as the
instances of the corresponding object. Instances of an
object take equal probability to appear. Three attributes
are selected in our experiments: the number of points, the
number of assistants and the number of rebounds. The
larger the attribute values, the better.

In order to evaluate the efficiency of the random
algorithm against the continuous case. We also create
dataset FC based on real dataset4 which records 581,012
forest land cells and their distances to nearby hydrology,
roadway and fire points. We assume the distances
recorded are inaccurate and follow the Uniform distribu-
tion within the range of 4 m. Clearly, the smaller distance
value, the better.

Synthetic datasets. We generate discrete synthetic
datasets and continuous synthetic datasets, where objects
are represented by instances and PDFs, respectively.

For both kinds of datasets, the domain of each dimen-
sion is [0,1] and the dimensionality d varies from 2 to 5
with the default value 3. We first generate the centers of n

uncertain objects using the benchmark data generator in
[2], where n varies from 10,000 to 100,000 with the
default value 10,000. Anti-correlated and independent
distributions of n object centers are used in our experi-
ments. By default, we use Anti-correlated distribution.
Then, for each uncertain object we create a hyper-rectan-
gle region where the instances or the PDF of this object
appear. The edge size of the hyper-rectangle region
follows a normal distribution in range [0,0.2] with expec-
tation 0.1 and standard deviation 0.025.

For discrete synthetic datasets, the number of
instances of an uncertain object follows a Uniform dis-
tribution in range [1, h] where h varies from 400 to 5000

www.nba.com
www.nba.com
www.nba.com
www.nba.com
http://kdd.ics.uci.edu

Table 3
Top-25 players with different ranking criteria.

Players probability Skyline prob. Agg. skyline Aggregate-score

LeBron James 0.350699 1 2

Dennis Rodman 0.327592 1 79

Shaquille O’Neal 0.323401 1 1

Charles Barkley 0.309311 1 7

Kevin Garnett 0.302531 1 8

Jason Kidd 0.293569 1 30

Allen Iverson 0.269871 1 5

Michael Jordan 0.250633 1 3

Tim Duncan 0.241252 1 6

Karl Malone 0.239737 1 4

Chris Webber 0.22153 1 9

Kevin Johnson 0.208991 1 36

Hakeem Olajuwon 0.203641 21 (layer 2) 13

Y. Zhang et al. / Information Systems 36 (2011) 898–915910
with the default value 600. In expectation, each object has
h=2 instances and the total number of instances in a
dataset is hn=2; by default, it is 3,000,000. In our experi-
ments, two largest datasets have total instances of 5000

2 �

10,000¼ 25,000,000 and 600
2 � 100,000¼ 30,000,000,

respectively.
Instances of an uncertain object follow a Uniform or Zipf

distribution in our experiments. In Uniform distribution, the
instances of an object are distributed uniformly in the
region and have the same probability. In Zipf distribution,
for an object firstly an instance u is randomly generated, the
distances of other instances to u follow a Zipf distribution
with z¼0.5; the probabilities of each generated instances
also follow a Zipf distribution with z¼0.2.

Considering distributions of the object centers and the
instances within an object, we have Anti-Uniform data-
sets where the centers of object MBBs follow Anti-corre-
lated distribution, while instances follow Uniform
distribution. Similarly, we have Inde-Uniform, Anti-Uni-
form, Anti-Zipf, and Inde-Zipf datasets.

For continuous synthetic datasets, the PDF of each
object is Uniform or Constrained-Normal (Con-Nor for
short), while other settings are generated in the same
way as the discrete case. For a Uniform distribution, the
PDF of an object U is a constant. The Con-Nor distribution
is a Normal distribution constrained within the region
(i.e., MBB) of an object U given by the formula below:

pdf CNðxÞ ¼
pdf NðxÞ=l if x 2 U

0 otherwise

�
ð7Þ

Here, l¼
R

x2Updf NðxÞ dx and the d dimensional pdf of
Normal distribution pdf NðxÞ ¼ ð1=ð

ffiffiffiffiffiffiffiffiffiffiffiffi
2ps2
p

Þ
d
Þe�ð1=2s2ÞPd

i ¼ 1ðx:Di�m:DiÞ
2, where m:Di (1r ird) is the coordinate

of the center of U on dimension Di and the standard
deviation s¼ 0:025.

We use Anti-Uniform-PDF to denote continuous syn-
thetic datasets with Anti-correlated distribution for the
centers of object MBBs and Uniform PDF for each object.
Similarly, we have Anti-Con-Nor-PDF datasets.

In our experiments, k varies from 10 to 100 with the
default value 30. The sample size m varies from 1000 to
2500 with the default value 1000.

Note that in our experiments all parameters use default

values unless otherwise specified. Table 2 summaries the
experiment settings.

7.1. Significance of top-k probabilistic skyline

Table 2 in [23] demonstrates that the probabilistic
skyline model may capture the useful semantics which
Table 2
Experiment settings.

Notation Definition (default values)

n Number of uncertain objects in the dataset (10 K)

k Number of uncertain objects in SOUND (30)

d Dimensionality of the dataset (3)

h Largest number of instances in an objects (600)

m Number of samples in randomized algorithms (1000)

D Dataset types (Anti-Uniform)
cannot be provided by the aggregation-based conven-
tional skyline model. Nevertheless, the algorithms in
[23] for computing probabilistic threshold-based skyline
objects is not applicable to the computation of top-k

skyline because (1) the output skyline objects by the
algorithms in [23] may only have the information of
lower/upper-bound probabilities and (2) there is no way
to predicate the ranks of skyline probability based on the
obtained lower/upper-bounds. For instance, when prob-
abilistic threshold is set to 0.05, the lower and upper
probabilistic bounds for Grant Hill are 0.0503 and 1,
respectively. Although he is only ranked 17 based on his
exact skyline probability (0.191164), the 11 out of the top

16 players have the output lower probabilistic bounds
smaller than 0.0503 and the upper probabilistic bounds
smaller than 1. This implies the techniques in [23] cannot
be used to rank probabilistic skyline objects.

We further use the NBA dataset to evaluate the signifi-
cance of top-k probabilistic skyline objects. The first and
second columns in Table 3 display the top-25 NBA players
based on the no-decreasing order of skyline probabilities.
We examine another two aggregation based methods to
rank NBA players. The third column ranks the NBA players
based on the ‘‘skyline layers’’ using the average score on
each dimension per player. That is, for each player, firstly
calculate (average-score, average-rebound, average-assis-
tance) and then compute skyline against (average-score,
average-rebound, average-assistance) for each player. The
players are on the skyline are ranked number 1. After
removing the skyline players, the skyline players in the
remaining players are ranked next; we continue this till
obtain the top-k players. Note that in the last round, if more
than k players are selected, then in the last layer, a random
selection is made. Such ranks are presented in the column 3.
Kobe Bryant 0.200272 21 (layer 2) 14

Dwyane Wade 0.199065 21 (layer 2) 10

Tracy Mcgrady 0.198185 21 (layer 2) 20

Grant Hill 0.191164 1 15

John Stockton 0.183591 1 59

David Robinson 0.177437 45 (layer 3) 19

Stephon Marbury 0.16683 1 23

Tim Hardaway 0.166206 1 41

Magic Johnson 0.151813 1 52

Chris Paul 0.149264 1 37

Gilbert Arenas 0.142883 45 (layer 3) 22

Clyde Drexler 0.138993 21 (layer 2) 21

10-1

100

101

102

103

104

Anti
-Uniform

Inde
-Uniform

Anti
-Zipf

Inde
-Zipf

NBA

P
ro

ce
ss

in
g

Ti
m

e
(s

)

1.6

29.517.6

260.5

1.7
6.5

38.2

279.1

0.9

12.6

3.1

55.4

0.7
2.7

9.4

71.7

3.6 5.2

361.1

2806.9

RAND TRAND EXACT TEXACT

Fig. 11. Different datasets.

Y. Zhang et al. / Information Systems 36 (2011) 898–915 911
In column 4, we rank the NBA players according to the
overall scores, average-scoreþaverage-reboundþaverage-
assistant; the ranks are presented in column 4.

It is observed that there are too many players with the
same rank for the ranking method by aggregation-based
skyline layers, while our model can distinguish players well.
A comparison with the aggregate-score based ranking
method shows that the top-k skyline model captures well
the distributions of rebounds, scores, and assists. For instance,
Jason Kidd, a well-known triple double machine, is only
ranked 30th according to aggregate-based model, while he is
ranked 6th in the skyline probability model. The comparison
with the aggregate-score-based ranking method also shows
that the top-k skyline model captures well of ‘‘being not
worse than any other players’’ regarding the rebounds,
scores, and assists. For instance, Dennis Rodman, one of the
best NBA rebounders, is ranked among top-2 according to
our skyline probability model simply because of his consis-
tent rebounding performance, while he is only ranked 79th in
the aggregate-score-based model. These demonstrates the
significance of the top-k skyline object model.
7.2. Evaluating efficiency

In this subsection, we evaluate the efficiency of our
algorithms on the NBA dataset and discrete synthetic
datasets. Note that we only report the performance of
algorithm RAND against discrete synthetic datasets
because for the same type of probability distribution of
instances (e.g., instances follow Uniform distributions),
RAND has almost the same performance for the discrete
and continuous cases; consequently we focus on the
report the performance of the discrete case.

We also implement the naive algorithm mentioned at
the beginning of Section 3 which will compute the skyline
probability of each uncertain object.5 The naive algorithm
is very computational expensive. Under default setting, it
takes around 180,857 s for the Anti-Uniform dataset
which is 10,275 and 113,046 times slower than that of
EXACT and RAND Algorithms, respectively. So we exclude
the naive algorithm in the following experiments.
5 For comparison fairness, we only compute the skyline probability

for the non-redundant uncertain objects in the implementation.
Fig. 11 shows the running time of the four algorithms
on various datasets. While both EXACT and RAND are
quite efficient, RAND is more efficient than EXACT on both
synthetic and real datasets. EXACT performs poorly on the
NBA dataset. This is because in the NBA dataset most
objects are partially dominated by many others; thus
many join-like operations (i.e., ST(U,V)) have been per-
formed. In this case, the linear time complexity of DC(U,V)
of RAND shows a great advantage.

Fig. 11 also demonstrates that TEXACT is up to 9 times
slower than EXACT; this shows the great advantage of
developed accessing order techniques regarding asso-
ciated and master objects, respectively. RAND is also
significantly more efficient than the trivial randomized
algorithm TRAND. Therefore, in the remaining experiment
part we can exclude the performance evaluation of
TEXACT and TRAND since they provide the same results
as EXACT and RAND, respectively, but are much more
slower.

The results of the second experiment reported in
Fig. 12 demonstrates that the performance of both EXACT
and RAND are quite scalable when the number of uncer-
tain objects increases.

The third experiment reported in Fig. 13 shows that
RAND is not sensitive to the number of instances (regard-
ing the discrete case) since only a fixed number of
samples are generated in randomized computation. On
the other hand, the performance of EXACT drops when the
number of instances grows.

Fig. 14 demonstrates the impact of k on performance.
RAND is more efficient and the processing time grows much
slower than EXACT because the cost for seeding the first k

objects in RAND is not as dominating as that in EXACT.
Fig. 15 evaluates the impact of dimensionality. It shows

that the running time of EXACT significantly decreases
when d increases. This is because when d is large, the
dominating relationships among objects are weak.

Fig. 16 shows that the running time of RAND increases
linearly against the increment of the sample size m. This is
because our counting technique runs in linear time with
respect to m.

We also evaluate the performance of the RAND Algo-
rithm against the real dataset FC in which k various from
20 to 100. As shown in Fig. 17, the performance of the
RAND Algorithm degrades slowly against the growth of k.

0

50

100

150

200

10K 20K 30K 40K 50K 100K

P
ro

ce
ss

in
g

Ti
m

e
(s

)
EXACT
RAND

Fig. 12. Varying n.

100

101

102

103

400 600 800 1K 2K 3K 4K 5K

P
ro

ce
ss

in
g

Ti
m

e
(s

)

EXACT
RAND

Fig. 13. Varying h.

0

10

20

30

40

50

20 40 60 80 100

P
ro

ce
ss

in
g

Ti
m

e
(s

)

EXACT
RAND

Fig. 14. Varying k.

0

5

10

15

20

25

2d 3d 4d 5d

P
ro

ce
ss

in
g

Ti
m

e
(s

)

EXACT
RAND

Fig. 15. Varying d.

0

1

2

3

4

5

1000 1500 2000 2500

P
ro

ce
ss

in
g

Ti
m

e
(s

) RAND

Fig. 16. Varying m.

40

50

60

70

80

90

100

20 40 60 80 100
P

ro
ce

ss
in

g
Ti

m
e

(s
)

RAND

Fig. 17. Varying k for FC data.

0

0.01

0.02

0.03

Anti-
Uniform

Inde-
Uniform

Anti
Zipf

Inde-
Zipf

NBA

R
el

at
iv

e
er

ro
r

0.006

0.019

0.001

0.009

0.026

R
el

at
iv

e
er

ro
r

Fig. 18. Different datasets.

Y. Zhang et al. / Information Systems 36 (2011) 898–915912
7.3. Evaluating accuracy

We evaluate the accuracy of RAND regarding both
discrete and continuous cases. We use the average relative
errors, the average of jP0i�Pij=Pi (for 1r irk), to measure
the accuracy, where Pi is the i-th largest skyline prob-
ability and P0i is the estimated skyline probability of the
i-th element returned by RAND.

7.3.1. Discrete cases

We first evaluate RAND on the NBA dataset and
discrete synthetic datasets.

Fig. 18 illustrates the accuracy of RAND on various
datasets. It shows that m¼1000 already gives very accu-
rate results (average relative error o0:03). The NBA
dataset has the worst performance; this is because that
skyline probabilities are small due to a high overlapping
degrees among MBBs of uncertain objects.

Fig. 19 reports the impact of k on accuracy. It shows
that when k is not large (typical situation for a top-k

problem), the accuracy is not very sensitive to k.
Fig. 20 shows that the accuracy is not quite related to

the number of objects n.

0

0.01

0.02

0.03

0.04

0.05

10 20 30 40 50

R
el

at
iv

e
er

ro
r

Anti-Uniform
NBA

Fig. 19. Varying k.

0

0.005

0.01

0.015

10K 20K 30K 40K 50K 100K

R
el

at
iv

e
er

ro
r

RAND

Fig. 20. Varying n.

0

0.005

0.01

0.015

1000 1500 2000 2500

R
el

at
iv

e
er

ro
r

RAND

Fig. 21. Varying m.

0

0.01

0.02

0.03

2d 3d 4d 5d

R
el

at
iv

e
er

ro
r

RAND

Fig. 22. Various d.

0

0.005

0.01

1000 1500 2000 2500
R

el
at

iv
e

er
ro

r

Uniform
Con-Nor

Fig. 23. Various m.

Y. Zhang et al. / Information Systems 36 (2011) 898–915 913
Fig. 21 shows that the accuracy increases (i.e., relative
errors decrease) when the sample size grows, as what we
expected.

Fig. 22 shows that the average relative error drops (i.e.,
accuracy increases) quickly as the dimensionality
increases. This is because the average skyline probability
of objects increases when the dimensionality increases.

7.3.2. Continuous cases

RAND is also very accurate in the continuous case. We
run RAND on continuous synthetic datasets with Anti-
Uniform-PDF and Con-Nor-PDF, while other parameters
adopt default values.

For datasets of Anti-Uniform-PDF, the skyline prob-
ability of an object is computed following Eq. (3), where
all integrals can be computed as the volumes of the
corresponding regions. To generate samples in RAND,
the coordinates of sampled points are generated uni-
formly within the MBB of an object.
For datasets of Anti-Con-Nor-PDF, since the integral of
Gaussian function cannot be evaluated exactly, each
object is discretized by drawing 10,000 samples and
then run the algorithm EXACT against the discretized
objects to get the skyline probability of each object. To
generate samples, the coordinates of sampled points are
generated according to the Con-Nor distribution of each
object. We use GNU Scientific Library to generate the
Normal distribution and transform it into Con-Nor
distribution.

The experiments reported in Fig. 23 show that
the accuracy of RAND is already very high when the
sample size reaches 1000; that is, the relative skyline
probability error as defined in the last subsection is
very low.

The experiment reported in Fig. 24 evaluates the
impact of dimensionality on accuracy. The trends for both
Anti-Uniform and Con-Nor-PDF are similar to that of
discrete case as depicted in Fig. 22.
7.4. p-skyline computation

We run an experiment to compare the efficiency of
p-EXACT and p-RAND in Section 6 with BU and TD
algorithms in [23]. p¼0.9 and the 3D Anti-Uniform
datasets are employed in the experiment with the num-
ber of objects varies from 10 to 50 K and h¼600. Fig. 25
shows that p-RAND and p-EXACT significantly outperform
BU and TD. Moreover, as the number of objects grows, p-
RAND and p-EXACT are quite scalable.

0

50

100

150

200

10K 20K 30K 40K 50K

P
ro

ce
ss

in
g

Ti
m

e
(s

) p-EXACT
p-RAND

BU
TD

Fig. 25. Various n.

0

0.01

0.02

0.03

2d 3d 4d 5d

R
el

at
iv

e
er

ro
r

Uniform
Con-Nor

Fig. 24. Various d.

Y. Zhang et al. / Information Systems 36 (2011) 898–915914
7.5. Summary

As a short summary, our experimental results indicate
that EXACT is efficient for datasets with a medium
number of instances per object. RAND is much more
efficient and scalable than EXACT. Meanwhile, it provides
high accuracy in both discrete case and continuous case.
Moreover, applying these two algorithms to p-skyline
problem significantly improves the efficiency of the exist-
ing p-skyline techniques.

8. Related work

Studies on skyline computation have a long history.
Börzsönyi et al. [2] first investigate the skyline computa-
tion problem in the context of databases and propose a
SQL syntax for the skyline query. They also develop the
skyline computation techniques based on block-nested-
loop and divide-conquer paradigms, respectively. Chomicki
et al. [6] propose another block-nested-loop based com-
putation technique, SFS (sort-filter-skyline), to take the
advantages of a pre-sorting. The SFS paradigm is signifi-
cantly improved by Godfrey et al. [9]. Tan et al. [31]
propose the first progressive technique that can output
skyline points without having to scan the whole dataset.
Two auxiliary data structures are proposed, bitmap

and search tree. Kossmann et al. [16] present another
progressive technique based on the nearest neighbor
search technique on R-tree [25,12], which adopts a
divide-and-conquer paradigm on the dataset indexed by
R-tree. Papadias et al. [21] propose a branch and bound
search technique (BBS) to progressively output skyline
points on datasets indexed by R-tree. One of the most
important properties of BBS in [21] is that it guarantees
the minimum I/O costs.

Recently, many variants of the skyline problem have
been proposed including subspace skyline analysis [34],
skyline cube [22,24,38,36], and skyline computation in
data streams [19,33,26], in distributed environments
[1,15,35] and in the categorical domain [26]. Moreover
the skyline operator is employed as fundamental part in
various applications [29,7].

Managing large volume of uncertain data has recently
attracted a great deal of attention in the database com-
munity (see [8] and [27] for a survey). The uncertainty is
often represented as probabilities. In spatial-temporal
databases, Cheng et al. [4] study the problem of augment-
ing probability information to queries over uncertain
data. In [5], they also develop two indexes to support
answering probabilistic threshold queries, which is a
range query on uncertain dataset returning objects whose
probabilities of satisfying this query exceed a given
threshold. Tao et al. [32] propose a U-tree to index
multi-dimensional uncertain data and evaluate probabil-
istic range queries with arbitrary PDFs. Kriegel et al. [17]
define probabilistic distance functions to measure the
similarity between uncertain objects. Recently, Kriegel
et al. [18] and Ngai et al. [20] tackle the problem of
clustering uncertain data.

Pei et al. [23] is the work most related to our Top-k

SOUND problem. It proposes to retrieve the p-skyline that
consists of objects with skyline probabilities above a
given threshold p. Two efficient algorithms, bottom-up
and top-down, have been proposed. However, these two
algorithms can only guarantee the objects output with the
skyline probabilities not smaller than p. They often do not
provide the exact skyline probabilities nor the ranks of
objects according to skyline probabilities. Therefore,
the techniques in [23] are not applicable to Top-k SOUND.
On the other hand, a simple modification of our two
algorithms can support efficient p-skyline computation
and they significantly outperform the existing techniques
in [23].
9. Conclusion

In this paper, we tackle the problem of computing the
top-k probabilistic skyline objects on uncertain data. We
employ an R-tree index to efficiently conduct the initial
computation. Two efficient algorithms are proposed. The
exact algorithm aims to precisely rank the top-k skyline
objects against skyline probabilities. To deal with the
applications where each object has a large set of
instances, we develop a randomized algorithm with
E-approximation accuracy guarantee, together with a
novel, efficient counting algorithm. These two algorithms
can be immediately extended to compute p-skyline [23]
to improve the efficiency of the existing techniques
and to leading to the first work for computing p-skyline
in the continuous case. The extensive experiments
demonstrate the efficiency, scalability, and accuracy of
our algorithms.

Y. Zhang et al. / Information Systems 36 (2011) 898–915 915
Acknowledgments

The work was supported by ARC Grants (DP0987557
and DP0881035) and Google Research Award. The
research was also supported in part by a NSERC Discovery
Grant and a NSERC Discovery Accelerator Supplement
Grant. All opinions, finding, conclusions and recommen-
dations in this paper are those of the authors and do not
necessarily reflect the views of the funding agencies.

References

[1] W.-T. Balke, U. Güntzer, J.X. Zheng, Efficient distributed skylining
for web information systems, in: EDBT, 2004.

[2] S. Börzsönyi, D. Kossmann, K. Stocker, The skyline operator, in:
ICDE, 2001.

[3] C.Y. Chan, H.V. Jagadish, K.-L. Tan, A.K.H. Tung, Z. Zhang, Finding
k-dominant skylines in high dimensional space, in: SIGMOD, 2006.

[4] R. Cheng, D.V. Kalashnikov, S. Prabhakar, Evaluating probabilistic
queries over imprecise data, in: SIGMOD, 2003.

[5] R. Cheng, Y. Xia, S. Prabhakar, R. Shah, J.S. Vitter, Efficient indexing
methods for probabilistic threshold queries over uncertain data, in:
VLDB, 2004.

[6] J. Chomicki, P. Godfrey, J. Gryz, D. Liang, Skyline with presorting, in:
ICDE, 2003.

[7] G. Cormode, F. Korn, S. Muthukrishnan, D. Srivastava, Summarizing
two-dimensional data with skyline-based statistical descriptors, in:
SSDBM, 2008.

[8] N.N. Dalvi, D. Suciu, Management of probabilistic data: foundations
and challenges, in: PODS, 2007.

[9] P. Godfrey, R. Shipley, J. Gryz, Maximal vector computation in large
data sets, in: VLDB, 2005.

[10] O. Goldreich, Randomized methods in computation. /http://www.
wisdom.weizmann.ac.il/�oded/rnd.htmlS.

[11] A. Guttman, R-trees: a dynamic index structure for spatial search-
ing, in: SIGMOD Conference, 1984.

[12] G.R. Hjaltason, H. Samet, Distance browsing in spatial databases,
ACM Transactions on Database Systems (1999).

[13] W. Hoeffding, Probability inequalities for sums of bounded random
variables, Journal of the American Statistical Association (1963).

[14] Y.-W. Huang, N. Jing, E.A. Rundensteiner, Spatial joins using r-trees:
breadth-first traversal with global optimizations, in: VLDB, 1997.

[15] Z. Huang, C.S. Jensen, H. Li, B.C. Ooi, Skyline queries against mobile
lightweight devices in MANETs, in: ICDE, 2006.

[16] D. Kossmann, F. Ramsak, S. Rost, Shooting stars in the sky: an
online algorithm for skyline queries, in: VLDB, 2002.
[17] H.-P. Kriegel, P. Kunath, M. Pfeifle, M. Renz, Probabilistic similarity
join on uncertain data, in: DASFAA, 2006.

[18] H.-P. Kriegel, M. Pfeifle, Density-based clustering of uncertain data,
in: KDD, 2005.

[19] X. Lin, Y. Yuan, W. Wang, H. Lu, Stabbing the sky: efficient skyline
computation over sliding windows, in: ICDE, 2005.

[20] W.K. Ngai, B. Kao, C.K. Chui, R. Cheng, M. Chau, K.Y. Yip, Efficient
clustering of uncertain data, in: ICDM, 2006.

[21] D. Papadias, Y. Tao, G. Fu, B. Seeger, An optimal and progressive
algorithm for skyline queries, in: SIGMOD, 2003.

[22] J. Pei, A.W.-C. Fu, X. Lin, H. Wang, Computing compressed multi-

dimensional skyline cubes efficiently, in: ICDE, 2007.
[23] J. Pei, B. Jiang, X. Lin, Y. Yuan, Probabilistic skylines on uncertain

data, in: VLDB, 2007.
[24] J. Pei, W. Jin, M. Ester, Y. Tao, Catching the best views of skyline: a

semantic approach based on decisive subspaces, in: VLDB, 2005.
[25] N. Roussopoulos, S. Kelley, F. Vincent, Nearest neighbor queries, in:

SIGMOD Conference, 1995.
[26] N. Sarkas, G. Das, N. Koudas, A.K.H. Tung, Categorical skylines for

streaming data, in: SIGMOD Conference, 2008.
[27] A.D. Sarma, O. Benjelloun, A.Y. Halevy, J. Widom, Working models

for uncertain data, in: ICDE, 2006.
[28] M. Sharifzadeh, C. Shahabi, The spatial skyline queries, in: VLDB,

2006.
[29] M.A. Soliman, I.F. Ilyas, N. Koudas, Finding skyline and top-k

bargaining solutions, in: ICDE, 2007.
[30] W. Son, M.-W. Lee, H.-K. Ahn, S. won Hwang, Spatial skyline

queries: an efficient geometric algorithm, in: SSTD, 2009, pp.
247–264.

[31] K.-L. Tan, P.-K. Eng, B.C. Ooi, Efficient progressive skyline computa-
tion, in: VLDB, 2001.

[32] Y. Tao, R. Cheng, X. Xiao, W.K. Ngai, B. Kao, S. Prabhakar, Indexing
multi-dimensional uncertain data with arbitrary probability den-
sity functions, in: VLDB, 2005.

[33] Y. Tao, D. Papadias, Maintaining sliding window skylines on data
streams, IEEE Transactions on Knowledge and Data Engineering 18

(2) (2006) 377–391.
[34] Y. Tao, X. Xiao, J. Pei, SUBSKY: efficient computation of skylines in

subspaces, in: ICDE, 2006.
[35] A. Vlachou, C. Doulkeridis, Y. Kotidis, M. Vazirgiannis, Skypeer:

efficient subspace skyline computation over distributed data, in:

ICDE, 2007.
[36] T. Xia, D. Zhang, Refreshing the sky: the compressed skycube with

efficient support for frequent updates, in: SIGMOD, 2006.
[37] M.L. Yiu, N. Mamoulis, Efficient processing of top-k dominating

queries on multi-dimensional data, in: VLDB, 2007, pp. 483–494.
[38] Y. Yuan, X. Lin, Q. Liu, W. Wang, J.X. Yu, Q. Zhang, Efficient

computation of the skyline cube, in: VLDB, 2005.

http://www.wisdom.weizmann.ac.il/∼oded/rnd.html
http://www.wisdom.weizmann.ac.il/∼oded/rnd.html
http://www.wisdom.weizmann.ac.il/∼oded/rnd.html

	Ranking uncertain sky: The probabilistic top-k skyline operator
	Introduction
	Background information
	Problem definition
	Preliminaries

	Framework for top-k SOUND
	Step 1: Preprocessing
	Step 2: seeding
	Step 3: final computation

	Exactly computing top-K SOUND
	Randomized algorithm
	Accuracy guarantee
	Efficient algorithm

	Computing p-skyline
	Performance evaluation
	Significance of top-k probabilistic skyline
	Evaluating efficiency
	Evaluating accuracy
	Discrete cases
	Continuous cases

	p-skyline computation
	Summary

	Related work
	Conclusion
	Acknowledgments
	References

