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Abstract—Cloud computing provides promising scalable IT infrastructure to support various processing of a variety of big data 

applications in sectors such as healthcare and business. Data sets like electronic health records in such applications often 

contain privacy-sensitive information, which brings about privacy concerns potentially if the information is released or shared to 

third-parties in cloud. A practical and widely-adopted technique for data privacy preservation is to anonymize data via 

generalization to satisfy a given privacy model. However, most existing privacy preserving approaches tailored to small-scale 

data sets often fall short when encountering big data, due to their insufficiency or poor scalability. In this paper, we investigate 

the local-recoding problem for big data anonymization against proximity privacy breaches and attempt to identify a scalable 

solution to this problem. Specifically, we present a proximity privacy model with allowing semantic proximity of sensitive values 

and multiple sensitive attributes, and model the problem of local recoding as a proximity-aware clustering problem. A scalable 

two-phase clustering approach consisting of a t-ancestors clustering (similar to k-means) algorithm and a proximity-aware 

agglomerative clustering algorithm is proposed to address the above problem. We design the algorithms with MapReduce to 

gain high scalability by performing data-parallel computation in cloud. Extensive experiments on real-life data sets demonstrate 

that our approach significantly improves the capability of defending the proximity privacy breaches, the scalability and the time-

efficiency of local-recoding anonymization over existing approaches. 

Index Terms— Big Data; Cloud Computing; MapReduce; Data Anonymization; Proximity Privacy 
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1INTRODUCTION 

LOUD computing and big data, two disruptive 
trends at present, pose a significant impact on cur-
rent IT industry and research communities [1, 2]. 

Today, a large number of big data applications and ser-
vices have been deployed or migrated into cloud for data 
mining, processing or sharing. The salient characteristics 
of cloud computing such as high scalability and pay-as-
you-go fashion make big data cheaply and easily accessi-
ble to various organizations through public cloud infra-
structure. Data sets in many big data applications often 
contain personal privacy-sensitive data like electronic 
health records and financial transaction records. As the 
analysis of these data sets provides profound insights into 
a number of key areas of society (e.g., healthcare, medical, 
government services, e-research), the data sets are often 
shared or released to third party partners or the public. 
The privacy-sensitive information can be divulged with 

less effort by an adversary as the coupling of big data 
with public cloud environments disables some traditional 
privacy protection measures in cloud [3, 4]. This can bring 
considerable economic loss or severe social reputation 
impairment to data owners. As such, sharing or releasing 
privacy-sensitive data sets to third-parties in cloud will 
bring about potential privacy concerns, and therefore re-
quires strong privacy preservation. 

Data anonymization has been extensively studied and 
widely adopted for data privacy preservation in non-
interactive data sharing and releasing scenarios [5]. Data 
anonymization refers to hiding identity and/or sensitive 
data so that the privacy of an individual is effectively pre-
served while certain aggregate information can be still 
exposed to data users for diverse analysis and mining 
tasks. A variety of privacy models and data anonymiza-
tion approaches have been proposed and extensively stud-
ied recently [5, 6, 7, 8, 9, 10, 11, 12]. However, applying 
these traditional approaches to big data anonymization 
poses scalability and efficiency challenges because of the 
“3Vs”, i.e., Volume, Velocity and Variety. The research on 
scalability issues of big data anonymization has come to 
the picture [10, 13, 14, 15], but they are only applicable to 
the sub-tree or multidimensional scheme. Following this 
line, we investigate the local-recoding scheme herein and 
attempt to identify a scalable solution to big data local-
recoding anonymization. Recently, differential privacy has 
attracted plenty of attention due to its robust privacy 
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guarantee regardless of an adversary’s prior knowledge  
[16]. However, besides the drawbacks pointed in [16], dif-
ferential privacy also loses correctness guarantees because 
it produces noisy results to hide the impact of any single 
individual [17]. Hence, syntactic anonymity privacy mod-
els still have practical impacts in general data publishing 
and can be applied in numerous real-world applications. 

The local-recoding scheme, also known as cell generali-
zation, groups data sets into a set of cells at the data record 
level and anonymizes each cell individually. Existing ap-
proaches for local recoding [9, 11, 18, 19] can only with-
stand record linkage attacks by employing  -anonymity 
privacy model [6], thereby falling short of defending prox-
imity privacy breaches [12, 20, 21].  In fact, combining local 
recoding and proximity privacy models together is inter-
esting and necessary when one wants an anonymous data 
set with both low data distortion and the ability to combat 
proximity privacy attacks. However, this combination is a 

challenge because most proximity privacy models have the 

property of non-monotonicity [21] and local recoding fails to 

be accomplished in a top-down way, which will be detailed 

in Subsection 3.3 (Motivation and Problem Analysis). 
In this paper, we model the problem of big data local re-

coding against proximity privacy breaches as a proximity-
aware clustering problem, and propose a scalable two-
phase clustering approach accordingly. Specifically, we 
put forth a proximity privacy model based on [12] by rea-
sonably allowing multiple sensitive attributes and seman-
tic proximity of categorical sensitive values. As the satisfi-
ability problem of the proximity privacy model is proved 
to be NP-hard, it is interesting and practical to model the 
problem as a clustering problem of minimizing both data 
distortion and proximity among sensitive values in a clus-
ter, rather than to find a solution satisfying the privacy 
model rigorously. Technically, a proximity-aware distance 
is introduced over both quasi-identifier and sensitive at-
tributes to facilitate clustering algorithms. To address the 
scalability problem, we propose a two-phase clustering 
approach consisting of the  -ancestors clustering (similar 
to  -means [22]) and proximity-aware agglomerative clus-
tering algorithms. The first phase splits an original data set 
into   partitions that contain similar data records in terms 
of quasi-identifiers. In the second phase, data partitions 
are locally recoded by the proximity-aware agglomerative 
clustering algorithm in parallel. We design the algorithms 
with MapReduce in order to gain high scalability by per-
forming data-parallel computation over multiple comput-
ing nodes in cloud. We evaluate our approach by conduct-
ing extensive experiments on real-world data sets. Ex-
perimental results demonstrate that our approach can pre-
serve the proximity privacy substantially, and can signifi-
cantly improve the scalability and the time-efficiency of 
local-recoding anonymization over existing approaches. 

The major contributions of our research are fourfold. 
Firstly, an extended proximity privacy model is put forth 
via allowing multiple sensitive attributes and semantic 
proximity of categorical sensitive values. Secondly, we 
model the problem of big data local recoding against prox-
imity privacy breaches as a proximity-aware clustering 

problem. Thirdly, a scalable and efficient two-phase clus-
tering approach is proposed to parallelize local recoding 
on multiple data partitions. Fourthly, several innovative 
MapReduce jobs are designed and coordinated to con-
cretely conduct data-parallel computation for scalability. 

The remainder of this paper is organized as follows. The 
next section reviews related work. In Section 3, we briefly 
introduce some preliminary and analyze the problems in 
detail. Section 4 models the proximity-aware clustering 
problem formally, and Section 5 elaborates the two-phase 
clustering approach and the MapReduce jobs. We empiri-
cally evaluate our approach in Section 6. Finally, we con-
clude this paper and discuss future work in Section 7. 

2 RELATED WORK 

Recently, data privacy preservation has been extensively 
investigated [5]. We briefly review existing approaches 
for local-recoding anonymization and privacy models to 
defense against attribute linkage attacks. In addition, re-
search on scalability issues in existing anonymization ap-
proaches is shortly surveyed.  

Recently, clustering techniques have been leveraged to 
achieve local-recoding anonymization for privacy preser-
vation. Xu et al. [9] studied on the anonymization of local 
recoding scheme from the utility perspective and put 
forth a bottom-up greedy approach and the top-down 
counterpart. The former leverages the agglomerative clus-
tering technique while the latter employs the divisive hi-
erarchical clustering technique, both of which pose con-
straints on the size of a cluster. Byun et al. [19] formally 
modeled local-recoding anonymization as the  -member 
clustering problem which requires the cluster size should 
not be less than   in order to achieve  -anonymity, and 
proposed a simple greedy algorithm to address the prob-
lem. Li et al. [18] investigated the inconsistency issue of 
local-recoding anonymization in data with hierarchical 
attributes and proposed KACA (K-Anonymization by 
Clustering in Attribute hierarchies) algorithms. Aggarwal 
et al. [11] proposed a set of constant factor approximation 
algorithms for two clustering based anonymization prob-
lems, i.e., r-GATHER and r-CELLULAR CLUSTERING, 
where cluster centers are published without generaliza-
tion or suppression. However, existing clustering ap-
proaches for local-recoding anonymization mainly con-
centrate on record linkage attacks, specifically under the 
 -anonymity privacy model, without paying any atten-
tion to privacy breaches incurred by sensitive attribute 
linkage. On the contrary, our research takes both privacy 
concerns into account. Wong et al. [23] proposed a top-
down partitioning approach based on the Mondrian algo-
rithm in [24] to specialize data sets to achieve      -
anonymity which is able to defend certain attribute link-
age attacks. However, the data utility of the resultant 
anonymous data is heavily influenced by the choice of 
splitting attributes and values, while local recoding does 
not involve such factors. Our approach leverages cluster-
ing to accomplish local recoding because it is a natural 
and effective way to anonymize data sets at a cell level. 
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To preserve privacy against attribute linkage attacks, a 
variety of privacy models have been proposed for both 
categorical and numerical sensitive attributes.  -diversity 
and its variants [7] require each QI-group to include at 
least   well-represented sensitive values. Note that  -
diverse data sets are already  -anonymous. Some privacy 
models, such as      -anonymity [23], extend  -
anonymity with the confidence bounding principle that 
requires the confidence of associating a quasi-identifier to 
a sensitive value to be less than a user-specified threshold. 
In general, these integrated models are more flexible than 
 -diversity. Since the models above handle categorical 
attributes only, they fail to thwart proximity privacy 
breach in numerical sensitive attributes. As a result, sev-
eral privacy models such as      -anonymity [20], vari-
ance control [10],       -anonymity [21] and  -closeness 
[8] are put forth.      -anonymity requires that the differ-
ence of the maximum and minimum sensitive values in a 
QI-group must be at least  , while the variance control 
principle demands that the variance of the sensitive val-
ues must be not less than a threshold.      -anonymity, a 
stronger model, requires that for any sensitive value in a 
QI-group, at most     of records can have sensitive val-
ues similar to the value, where   determines the similarity. 
A stringent privacy model  -closeness [8], which mainly 
combats data distribution skewness attacks by requiring 
the distribution of sensitive values in any QI-group 
should be close to the distribution of the entire data set, 
incorporates semantics through the kernel smoothing 
technique to mitigate the proximity breaches to a certain 
extent. Moreover,  -closeness is applicable to both cate-
gorical and numerical attributes as it only demands a pre-
defined distance matrix. But  -closeness is insufficient to 
protect against proximity attacks as pointed in [21]. To 
cope with both categorical and numerical attributes, 
Wang et al. [12] proposed a general proximity privacy 
model, namely,       -dissimilarity, where   determines 
the similarity threshold,   controls the least number of 
dissimilar sensitive values for any sensitive value in a QI-
group, and   means  -anonymity is integrated. The pri-
vacy model we proposed herein can be regarded as an 
extended form of       -dissimilarity. Nevertheless, our 
model differs from it in that multiple sensitive attributes 
are taken into account and categorical sensitive attributes 
have semantic proximity in terms of their taxonomy trees.  

Scalability issues of anonymization over large-scale da-
ta sets have drawn the attention of research communities. 
LeFevre et al. [10] addressed the scalability problem of 
multidimensional anonymization scheme [24] via intro-
ducing scalable decision trees and sampling techniques. 
Iwuchukwu et al. [13] proposed an R-tree index-based 
approach by building a spatial index over data sets, 
achieving high efficiency. Fung et al. [25, 26] proposed a 
top-down specialization approach, improving the effi-
ciency of sub-tree anonymization scheme by exploiting a 
data structure named Taxonomy Indexed PartitionS 
(TIPS). Our previous work [14, 15] addressed the scalabil-
ity problem of the sub-tree scheme in big data scenarios 
via leveraging MapReduce paradigm. However, the ap-
proaches above aim at either multidimensional scheme or 

sub-tree scheme, both of which are global recoding, 
thereby failing to work out for the local-recoding scheme 
investigated herein.  

3 PRELIMINARIES AND PROBLEM ANALYSIS 

3.1 Local-Recoding Anonymization Scheme 

To facilitate subsequent discussion, we briefly introduce 
the concept of local-recoding anonymization as back-
ground knowledge. Local recoding, also known as cell 
generalization, is one of the schemes outlined in [5]. Other 
schemes include full-domain, sub-tree and multidimen-
sional anonymization. Local recoding generalizes a data 
set at the cell level, while global recoding generalizes them 
at the domain level. The last three schemes mentioned 
above are global recoding. Generally, local recoding min-
imizes the data distortion incurred by anonymization, and 
therefore produces better data utility than global recoding. 

Table 1 lists some basic symbols and notations. Each 
record in   consists of both quasi-identifier attributes and 
sensitive attributes. Quasi-identifier attributes are the 
ones that can be potentially linked to individuals unique-
ly if combined with external data sets, e.g., age and sex. If 
a sensitive value is associated to an identified individual, 
economic loss or reputation damage to the person proba-
bly occur. Thus, quasi-identifiers are usually anonymized 
to preserve privacy, while sensitive values are often kept 
in the original form for the sake of data mining or data 
analytics. The consequence of anonymization is that data 
are partitioned into a set of groups, and each is represent-
ed by an anonymous quasi-identifier. Such a group is 
named as QI-group, denoted by     in Table 1. In this 
way, individual privacy is preserved while aggregate 
information is still available for data mining or analytics.  

We consider both numerical and categorical attributes 
for local recoding herein, and assume that a taxonomy 
tree is given for a categorical attribute. To facilitate the 
discussion, it is assumed that the attributes are arranged 
in order, i.e., for quasi-identifier attributes, the scheme is 

           
  
      

   
  
    

     

  
      

   
   , where the 

first     attributes are numerical while the rest are categor-

TABLE 1 BASIC SYMBOLS AND NOTIONS 

Symbol Notations 

  A data set containing   data records. 

  A data original record,     and              
           , where   ,        , is a quasi-

identifier attribute value, and    ,       ,  is a 

sensitive attribute value,    ,    are the number of 
the two types of attribute, respectively. 

    The taxonomy tree of categorical attribute     . 

     The set of all domain values in     for categorical at-
tribute     , or all domain intervals for numerical at-
tribute     . 

   The set of attribute values of     
  . 

    The set of sensitive values of     
 . 

    A quasi-identifier,                ,        . 

    The set of quasi-identifiers,                    . 

    The quasi-identifier group containing all records with 
the same quasi-identifier. 
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ical, and for sensitive attributes, the scheme is       = 

     
       

  
     

    
       �

  

 

 , where the first    at-

tributes are numerical while the rest are categorical. 
Based on the notions above, the local recoding scheme 

is formally described as follows. Data records in   can be 
regarded as data points in a high dimensional space. Lo-
cal-recoding scheme defines a set of functions on mostly 
overlapping multidimensional regions which cover 
       , where region overlapping means that multi-
ple regions probably contain records with identical quasi-
identifiers. Specifically, a function          , is defined 
for a region   , where   is an arbitrary number indexing 
the region. In fact, a region corresponds to a QI-group. 
Therefore, the core sub-problems of local recoding are 
how to construct multidimensional regions and how to 
choose functions     . In our approach, we leverage the 
clustering technique to build multidimensional regions 
with keeping proximity privacy of sensitive attributes in 
mind. For each region, the categorical quasi-identifier 
attribute values are generalized to their lowest common 
domain value in the taxonomy tree, and the numerical 
ones are replaced by an interval that covers them mini-
mally. Unlike local recoding, the sub-tree and full-domain 
schemes have one function over each attribute, i.e., 
           ,      , and the global multidimensional 
scheme has a single function over all the attributes, i.e., 
              .  

Preserving privacy is one side of anonymization. The 
other one is retaining aggregate information for data min-
ing or analytics over the anonymous data. Several data 
metrics have been proposed to capture this [5], e.g., Min-
imal Distortion (MD) [6], ILoss [27] and Discernibility 
Metric (DM) [7]. With a data metric, the problem of opti-
mal local recoding is to find the local-recoding solution 
that makes the metric optimal. However, theoretical anal-
yses demonstrate that the problem under most not-trivial 
data utility metrics is NP-hard [5]. As a result, most exist-
ing approaches [9, 11, 18, 19] just try to find the minimal 
local recoding instead to achieve practical efficiency and a 
near optimal solution, where the minimal local recoding 
means that no more partitioning operations are allowed 
when building multidimensional regions under a certain 
privacy model. Our proximity-aware two-phase cluster-
ing approach herein also follows this line. 

So far, only the  -anonymity privacy model has been 
employed to preserve privacy against record linkage at-
tacks in existing clustering based anonymization ap-
proaches. The  -anonymity privacy model requires that 
for any        , the size of          must be zero or at 
least  , so that a quasi-identifier will not be distinguished 
from other at least     ones in the same QI-group [6]. 
Usually, it is assumed that an adversary already has the 
knowledge that an individual is definitely in a data set, 
which occurs in many real-life data like tax data sets. Af-
ter local recoding, the upper-bound size of a QI-group is 
     under the  -anonymity privacy model. If there 
were a QI-group of size at least   , it should be split into 
two groups of size at least   to maximize data utility. 

3.2 MapReduce Basics 

MapReduce [28], a parallel and distributed large-scale 
data processing paradigm, has been extensively re-
searched and widely adopted for big data applications 
recently [29]. Integrated with infrastructure resources 
provisioned by cloud systems, MapReduce becomes 
much more powerful, elastic and cost-effective due to the 
salient characteristics of cloud computing. A typical ex-
ample is the Amazon Elastic MapReduce service.  

Basically, a MapReduce job consists of two primitive 
functions, Map and Reduce, defined over a data structure 
named key-value pair (   ,      ). Specifically, the Map 
function can be formalized as    : (  ,   )   (  ,   ), i.e., 
Map takes a pair (  ,   ) as input and then outputs anoth-
er intermediate key-value pair (  ,   ). These intermedi-
ate pairs are consumed by the Reduce function as input. 
Formally, the Reduce function can be represented as 
      : (  ,         )   (  ,   ), i.e., Reduce takes inter-
mediate    and all its corresponding values         ) as 
input and outputs another pair (  ,   ). Usually, (  ,   ) 
list is the results which MapReduce users attempt to ob-
tain. Both Map and Reduce functions are specified by 
users according to their specific applications. An instance 
running a Map function is called Mapper, and that run-
ning a Reduce function is called Reducer, respectively. 

3.3 Motivation and Problem Analysis 

In this section, we analyze the problems of existing ap-
proaches for local-recoding anonymization from the per-
spectives of proximity privacy and scalability. Further, 
challenges of designing scalable MapReduce algorithms 
for proximity-aware local recoding are also identified.  

Little attention has been paid to the local-recoding 
anonymization scheme under proximity-aware privacy 
modes. As mentioned in Section 2, most existing local-
recoding approaches concentrate on combating record 
linkage attacks by employing  -anonymity privacy model. 
As demonstrated in existing work [7, 8, 12, 21], however, 
 -anonymity fails to combat attribute linkage attacks like 
homogeneity attacks, skewness attacks and proximity 
attacks. For instance, if the sensitive values of the records 
in a QI-group of size   are identical or quite similar, ad-
versaries can still link an individual with certain sensitive 
values with high confidence although the QI-group satis-
fies  -anonymity, resulting in privacy violation. Accord-
ingly, a plethora of privacy models have been proposed 
to thwart such attacks as shown in Section 2. But these 
models have been rarely exploited into the local-recoding 
scheme except the work in [23]. This phenomenon mainly 
results from two reasons analyzed as follows.  

The first one is that, unlike global-recoding schemes,  -
anonymity based approaches for record linkage attacks 
cannot be simply extended for attribute linkage attacks. 
Since global-recoding schemes partition data sets accord-
ing to domains, they can be fulfilled effectively in a top-
down fashion. This property of global-recoding schemes 
ensures that  -anonymity based approaches can be ex-
tended to combat attribute linkage attacks though check-
ing extra privacy satisfiability during each round of the 
top-down anonymization process [5]. However, the local 
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recoding scheme fails to share the same merits because it 
partitions data sets in a clustering fashion where the top-
down anonymization property is inapplicable. Although 
Wong et al. [23] proposed a top-down approach for local 
recoding, the approach can only achieve partially local 
recoding because global recoding is exploited to partition 
data sets as the first step and local recoding is only con-
ducted inside each partition. Consequently, their ap-
proach will incur more data distortion compared with the 
full potential of the local-recoding scheme.  

The second reason is that most proximity aware priva-
cy models have the property of non-monotonicity [21], 
which makes such models hard to achieve in a top-down 
way, even for global-recoding schemes. Formally, mono-
tonicity refers to that if two disjoint data subsets    and 
   of a data set satisfy a privacy model, their union 
      satisfies the model as well. Monotonicity is a pre-
requisite for top-down anonymization approaches be-
cause it ensures to find minimally anonymized data sets. 
Specifically, if a data set does not satisfy a privacy model, 
we can infer that any of its subsets will fail to satisfy the 
model. Thus, when anonymizing data sets in a top-down 
fashion, we can terminate the process if further partition-
ing a subset violates the privacy model. However, most 
proximity-aware privacy models such as      -
anonymity and       -dissimilarity fail to possess the 
property of monotonicity. As a consequence, most exist-
ing anonymization approaches become inapplicable with 
such privacy models [21]. A two-step approach based on 
the Mondrian algorithm [24] is presented in [21] to obtain 
     -anonymous data sets, via  -anonymizing a data set 
first, and adjusting partitions to achieve the privacy re-
quirements then. However, this approach targets the mul-
tidimensional scheme, rather than local recoding investi-
gated herein. Furthermore, proximity is not integrated 
into the search metric that guides data partitioning in the 
two-step approach, potentially incurring high data distor-
tion. Wang and Liu [30] proposed an anonymization 
model XColor under the       -dissimilarity model, yet 
there is still a gap between its theoretical methodology 
and a practical algorithm as they acknowledged. 

In terms of the analyses above, achieving the local-
recoding scheme under proximity-aware privacy models 
is still a challenging problem. To our best knowledge, no 
previous work focuses on this problem. Motivated by this 
challenge, we propose a proximity-aware clustering ap-
proach for local-recoding anonymization. 

Existing clustering approaches for anonymization are 
inherently sequential and assume that the data sets proc-
essed can fit into memory [9, 18, 19]. Unfortunately, the 
assumption often fails to hold in most big data applica-
tions in cloud nowadays. As a result, the approaches of-
ten suffer from the scalability problem when encounter-
ing big data applications. Even if a single machine with 
huge memory could be offered, the I/O cost of read-
ing/writing very large data sets in a serial manner will be 
quite high. Thus, parallelism is not an option but by far 
the best choice for big data applications. Utilizing a bunch 
of small and cheap computation nodes rather a large ex-
pensive one is more cost-effective, which also coheres to 

the spirits of cloud computing where computation is pro-
visioned in the form of various virtual machines.  

We attempt to leverage MapReduce in cloud to address 
the scalability problem of clustering approaches for ano-
nymization. However, designing proper MapReduce jobs 
for complex applications is still a challenge as MapRe-
duce is a constrained programming paradigm. Usually, it 
is necessary to consider the problems like which part of 
an application can be parallelized by MapReduce, how to 
design Map and Reduce functions to make them scalable, 
and how to reduce network traffics among worker nodes. 
The answers to these questions often vary for different 
applications. Hence, extensive research is still required to 
design MapReduce jobs for a specific application. 

4 PROXIMITY-AWARE CLUSTERING PROBLEM OF 

LOCAL-RECODING ANONYMIZATION 

Due to the non-monotonicity property of proximity-
aware privacy models and characteristics of local recod-
ing, clustering is a natural and promising way to group 
both quasi-identifier attributes and sensitive attributes. 
Hence, we propose to model the problem of local-
recoding anonymization under proximity-aware privacy 
models as a clustering problem in this section. Specifically, 
a proximity-aware privacy model is formulated in Section 
4.1 and the clustering problem is formalized in Section 4.2. 

4.1 Proximity-Aware Privacy Model 

In big data scenarios, multiple sensitive attributes are of-
ten contained in data sets, while existing proximity-aware 
privacy models assume only one single sensitive attribute, 
either categorical or numerical. Hence, we assume multi-
ple sensitive attributes in our privacy model, including 
both categorical and numerical attributes. As the discus-
sion of proximity privacy attacks stems from numerical 
attributes, existing proximity-aware privacy models as-
sume that categorical attribute values have no sense of 
semantic proximity [12, 21]. That is, categorical values are 
only examined whether they are exactly identical or dif-
ferent. Also, privacy models for categorical attributes only 
aims at avoiding exact reconstruction of sensitive values 
via limiting the number or distribution of sensitive values 
without considering semantic proximity [7, 8]. However, 
sensitive categorical values often have the sense of se-
mantic proximity in real-life applications because the val-
ues are usually organized in a taxonomy tree in terms of 
domain specific knowledge. For instance, a taxonomy tree 
of diseases is presented in [27]. A similar one is depicted 
in Fig. 1 to facilitate our discussion. 

Privacy breaches can still take place even if an anony-
mous data set already satisfies existing privacy models 

any_disease 

venereal disease respiratory infection 

syphilis gnorrhea flu pneumonia 

Fig. 1 A taxonomy tree of attribute Disease. 

HIV bronchitis 
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like  -diversity or  -closeness. For instance, an individual 
identified in a 3-diverse QI-group with sensitive values 
{syphilis, gnorrhea, HIV}, will be associated with “vene-
real disease” with 100% confidence based on the taxono-
my tree in Fig. 1. This inference can lead to severe privacy 
breach. We call such an attack as “categorical proximity 
breach”. The core of the breach is the semantic proximity 
among categorical values defined by the domain specific 
knowledge, which is ignored in previous privacy models. 

With the notion of proximity of categorical sensitive 
values, we extend the proximity privacy model       -
dissimilarity in [12] to multiple sensitive attributes in-
cluding both categorical and numerical ones. Our privacy 
model is named as        -dissimilarity, where “+” im-
plies proximity of categorical values is taken into account.  

To capture the dissimilarity between sensitive values 
of two records, the distance metric should be defined first. 
Let            denote two sensitive values from two 
records, where the meaning of     is already described in 
Table 1. To establish the distance metric over all sensitive 
attributes, distance is normalized in subsequent defini-
tions. For a numerical attribute, the normalized distance 
between    and    ,         

  , is defined as: 
        

             ,  (1) 
where                 denotes the domain of the 
attribute,       and       are the maximum and mini-
mum values of the attribute, respectively. For a categori-
cal attribute, the normalized distance between    and    , 
        

  , is defined as: 
        

                       ,   (2) 
where           is the shortest path length between    
and    , and        is the height of the taxonomy tree. 
Note that          is the maximum path length between 
any two nodes in the tree. Our definition is more flexible 
than that in [19], as it is unnecessary to require that all the 
leaf nodes of the taxonomy tree should have the same 
depth, which is quite common in real-life applications. 
          can be computed with ease by finding the Low-
est Common Ancestor (LCA) of    and    .  

Let                 denote the vector of sensitive 
values of a record  . For convenience,    is named as sen-
sitive vector. With the definitions of single attributes, the 
distance between sensitive vector   

               and 
  
      

      
  
  ,     

    
  , is defined as:  

     
    

      
   

  

       
   

  

      ,  (3) 

Where    and    are short for           
   and           

  , 

respectively, and   
 ,       , are weights for sensitive 

attributes. The weights, satisfying     
   ,    

   

    
 , indicate the importance of each sensitive attributes and 
are usually specified by domain experts for flexibility. 

Let          
      

   be the set of sensitive vectors in a 

QI-group          of size  . Given a parameter     , 
the “  -neighborhood” of a sensitive vector   , denoted 

as       
     , is defined as:       

         
     

  

             
    

      . A sensitive vector is regarded to 

be similar to    if it lies in       
     . Thus, the parame-

ter    controls similarity between two sensitive vectors.  
To preserve privacy against proximity attacks, it is ex-

pected that the sensitive vectors in a QI-group are dissim-

ilar to each other as much as possible. Accordingly, we 
define the        -dissimilarity privacy model based on 
[12]. The model requires that for any QI-group          
in an anonymous data set, its size is at least  , and any 
sensitive vector in       must be dissimilar to at least  

                 other sensitive vectors in         , 
where      . Parameter   controls the size of each QI-
group to prevent record linkage attacks. Parameter   
specifies constraints on the number of   -neighbors that 
each sensitive vector can own to combat proximity attacks. 
As        -dissimilarity is extended from       -
dissimilarity, it shares the effectiveness and most charac-
teristics of the latter as described in [12]. But monotonicity 
of       -dissimilarity has not been discussed in [12]. We 
formally establish the non-monotonicity property of the 
two models by the following theorem. 

Theorem 1. Neither       -dissimilarity nor        -
dissimilarity is monotonic. 

Proof. It suffices to prove this theorem by finding a 

counter-example for       -dissimilarity, where two QI-
group      and      satisfy       -dissimilarity respec-

tively, but their union           does not. A counter-

example is shown as follows. Assume a QI-group      of 
size 3 has one-dimensional numerical sensitive values {1.0, 
3.0, 5.0}, another QI-group      of size 3 has sensitive 

values {2.0, 4.0, 6.0}. Let  ,    and   be 1.5, 1 and 3, respec-
tively. Both QI-groups satisfy         -dissimilarity. After 
merging the two QI-groups, the set of sensitive values is 
{1.0, 2.0, 3.0, 4.0, 5.0, 6.0}. For the value 3.0, only values 
{1.0, 5.0, 6.0} are dissimilar in the sense of      . But the 
model requires           values are dissimilar to 3.0. 
So, the theorem is proved in terms of this contradiction.  

4.2 Proximity-Aware Clustering (PAC) Problem of 
Local-Recoding Anonymization 

Due to the non-monotonicity property, the satisfiability 
problem of        -dissimilarity is hard. The satisfiability 
problem is whether there exists a partition that makes the 
anonymous data set satisfy        -dissimilarity. Based 
on the results in [12], we have the following theorem. 

Theorem 2. In general, the        -dissimilarity 
satisfiability problem is NP-hard. 

Proof. Since the       -dissimilarity satisfiability prob-
lem is proved to be NP-hard in [12], the conclusion holds 
as well for the        -dissimilarity satisfiability problem. 
The reason is that       -dissimilarity can be regarded as 
       -dissimilarity in a specific setting where categori-
cal proximity is ignored, and a single sensitive attribute 
rather than multiple ones is considered.  

In terms of the complexity result in Theorem 2, it is in-
teresting and practical to find an efficient and near-
optimal solution that can make the proximity among rec-
ords in a QI-group as low as possible. Due to the non-

monotonicity of        -dissimilarity, top-down parti-
tioning at domain levels fails to work for this privacy 
model. But clustering records with low proximity of sen-
sitive values is still a promising way to make the proximi-
ty as low as possible. As clustering is also a natural and 
effective way for the local-recoding scheme, we propose a 
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novel clustering approach for local recoding by integrat-
ing proximity among sensitive values. Specifically, our 
approach attempts to minimize both data distortion and 
proximity among sensitive values in a QI-group when 
conducting clustering, unlike all the existing  -member 
clustering approaches that consider the former only. The 
clustering problem we attempt to address is referred to as 
Proximity-Aware Clustering (PAC) problem, which is 
essentially a two-objective clustering problem. 

As minimizing proximity is one objective of the PAC 
problem, we define proximity index formally to capture 
the proximity between two records. According to (1), the 
proximity index between two numerical sensitive values 
   and     can be defined as               
        

    Likely, the index between two categorical 
values can be defined as                       

    
Then, the proximity index between two sensitive vectors 

  
  and   

 , denoted by        
    

  , is defined as: 

       
    

      
    

  

       
    

  

      , (4) 

where     and     are short for             and 
           , respectively. With the notion of proximity 
index between two sensitive vectors, we define the prox-
imity index of a QI-group          by: 

                                        
    

  . (5) 

Here we use the maximizing function rather than the sum 
function as the former can capture the risk of proximity 
breach for a QI-group according to risk analyses in [12]. 

Similar to existing approaches, the other objective of 
the PAC problem is to minimizing data distortion caused 
by generalization operations. We define the notion of in-
formation loss to measure the amount of data distortion. 
Recall that the quasi-identifiers of all records in a final 
cluster will be generalized to a more general one. Specifi-
cally, all quasi-identifier values of a categorical attribute 
are generalized to their lowest common ancestor in the 
taxonomy tree, and numerical values are generalized to a 
minimum interval covering all the values. Let   

  
 be the 

domain of attribute     
  

. The information loss of a record 
          , denoted as      , is defined by: 

         
    

      
   

  
  

   

       
           

      

   

     , (6) 

where   
    and   

    are the maximum and minimum 
values of the attribute within          respectively, and 
          is the length of the path from   to their LCA 

    . Weights   
  

,        , are exploited to indicate 

the importance of each attribute,  and satisfy     
  

   

and    
     

     . These weights above can bring flexibil-

ity of the definition of information loss for different appli-
cations. Usually, these weights are specified by domain-
specific experts. Further, we define the information loss of 
         is defined by: 

                             .  (7) 

Similar to the  -member clustering problem defined in 
[19], the PAC problem is formally defined as follows. 

Definition 1 (Proximity-Aware Clustering (PAC) Problem) 
Given a data set  , the Proximity-Aware Clustering (PAC) 
problem is to find a set of clusters, denoted as   
         , such that each cluster contains at least   

(   ) data records, the proximity of sensitive values in 
each cluster and the overall data distortion are minimized. 
Formally, the PAC problem is formulated as: 

      Minimize  
              

          

  s.t.: 

1).               and        ,          

2).           . 
The constraint 2) makes clustering approaches for 

anonymization different from traditional ones that usual-
ly have constraints on the number of clusters rather than 
the size of a single cluster. Moreover, the PAC problem 
differs from the  -member clustering problem in essence, 
as the former has one more objective that minimizes 
              in terms of Def. 1.  To explore the compu-
tational complexity of the PAC problem, the proximity-
aware clustering decision problem is defined as follows. 

Definition 2 (Proximity-Aware Clustering (PAC) Deci-
sion Problem) Given a data set  , the decision problem is 
to find a set of clusters            , where 
             and        ,        , subject to: 

1).           ; 
2).                 ,     ; 
3).             ,     . 

Theorem 3. The PAC decision problem is NP-hard. 
Proof. It suffices to prove that this problem for a specific 

setting is NP-hard. We observe that the  -member cluster-
ing decision problem articulated in [19] is a special case of 
the PAC decision problem by setting      , i.e., no 
constraints are posed on sensitive attributes. Byun et al. 
[19] proved that the  -member clustering decision prob-
lem which is NP-hard. It therefore follows that the PAC 
decision problem is NP-hard as well.  

In terms of Theorem 3, the PAC clustering problem is 
also NP-hard. To address this problem, we transform it to 
a single-objective clustering problem. To this aim, a dis-
tance measure between two records should be defined 
with considering the proximity between sensitive values. 
Unlike distance metrics employed in existing  -member 
clustering approaches, ours is required to consider both 
the similarity of quasi-identifiers and the proximity of 
sensitive values. Intuitively, we desire that records tend 
to go into the same clusters if their quasi-identifiers are 
similar, and the proximity of sensitive values among 
them is low, i.e., the sensitive values are dissimilar. Thus, 
it is reasonable to integrate proximity into the distance 
measure, and hence the distance measure herein is de-
fined over both quasi-identifier and sensitive attributes.  
As to quasi-identifiers, the distance metric can be utilized 
directly to capture similarity among them. Similar to (1) 
and (2), the normalized distance between two numerical 
quasi-identifier values   and    is defined as       

   
        , and the distance between two categorical qua-
si-identifier values is defined as       

              

       . Then, the distance between two quasi-identifiers 

  
  

 and   
  

 is defined by: 

     
  
   

  
     

  
  

   

       
  
  

   

     , (8) 

where    and    are short for       
   and       

  , re-

spectively. Weights   
  

,        , are the same as (6). 

Combining the distance function (8) and the proximity 
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index function (4), a proximity-aware distance measure 

between two data records       
  
   

   and       
  
   

  , 

denoted as            , is defined by: 

                    
  
   

  
           

    
  , (9) 

where the two weights,            and         , 
control how much quasi-identifier attributes or sensitive 
attributes contribute to the distance measure. Note that if 
      and     , the distance measure is the same as 
that in  -member clustering approaches. However, the 
distance measure           is not a distance metric if 
     because it fails to satisfy coincidence axiom.  The 
coincidence axiom, one of conditions that a distance met-

ric must satisfy, requires               if and only if 

     . However,           can still capture the degree of 

similarity records and guide them into proper clusters 

when we conduct clustering. In fact,               holds 

if and only if the quasi-identifiers are the same and the 
proximity between sensitive values is the lowest, while 

            gets the maximum value if and only if the dis-

tance of quasi-identifiers reaches the maximum and the 
sensitive values are the same. So, the distance measure 

            possesses the desired property that guides 

records with similar quasi-identifier but dissimilar sensi-
tive values into the same clusters. Armed with the dis-
tance measure, we model the Single-objective Proximity-
Aware Clustering (SPAC) problem as follows.  

Definition 3 (Single-objective Proximity-Aware Clustering 
(SPAC) Problem) Given a data set  , the Single-objective 
Proximity-Aware Clustering (SPAC) problem is to find a 
set of clusters of size at least  , denoted as            , 
such that the sum of all intra-cluster distances is mini-
mized. Formally , the SPAC problem is formulated as: 

      Minimize                                    , s.t.: 

1).               and        ,          

2).           . 

In fact,                        in the objective function is 

the diameter of the cluster   . Intuitively, smaller diame-
ter tends to incur lower data distortion, because it implies 
that the least common ancestors for categorical attributes 
lie in lower levels and the minimum covering intervals 
for numerical attributes are shorter. It also tends to pro-
duce lower proximity of sensitive values. The factor      
indicates that smaller clusters are preferred, because less 
data distortion will be incurred with smaller clusters.  

Theorem 4. The SPAC problem is NP-hard. 
Proof. It suffices to prove that this problem for a specific 

setting is NP-hard. The conventional  -member clustering 
problem [19] is a special case of the SPAC problem by set-
ting       and     , i.e., the distance is determined 
by quasi-identifier attributes only, the same as  -member 
clustering problem. The  -member clustering problem is 
NP-hard as its decision problem is NP-hard [19]. It thus 
follows that the SPAC problem is NP-hard as well.  

Given the hardness of the SPAC problem, it is practical 
and interesting to time-efficiently find a near-optimal so-
lution in big data scenarios, rather than to seek the opti-
mal one. The next section will show how to achieve this.  

5 TWO-PHASE PROXIMITY-AWARE CLUSTERING 

USING MAPREDUCE 

Except where otherwise noted, the proximity-aware clus-
tering problem refers to the Single-objective Proximity-
Aware Clustering (SPAC) problem hereafter. To address 
the SPAC problem in big data scenarios, we propose a 
two-phase clustering approach where agglomerative clus-
tering method and point-assignment clustering method 
are employed in the two phases, respectively. We outline 
the sketch of the two-phase clustering approach in Sub-
section 5.1. Then, the algorithmic details of the two phas-
es are elaborated in Subsection 5.2 and 5.3, respectively. 
We illustrate the execution process of our approach and 
analyze the performance in Subsection 5.4. 

5.1 Sketch of Two-Phase Clustering 

In order to choose proper clustering methods for the 
SPAC problem, some observations of clustering problems 
for data anonymization should be taken into account. 
Firstly, the parameter   in the  -anonymity privacy mod-
el is relatively small compared with the scale of a data set 
in big data scenarios. Since the upper-bound of the size of 
a cluster for local-recoding anonymization is     , the 
size of clusters is also relatively small. Accordingly, the 
number of clusters will be quite large. Secondly, under 
the condition that the size of any cluster is not less than  , 
the smaller a cluster is, the more it is preferred. The rea-
son is that this tends to incur less data distortion. Ideally, 
the size of all clusters is exactly  . Thirdly, the intrinsic 
clustering architecture in a data set is helpful for local-
recoding anonymization, but building such an architec-
ture is not the final purpose. 

Given the observations above, the agglomerative clus-
tering method is suitable for local-recoding 
anonymization, as the stopping criterion can be set as 
whether the size of a cluster reaches to  . Moreover, the 
agglomerative clustering method can achieve minimum 
data distortion in the sense of the defined distance meas-
ure. Most existing approaches for  -anonymity men-
tioned in Section 2 employ greedy agglomerative cluster-
ing approaches. But they construct clusters in a greedy 
manner rather than combine the two clusters that have 
the minimum distance in each round, which results in 
more data distortion. But the optimal agglomerative clus-
tering method suffers the scalability problem when han-
dling large-scale data sets. Its time complexity is 
          with utilizing a priority queue. Worse still, the 
agglomerative method is serial, which makes it difficult 
to be adapted to parallel environments like MapReduce.  

From the perspective of scalability, the point-
assignment method seems to be ideal for local-recoding 
anonymization in MapReduce. The point-assignment 
process is to initialize a set of data records to represent 
the clusters, one for each, and assign the rest records into 
these clusters. The process is repeated until certain condi-
tions are satisfied. Point assignment can be conducted in a 
scalable and parallel fashion in MapReduce. However, 
the set of representative records will become quite large 
according the observations above. Approximately, its size 
will be     of an original data set. This fact makes it is a 
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challenge to distribute such representative records to 
MapReduce workers who conduct point assignment ac-
cording to the representative records independently. An-
other problem is that the size of each cluster is uncontrol-
lable in the point-assignment process. Thus, the size of a 
cluster can exceed the upper-bound      or be less than 
 , especially when a data set has high skewness. Extra 
effort is often required to adjust clusters to proper size.  

Given the pros and cons of the two clustering methods 
for local-recoding anonymization, we propose a two-
phase approach that combines both methods based on 
MapReduce. In the first phase, we leverage point-
assignment clustering method to partition an original 
data set into   clusters, where   is not necessarily relevant 
to  . For convenience, a cluster produced in the first 
phase is named as  -cluster. In the second phase, the ag-
glomerative clustering method is run on each  -cluster 
simultaneously as ‘plug-ins’ , which is similar to [31]. In 
this way, our approach shares the merits of both methods 
but avoids the drawbacks. Specifically, the two-phase 
approach can produce quality anonymous data sets with 
the agglomerative clustering method and gain high scala-
bility with the point-assignment method. In addition, no 
extra adjustment is required. 

Algorithm 1 describes the main steps in the two-phase 
clustering approach. Similar to the spirit of  -means fami-
ly [22, 32], we propose the  -ancestor clustering algorithm 
for point-assignment method. To avoid confusion, we 
employ the term ‘ -means’ rather than ‘ -means’ which is 
commonly used in literature. The details of the  -ancestor 
algorithm and the agglomerative algorithm will be pre-
sented in Subsection 5.2 and Subsection 5.3, respectively.  

As   is usually required in advance, we roughly esti-
mate it and demonstrate that the two-phase clustering 
algorithm is scalable in big data scenarios. Let   be the 
capacity of a MapReduce task worker, i.e., either a Map-
per or a Reducer. Concretely, the capacity of   here 
means that the worker can accomplish the agglomerative 
clustering on a data set of size   within an acceptable 
time. The value of   is estimated as        . Then, the 
expected maximum size of  -clusters       can be less 
than the worker capacity  . In fact, the skewness in a data 
set will affect the maximum size of  -clusters. Thus, the 
higher the degree of skewness is, the larger   should be. 
As     according to the aforementioned observations,   
will be much smaller than       which is the case if the 
point-assignment clustering method is exploited directly 
on anonymization. Hence, the set of   representative rec-
ords is relative small and can be distributed to each 

MapReduce worker efficiently. As such, our approach can 
handle large-scale data sets in a linear manner with re-
spect to the number of MapReduce workers, which can be 
accomplished with ease in cloud environments due to 
their scalability. 

5.2  -ancestor Clustering for Data Partitioning 

One core problem in the point-assignment method is how 
to represent a cluster. Similar to  -medians [32], We pro-
pose to leverage the ‘ancestor’ of the records in a cluster 
to represent the cluster. More precisely, an ancestor of a 
cluster refers to a data record whose attribute value of 
each categorical quasi-identifier is the lowest common 
ancestor of the original values in the cluster. Each numer-
ical quasi-identifier of an ancestor record is the median of 
original values in the cluster. The notion of ancestor rec-
ord also attempt to capture the logical centre of a cluster 
like  -means/medians, but  -ancestors clustering is more 
suitable for anonymization due to categorical attributes in 
the clustering problem herein.  

To facilitate  -ancestors clustering, we take quasi-
identifier attributes but sensitive ones into consideration. 
This will rarely affect the proximity of sensitive values in 
a final cluster, because the clustering granularity in the 
first phase is rather coarse. Accordingly, we leverage the 
distance measure (8) to calculate the distance between a 
data record and an ancestor. Usually, an ancestor is not a 
real data record in the data set, but the (8) can still be em-
ployed to calculate the distance between two vectors of 
attribute values. Except where otherwise noted, a record   
in this subsection refers to the quasi-identifier part. 

Initially, the   ancestors in the first round of point as-
signment are   records which are dedicatedly selected as 
seeds. In general, the selection of such   records influ-
ences the quality of clustering to a certain extent. To ob-
tain a good set of seeds, we pick data records that are as 
far away from each other as possible. Concretely, we ac-
complish seed selection via a MapReduce job SeedSelection 
which outputs a set of seeds:            . The Map and 
Reduce functions of SeedSelection are described in Algo-
rithm 2. In this job, only one Reducer is utilized for seed 
selection due to the serial nature of the algorithm. To 
make it scalable to big data, we sample an original data 
set by emitting a record to the Reducer with probability 
      in the Map function, so that only about   records 
in total go to the Reducer. In the Reduce function, the first 
seed is picked at random, and then we repeatedly pick 
the record whose minimum distance to the existing seeds 
is the largest until the number of seeds reaches  . 

The  -ancestors clustering algorithm exploits Lloyd-
style iteration refinement technique [22]. Each round of ALGORITHM 1. SKETCH OF TWO-PHASE CLUSTERING. 

Input: Data set  , anonymity parameter  . 
Output: Anonymous data set   . 
1: Run the  -ancestor clustering algorithm on  , get a set of  -

clusters:       
 
     

 
 ; 

2: For each  -cluster   
 
   ,      : run the agglomerative 

clustering algorithm on   
 

, get a set of clusters    

           
 ; 

3: For each cluster     , where      
 
   , generalize    to   

  

by replacing each attribute value with a general one; 

4: Generate       
   

   
, where       

 
   . 

 

ALGORITHM 2. SEEDSELECTION MAP AND REDUCE. 

Input: Data record  ,    . 
Output: A set of seeds            . 
Map: Generate a random value     , where         ; if 

          , emit (1,  ). 
Reduce: 1: Select a random record   from        ,    ; 
               2: While      : 
                        Find           that maximizes             

  ; 
                           ; 
               3: Emit (null,  ). 
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iteration consists of two steps, namely, expectation (E) 
and maximization (M). In the E step, data records are as-
signed to their nearest ancestor and constitute a  -cluster. 
In the M step, the ancestor of a  -cluster is recomputed 
according to the records in the cluster. The new set of an-
cestors is used in the E step of the next round. Ideally, it is 
expected that the iteration converges, i.e., the assignments 
no longer change after a finite number of rounds. How-
ever, a Lloyd-style clustering algorithm using a different 
distance measure other than Euclidean distance fails 
probably to converge, or is very slow to converge. In 
practice, two widely-adopted stopping criteria are em-
ployed together: 1) the difference of ancestors between 
two continuous rounds is smaller than a predefined 
threshold; 2) the rounds of iteration arrive at predefined 
number. Formally, let    and        be the two sets of 
seeds in round   and      , respectively. The difference 
between them, denoted by             , is defined as the 
average distance between their records:  

                   
    

     
  

      . (10) 

The first stopping criterion is quantified by 
              , where   is a predefined threshold. Let   
denote the predefined maximum number of iteration 
rounds. The  -ancestors clustering algorithm stops if ei-
ther of the criteria above is satisfied. Ultimately, the algo-
rithm is described in Algorithm 3.  

In each round of the while-loop in Algorithm 3, a 
MapReduce job named as AncestorUpdate is designed to 
fulfill the E and M steps. Specifically, the Map function of 
the job is responsible for point assignments in the E step, 
while the Reduce function accomplishes the re-
computation of ancestors in the M step. The Map and 
Reduce functions are described in Algorithm 4. Two sub-
routines,          and           , are utilized in the 
Reduce function to calculate the medians of numerical 
attributes and ancestors of categorical attributes, respec-
tively. Note that the Reduce function is scalable with set-
ting   appropriately, and one Reducer can process more 
than one  -clusters in sequence if   is large enough.  

5.3 Proximity-Aware Agglomerative Clustering 

Unlike Subsection 5.2, we leverage the proximity-aware 
distance measure (9) for the agglomerative clustering in 
this subsection. In the agglomerative clustering method, 
each data record is regarded as a cluster initially, and 
then two clusters are picked to be merged in each round 
of iteration until some stopping criteria are satisfied. Usu-
ally, two clusters with the shortest distance are merged.. 
Thus, one core problem of the agglomerative clustering 
method is how to define the distance between two clus-
ters. To coincide with the objective in the SPAC problem, 
we leverage the complete-linkage distance in our agglom-
erative clustering algorithm, i.e., the distance between 

two clusters equals to the weighted distance between 
those two records (one in each cluster) that are farthest 
away from each other. In fact, after merging such two 
clusters, the distance between them is the diameter of the 
new cluster. Formally, the distance between clusters    
and   , denoted as         , is calculated by: 

                                               . (11) 

Dissimilar to traditional agglomerative clustering algo-
rithms, a cluster in our algorithm will not be considered 
for further merging if its size is equal to or larger than  . 
If no two clusters are of size less than  , the merging pro-
cess stops. Accordingly, the maximum size of a cluster 
after merging is     . It is possible that a single cluster 
of size less than   remains after merging. We assign each 
data record of the left cluster to a cluster of size less than 
     who is the nearest to the record. In an extreme case 
that all clusters are already     , we randomly pick a 
cluster and assign certain records from it to the left cluster 
to make the size of the latter be  . Note that there are only 
at most     clusters if the extreme case takes place. Fi-
nally, every cluster resulting from the proximity-aware 
agglomerative clustering algorithm has at least   records, 
but no more than      records. 

Based on the analyses above, Algorithm 5 presents the 
proximity-aware agglomerative clustering algorithm 
formally. We leverage a priority queue        to retain 
distance between any two clusters, which aims at improv-
ing the performance of the agglomerative method. In the 
while-loop, the two clusters with the shortest distance are 
merged in step 3.1, and then the        as well as the set 
of clusters        are adjusted in step 3.2 and 3.3. In step 4, 
we cope with the remaining cluster mentioned above 
without considering the extreme case. 

A MapReduce job named as AgglomertiveClustering is 
designed to wrap Algorithm 5. Specifically, Algorithm 5 

ALGORITHM 4. ANCESTORUPDATE MAP AND REDUCE. 

Input: Data record  ,    ; seeds of round  ,             . 

Output: Seeds of round  ,           
     

     
     

 . 

Map: 1:        ; 
          2: For  : 1 to   

                  If             , then              and       ; 

          3: Emit (    ,  ). 
Reduce: 1: For  : 1 to     

                       If     
   is numerical, then                     ; 

                       Else                       ; 

               2: Emit ( ,   
     

            ). 

 

ALGORITHM 3. T-ANCESTORS CLUSTERING 

Input: Data set  ; parameter  ; thresholds  ,  . 

Output:    -clusters       
 
     

 
 . 

1: Run job SeedSelection, get initial seeds   ;    ; 

2: Run job AncestorUpdate, get ancestors        ;      ; 

    While                and    , repeat Step 2; 

3: Return  -clusters with ancestors       . 

 

ALGORITHM 5. PROXIMITY-AWARE AGGLOMERATIVE CLUSTERING 

Input: Data set   ; k-anonymity parameter  . 
Output: Clusters            . 

1: Initialize each record in    as a cluster,       
       

  ;   

 ;    ; 

2:    
    

    ,    ,           
    

             ; 
3: While        is not empty 

    3.1:    
    

                    ;   
    

    
 ;  

    3.2:              
    

  ;  

           Delete entries involving   
  or   

  in       ; 

    3.3: If    
    , then        

  ; 

           Else                  
  ; 

                                           
         

   ; 
4: If            and           , then       , find a cluster     

and         , minimizing         , and        . 
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Fig. 2. Execution process overview of two-phase clustering. 

is plugged in the Reduce function of the job. After a Re-
ducer collects all data records of a  -cluster, Algorithm 5 
is executed to generate final clusters (QI-groups). The 
Map function is relatively simple, which just emits a rec-
ord and its corresponding cluster. 

5.4 Execution Process and Performance Analysis 

In order to demonstrate the proposed two-phase proximi-
ty-aware clustering approach visually, its execution pro-
cess overview is illustrated in Fig. 2. The bold solid arrow 
line in the right indicates the timeline of the process.  

Seen from Fig. 2, the three MapReduce jobs are coordi-
nated together to accomplish the local-recoding 
anonymization. From the perspective of control flow, our 
approach is partially parallel because the first phase is 
sequential with iteration of the SeedUpdate job, while the 
second phase is parallel. However, our approach is fully 
parallel from the perspective of data flow. The light solid 
arrow lines in Fig. 2 represent data flows in the canonical 
MapReduce framework, while the dashed arrow lines 
stand for data flows of dispatching seeds to distributed 
caches and the data flow of updating seeds. An Original 
data set is read by Map functions and its splits are pro-
cessed in a parallel manner. As such, the two-phase clus-
tering approach can handle large-scale data sets. Note 
that the amount of seeds (or ancestors) in the SeedUpdate 
job is relatively small with proper parameter  , so that 
they can be delivered to distributed caches efficiently.  

To evaluate our approach theoretically, we analyze the 
performance of each MapReduce job in the two phases 
from five aspects in terms of [33], namely, time cost, space 

cost, task workers, network traffics and execution rounds. 
Table 2 illustrates the complexity results of the five as-
pects for each job. For conciseness, we use the number 1, 2 
and 3 to stand for the jobs SeedSelection, SeedUpdate and 
AgglomerativeClustering, respectively. M and R are short 
for Map and Reduce functions, respectively. Most sym-
bols mean the same as aforementioned. Parameter   de-
notes the number of iteration rounds of the job SeedUpdate, 
and   denotes the size of a data split fed to a Mapper. The 
number of all data records      . 

Note that       according to the analyses in Subsec-
tion 5.1. Thus, the time and space costs of Map and Re-
duce functions have a constant upper bound determined 
by  . The number of task workers varies in a linear man-
ner with respect to the scale of the data set. As such, our 
approach is scalable with appropriate valuing of  . The 
first and third jobs are one-pass, while the second one is 
iterative with      rounds, where   is determined by the 
stopping criteria discussed in Subsection 5.2. 

6 EXPERIMENT EVALUATION 

6.1 Overall Comparison 

To evaluate the effectiveness and efficiency of the Proxim-
ity-Aware Clustering approach (PAC), we compare it 
with the  -Member Clustering approach (kMC) proposed 
in [18], which also represents the approaches for local 
recoding in [9, 19]. The kMC approach is the state-of-the-
art approach for local-recoding anonymization with clus-
tering techniques. As to effectiveness, we consider three 
factors, namely, the resistibility to proximity breaches, 
data distortion and scalability.  

Several notions are defined for convenience. To cap-
ture the resistibility to proximity breaches, we define two 
statistics for a QI-group  , namely, the minimum distance 
  
    and the average distance   

   . Let       , then,  

  
                  

    
  ,  (12) 

  
           

    
                      . (13) 

Actually, the QI-group here satisfies    
          -

dissimilarity. Hence, the resistibility can be captured by 
  
    directly. As to the entire data set  , we measure the 

distribution of      to capture the resistibility intuitively, 
where      is the minimum intra-cluster distance of  , a 
random variable ranging within            

    . Techni-
cally, we leverage the Relative Cumulative Frequency 
(RCF, similar to cumulative distribution function) [34] of 
     to describe the distribution for comparison. The av-
erage distance of QI-groups in   is defined as 

     
 

         
   

   
   .  (14) 

TABLE 2 PERFORMANCE ANALYSIS OF MAPREDUCE JOBS 

Jobs Time Space Workers Traffics Rounds 

1 
M                  

          
R                      

2 
M                  

          
R                            

3 
M                  

          
R                                  
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From an overall perspective, the average distance      
can also reflect the vulnerability to proximity breaches to 
a certain extent. The metric ILoss [27] is employed to eval-
uate how much data distortion incurred by PAC and 
kMC. The value of ILoss is normalized to facilitate com-
parisons. For scalability, we check whether both ap-
proaches can still work and scale over large-scale data 
sets. Execution time is measured to evaluate efficiency. 
Experimental parameters are summarized in Table 3. 

We conduct an overall comparison between PAC and 
kMC in terms of the four factors above. Intuitively, PAC 
will produce more QI-groups with higher   

    than kMC, 
and      of PAC will be larger than kMC. This is because 
PAC tends to assign dissimilar sensitive values into a 
cluster while kMC randomly put sensitive values into 
clusters. Normally, the ILoss of PAC will be higher than 
that of kMC, as there is a tradeoff between data distortion 
and the capability of defending privacy attacks. Note that 
this is a common phenomenon for privacy models (e.g.,  -
diversity and  -closeness) that fight against attribute link-
age attacks [7, 8]. As to scalability, PAC can scale over 
more computation nodes with the data volume increasing, 
due to its parallelization capability. kMC will suffer from 
poor scalability over large-scale data sets because it re-
quires too much memory, while PAC can linearly scale 
over data sets of any size. Correspondingly, the execution 
time of PAC is often less than kMC in big data scenarios. 
But note that the contrary case may occur because of the 
extra overheads engendered by PAC when the data set or 
the scale of MapReduce cluster is small. PAC is equiva-
lent to kMC if the weight      and the parameter    . 
Thus, kMC can be regarded as a special form of PAC. 

6.2 Experiment Evaluation 

6.2.1 Experiment Settings 

Our experiments are conducted in a cloud environment 
named U-Cloud [4]. The system overview of U-Cloud has 
been depicted in Fig. 3. The Hadoop cluster is built on U-
cloud. For more details about U-Cloud, please refer to [4].  

The data set Census-Income (KDD) [35] is utilized in our 
experiments. Its subset Adult data set has been commonly 
used as a de facto benchmark for testing anonymization 
algorithms [9, 18, 19, 25, 26]. The data set is sanitized via 
removing records containing missing values and attrib-
utes with extremely skewed distributions. We obtain a 
sanitized data set with 153,926 records, from which data 
sets in the following experiments are sampled. Twelve 

attributes are chosen out of the original 40 ones, including 
9 (4 numerical and 5 categorical) quasi-identifier ones and 
3 (2 numerical and 1 categorical) sensitive ones.  

Both PAC and kMC are implemented in Java. Further, 
PAC is implemented with the standard Hadoop 
MapReduce API and executed on a Hadoop cluster built 
on OpenStack in U-cloud. The Hadoop cluster consists of 
20 virtual machines with type m1.medium which has 2 
virtual CPUs and 4 GB Memory. kMC is executed on one 
virtual machine with type m1.medium. The maximum 
heap size of Java VM is set as 4 GB when running kMC. 
Each round of experiment is repeated 10 times. The mean 
of the measured results is regarded as the representative. 

6.2.2 Experiment Process and Results 

We conduct two groups of experiments in this section to 
evaluate the effectiveness and efficiency of our approach. 
In the first one, we explore whether proximity-aware 
clustering leads to larger dissimilarity by comparing PAC 
with kMC from the perspectives of resistibility to proxim-
ity breaches and data distortion. The other investigates 
the scalability and efficiency.  

In the first group, we measure the change of the RCF of 
    ,      and ILoss with respect to the weight   . The 
weight    varies from     to     with step    . PAC is run 
over two data sets    and   , with size           and 
          , respectively. Note that the results of kMC 
are the same as PAC when       . The parameter  
     for   , and      for   , respectively. Other pa-
rameters are set as follows:     ,    ,        , and 
the number of Reducers is set as   . The selection of some 
of these specific values is rather random and does not 
affect our analysis because what we want to see is wheth-
er PAC results in larger dissimilarity than kMC. Interest-
ed readers can try other values and the conclusion will be 
similar. The results of the first group are depicted in Fig.4. 

Fig. 4(a) and Fig. 4(b) demonstrate the RCF of      for 
   and   , respectively, with 20 bins. Both of them show 
the same trend of RCF when the weight    changes. The 
trend is that the curve of RCF of      shifts right when    
is getting larger, indicating that the percentage of result-
ant QI-groups with higher      increases with the growth 
of   . In particular, the leftmost curve is that of kMC 
(      ), which means that kMC produces the highest 
percentage of QI-groups with low     . Moreover, the 
percentile of a RCF curve goes up when    becomes larg-
er, which quantitatively reflects the above tendency. For 
instance, the median of a RCF curve (the  -axis coordi-
nate of the point produced by the intersections of the 50% 

Fig. 3. System overview of U-Cloud. 
TABLE 3 SUMMARY OF EXPERIMENTAL PARAMETERS 

Symbol Notations 

     The minimum intra-cluster distance of a data set. 

     The average intra-cluster distance of a data set. 

   The weight of proximity in the distance measure (9). 

  The  -anonymity parameter. 

  The number of partitions after  -ancestors clustering. 

    Two parameters for the stopping criteria of  -ancestors 
clustering.   is the maximum number of iteration 
rounds, and   is the threshold of the difference of the 
seeds between two consecutive iteration rounds. 
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horizontal line and the curve) is getting larger with the 
increase of    , as depicted in Fig. 4(a) and Fig. 4(b). From 
Fig. 4(c), we can see that the average distance between 
two records within a QI-group also grows over both data 
sets when    becomes larger. As such, PAC outperforms 
kMC in terms of preventing proximity attacks as it can 
produce an anonymous data set with higher dissimilarity 
between two records in most QI-groups. 

Meanwhile, it can be seen from Fig. 4(d) that the nor-
malized value of ILoss rises as well when    grows, indi-
cating that more data distortion is incurred. In fact, the 
gain of dissimilarity is at the cost of data utility, which is 
a common phenomenon as mentioned in Section 6.1. For-
tunately, one can choose a proper weight    to make a 
good trade-off between the capability of defending prox-
imity attacks and data utility. For example,        
seems to be a good choice via observing Fig. 4. 

In the second group of experiments, the execution time 
of PAC and kMC are gauged to investigate scalability and 
efficiency. Fig. 5(a) describes the change of execution time 
of PAC and kMC with respect to the number of data rec-
ords which ranges from 10,000 (10k) to 100,000 (100k). As 
the scale of data in these experiments is much greater 
than that in [9, 18, 19], the data sets in our experiments 
are big enough to evaluate the effectiveness of our ap-
proach in terms of data volume. The value of   varies 
with data sets, roughly making the size of  -cluster 1000. 
The  -anonymity parameter   is set as 10. Other parame-
ters are set as follows:       ,     and        . Ten 
computation nodes are employed for PAC.  

From Fig. 5(a), we can see the execution time of both 
PAC and kMC go up when the number of records in-
creases although some slight fluctuations exist. The fluc-
tuations, mainly incurred by the data distribution of each 
data set, will not affect the trends of execution time. No-
tably, the execution time of kMC surges from hundreds of 
seconds to more than 10,000s within only 4 steps, while 
that of PAC goes linearly and stably. The dramatic in-
crease of PAC execution time illustrates that the intrinsic 
time complexity of kMC makes it hard to scale over big 
data. The difference of execution time between kMC and 
PAC becomes larger and larger when the data size is 

growing. This trend demonstrates that our approach be-
comes much more scalable and efficient compared with 
kMC in big data scenarios. 

Fig. 5(b) exhibits the change of execution time of PAC 
with respect to the number of computation nodes ranging 
from 5 to 15. The number of data records set as 10,000, 
and other settings are the same as Fig. 5(a). It can be seen 
from Fig. 5(b) that the execution time decreases in a near-
ly linear manner when the number of computation nodes 
is getting larger. In terms of the tendency, we maintain 
that PAC is linearly scalable with respect to the number 
of computation nodes. Hence, PAC is able to manage to 
handle big data local recoding in a timely fashion in cloud 
where computation resources are offered on demand 

Above all, the experimental results demonstrate that 
our approach integrating proximity of sensitive attributes 
into clustering, significantly improves the capability of 
defending proximity attacks, the scalability and efficiency 
of local-recoding anonymization over existing approaches. 

7 CONCLUSIONS AND FUTURE WORK 

In this paper, local-recoding anonymization for big data in 
cloud has been investigated from the perspectives of ca-
pability of defending proximity privacy breaches, scalabil-
ity and time-efficiency. We have proposed a proximity 

privacy model,        -dissimilarity, by allowing multiple 
sensitive attributes and semantic proximity of categorical 
sensitive values.  Since the satisfiability problem of 
       -dissimilarity is NP-hard, the problem of big data 
local recoding against proximity privacy breaches has 
been modeled as a proximity-aware clustering problem. 
We have proposed a scalable two-phase clustering ap-
proach based on MapReduce to address the above prob-
lem time-efficiently. A series of innovative MapReduce 
jobs have been developed and coordinated to conduct da-
ta-parallel computation. Extensive experiments on real-
world data sets have demonstrated that our approach sig-
nificantly improves the capability of defending proximity 
attacks, the scalability and the time-efficiency of local-
recoding anonymization over existing approaches.  

In cloud environment, the privacy preservation for da-
ta analysis, share and mining is a challenging research 
issue due to increasingly larger volumes of datasets, 
thereby requiring intensive investigation. Based on the 
contributions herein, we plan to integrate our approach 
with Apache Mahout, a MapReduce based scalable ma-
chine learning and data mining library, to achieve highly 
scalable privacy preserving big data mining or analytics.  

(a) (b) 

(c) (d) 

Fig. 4. Change of RCF of     ,      and normalized ILoss w.r.t.   . 

(a) (b) 

Fig. 5. Change of execution time w.r.t. data size and the number of 
computation nodes. 
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