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Abstract—Activity monitoring, a crucial task in many applications, is often conducted expensively using video cameras. 
Effectively monitoring a large field by analyzing images from multiple cameras remains a challenging issue. Other approaches 
generally require the tracking objects to attach special devices, which are infeasible in many scenarios. To address the issue, 
we propose to use RF tag arrays for activity monitoring, where data mining techniques play a critical role. The RFID technology 
provides an economically attractive solution due to the low cost of RF tags and readers. Another novelty of this design is that 
the tracking objects do not need to be equipped with any RF transmitters or receivers. By developing a practical fault-tolerant 
method, we offset the noise of RF tag data and mine frequent trajectory patterns as models of regular activities. Our empirical 
study using real RFID systems and data sets verifies the feasibility and the effectiveness of this design. 

Index Terms—Active RFID, Mining, Trajectory.  

——————————      —————————— 

1 INTRODUCTION

n many applications, it is necessary to monitor activi-
ties in closed fields. For example, in chemical plants or 
large industrial workshops, security control staffs have 

to monitor “suspicious” activities. Oftentimes, in these 
applications, the monitoring area is very large and activi-
ties (moving trajectories) are sparse. Intuitively, the nor-
mal trajectories of moving objects often follow regular 
patterns. Once we have these patterns, abnormal behav-
iors of moving objects can be easily detected through pat-
tern matching [1]. 

Currently, activity monitoring is widely  completed us-
ing video monitoring equipment such as digital cameras. 
Cameras are expensive while each camera can only cover 
a small area and specific trails. As illustrated in Figure 1, 
a small part of the large surveillance area is monitored. In 
contrast, shadowed parts indicate the places without 
monitoring, from where unauthorized persons or objects 
may break through. Moreover, it is hard to automatically 
analyze the activity patterns in a large field with images 
from multiple cameras.  

Monitoring with video cameras has following limita-
tions. First, the target trajectories must be predefined. 
Once the trajectories change, the cameras may need to be 
re-deployed. Indeed, the frequent trajectories may not be 

known and they frequently change over time in many 
situations. Second, except for the target trajectories, moni-
toring other regions is difficult. Third, automatically ana-
lyzing the images from multiple cameras and detecting 
irregular activities is not trivial. And last, digital cameras 
are expensive. It is often a financial concern to deploy a 
large number of cameras. 

We propose a novel application of the Radio Frequen-
cy IDentification (RFID) technology to provide an inex-
pensive and relatively accurate approach to activity moni-
toring. By employing an array of RF tags and a few RF 
readers, we use data mining techniques to detect and ana-
lyze frequent trajectory patterns. We focus on extracting 
frequent patterns as these patterns can be used as domain 
knowledge to capture any anomalies. 

Since RF tags and readers are much cheaper than cam-
eras (in US dollars, an active RF tag is about 50 cents and 
an RF reader is several hundred dollars), and data mining 
techniques can detect frequent patterns online, our ap-
proach is more flexible and much cost-efficient than the 
video monitoring solutions.  

1.2 RFID and location sensing 
 
RFID is a means of storing and retrieving data through 
electromagnetic transmission to an RF compatible inte-
grated circuit. It is now being seen as a radical means of 
enhancing data handling processes [2]. An RF reader can 
read data emitted from active RF tags. RF readers and 
tags use a defined radio frequency and protocol to trans-
mit and receive data. RF tags are categorized as either 
passive or active. Passive RF tags operate without a bat-
tery. Their read ranges are very limited. Active tags con-
tain both a radio transceiver and a button-cell battery to 
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power the transceiver, and hence have lager ranges than 
passive tags. 

We are interested in using commodity off-the-shelf 
products. There are several advantages of the RFID tech-
nology, including the no-contact and non-line-of-sight 
nature which is the common among all types of RFID 
systems [3]. All RF tags can be read despite extreme envi-
ronmental factors such as snow, fog, ice, paint, and other 
challenging conditions [4]. 

The other advantages are their promising transmission 
ranges and cost-effectiveness. Indeed, if we deploy a vid-
eo camera system to cover a 300m×300m factory surface, 
the cost could be up to a half million US dollars. On the 
other hand, to deploy an active RFID system merely 
needs four RF readers and thousands of tags, which 
would cost less than 10 thousand US dollars. Moreover, 
the deployment of RFID systems is more flexible than 
video camera systems due to the omnidirectional feature 
of RF signals.  

1.3 Our RFID configuration 
After looking into the specifications of different available 
systems, we have chosen the Spider System manufac-
tured by RF Code [5] to implement our activity tracking 
prototype. 

The RF reader's operating frequency is 303 MHz. The 
reader also has an 802.11b interface to communicate with 
other machines. The detection range is set at 150 feet, and 
this range can be increased to 1000 feet with the addition 
of a special antenna. Each reader can detect tags within 2 
seconds. Each RF tag is pre-programmed with a unique 7-
character ID for identification by readers. Tags send their 
unique ID signals at random with an average of two se-
conds. 

1.4 Our contributions 
The major contributions of this work are as follows.  

First, we introduce a novel RFID application that uses 
an array of stationary RF tags to monitor activities in 
large fields. Differing from the traditional radio-based 
localization methods, our approach does not require the 
tracking objects to carry any transmitters or receivers, 
such as RF readers or tags.  

Second, we model a data mining problem that is criti-
cal for the activity monitoring application using RFID. 
Although many attractive sequential pattern mining ap-
proaches have been proposed [6-12], addressing the prob-
lem proposed in this paper is non-trivial, due to the noisy 
RF tag data. All the previous proposals assumed the data 
are precise, therefore, they cannot be applied to mining 
RF tag data. To solve the problem, we propose a fault-
tolerant sequential pattern mining from an array of time 
series generated by the RF tags. Detail discussion on the 
challenge of this problem will be presented in Section VI.  

Last, we conduct an empirical study using real RFID 
systems and data sets to verify the feasibility and the ef-
fectiveness of our approach. The experimental results 
show that the detection accuracy is perfect if we have ap-
propriate parameters.  

The rest of the paper is organized as follows. In Section 
2, we describe our design of activity monitoring using RF 
tag arrays. We discuss the data collection and the prepro-
cessing in Section 3 and present the frequent trajectory 
mining in Section 4. Our empirical study is reported in 
Section 5. Section 6 discusses the related work. We con-
clude the work in Section 7. 

2 ACTIVITY MONITORING USING TAG ARRAYS 
Most RFID applications attach RF tags to moving objects 
such as product items in a warehouse or customer carts in 
a store. In many scenarios, however, it is difficult to en-
force an RF tag onto every object (e.g., people walking 
through the field).  

To tackle this problem, instead of attaching one RF tag 
to each object, we propose to deploy an array of active RF 
tags onto the field. When an object moves through the 
field, the signals from some active tags will be affected 
and the RF readers will receive such signals. A database 
server collects the changes of signal strengths and uses 
the information to derive the activities in the field. 

Figure 2 illustrates this design, in which each hatched 
box is an RF tag. A set of RF tags are deployed on the 
field to be monitored. When an object (for example, a per-
son in the figure) moves into the array, the signal 

  
Fig. 1.  Monitoring activities using video equipment 
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strengths from some RF tags may change. In this example, 
the strengths from tags a, b, c, and d are very likely affect-
ed, while the signal strengths from the tags in area B, such 
as h, may not be affected. 

Figure 3 plots the signal strength changes of RF tags c 
and h on a real RF array deployment, as the one shown in 
Figure 2. The results indicate that when an object passes 
an RF tag such as c at time stamp 10, its signal strength is 
affected dramatically compared to an unaffected RF tag 
such as h. 

By analyzing such changes, we want to derive the tra-
jectories of the activities. Moreover, using the frequent 
trajectories, we can model the regular activities in a field. 
When an activity is detected, it can be compared with the 
frequent trajectories. 

Due to the nature of RFID technology, we make the as-
sumption that the number of simultaneous activities in a 
field is not large. For example, our method can detect 
several frequent trails that people walk along through a 
workshop. However, activities such as large parties in a 
hall or a banquet where hundreds of people walk about 
randomly cannot be handled well with our current meth-
od. Such situations can hardly be handled well by video 
monitoring systems either.  

The novelty of our approach is that we use the inter-
ference on the RF tag signals caused by the activities to 
detect the activities of themselves or other unauthorized 
objects. However, it also poses the following two major 
challenges, which will be addressed in the remainder of 
this discussion. 

Challenge 1: How to detect the positions of objects ac-
curately. RFID data is very noisy. Tags often have very 
different characteristics [3]. Some RF tags are very sensi-
tive, i.e., their signal is not stable even when no activities 
exist. The magnitude of the RF tags also varies. Different 
RF tags may give very different signal changes even if 
they are under the same interference. 

Challenge 2: How to detect the frequent trajectories of 
activities. Since the RF tags are not synchronized in send-
ing their signals, some activities may escape from one or a 

few tags. Moreover, since signals are not synchronized, 
the order of the changes may not correspond to the spa-
tial-temporal order that an activity happens. How to de-
tect the frequent trajectories effectively and efficiently is 
far from trivial. 

3 DATA COLLECTION AND PREPROCESSING 
Indeed, RF tags might respond differently to interference. 
In order to identify the interference from moving objects 
accurately, we need to capture the sensitivity of RF tags. 

To measure the sensitivity, we first monitor the signal 
strengths of tags when no activity is present in the field 
for a period of t. For each tag, we obtain a time series over 
the period. Let the set {s1, s2,…, st} denote the signal 
strengths collected. We define the neutral value of the tag 

s  as the expected signal strength when there is no inter-

ference, i.e., 1

t
ii

s

s

t
    . The sensitivity of the RF tag is 

measured by the standard deviation of the time series, i.e., 
2 /s i sσ = ( (s μ ) ) t . 

When an RF tag is used to detect activities and an ob-
ject interferes with the signal of the tag, we call the activi-
ty an interference activity with respect to the tag. With the 
neutral value and the sensitivity of a tag, we can use a 
(small) number k (k > 1) as the threshold to determine  
whether interference happens to a tag. Technically, we 
have the result below following from the Chebychev ine-
quality. 

Theorem 1 (Detection threshold) Let μ and δ be the neu-
tral value and the sensitivity of an RF tag, respectively. 
During the activity monitoring, if the reader receives a 
signal from the RF tag of strength s, and s k   , 

the probability that an inference activity happens is at 

least 2

1
(1 )

k
 . 

Proof: Directly derived from Chebyshev's inequality.
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Fig. 2. Activity monitoring using RF tag arrays Fig. 3.  Signal strengths of affected and unaffected RF tags 
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We deploy an array of RF tags in a field. Each tag 
sends a signal in every unit period (called a period hereaf-
ter). RF tags are not synchronized. Instead, they compete 
for the transmission window. Thus, a tag may send its 
signal at the end of the period, and its neighbor tag may 
send its signal at the beginning of the period.  

Several RF readers are connected to the server to col-
lect  signals. At the server side, a time series is accumulat-
ed for each tag and reader. Using the sensitivity and the 
neutral value of each tag, we  transform the time series of 
a tag recorded by a reader R into a binary tag signal se-

quence (or tag sequences for short) R
is , where 1R

is   if 

the tag is interfered in period i (i.e., R
i ss k    ac-

cording to Theorem 1), and 0R
is   if the tag is not inter-

fered in the period. 
After the data collection and the preprocessing, we 

then use the tag signal sequences instead of the raw signal 
data in our data analysis. 

4 FREQUENT TRAJECTORY MINING 
In this section, we show how to mine frequent trajectories 
from the RF tag data. We first formulate the problem, and 
then introduce the algorithm. 

4.1 Problem formulation 
Since the RF tags deployed are stationary, their spatial 
locations are known to the server. The data mining task 
consists of two phases: the training phase and the moni-
toring phase. 

In the training phase, we collect the RF tag signal se-
quences over n periods, where n is a user specified length 
of time. In practice, the training period can be a day or a 
week, depending on the nature of the application. The 
sequences in the training phase will be used to find fre-
quent trajectories as the model of the normal activities in 
the field. 

In the monitoring phase, activities are detected and 
compared with the frequent trajectories. If an activity 
matches a trajectory, it is viewed as normal. Otherwise, 
an alert will be issued. 

Since the trajectory matching is very similar to the ap-
proximate sequence matching problem, many existing 
methods can be used [1]. In the rest of the paper, we focus 
on the frequent trajectory mining problem (i.e., the train-
ing phase) only. 

For each tag , let s() be the tag signal sequence, and 
s()i be the signal in period i. 

Intuitively, an activity can be described as a trajectory 
in the field under monitoring. In a period, the location 
segment of the object can be determined by the tags that 
are closest to the segment. Ideally, an activity can be cap-
tured by a series of RF tag sets 1 lV V   where 

(1 )iV i l  is a set of RF tags describing the location 
segment of the object in period i, and the tag sets are in-
terfered in consecutive periods.  

If the tag sets can be detected accurately, the activity 
recognition problem is trivial. Due to the nature of RFID 

systems, however, there are a few important obstacles in 
practice. 

First, not every RF tag along the trajectory may detect 
the activity. For example, in Fig. 2, if the object moves fast, 
it is possible that the object interferes with tag c but not 
tag d. Moreover, the probability that a tag fails to detect 
an activity is low but is unknown. 

Second, the signals of tags may not accurately reflect 
the order of the activity. For example, in Fig. 2, although 
the object passes tag c before tag d, the interference may 
happen in the signal sequence of d before that of c. The 
reason is that the object may pass c right after c sends a 
signal of period i, but pass d right before d sends the sig-
nal in the same period. Therefore, the interference to d is 
reflected in period i, but the interference to c is recorded 
in period (i + 1). 

Third, an activity may interfere with multiple tags in a 
period. In order to derive the trajectories, we have to infer 
the possible positions of the object based on the correla-
tion of the interfered tags and the location of the readers. 

In summary, the problem of mining frequent trajectory 
patterns from RF tag sequences is to explore the trajecto-
ries happening at least min_sup times in the training 
phase, where min_sup is a user specified frequency 
threshold. 

4.2 Removing redundancy and detecting borders 
The RF tag signal collection has the following property. 

Property 1 If a reader R detects that an RF tag u is inter-
fered in a period i, then for any RF tag v behind u in space with 
respect to R, with high probability, R detects v being interfered 
in at least one of the following periods: (i - d), (i - d+1), i, (i + d 
- 1), and (i + d), where d is a user specified time shifting factor.  

Rationale. The property is clear in geometry, while it 
only holds with high probability, since if the object moves 
fast, there could be a slim window such that the signal of 
v is not affected. The probability is unknown and hard to 
be estimated. Thus, the property has to be used as a heu-
ristic. 

Using the above property, we can identify two types of 
redundancies among RF tag sequences. The first type is 
the redundancy among non-interfered tags. For example, 
in Fig. 2, all tags in area A are likely not interfered. We 
only need to know the area instead of individual values. 
The second type is the redundancy among interfered tags. 
For the same reason, the changes of tags e, f and g in Fig. 2 
are redundant. 

To capture the activity in a period, the border between 
the interfered tags and the non-interfered tags is good 
enough. Thus, in each period and for each reader, we de-
rive a border. The border detection works as follows. In a 
period i, we check ( )Ris u  for each RF tag u and reader R. 
Recall that ( )Ris u  is either 0 or 1. ( )Ris u  is at the border if 
and only if there is at least one neighbor RF tag v such 
that ( ) ( )R R

i is u s v . 
Figure 4 illustrates the snapshot in a period for a read-

er. The borders are given by the dash-dot lines. The whit-
ened boxes denote the borders of the interfered RF tags. 
There might exist cases that very few ‘0’s or ‘1’s appear 
inside of an ‘1’ or ‘0’ zone, so that these ‘0’s or ‘1’s are 
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treated as outliers and will not be considered during the 
border detection. 

Clearly, when the snapshot in period i can be held into 
main memory, the border detection takes ( )O m  time 
where m is the number of RF tags in the monitored field. 
Typically, m ranges from tens to thousands of RF tags, 
which can be easily accommodated in the main memory. 

4.3 Identifying possible object positions 
Once we derive the borders between the interfered and 
non-interfered tags, we identify the possible locations of 
objects using the spatial map of the stationary tags. 

Intuitively, the locations of objects are the outstanding 
parts of the border that a reader can see. For example, 
consider the case in Fig. 5. From the reader, two segments 
(the solid segments in the border) are the possible loca-
tions where objects exist. Heuristically, an object may ap-
pear proximate to an RF tag u if the tag is at the border 
and there is no other interfered RF tag blocking the con-
nection between u and the reader, such as RF tags x, y, 
and z. By walking through the border once, we can identi-
fy the segments where an object may exist. We call such 
segments object location segments of the period w.r.t. the 
reader. 

Please note that our location sensing is approximate. 
We only identify the ranges where objects may exist. Mul-
tiple objects may exist in the same range. In our trajectory 
mining algorithm, we shall use such ranges to assemble 
the possible trajectories. Another important issue is that 
some objects may hide behind other objects. For example, 
in Fig. 6, object B is hidden behind object A. Theoretically, 
we should be able to observe more degraded signals from 
the RF tags interfered by both A and B, such as the time 

shifting factor d. In the real system, however, the differ-
ence is often minor and not reliable for location detection.  

To detect those hidden objects, we apply the following 
two methods. 

First, we employ multiple readers. Multiple readers 
(e.g., 4-6) are deployed in a field so that the possibility 
that an object is hidden from all readers is reduced. 

Second, we conduct fault-tolerant mining. As the ob-
jects are moving, one object hidden in one period may 
show up to some readers in other periods. As long as an 
object is not hidden at all times from all readers, our algo-
rithm can detect the object. 

4.4 The mining algorithm 
The frequent trajectories are mined in the following two 
steps. 

4.4.1 Finding frequent positions of objects 
Clearly, a tag that is in an object location segment in a 
period is likely a part of the trajectory of an activity. The 
trajectory of a frequent activity may frequently trigger a 
tag in the object location segments. By scanning the object 
location segments in all periods once, we can find the tags 
that are in the segments in at least min_sup periods with 
respect to a reader. 

Since an object can be occasionally hidden behind oth-
er objects, when counting the number of times a tag is in a 
segment, we also count the cases that tag is in the inter-
fered side of the border. That is, if a tag is in the object 
location segments in some periods, and is interfered in 
some other periods, they are summed up together against 
the threshold min_sup. 
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Fig. 4.  Detecting borders 
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We do not count the tags that are always hidden be-
hind some tags in the object location segments. The ra-
tionale is that those tags are likely to be detected by other 
readers. On the other hand, if an activity is always hidden 
by some other activities, it is likely that either the activity 
is infrequent or it is a part of another activity. In many 
cases, the interfered tags not in the object location seg-
ments do not really capture the movement of objects. 

The method for finding the frequent positions of ob-
jects is illustrated in Fig. 7, in which we can see that the 
cost of the algorithm is one scan of the tag signal se-
quences. Thus, the complexity of our algorithm is O(n), 
where n is the total number of tags. 

4.4.2 Finding frequent trajectory segments 
As the second step, we find the frequent trajectory seg-
ments. The general idea is that we start with short seg-
ments and then use them to derive. 

Conceptually, a l-segment of trajectory is a sequence 

1 lV V   such that (1 )jV j l   is a set of frequent 
positions of an object that are spatially adjacent, and qV  
and 1(1 )qV q l    are connected in space. In other words, 
the segment captures an activity in l periods such that Vj 

describes the trajectory of the activity in the j-th period.  
We start with finding 2-segments. We check the com-

binations of frequent object positions and examine 
whether they happen consecutively in space and in time. 
To tolerate faults, we allow some appearances in the re-
verse order. For example, if we see that tag a and tag b are 
interfered in consecutive periods frequently, and in some 
cases, b is interfered right before a, then, all those cases 
should be counted together as the support of  a b . 
Technically, we use a threshold   to specify the degree of 
fault tolerance. In a window of  periods, the frequent 
positions can appear in any order. For example, if   = 2, 
then a b  and b a  are considered matchable; if  = 3, 
then a b c   and c a b   are matchable. 

Typically,  is a small positive integer such as 2 or 3. 
The proper value of   depends on the maximal speed 
objects can move. If an object moves fast, it may have a 
better chance to cause more unsynchronized signals in 
more periods.  

The space proximity is important here. It distinguishes 
the trajectories of consecutive movements from the spatial 
correlation of non-adjacent tags. Since a tag might be in-
terfered by multiple moving objects, some tags non-

Input: RF tag signal sequences { ( ) }Ris u , frequency 
threshold min_sup  

Output: the set of frequent positions of objects w,r,t, reader 
R; 

Method: 
1: FOR each tag u  DO 

create a counter 0uc   and a flag 0uf  ; 
2: FOR each period i  DO 

FOR each tag u  DO 
3:        IF ( ) 1R

is u   THEN 1u uc c  ; 
4:        IF u  is at the border of interfered tags 
         THEN 1uf  ; 
5: FOR each tag u  DO 
6:  IF uc min_sup AND 1uf   

     THEN output u  as a frequent position; 

  Input: RF tag signal sequences { ( ) }Ris u , frequency 
threshold min_sup  

Output: frequent trajectories; 
Method: 
1: find frequent positions of objects (Figure 7); 
2: find frequent 2-segments; 
3: FOR each 2-segment DO 
4: recursively, depth-first extend the segment to longer 
frequent segments, the tags closer to the reader should be 
considered before those behind, and once a frequent 
trajectory is found, all segments behind can be pruned; 

Fig. 7. Algorithm to find frequent positions of objects  Fig. 8. The mining algorithm 

  

Fig. 5. The positions of objects Fig. 6.  Objects may be hidden 
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adjacent in space may appear correlated. Those correla-
tions should be filtered out in mining the frequent trajec-
tories. 

By scanning the tag signal sequences once, we can find 
all 2-segments and their counts (i.e., how many times a 
segment appears in the training phase). Only those seg-
ments appearing at least min_sup times are retained as the 
frequent 2-segments, where min_sup is the frequency 
threshold. 

Once the frequent 2-segments are found, we extend 
them to longer segments and check their support in the 
data set. To extend a frequent l-segment, we check all oc-
currences of the segment in the data set, and find the fre-
quent positions in the next period following the segment. 
Those frequent positions adjacent in space form possible 
extensions to an (l + 1)-segment. We check their frequency 
to identify the frequent (l + 1)-segments. The extension of 
the frequent trajectory segments goes on until we cannot 
extend a frequent segment any more due to its frequency 
being lower than the threshold. 

One important observation is that the same types of ac-
tivities may not repeat their trajectories perfectly. For ex-
ample, many people walk through a frequent trail, but 
each individual may have some variance. Figure 9 shows 
such a case, where trails T1 and T2 should be considered 
as one type of activities following the same trajectory. T1 

does not interfere RF tag a while T2 does. To handle such 
variance in the mining, we apply a fault tolerant strategy 

based on Property 1 as follows. 
We adopt a depth-first search to extend the frequent 

segments. The segments closer to the reader have a higher 
priority to be extended. Once a length (l + 1) extension to 

1lV   of a frequent l-segment 1 lV V   is infrequent, 
before we abort the extension, we check whether other 
extensions of the frequent segment are frequent. Particu-
larly, we check those RF tags behind the tags in 1lV  . Fig-
ure 8 summarizes the mining method. 

5 EMPIRICAL STUDY 
In this empirical study, we examine our frequent activi-
ties mining algorithm on a real implementation of 100 RF 
tags and 1 reader. As shown in Fig. 10 (only two rows are 
shown due to space limitations), these RF tags are de-
ployed in 10 rows and each row has 10 RF tags in a field 
of size 10m×10m. The distance between neighboring RF 
tags within a row or a column is 1m. We let our student 
helpers to walk through this RF array following different 
routes and different speeds. The signal strength of each 
RF tag was recorded during the test period. By applying 
our mining algorithm on the readings of each RF tag re-
ceived from the reader, we report the accuracy and effi-
ciency of detecting trajectories of frequent activities. 

To measure the detection accuracy, we use the ratio be-
tween the length of a correctly detected trajectory of fre-
quent activities and the length of the real frequent route. 
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We conduct 6 experiments, which represent common ac-
tivities of people in large working areas, to estimate our 
algorithm. We start the tests with simple activities, such 
as single or consecutive activities with only one direction 
and one route for one object (Experiments 1 and 2), then 
we check the busy actives with multiple routes and direc-
tions (Experiments 3 and 4). Finally, we examine the 
complex activities with multiple objects and multiple 
trails (Experiments 5, and 6). 

5.1 Experiment 1: single activity 
The purpose of this experiment is to detect the trajectory 
of a single activity. We set up two routes (trails) in the RF 
array (as shown in Fig. 9). People walk through trails 1 
and 2 independently for three times with different speeds 
(slow—0.5m/sec, fast—1.0m/sec).  

The experimental results show that we can get 100% 
accuracy if we set the threshold, min_sup = 2, for detecting 
frequent positions of the objects, no matter what the 
walking speed of the people is. However, if we set the 
threshold min_sup = 3, the accuracy drops down to 60%. 
Due to the physical setting of RF tags, an RF tag sends a 
signal within a two second time frame, and there exist 
cases when people block an RF tag but this RF tag does 
not transmit any signals during the blocking period. Thus, 
the reader which fails to get the information about the RF 
tag was affected. As a consequence, this location may not 
be classified as a frequent one. Therefore, setting to a 
higher value may lead to a lower accuracy. On the other 
hand, setting min_sup to a lower value may result in a 
large number of frequent locations and the computation 
cost of detecting frequent trajectories increases. We will 
test the effect of min_sup on detecting accuracy and effi-
ciency in Experiment 3, where people may pass an RF tag 
many times during a busy activity. 

5.2 Experiment 2: group activities 
The purpose of this experiment is to find the trajectory of 
a temporally consecutive, group activity. We use the same 
setting as Experiment 1 and only select trail 1 for testing. 
We test the following scenario: one person walks through 
trail 1 at various speeds and the second person starts 
when the first one arrives at the 8th tag. All walks are in 
the same direction. In total, five people walk through the 

trail. We vary the people's walking speeds to test the ro-
bustness of the algorithm. 

Again, the results indicate that our algorithm can de-
tect the trajectory of a consecutive activity, trail 1, with 
100% accuracy when we set the threshold of detecting 
frequent positions, min_sup = 2. We also test the case with 
min_sup = 3, and we find that we can still achieve 100% 
accuracy. This is because there are five consecutive ob-
jects passing the RF tags along the route. The results also 
show that the walking speed does not affect the detection 
accuracy as long as the activity is frequent. 

5.3 Experiment 3: busy activities 
In this experiment, we test the capability of our method in 
detecting the trajectory of a busy activity. The same ex-
periment setting of Experiment 1 is used here. We let one 
person walk back and forth on trail 1 at various speeds 
for one minute. Since the person may pass an RF tag 
many times during the one minute time period, we test 
the effect of min_sup (the threshold of frequent locations) 
on detection accuracy and efficiency, as shown in Fig. 11.  

The results confirm what we discussed in Experiment 
1. That is, with the increasing support threshold (min_sup 
in the figure), both the accuracy and the time cost are re-
duced. An interesting fact is that when min_sup = 3, we 
can achieve the best accuracy with the lowest time cost. 
Thus, how to set a proper value of support threshold for 
detecting frequent locations is an interesting  

work, which is left for our future investigation. 

5.4 Experiment 4: complex activities 
After analyzing the performance of our algorithm based 
on simple activities, we further test the activity with com-
plex spatial trails. The setting of the experiment is illus-
trated in Fig. 12. 

We ask one person to walk through the trail (the solid 
line with an arrow) at various speed three times. The re-
sults of detected trajectories of frequent activities are re-
ported in Fig. 13. In the figure, we also plot the frequent 
object locations that ideally should be detected (the P-
positions in Fig. 13). Comparing Figures 12 and 13, we 
can find that even for a frequent activity with a complex 
spatial trail, our algorithm can still detect most of the fre-
quent trajectory segments (shown by connected solid line 

  
Fig. 12. Setting of Experiment 4 Fig.13. Detected Routes of Experiment 4 
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segments in Fig. 13). 
We also observe that our method may miss some seg-

ments. For routes outside of the RF array and the connec-
tion locations where multiple routes cross each other 
(shown by the dotted lines in Fig. 13), our algorithm has 
difficulties on detecting them. However, by checking the 
timestamp of each possible appearance position and RF 
tag map, we can easily connect these separated segments 
into a continuous trajectory. Another possible solution for 
this problem is to add another RF reader at the opposite 
side of the current one and use cross validation to verify 
the results. 

5.5 Experiment 5: Multiple objects 
In previous sections, we discuss the influence of a single 
object activity in an RFID grid. Applying our proposed 
algorithm, we obtain an acceptable accuracy for single 
object. However, it is very common that multiple objects 
move together when they pass through the sensing area 
in many real scenarios. In this subsection, we also consid-
er the situation with two objects. To detect the complex 
activities, we design two experiments with different de-
ployments in a part of the RFID grid. 

As shown in Fig.14, we first let two people walk 
through two paralleled tag arrays with one meter in be-
tween. For comparing with the single activity, we repeat 
the test that one person walks through tag arrays. It is 
difficult to recognize that whether one people or two 
people pass the sensing area. In the experiments, we set 
the parameter min_sup as 2.  

The computed frequent trajectory is shown in Fig.15, in 
which the dashed line denotes the real trajectory, and the 
solid blue line is the computed trajectory for reader A and 
the black line is the path from reader B. It is obvious that 
the computed path is the sub-set of the real trajectory. 

In the second set of experiment, we extend the distance 
between two arrays to 2 meters and repeat the previous 
experiment. Although the results are better than the pre-
vious ones, it is still confused to distinguish the activity 
causing by one object or more than two objects. From the 
patterns we could not recognize that it is single object or 
not if two objects started with a short interval, for exam-
ple, 20 seconds. If the interval is larger than 20 seconds, 
this activity can be detected by our algorithm. When the 
time interval is smaller than 20 seconds, the obtained tra-

jectory likes the single activity. The reason is that the in-
fluence of the first person’s activity continues while the 
second person is coming. Thus, it is difficult to produce a 
satisfied result by using our algorithm if the time interval 
is not sufficiently long. 

5.6 Experiment 6: Multiple trails 
As previous discussion, the simple paralleled RFID array 
is hard to detect the real trail of a moving object. There-
fore, we suggest an RFID grid deployed as Fig. 16 to en-
hance the accuracy of the trajectory detection. In this ex-
periment, two people walk slowly following the different 
trails shown in Fig.16. 

Comparing all possible paths, we can obtain a bounda-
ry 81114. Other trajectories can be eliminated by us-
ing the outputs of two readers. However, another real 
trajectory (1512) was missed. In Fig. 17, the red solid 
line demonstrates the correct computed path which is one 
of real paths and the dashed line (blue line) denotes the 
possible trajectories. 

For improving the performance of our algorithm, we 
attempt to deploy more readers in the sensing area. Some 
redundant patterns can be eliminated since we can obtain 
more information from extra readers. For example, one 
reader detects two patterns. One of them occurs at timea 
and another one appears at timea + t1. It is difficult to de-
cide which pattern is the real trail, if those patterns are 
correlated to one position. Fortunately, at the same time, 
reader C also catches patterns related with this position. 
Based on the additional information, we can eliminate the 
illogical patterns. 

5.7 Summary 
Our empirical study using the RFID implementation con-
firms that using RF tags and readers to find trajectories of 
frequent activities is highly feasible. Our data mining 
techniques of mining fault tolerant frequent trajectories 
can detect frequent segments of activities. When the activ-
ities are not very complicated in space, the accuracy is 
high. 

On the other hand, it remains a challenging task to im-
prove the accuracy further for complex activities. We are 
working on using multiple readers for cross-validation as 
a promising solution. 

  

Fig. 14. Deployment of experiment 5 Fig. 15. Results of experiment 5 
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6 RELATED WORK AND DISCUSSION 
Sequential and approximate frequent pattern mining, 

and location sensing methods are highly related to this 
study. 

6.1 Frequent pattern mining 
Since it was first introduced [13], sequential pattern min-
ing has been studied extensively. Conventional sequential 
pattern mining finds frequent subsequences in a sequence 
database based on exact match. There are two classes of 
algorithms. On one hand, the breadth-first search meth-
ods [2] are based on the a priori principle [14] and con-
duct level-by-level candidate-generation-and-tests. On 
the other hand, the depth-first search methods (e.g., Pre-
fixSpan [15] and SPAM [16]) grow long patterns from 
short ones by constructing projected databases. Some var-
iances of the depth-first search methods mine sequential 
patterns with vertical format [17]. Instead of recording 
sequences of items explicitly, they record item-lists, i.e., 
each item has a list of sequence-ids and positions where 
the item appears.  As the real database may grow incre-
mentally, researchers also propose incremental algo-
rithms for the database to adaptively adopt new patterns 
[18].   

Recently, Guralnik and Karypis used sequential pat-
terns as features to cluster sequential data [19]. They pro-
ject the sequences onto a feature vector comprised of the 
sequential patterns, and then use a k-means like cluster-
ing method on the vector to cluster the sequential data. 
Approximate frequent itemset mining has also been stud-
ied [2]. Although the methods are quite different in tech-
niques, they all explore approximate matching among 
itemsets. For finding highly compact and discriminative 
patterns, Fan et al. propose a decision tree based ap-
proach to directly mine discriminative patterns as fea-
tures vectors [6]. SwiftRule [20] utilizes the classification 
rules to conduct the time series mining to achieve easy-
understood results for human experts.  

From different point of view, Yang et al. presented a 
probabilistic model [17] to handle noise in mining strings. 

A compatibility matrix is introduced to represent the 
probabilistic connection from observed items to the un-
derlying true items. Consequently, partial occurrence of 
an item is allowed and a new measure, match, is used to 
replace the commonly used support measure to represent 
the accumulated amount of occurrences. However, it 
cannot be easily generalized to apply on the sequential 
data targeted in this paper. 

Chudova and Smyth used a Bayes error rate frame-
work under a Markov assumption to analyze different 
factors that influence string pattern mining in computa-
tional biology [11]. Based on frequent sequence mining, 
ZAKI et al. propose VOGUE [12], a variable order hidden 
Markov model, for modeling complex patterns in sequen-
tial data. Using the Time Series Knowledge Representa-
tion (TSKR) language, F. Moerchen proposes some min-
ing algorithms for interval patterns expressing the tem-
poral concepts of coincidence and partial order [21]. Re-
cently, time series data is also used for the insight of sys-
tem dynamics [22]. Extending the theoretical framework 
to mining sequences of sets could shed more light to the 
future research in this direction. 

6.2 Location Sensing 
Location sensing is a building block for many pervasive 
computing applications [23-27]. Yossef et al. proposed the 
Device-free Passive localization (DfP) concept [28], which 
is similar to our basic idea [29]. They describe a prototype 
Wi-Fi systems and discuss potential challenges of DfP 
systems. TASA is a tag-free activity sensing framework, 
using passive tags [30].  Measurement Model and the con-
figuration of parameters are essential to DfP [31, 32]. By 
comparing the both the ideal case of signal dynamics and 
irregular information of moving objects, the authors in [33] 
propose a real-time device-free tracking system with low 
latency. Different from the RSS-based DfP approaches, 
iLight uses light sensors and general light sources for lo-
calization [34]. Also, the device-free boundary coverage 
can be used for detecting intrusions [35].  

On the other hand, Zhang and Firooz remark the link 

  
Fig. 16. Deployment of the experiment 6 Fig. 17. Results of two readers 
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signature, such as RSSI and channel characteristics, for 
location distinction [36]. They present two approaches 
that are based on channel gains and channel impulse re-
sponses, respectively. The two approaches are combined 
with a complex temporal signature to discriminate loca-
tion changes. The major problem of these approaches is 
that capturing the link signature is not trivial, especially 
for resource limited wireless devices, e.g., the RFID tag or 
sensors.  

Trajectory pattern mining has been an important issue 
when deploying wireless sensors or RFID tags into physi-
cal space. Chen et al. focus on the problem of finding the 
k Best-Connected Trajectories (k-BCT) from a database 
such that the trajectories are geographically optimal for 
connecting the designated locations [37]. To predict com-
plex movements, Jeung et al. propose a Hybrid Prediction 
Model, which estimates an object's future locations based 
on the recent movements and the pattern information [38].  
The popularity of GPS provides effective trajectory repre-
senting solutions for people to quickly find their interest-
ing places[39]. Lee et al. present a framework for frequent 
pattern-based classification [40].  Sequential patterns min-
ing from time series is also employed in the Location-
Based Service (LBS) [9]. Besides the localization of nodes, 
the boundary detection is also very important in the wire-
less networks, especially when location information is 
unavailable [41]. 

7 CONCLUSIONS 
We propose to use RF tag arrays for activity monitoring. 
We present the framework, formulate the frequent trajec-
tory mining problem and develop a practical solution. 
Our empirical study using real RFID data sets verifies the 
effectiveness of the proposed method. 

We are currently exploring the cross-validation meth-
od using multiple readers, and a more thorough test in 
real application fields. Moreover, it would be interesting 
to investigate the optimal deployment of RF tags and 
readers in a field.  We will explore more applications of 
RFID technology in ubiquitous computing. Since RFID 
applications often generate a large amount of data, we 
believe those applications will pose new challenges and 
opportunities for data mining and pervasive computing 
research and development. 
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