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Abstract

Activity monitoring, a crucial task in many 
applications, is often conducted expensively using 
video cameras. Also, effectively monitoring a large 
field by analyzing images from multiple cameras 
remains a challenging problem. In this paper, we 
introduce a novel application of the recently developed 
RFID technology: using RF tag arrays for activity 
monitoring, where data mining techniques play a 
critical role. The RFID technology provides an 
economically attractive solution due to the low cost of 
RF tags and readers. Another novelty of this design is 
that the tracking objects do not need to attach any 
transmitters or receivers, such as tags or readers. By 
developing a practical fault-tolerant method, we offset 
the noise of RF tag data and mine frequent trajectory 
patterns as models of regular activities. Our empirical 
study using real RFID systems and data sets verifies 
the feasibility and the effectiveness of our design.  

1. Introduction 

In many applications, it is required to monitor 
activities in closed fields. For example, in chemical 
plants or large industrial workshops, it is important for 
security control staffs to monitor “suspicious” 
activities. Oftentimes, in these applications, the 
monitoring area is very large and activities (moving 
trajectories) are sparse. The normal trajectories of 
moving objects often follow regular patterns. Once we 
have these patterns, abnormal behaviors of moving 
objects can be easily detected through pattern matching 
[7]. 

Currently, activity monitoring is most often 
completed using video monitoring equipment such as 
digital cameras. However, digital cameras are very 
expensive and each camera can only cover a small area 
and specific trails. Moreover, it is hard to 
automatically analyze the activity patterns in a large 
field with images from multiple cameras.  

Consider monitoring the activities in the field 
illustrated in Fig. 1. Supposing that we know there are 
two frequent trajectories in the field, we can deploy a 
set of video cameras to monitor the activities along the 
frequent trajectories. In order to monitor the activities 
outside the two trajectories, however, more cameras 
are needed. Even so, it is hard to automatically analyze 
the activities captured by many cameras. Typically, 
security staffs have to monitor the images in real time. 

Figure 1: Monitoring activities using video 
equipment

Monitoring using video cameras has at least the 
following four limitations. First, the target trajectories 
must be pre-defined. Once the trajectories change, the 
cameras may need to be re-deployed. Indeed, in many 
situations, the frequent trajectories may not be known 
and frequently change over time. Second, except for 
the target trajectories, monitoring other regions is 
difficult. Third, it is hard to automatically analyze the 
images from multiple cameras and detect irregular 
activities. And last, digital cameras are expensive. It is 
often a financial concern to deploy a large number of 
cameras. 

In this paper, we describe a novel application of the 
radio frequency identification (RFID) technology to 
provide an inexpensive and relatively accurate 



approach to activity monitoring. Instead of using a 
series of video cameras, we use an array of RF tags 
and a few RF readers. Our approach relies on data 
mining techniques to detect and analyze frequent 
trajectory patterns. We focus on extracting frequent 
patterns because these patterns can be used as domain 
knowledge to capture any anomalies. 

Since RF tags and readers are much cheaper than 
cameras (in US dollars, an active RF tag is about 50 
cents and an RF reader is several hundred dollars), and 
data mining techniques can detect frequent patterns 
online, our approach is more flexible and much 
cheaper than the video monitoring solutions. 

1.1. RFID and location sensing 

RFID is a means of storing and retrieving data 
through electromagnetic transmission to an RF 
compatible integrated circuit. It is now being seen as a 
radical means of enhancing data handling processes 
[10]. An RF reader can read data emitted from RF tags. 
RF readers and tags use a defined radio frequency and 
protocol to transmit and receive data. RF tags are 
categorized as either passive or active. 

Passive RF tags operate without a battery. They 
reflect the RF signal transmitted to them from a reader 
and add information by modulating the reflected 
signal. Their read ranges are very limited. 

 Active tags contain both a radio transceiver and a 
button-cell battery to power the transceiver. Since the 
each tag has an onboard radio, active tags have lager 
ranges than passive tags. Active tags are ideally suited 
for the identification of high-unit-value products 
moving through a tough assembly process. They also 
offer the durability essential for permanent 
identification of captive product carriers. 

We are interested in using commodity off-the-shelf 
products. The results of our comparative studies reveal 
that there are several advantages of the RFID 
technology. The no-contact and non-line-of-sight 
nature of this technology is the significant advantage 
common among all types of RFID systems. All RF tags 
can be read despite extreme environmental factors such 
as snow, fog, ice, paint, and other visually and 
environmentally challenging conditions. 

The other advantages are their promising 
transmission ranges and cost-effectiveness. Indeed, if 
we deploy a video camera system to cover a 
300m×300m factory surface, the cost could be up to a 
half million US dollars. On the other hand, to deploy 
an active RFID system merely needs four RF readers 
and thousands of tags, which would cost less than 10 
thousand US dollars. 

1.2. Our RFID configuration 

After looking into the specifications of different 
available systems, we have chosen the Spider System 
manufactured by RF Code [1] to implement our 
activity tracking prototype. 

The RF reader's operating frequency is 308 MHz. It 
also has an 802.11b interface to communicate with 
other machines. The detection range is set at 150 feet, 
and this range can be increased to 1000 feet with the 
addition of a special antenna. The readers provide 
digital control of read range via providing 
configuration software and API with 8 incremental 
read ranges. Each reader can detect tags within 2 
seconds. Each RF tag is pre-programmed with a 
unique 7-character ID for identification by readers, and 
its battery life is 3-5 years. Tags send their unique ID 
signals at random with an average of 2 seconds. Based 
on the signal strength received by the RF reader, the 
reader will report or ignore the received ID. 

1.3. Our contributions 

The major contributions of this work are as follows.  
First, we introduce a novel RFID application that 

uses an array of stationary RF tags to monitor 
activities in large fields. Differing from the traditional 
radio-based localization methods, our approach does 
not require the tracking objects to hold any transmitters 
or receivers, such as RF readers or tags.  

Second, we model a data mining problem that is 
critical for the activity monitoring application using 
RFID. It is fault-tolerant sequential pattern mining 
from an array of time series generated by the RF tags. 
This problem has not been addressed in previous data 
mining studies.  

Last, we conduct an empirical study using real 
RFID systems and data sets to verify the feasibility and 
the effectiveness of our approach. 

The rest of the paper is organized as follows. In 
Section 2, we describe our design of activity 
monitoring using RF tag arrays. We discuss the data 
collection and the preprocessing in Section 3 and 
present the frequent trajectory mining in Section 4. An 
empirical study is reported in Section 5. Section 6 
discusses the related work. The work is concluded in 
Section 7.

2. Activity Monitoring Using Tag Arrays 

Most RFID applications attach RF tags to moving 
objects such as product items in a warehouse or 
customer carts in a store. In many applications, 
however, it is difficult to enforce an RF tag onto every 
object (e.g., people walking through the field).  



To tackle this problem, we propose a novel 
application of RFID. The general idea is as follows. 
Instead of attaching one RF tag to each object, we 
deploy an array of active RF tags onto the field. When  

an object moves through the field, the signals from 
some active tags will be affected and the RF readers 
will receive such signals. A database server collects the 
changes of signal strengths and uses the information to 
derive the activities in the field. 

Figure 2 illustrates our approach, where each 
blackened box is an RF tag. A set of RF tags is 
deployed on the field to be monitored. When an object 
(the circle in the figure) moves in the array, the signal  
strengths from some RF tags may change. In this 
example, the strengths from tags a, b, c, and d are very 
likely affected, while the signal strengths from the tags 
in area A, such as h, may not be affected. 

Figure 3 plots the signal strength changes of RF 
tags c and h on a real RF array deployment, as the one 
shown in Figure 2. The results indicate that when an 
object passes an RF tag such as c at time stamp 10, its 
signal strength is affected dramatically compared to an 
unaffected RF tag such as h.

By analyzing such changes, we want to derive the 
trajectories of the activities. Moreover, using the 
frequent trajectories, we can model the regular 
activities in a field. When an activity is detected, it can 
be compared with the frequent trajectories. 

Due to the nature of RFID technology, we make the 
assumption that the number of simultaneous activities 
in a field is not large. For example, our method can 
detect several frequent trails that people walk along 
through a workshop. However, activities such as large 
parties in a hall or a banquet where hundreds of people 
walk about randomly cannot be handled well with our 
current method. Such situations can hardly be handled 

well by video monitoring systems either. We argue that 
this assumption holds in many situations. 

The novelty of our approach is that we use the 
interference on the RF tag signals caused by the 
activities to detect the activities themselves. However, 
it also poses the following two major challenges, 
which will be addressed in the remainder of this paper. 

Challenge 1: How to detect the positions of objects 
accurately. RFID data is very noisy. RF tags may have 
very different characteristics. Some RF tags are very 
sensitive, i.e., their signal is not stable even when no 
activities exist. The magnitude of the RF tags also 
varies. Different RF tags may give very different signal 
changes even if they are under the same interference. 

Challenge 2: How to detect the frequent trajectories 
of activities. Since the RF tags are not synchronized in 
sending their signals, some activities may escape from 
one or a few tags. Moreover, since signals are not 
synchronized, the order of the changes may not 
correspond to the spatial-temporal order that an 
activity happens. How to detect the frequent 
trajectories effectively and efficiently is far from 
trivial. 

3. Data Collection and Preprocessing 

As discussed in Section 2, RF tags might respond 
differently to interference. In order to identify the 
interference from moving objects accurately, we need 
to capture the sensitivity of RF tags. 

To measure the sensitivity, we first monitor the 
signal strengths of tags when no activity is present in 
the field for a period of t. For each tag, we obtain a 

time series over the period. Let 1, , ts s denote the 
signal strengths collected. Then, we define the neutral 
value of the tag s as the expected signal strength  
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sensitivity of the RF tag is measured by the standard 
deviation of the time series, i.e., t))(s(= sis /2 .

When an RF tag is used to detect activities and an 
object interferes with the signal of the tag, we call the 
activity an interference activity with respect to the tag. 
With the neutral value and the sensitivity of a tag, we 
can use a (small) number k (k > 1) as the threshold to 
detect whether interference is likely to happen to an 
RF tag. Technically, we have the result below 
following from the Chebyshev inequality. 

Theorem 1 (Detection threshold) Let  and  be the 
neutral value and the sensitivity of an RF tag, 
respectively. During the activity monitoring, if the 
reader receives a signal from the RF tag of strength s, 
and s k , then the probability that an inference 

activity happens is at least
2

1
(1 )

k
.

Proof: Directly derived from Chebyshev's inequality. 

An array of RF tags is deployed in a field. An RF 
tag sends a signal in every unit period (called a period 
hereafter). RF tags are not synchronized. Instead, they 
compete for the transmission window. Thus, a tag may 
send its signal at the end of the period, and its neighbor 
tag may send its signal at the beginning of the period. 

A few readers are connected to a server to collect 
the signals. Thus, at the server side, a time series is 
accumulated for each tag and each reader. Using the 
sensitivity and the neutral value of each tag, we can 
transform the time series of a tag recorded by a reader 
R into a binary tag signal sequence (or tag sequences 

for short) 
R
is , where 1R

is  if the tag is interfered in 

period i (i.e., R
i ss k  according to Theorem 1), 

and 0R
is  if the tag is not interfered in the period. 

After the data collection and the preprocessing, we 
shall use the tag signal sequences instead of the raw 
signal data in our data analysis. 

4. Frequent Trajectory Mining 

In this section, we show how to mine frequent 
trajectories from the RF tag data. We first formulate 
the problem, and then introduce the algorithm. 

4.1. Problem formulation 

Since the RF tags deployed are stationary, their 
spatial locations are known to the server. The data 
mining task consists of two phases: the training phase 
and the monitoring phase. 

In the training phase, we collect the RF tag signal 
sequences over n periods, where n is a user specified 

length of time. In practice, the training period can be a 
day or a week, depending on the nature of the 
application. The sequences in the training phase will 
be used to find frequent trajectories as the model of the 
normal activities in the field. 

In the monitoring phase, activities are detected and 
compared with the frequent trajectories. If an activity 
matches a trajectory, then it is treated as normal. 
Otherwise, an alert will be issued. 

Since the trajectory matching is very similar to the 
approximate sequence matching problem, many 
existing methods can be used [7]. In the rest of the 
paper, we focus on the frequent trajectory mining 
problem (i.e., the training phase) only. 

For each tag , let s( ) be the tag signal sequence, 
and s( )i be the signal in period i.

Intuitively, an activity can be described as a 
trajectory in the field under monitoring. In a period, 
the location segment of the object can be determined 
by the tags that are closest to the segment. Ideally, an 
activity can be captured by a series of RF tag sets 

1 lV V  where (1 )iV i l is a set of RF tags 
describing the location segment of the object in period
i, and the tag sets are interfered in consecutive periods.  

If the tag sets can be detected accurately, the 
activity recognition problem is trivial. However, due to 
the nature of RFID systems, there are a few important 
obstacles in practice. 

First, not every RF tag along the trajectory may 
detect the activity. For example, in Fig. 2, if the object 
moves fast, it is possible that the object interferes with 
tag c but not tag d. Moreover, the probability that a tag 
fails to detect an activity is low but is unknown. 

Second, the signals of tags may not accurately 
reflect the order of the activity. For example, in Fig. 2,
although the object passes tag c before tag d, the 
interference may happen in the signal sequence of d
before that of c. The reason is that the object may pass 
c right after c sends a signal of period i, but pass d
right before d sends the signal in the same period. 
Therefore, the interference to d is reflected in period i,
but the interference to c is recorded in period (i+1).

Third, an activity may interfere with multiple tags in 
a period. In order to derive the trajectories, we have to 
infer the possible positions of the object based on the 
correlation of the interfered tags and the location of the 
readers.

In summary, the problem of mining frequent 
trajectory patterns from RF tag sequences is to find 
the trajectories happening at least min_sup times in the 
training phase, where min_sup is a user specified 
frequency threshold. 



Figure 4: Detecting borders 

4.2. Removing redundancy & detecting 
borders

The RF tag signal collection has the following 
property. 
Property 1 If a reader R detects that an RF tag u is 
interfered in a period i, then for any RF tag v behind u 
in space with respect to R, with high probability, R 
detects v being interfered in at least one of the 
following periods: (i-d), (i-d+1), i, (i+d-1), and (i+d),
where d is a user specified time shifting factor.  
Rationale. The property is clear in geometry. 
However, note that the property only holds with high 
probability, since if the object moves fast, there could 
be a slim window such that the signal of v is not 
affected. The probability is unknown and hard to be 
estimated. Thus, the property can be used as a 
heuristic. 

Using the above property, we can identify two types 
of redundancies among RF tag sequences. The first 
type is the redundancy among non-interfered tags. For 
example, in Fig. 2, all tags in area A are likely not 
interfered. We only need to know the area instead of 
individual values. The second type is the redundancy
among interfered tags. For the same reason, the 
changes of tags e, f and g in Fig. 2 are redundant. 

To capture the activity in a period, the border 
between the interfered tags and the non-interfered tags 
is good enough. Thus, in each period and for each 
reader, we derive a border. The border detection works 

as follows. In a period i, we check ( )R
is u  for each RF 

tag u  and reader R. Recall that ( )R
is u  is either 0 or 

1. ( )R
is u  is at the border if and only if there is at least 

one neighbor RF tag v such that ( ) ( )R R
i is u s v .

Figure 4 illustrates the snapshot in a period for a reader. 
The borders are given by the dash-dot lines. The 
whitened boxes denote the borders of the interfered RF  

tags. There might exist cases that very few “0”s or “1”s 
appear inside of an “1” or “0” zone, so that these “0”s 
or “1”s are treated as outliers and will not be 
considered during the border detection. 

Clearly, when the snapshot in period i can be held 

into main memory, the border detection takes ( )O m
time where m is the number of RF tags in the 
monitored field. Typically, m ranges from tens to 
thousands of RF tags, which can be easily 
accommodated in main memory. 

4.3. Identifying possible object positions 

Once we derive the borders between interfered and 
non-interfered tags, we identify the possible locations 
of objects using the spatial map of the stationary tags. 

Intuitively, the locations of objects are the 
outstanding parts of the border that a reader can see. 
For example, consider the case in Fig. 5. From the 
reader, two segments (the solid segments in the border) 
are the possible locations where objects exist. 
Heuristically, an object may appear proximate to an RF 
tag u  if the tag is at the border and there is no other 
interfered RF tag blocking the connection between u
and the reader, such as RF tags x,, y, and z. By 
walking through the border once, we can identify the 
segments where an object may exist. We call such 
segments object location segments of the period w.r.t. 
the reader. 

Please note that our location sensing is 
approximate. We only identify the ranges where 
objects may exist. Multiple objects may exist in the 
same range. In our trajectory mining algorithm, we 
shall use such ranges to assemble the possible 
trajectories. Another important issue is that some 
objects may hide behind other objects. For example, in 
Fig. 6, object B is hidden behind object A.
Theoretically, we should be able to observe more 
degraded signals from the RF tags interfered by both A
and B, such as the time shifting factor d. In the real 

Figure 5: The positions of objects 



system, however, the difference is often minor and not 
reliable for location detection.  

To detect those hidden objects, we apply the 
following two methods. 

First, we employ multiple readers. Multiple readers 
(e.g., 4-6) are deployed in a field so that the possibility 
that an object is hidden from all readers is reduced. 

Second, we conduct fault-tolerant mining. As the 
objects are moving, one object hidden in one period 
may show up to some readers in other periods. As long 
as an object is not hidden at al times from all readers, 
our algorithm can detect it. 

4.4. The mining algorithm 

The frequent trajectories are mined in the following 
two steps. 

4.4.1. Finding frequent positions of objects 

Clearly,, a tag that is in an object location segment 
in a period is likely a part of the trajectory of an 
activity. The trajectory of a frequent activity may 
frequently trigger a tag in the object location segments. 
By scanning the object location segments in all periods 
once, we can find the tags that are in the segments in at 
least min_sup periods with respect to a reader. 

Since an object can be occasionally hidden behind 
other objects, when counting the number of times a tag 
is in a segment, we also count the cases that tag is in 
the interfered side of the border. That is, if a tag is in 
the object location segments in some periods, and is 
interfered in some other periods, they are summed up 
together against the threshold min_sup.

We do not count the tags that are always hidden 
behind some tags in the object location segments. The 
rationale is that those tags are likely to be detected by 
other readers. On the other hand, if an activity is 
always hidden by some other activities, it is likely that 
either the activity is infrequent or it is a part of another 
activity. In many cases, the interfered tags not in the 

object location segments do not really capture the 
movement of objects. The method to find the frequent 
positions of objects is given in Fig. 7,which shows the 
cost of the algorithm is one scan of the tag sequences. 

4.4.2 Finding frequent trajectory segments 

As the second step, we find the frequent trajectory 
segments. The general idea is that we start with short 
segments and use them to derive. 

Conceptually, a l-segment of trajectory is a 
sequence 1 lV V  such that (1 )jV j l  is a set of 
frequent positions of an object that are spatially 
adjacent, and qV  and 1(1 )qV q l  are connected in 
space. In other words, the segment captures an activity 

in l  periods such that jV  describes the trajectory of 
the activity in the j-th period.  

We start with finding 2-segments. We check the 
combinations of frequent object positions and examine 
whether they happen consecutively in space and in 
time. To tolerate faults, we allow some appearances in 
the reverse order. For example, if we see that tag a and 
tag b are interfered in consecutive periods frequently, 
and in some cases, b is interfered right before a, then, 
all those cases should be counted together as the 
support of a b . Technically, we use a threshold 
to specify the degree of fault tolerance. In a window of 
 periods, the frequent positions can appear in any 

order. For example, if  =2, then a b  and b a

are considered matchable; if =3, then a b c
and c a b  are matchable. 

Typically,  is a small positive integer such as 2 or 
3. The proper value of  depends on the maximal 
speed objects can move. If an object moves fast, it may  

Input: RF tag signal sequences { ( ) }R
is u , frequency 

threshold min_sup

Output: the set of frequent positions of objects w,r,t, 
reader R; 

Method:
1: FOR each tag u DO

create a counter 0uc  and a flag 0uf ;

2: FOR each period i  DO 
FOR each tag u DO

3:        IF ( ) 1R
is u THEN 1u uc c ;

4:        IF u  is at the border of interfered tags 

         THEN 1uf ;
5: FOR each tag u DO

6: IF uc min_sup AND 1uf
     THEN output u as a frequent position;

Figure 7: Algorithm to find frequent positions 
of objects 

Figure 6: Objects may be hidden 



Figure 8: The mining algorithm 

have a better chance to cause more unsynchronized 
signals in more periods. 

The space proximity is important here. It 
distinguishes the trajectories of consecutive 
movements from the spatial correlation of non-
adjacent tags. Since a tag might be interfered by 
multiple moving objects, some tags non-adjacent in 
space may appear correlated. Those correlations 
should be filtered out in mining the frequent 
trajectories.

By scanning the tag signal sequences once, we can 
find all 2-segments and their counts (i.e., how many 
times a segment appears in the training phase). Only 
those segments appearing at least min_sup times are 
retained as the frequent 2-segments, where min_sup is 
the frequency threshold. 

Once the frequent 2-segments are found, we extend 
them to longer segments and check their support in the 
data set. To extend a frequent l-segment, we check all 
occurrences of the segment in the data set, and find the 
frequent positions in the next period following the 
segment. Those frequent positions adjacent in space 
form possible extensions to an (l + 1)-segment. We 
check their frequency to identify the frequent (l + 1)-
segments.  

The extension of the frequent trajectory segments 
goes on until we cannot extend a frequent segment any 
more due to its frequency being lower than the 
threshold. 

One important observation is that the same types of 
activities may not repeat their trajectories perfectly. 
For example, many people walk along a frequent trail, 
but each individual may have some variance. To 
handle such variance in the mining, we apply a fault 
tolerant strategy based on Property 1 as follows. 

We adopt a depth-first search to extend the frequent 
segments. The segments closer to the reader have a 

higher priority to be extended. Once a length ( 1)l

extension to 1lV  of a frequent l-segment 1 lV V

is infrequent, before we abort the extension, we check 
whether other extensions of the frequent segment are 
frequent. Particularly, we check those RF tags behind 

the tags in 1lV . Fig. 8 summarizes the mining method. 

5. Empirical study 

In this empirical study, we test our frequent 
activities mining algorithm on a real implementation of 
100 RF tags and 1 reader. As shown in Fig. 9 (only 
two rows are shown due to space limitations), these RF 
tags are deployed in 10 rows and each row has 10 RF 
tags in a field of size10m 10m . The distance between 
neighboring RF tags within a row or a column is1m .

We asked our graduate students to walk through 
this RF array following different routes and different 
speeds. The signal strength of each RF tag was 
recorded during the test period. We applied our mining 
algorithm on the readings of each RF tag received 
from the reader and reported the accuracy and 
efficiency of detecting trajectories of frequent 
activities. 

Here, to measure the detection accuracy of our 
proposed algorithm, we use the ratio between the 
length of a correctly detected frequent activity's 
trajectory and the length of the real frequent route. We 
start the tests with simple activities, such as single or 
consecutive activities with only one direction and one 
route (Experiments 1 and 2), then we check the busy 
actives with two directions (Experiment 3). Finally, we 
examine the complex activities with multiple routes 
and directions (Experiment 4). 

5.1. Experiment 1: single activity 

The purpose of this experiment is to detect the 
trajectory of a single activity. We set up two routes 
(trails) in the RF array (as shown in Fig. 9). People 
walk through trails 1 and 2 independently three times 
with different speeds (slow—0.5m/sec, fast—
1.0m/sec). 

Figure 9: Setup of Experiment 1 

Input: RF tag signal sequences { ( ) }R
is u , frequency 

threshold min_sup

Output: frequent trajectories; 
Method:
1: find frequent positions of objects (Figure 7);  
2: find frequent 2-segments;
3: FOR each 2-segment DO
4:  recursively, depth-first extend the segment to 

longer frequent segments, the tags closer to 
the reader should be considered before those 
behind, and once a frequent trajectory is 
found, all segments behind can be pruned; 



5.2. Experiment 2: group activities 

2 3 4 5 6 7
0%

20%

40%

60%

80%

100%

min_sup

A
cc

ur
ac

y

(a) Accuracy with respect to support threshold min_sup

2 3 4 5 6 7
0.06

0.08

0.1

0.12

0.14

0.16

0.18

min_sup

T
im

e 
(s

ec
on

d)

(b) Runtime with respect to support threshold min_sup

Figure 10: The Effect of Minimum Support  

The purpose of this experiment is to find the 
trajectory of a temporally consecutive, group activity. 
We use the same setting as Experiment 1 and only 
select trail 1 for testing. We test the following 
scenario: one person walks through trail 1 at various 
speeds and the second person starts when the first one 
arrives at the 8th tag. All walks are in the same 
direction. In total, five people walk through the trail. 
We vary the people's walking speeds to test the 
robustness of the algorithm. 

Again, the results indicate that our algorithm can 
detect the trajectory of a consecutive activity, trail 1, 
with 100% accuracy when we set the threshold of 
detecting frequent positions, min_sup=2. We also test 
the case with min_sup=3, and we find out that we can 
still achieve 100% accuracy. This is because there are 
five consecutive objects passing the RF tags along the 
route. The results also show that the walking speed 
does not affect the detection accuracy as long as the 
activity is frequent. 

Based on the results of Experiments 1 and 2, we 
conclude that our method can find the trajectories of 
simple frequent activities with a high accuracy. 

5.3. Experiment 3: busy activity 

In this experiment, we test the capability of our 
method in detecting the trajectory of a busy activity. 
The same experiment setting of Experiment 1 is used 
here. We let one person walk back and forth on trail 1 
at various speeds for one minute. Since the person may 
pass an RF tag many times during the one minute time 
period, we test the effect of min_sup (the threshold of 
frequent locations) on detection accuracy and 
efficiency. The results are listed in Fig. 10.

The experimental results show that we can get 
100% accuracy if we set the threshold, min_sup=2, for 
detecting frequent positions of the objects, no matter 
what the walking speed of the people is. However, if 
we set the threshold min_sup=3, the accuracy drops 
down to 60%. Due to the physical setting of RF tags. 
An RF tag sends a signal within a two second time 
frame, and there exist cases when people block an RF 
tag but this RF tag does not transmit any signals during 
the blocking period. Thus, the reader cannot get the 
information about the RF tag was affected. As a 
consequence, this location may not be classified as a 
frequent one. Therefore, setting to a higher value may 
lead to a lower accuracy. However, setting min_sup to 
a lower value may result in a large number of frequent 
locations and the computation cost of detecting 
frequent trajectories becomes high. We will test the 
effect of min_sup on detecting accuracy and efficiency 
in Experiment 3, where people may pass an RF tag 
many times during a busy activity. 

The results confirm what we discussed in 
Experiment 1. That is, with the increasing support 
threshold (min_sup in the figure), both the accuracy 
and the time cost are reduced. An interesting fact is 
that when min_sup=3, we can achieve the best 
accuracy with the lowest time cost. Thus, how to set a 
proper value of support threshold for detecting 
frequent locations is an interesting work, which is left 
for our future investigation. 

5.4. Experiment 4: complex activities 

In this experiment, we test the activity with 
complex spatial trails. The setting is shown in Fig. 11.

We ask one person to walk through the trail (the 
solid line with an arrow) at various speed three times. 
The results of detected trajectories of frequent 
activities are reported in Fig. 12.



Figure 11: Setting of Experiment 4 Figure 12: Detected Routes of Experiment 4 

   In the figure, we also plot the frequent object 
locations that ideally should be detected (the P-
positions in Fig. 12). Comparing Figures 11 and 12, we 
can find that even for a frequent activity with a 
complex spatial trail, our algorithm can still detect 
most of the frequent trajectory segments (shown by 
connected solid line segments in Fig. 12).
   However, our method may miss some segments. 
We observe that for routes outside of the RF array and 
the connection locations where multiple routes cross 
each other (shown by the dotted lines in Fig. 12), our 
algorithm has difficulties detecting them. However, by 
checking the timestamp of each possible appearance 
position and RF tag map, we can easily connect these 
separated segments into a continuous trajectory. 
Another possible solution for this problem is to add 
another RF reader at the opposite side of the current 
one and use cross validation to verify the results. 

5.5. Summary 

Our empirical study using the real RFID 
implementation confirms that using RF tags and 
readers to find trajectories of frequent activities is 
highly feasible. Our data mining techniques of mining 
fault tolerant frequent trajectories can detect frequent 
segments of activities. When the activities are not very 
complicated in space, the accuracy is high. 

On the other hand, it remains a challenging task to 
improve the accuracy further for complex activities. 
We are working on using multiple readers for cross-
validation as a promising solution. 

6. Related Work and Discussion 

Basically, there are two categories of studies highly 
related to our work, namely sequential pattern mining 
and approximate frequent pattern mining. We first 

review the related work and then discuss the 
differences between this study and the previous work. 

6.1. Related work 

Since it was first introduced [3], sequential pattern 
mining has been studied extensively. Conventional 
sequential pattern mining finds frequent subsequences 
in a sequence database based on exact match. There 
are two classes of algorithms. On one hand, the 
breadth-first search methods [10] are based on the a 
priori principle [2] and conduct level-by-level 
candidate-generation-and-tests. On the other hand, the 
depth-first search methods (e.g., PrefixSpan [9] and 
SPAM [4]) grow long patterns from short ones by 
constructing projected databases. Some variances of 
the depth-first search methods mine sequential patterns 
with vertical format [11]. Instead of recording 
sequences of items explicitly, they record item-lists, 
i.e., each item has a list of sequence-ids and positions 
where the item appears.  

Recently, Guralnik and Karypis used sequential 
patterns as features to cluster sequential data [6]. They 
project the sequences onto a feature vector comprised 
of the sequential patterns, and then use a k-means like 
clustering method on the vector to cluster the 
sequential data. Approximate frequent itemset mining 
has also been studied [10]. Although the methods are 
quite different in techniques, they all explore 
approximate matching among itemsets.  

Recently, Yang et al. presented a probabilistic 
model [11] to handle noise in mining strings. A 
compatibility matrix is introduced to represent the 
probabilistic connection from observed items to the 
underlying true items. Consequently, partial 
occurrence of an item is allowed and a new measure, 
match, is used to replace the commonly used support 



measure to represent the accumulated amount of 
occurrences. However, it cannot be easily generalized 
to apply on the sequential data targeted in this paper. 

Chudova and Smyth used a Bayes error rate 
framework under a Markov assumption to analyze 
different factors that influence string pattern mining in 
computational biology[5]. Extending the theoretical 
framework to mining sequences of sets could shed 
more light to the future research in this direction. 

6.2. How is the study different? 

This study is different from the previous work in 
the following two aspects. 

First, trajectories are implicit in input data. Most of 
the previous works assume that the input data is in the 
form of a set of sequences, and find the common 
subsequences shared by many input sequences. 
Although an RF tag data set is in the form of a set of 
time serie one time series for one tag per reader), 
the mining task is not to find frequent segments shared 
by the time series. In fact, such sharing does not make 
sense in this application. Instead, the trajectories are 
hidden across the time series and cannot be extracted 
as a set of sequences explicitly to feed an existing 
sequential pattern mining method. Therefore, the 
previous sequence mining methods cannot be applied. 

Second, the RF tag data is very noisy. Most of the 
previous sequential pattern mining methods are not 
fault-tolerant. Here, the fault-tolerant mining strategies 
are needed to handle the noise and extract the 
representative patterns. Moreover, the redundant 
patterns should be pruned during the mining as well as 
in the final results. This requirement justifies the need 
in this paper to develop a new mining method, though 
the philosophy of sequential pattern mining is shared. 

7. Conclusions 

In this paper, we report a novel application of RFID 
technology: using RF tag arrays for activity 
monitoring. Frequent trajectory mining plays an 
important role in this application. We present the 
framework, formulate the frequent trajectory mining 
problem and develop a practical solution. Our 
empirical study using real RFID data sets verifies the 
effectiveness of the proposed method. 

We are currently exploring the cross-validation 
method using multiple readers, and a more thorough 
test in real application fields. Moreover, it would be 
interesting to investigate the optimal deployment of RF 
tags and readers in a field. Again, data mining 
techniques will be very useful. 

In the future, we are planning to explore more 
applications of RFID technology in ubiquitous 

computing. Since RFID applications often generate a 
large amount of data, we believe those applications 
will pose new challenges and opportunities for data 
mining research and development. 
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