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Abstract Uncertain data are inherent in some important applications. Although a
considerable amount of research has been dedicated to modeling uncertain data
and answering some types of queries on uncertain data, how to conduct advanced
analysis on uncertain data remains an open problem at large. In this paper, we tackle
the problem of skyline analysis on uncertain data. We propose a novel probabilistic
skyline model where an uncertain object may take a probability to be in the skyline,
and a p-skyline contains all objects whose skyline probabilities are at least p (0 <

p ≤ 1). Computing probabilistic skylines on large uncertain data sets is challenging.
We develop a bounding-pruning-refining framework and three algorithms systemat-
ically. The bottom-up algorithm computes the skyline probabilities of some selected
instances of uncertain objects, and uses those instances to prune other instances
and uncertain objects effectively. The top-down algorithm recursively partitions
the instances of uncertain objects into subsets, and prunes subsets and objects
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aggressively. Combining the advantages of the bottom-up algorithm and the top-
down algorithm, we develop a hybrid algorithm to further improve the performance.
Our experimental results on both the real NBA player data set and the benchmark
synthetic data sets show that probabilistic skylines are interesting and useful, and our
algorithms are efficient on large data sets.

Keywords Uncertain data · Skyline queries · Probabilistic queries · Algorithms

1 Introduction

Uncertain data are inherent in some important applications, such as environmental
surveillance, market analysis, and quantitative economics research. Uncertain data
in those applications are generally caused by factors like data randomness and
incompleteness, limitations of measuring equipment, delayed data updates, etc.
Due to the importance of those applications and the rapidly increasing amount of
uncertain data collected and accumulated, analyzing large collections of uncertain
data has become an important task. Although a considerable amount of research has
been dedicated to modeling uncertain data and answering some types of queries on
uncertain data (please see Section 7 for a brief review), how to conduct advanced
analysis on uncertain data remains an open problem at large. Particularly in this
study, we will address the problem of skyline analysis.

1.1 Motivating examples

Many previous studies (e.g., Borzsonyi et al. 2001; Chan et al. 2006a; Huang et al.
2006; Lin et al. 2005; Pei et al. 2005, 2007a; Sharifzadeh and Shahabi 2006; Tao et al.
2006; Yuan et al. 2005) showed that skyline analysis is very useful in multi-criteria
decision making applications. As an example, consider analyzing NBA players using
multiple technical statistics criteria (e.g., the number of assists and the number of
rebounds). Ideally, we want to find the perfect player who can achieve the best
performance in all aspects. Such a player, however, does not exist. The skyline
analysis here is meaningful since it discloses the tradeoff among the merits of multiple
aspects.

A player U is in the skyline if there exists no other player V such that V is better
than U in one aspect, and is not worse than U in all other aspects. Skyline analysis on
the technical statistics data of NBA players can identify excellent players and their
outstanding merits.

We argue that skyline analysis is also meaningful on uncertain data. Consider the
skyline analysis on NBA players again. Since the annual statistics are used as certain
data in previous studies (Pei et al. 2005), it has never been addressed in the skyline
analysis that players may have different performances in different games. If the game-
by-game performance data are considered, which players should be in the skyline and
why?

For example, let us use the number of assists and the number of rebounds, both the
larger the better, to examine the players. The two measures may vary substantially
player by player and game by game. Uncertainty is inherent due to many factors such
as the fluctuations of players’ conditions, the locations of the games, and the support
from audience. How can we def ine the skyline given the uncertain data?
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While a skyline analysis using the real NBA game records will be reported in
Section 8, here we plot a few games of five synthetic players in Fig. 1 to illustrate
several important issues.

The traditional method represents an attribute of each player using an aggregate
function such as the mean or the median, and computes the skyline over such
aggregate values. However, such aggregate values cannot capture the performance
distribution information, and the skyline computed using such aggregate values may
not be meaningful. First, performances in different games may vary differently. For
example, in Fig. 1, player Arbor’s performances are quite consistent while Eddy’s
performances are quite diverse. Although Eddy’s performance in one game (point b
in the figure) is better than Arbor’s performances in all games in both the number
of assists and the number of rebounds, Arbor is generally better than Eddy in the
number of assists if all games they played are considered. Second, some outliers may
bias the aggregate of a player. For example, Bob is good in general, but he has an
outlier game (point a in the figure) of poor performance in both measures.

In order to handle the uncertain data, a naïve approach is to compute the skyline
on the game records instead of the players. However, the game records can be
regarded as the samples of the players’ performances and the samples cannot be
complete. A skyline game record may be just an exception of a player (e.g., point b
of Eddy in Fig. 1). Thus, the skyline of game records may not be meaningful for
comparing players.

There can be a large number of players over years and each player may play many
games in his career. Therefore, the efficiency of skyline analysis on uncertain data
matters.

There are many other application examples for skyline analysis on uncertain
data. For example, in a digital camera market, one product may receive multiple
evaluations which may vary to one another. The total review of the product is not
certain and can be modeled as an uncertain object, where each evaluation is regarded
as an instance. An evaluation can be multidimensional, including the ratings on
price, quality, service, etc. Skyline products can be regarded as good candidates for
purchase. The analysis leverages multiple evaluation attributes.

Fig. 1 A set of synthetic
players
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To evaluate the effect of therapies in medical practice, test cases are collected,
and a few measures are used. Generally, the measures may vary, sometimes even
substantially, among the test cases of one therapy. Uncertainty is inherent due to the
incompleteness of the samples and many other factors (e.g., the physical conditions
of patients). Finding the skyline therapies on the uncertain data helps to identify
good therapies and understand the tradeoff among multiple factors in question.

As one more example, consider damage control of typhoons (or hurricanes).
Tens of thousands of automatic observation stations can be deployed in the area
affected by typhoons to collect data like wind intensity and precipitation. A location
is likely more seriously damaged if its wind intensity and precipitation are both large
under a typhoon attack. However, there are more than ten typhoons every year,
and each typhoon takes a different route. Thus, it will be useful to model a location
as an uncertain object and the wind intensity and precipitation as the attributes.
When a location is affected by a typhoon, the data are recorded as an occurrence
of the uncertain object. Based on the data, we can analyze the most likely seriously
damaged locations.

In summary, uncertain data pose a few new challenges for skyline analysis and
computation. Specifically, we need a meaningful yet simple model for skylines on
uncertain data. Moreover, we need to develop efficient algorithms for such skyline
computation.

1.2 Challenges and our contributions

In this paper, we address two major challenges about skyline analysis and computa-
tion on uncertain data.

1.2.1 Challenge 1: modeling skylines on uncertain data

In a set of uncertain objects, each object has multiple instances, or alternatively, each
object is associated with a probability density function. A model about skylines on
uncertain data needs to answer two questions:

– How can we capture the dominance relation between uncertain objects?
– What should be the skyline on those uncertain objects?

Our contributions We introduce the probabilistic nature of uncertain objects into
the skyline analysis. We follow the possible world model (Abiteboul et al. 1987;
Imielinski and Witold Lipski 1984; Sarma et al. 2006) which has been adopted
extensively in recent studies on uncertain data processing, such as Soliman et al.
(2007), Benjelloun et al. (2006) and Burdick et al. (2005).

Essentially, to compare the advantages between two objects, we calculate the
probability that one object dominates the other. Based on the probabilistic domi-
nance relation, we propose the notion of probabilistic skyline. The probability of an
object being in the skyline is the probability that the object is not dominated by any
other objects.

Given a probability threshold p (0 ≤ p ≤ 1), the p-skyline is the set of uncertain
objects each of which takes a probability of at least p to be in the skyline.
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Comparing to the traditional skyline analysis, probabilistic skyline analysis is more
informative on uncertain objects.

– First, traditional skylines, computed either using aggregates or individual in-
stances, can be biased by outliers and do not consider the distribution of the
instances of an uncertain object. Probabilistic skylines, on the other hand, take all
instances of an object and their distribution together to determine the dominance
relationship, thus can provide more reliable results.

– Second, the size of the traditional skyline can be large when the data set
has a large cardinality or dimensionality (Chan et al. 2006a, c). Users cannot
further compare objects in the skyline and have to turn to other analytical tools.
This makes the result difficult to process. However, probabilistic skylines can
naturally rank objects according to their skyline probabilities. The size of the p-
skyline can be controlled by tuning the probability threshold p. This provides a
more user-friendly interaction to digest the results.

For example, in a case study (details in Section 8) using the game-by-game
technical statistics of 1,313 NBA players in 339,721 games, the traditional skyline
computed on average player statistics has 20 players. By contrast, the 0.3-skyline
includes five players, the 0.2-skyline includes 14 players, and the 0.1-skyline includes
42 players. Among them, some players that have relatively high skyline probabilities,
such as Hakeem Olajuwon (0.204) and Kobe Bryant (0.2), are not in the traditional
skyline where only the aggregate statistics are used. On the other hand, some players
that are in the traditional skyline have a low skyline probability, such as Gary Payton
(0.126) and Lamar Odom (0.102). These are due to their biased game records.
We will provide more explanation in Section 8. Clearly, this information cannot be
obtained using the traditional skyline analysis.

To the best of our knowledge, we are the first to study skyline analysis on
uncertain objects.

1.2.2 Challenge 2: ef f icient computation of probabilistic skylines

Computing a probabilistic skyline is much more complicated than computing a
skyline on certain data. Particularly, in many applications, the probability density
function of an uncertain object is often unavailable explicitly. Instead, a set of
instances are collected in the hope of approximating the probability density function.
According to the possible world model, the probabilistic skyline should be derived
from an exponential number of possible worlds. Thus, it is challenging to compute
probabilistic skylines on uncertain objects, each of which is represented by a set of
instances.

In this paper, we focus on the discrete case of probabilistic skylines computation,
i.e., each uncertain object is represented by a set of instances. There are several
challenges associated with computing probabilistic skylines in the discrete case. First,
each uncertain object may have many instances to be processed. Second, we have to
consider many probabilities in deriving the probabilistic skylines. For example, as
reported in Section 8, a straightforward method takes more than 1 h to compute
the 0.3-skyline on the NBA data set. Using the techniques developed in this paper,
we are able to compute probabilistic skylines efficiently and outperform exhaustive
search methods by orders of magnitude.
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Our contributions We develop a bounding-pruning-refining framework. As the
implementation of the framework, we devise three algorithms to tackle the problem.

– The bottom-up algorithm computes the skyline probabilities of some selected
instances of uncertain objects, and uses those instances to prune other instances
and uncertain objects effectively.

– The top-down algorithm recursively partitions the instances of uncertain objects
into subsets, and prunes subsets and objects aggressively.

– Combining the advantages of the bottom-up algorithm and the top-down algo-
rithm, we develop a hybrid algorithm to further improve the performance. We
greedily assign objects to the bottom-up method or the top-down method for
processing according to the distribution of the instances and the relationship with
respect to other objects.

Our methods are efficient and scalable. As verified by our extensive experimental
results, our methods are at least one order of magnitude faster than the exhaustive
method.

1.2.3 Paper organization

The rest of the paper is organized as follows. In Section 2, we propose the model
of probabilistic skylines on uncertain data. In Section 3, we propose the bounding-
pruning-refining framework. The bottom-up method and the top-down method
are developed in Sections 4 and 5, respectively. We devise the hybrid method in
Section 6. We review the related work in Section 7. A systematic performance study
is reported in Section 8. We conclude the paper in Section 9.

2 Probabilistic skylines

In this section, we present the probabilistic skyline model. For reference, a summary
of notations is given in Table 1.

We first recall the notions of the dominance relation and skylines on certain
objects. Then, we extend the dominance relation to probabilistic dominance relation
on uncertain objects. Last, we extend the skylines on certain objects to probabilistic
skylines on uncertain objects.

Table 1 The summary of
notations

Notation Definition

U , V Uncertain objects
u, v Instances of uncertain objects
|U | The number of instances of U
fU The probability density function of U
pu The probability of u to appear
Pr[U ≺ V] The probability that U dominates V
Pr(·) Skyline probability of U or u
Pr+(·) The upper bound of Pr(U) or Pr(u)

Pr−(·) The lower bound of Pr(U) or Pr(u)

U.MBB The minimum bounding box of U
Umax(Umin) The upper (lower) corner of U.MBB



J Intell Inf Syst

2.1 Skylines on certain objects

By default, we consider points in an n-dimensional numeric space D = (D1, . . . , Dn).
The dominance relation is built on the preferences in attributes D1, . . . , Dn. Without
loss of generality, we assume that, on D1, . . . , Dn, smaller values are more preferable.

For two points u and v, u is said to dominate v, denoted by u ≺ v, if for every
dimension Di (1 ≤ i ≤ n), u.Di ≤ v.Di, and there exists a dimension Di0 (1 ≤ i0 ≤ n)

such that u.Di0 < v.Di0 .
Given a set of points S, a point u ∈ S is a skyline point if there exists no other point

v ∈ S such that v dominates u. The skyline on S is the set of all skyline points.

Example 1 (Dominance and skyline) Consider the points in Fig. 2. According to the
definition of dominance, point c dominates b , d, and e. Points a, c and f are not
dominated by any other points in the set. Thus, these three points form the skyline
of this data set.

2.2 Probabilistic skylines

An uncertain object is conceptually described by a probability density function (PDF)
f in the data space D. Generally, f (u) ≥ 0 for any point u in the data space D, and∫
u∈D f (u) du = 1. This is referred to as the continuous case.

Practically, the probability density function of an uncertain object is often unavail-
able explicitly. Instead, an uncertain object U is represented by a set of instances
(points) such that each instance u ∈ U has a probability pu to appear. Such a
representation, referred to as the discrete case, correspondingly has the property that
0 < pu ≤ 1 and

∑
u∈U pu = 1.

To keep our model simple, we assume that uncertain objects are independent.
That is, an instance of an object does not depend on the instances of any other
objects. Moreover, we assume that, for an uncertain object, each instance carries the
same probability to happen. Although the rest of this paper bears the above two
assumptions, our model can be easily extended to cases where dependencies (e.g.,
correlations or anti-correlations) exist among objects and instances carry different
weights.

Fig. 2 A set of certain points
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Now, let us extend the dominance relation to uncertain objects, and show how this
can straightforwardly define skylines on uncertain objects.

Let U and V be two uncertain objects, and fU and fV be the corresponding
probability density functions, respectively. Then, the probability that V dominates
U is

Pr[V ≺ U] =
∫

u∈D
fU (u)

(∫

v≺u
fV(v) dv

)

du

=
∫

u∈D

∫

v≺u
fU (u) fV(v) dvdu (1)

In the discrete case, the probability that V dominates U is given by

Pr[V ≺ U] =
∑

u∈U

pu ·
⎛

⎝
∑

v∈V,v≺u

pv

⎞

⎠ (2)

Since any two points u and v in the data space must have one of the following three
relations: u ≺ v, v ≺ u, or u and v do not dominate each other, for two uncertain
objects U and V, Pr[U ≺ V] + Pr[V ≺ U] ≤ 1.

Example 2 (Probabilistic dominance relation) Consider the set of three uncertain
objects in Fig. 3. Each object has two instances. Assume each instance takes equal
probability to appear, that is, the appearance probability of each instance is 0.5.

For instances of object C, c1 is dominated by every instance of A, and c2 is
dominated by instance a2 of A. Thus, the probability that A dominates C is Pr[A ≺
C] = 0.5 × 1 + 0.5 × 0.5 = 0.75. Similarly, we can calculate Pr[B ≺ C] = 0.5.

Since c1 is dominated by every instance of object A and c2 is dominated by every
instance of object B, the probability that C is dominated by A or B is 1. In other
words, C cannot be in the skyline.

Because Pr[A ≺ C] and Pr[B ≺ C] are not independent, an important obser-
vation here is that, although Pr[A ≺ C] = 0.75 < 1 and Pr[B ≺ C] = 0.5 < 1, the
probability of C being dominated by A or B is 1. Moreover, Pr[(A �≺ C) ∧ (B �≺
C)] �= (1 − Pr[A ≺ C]) · (1 − Pr[B ≺ C]).

Fig. 3 A set of uncertain
objects

a1

a2
b2

b1

c1

c2

Object A

Object B

Object C

Y

XO



J Intell Inf Syst

The observation in Example 2 indicates that the probabilistic dominance relations
are not independent and cannot be used straightforwardly to def ine skylines on
uncertain objects. Then, what is the probability that an uncertain object is in the
skyline?

We first illustrate our probabilistic skyline model in the discrete case. Then we
show the model in the continuous case.

Given a set of uncertain objects S = {U1, · · · , Um}, a possible world w =
{u1, · · · , um} is a set of m instances such that each uncertain object in S has one
instance in w. The probability of w to appear is

Pr(w) =
m∏

i=1

pui .

Let � be the set of all possible worlds, then
∑

w∈�

Pr(w) = 1.

Let Sky(w) denote the set of objects such that for every object U ∈ Sky(w), the
instance of U in w is in the skyline of w. Then, the probability that U appears in the
skylines of the possible worlds is

Pr(U) =
∑

U∈Sky(w),w∈�

Pr(w).

Pr(U) is called the skyline probability of U .

Example 3 (Probabilistic skylines) Consider the set of uncertain objects in Fig. 3
again. We have eight possible worlds in total. Each possible world has the probability
0.53 = 0.125 to appear.

P(A) = 1 since a1 and a2 are in the skyline of every possible world. Moreover,
P(C) = 0 because c1 and c2 are not in the skyline of any possible world.

Note that B is in the skylines of four possible worlds {a1, b 1, c1}, {a1, b 1, c2},
{a1, b 2, c1}, and {a1, b 2, c2}. Therefore, P(B) = 4 × 0.125 = 0.5.

For each instance u of U ∈ S, Pr(u), the probability of u being in the skyline, is

Pr(u) =
∏

V∈S\{U}

⎛

⎝1 −
∑

v∈V,v≺u

pv

⎞

⎠ . (3)

Pr(u) is called the skyline probability of instance u.
By the above definition, it can be immediately verified that

Pr(U) =
∑

u∈U

pu · Pr(u). (4)

Consequently, we have

P(U) =
∑

u∈U

pu · Pr(u) =
∑

u∈U

⎛

⎝pu ·
∏

V∈S\{U}

⎛

⎝1 −
∑

v∈V,v≺u

pv

⎞

⎠

⎞

⎠ . (5)
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Similarly, in the continuous case, the skyline probability Pr(U) is defined as

Pr(U) =
∫

u∈D
fU (u)

∏

V �=U

(

1 −
∫

v≺u
fV(v) dv

)

du. (6)

An uncertain object may take a probability to be in the skyline. It is natural to
extend the notion of skyline to probabilistic skyline. For a set of uncertain objects S
and a probability threshold p (0 ≤ p ≤ 1), the p-skyline is the subset of objects in S
each of which takes a probability of at least p to be in the skyline. That is,

Sky(p) = {U ∈ S|Pr(U) ≥ p}.

Problem Definition 1 Given a set of uncertain objects S and a probability threshold
p (0 ≤ p ≤ 1), the problem of probabilistic skyline computation is to compute the
p-skyline on S.

Particularly, in this paper, we tackle the discrete case problem. That is, given a set
of uncertain objects where each object is a set of sample instances and a probability
threshold p, compute the p-skyline.

Although we will focus on the discrete case in this paper, some of our ideas can
be applied to handle the continuous case, which will be discussed briefly in Section 9.
Moreover, we only address the exact algorithms in this paper. The development
of approximation algorithms for probabilistic skylines is very interesting and is
investigated systematically in another study we are conducting.

3 The bounding-pruning-refining framework

On a large uncertain data set, the number of possible worlds can be huge. For
example, consider a data set of 1,000 uncertain objects. If each uncertain object has
four instances, the number of possible worlds |�| = 41,000 > 10602. It is impractical
to compute the skylines in all possible worlds one by one and derive the skyline
probability for each uncertain object.

To tackle the problem, we propose a bounding-pruning-refining framework. A
probabilistic skyline computation method can conduct iterations in the following
three steps.

Bounding For an uncertain object U , we try to obtain an upper bound and a lower
bound on the skyline probability of U . This can be achieved by, for
example, computing the skyline probabilities of some selected instances
of U , or partitioning U into some subsets where the skyline probability
of each subset can be bounded.

Pruning For an uncertain object U , if the lower bound of Pr(U) is larger than or
equal to p, the probability threshold, then U is in the p-skyline. If the
upper bound of Pr(U) is smaller than p, then U is not in the p-skyline.
In both cases, we do not need to compute the skyline probabilities of
instances in U anymore.

Refining If p is between the lower bound and the upper bound of Pr(U), then
we need to get tighter bounds of the skyline probabilities by the next
iteration of bounding, pruning and refining.
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The above iteration goes on until for every uncertain object we can determine
whether it is in the p-skyline or not.

In the next two sections, we will propose two methods implementing the above
bounding-pruning-refining framework. The two methods differ in how to compute
and refine the bounds and how to prune uncertain objects. The bottom-up method is
described in Section 4 and the top-down method is presented in Section 5.

4 The bottom-up method

In the bottom-up method, in the bounding step, we compute the skyline probabilities
of a small subset of instances. In the pruning step, an uncertain object may be pruned
using the skyline probabilities of its instances, or those of some other objects. The
method is called bottom-up since the bound computation and refinement start from
the instance level (bottom) and go up to the object level.

4.1 Bounding skyline probabilities

Given an uncertain object U and an instance u of U , trivially, we have 0 ≤ Pr(U) ≤ 1
and 0 ≤ Pr(u) ≤ 1. Let

Umin =
( |U |

min
i=1

{ui.D1}, . . . ,
|U |

min
i=1

{ui.Dn}
)

and

Umax =
(

|U |
max
i=1

{ui.D1}, . . . , |U |
max
i=1

{ui.Dn}
)

be the minimum and the maximum corners of the minimum bounding box (MBB
for short) of U , respectively. Note that, Umin and Umax are not necessary two actual
instances of U . In this case, we treat them as virtual instances and define their skyline
probabilities following (3). That is,

Pr(Umin) =
∏

V �=U

(

1 − |{v ∈ V | v ≺ Umin}|
|V|

)

, and

Pr(Umax) =
∏

V �=U

(

1 − |{v ∈ V | v ≺ Umax}|
|V|

)

.

Lemma 1 (Bounding skyline probabilities) Let U = {u1, . . . , ul} be an uncertain
object where u1, . . . , ul are the instances of U.

1. If ui1 ≺ ui2 (0 ≤ i1, i2 ≤ l), then Pr(ui1) ≥ Pr(ui2).
2. Pr(Umin) ≥ Pr(U) ≥ Pr(Umax).

Proof The dominance relation on instances is transitive: for instances x, y, and z of
an uncertain object, if x ≺ y and y ≺ z, then x ≺ z. Since ui1 ≺ ui2 , for any instance v

of other object V, if v ≺ ui1 then v ≺ ui2 .
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Applying the transitivity to (3), we have

Pr(ui1) =
∏

V �=U

(

1 − |{v ∈ V | v ≺ ui1}|
|V|

)

≥
∏

V �=U

(

1 − |{v ∈ V | v ≺ ui2}|
|V|

)

= Pr(ui2)

The first item in the lemma is proved.
According to item 1 in this lemma, for any ui (1 ≤ i ≤ l), Pr(Umin) ≥ Pr(ui) ≥

Pr(Umax). Item 2 in the lemma follows with the above inequality and (4). �	

Lemma 1 provides a means to compute the upper bounds and the lower bounds
of instances and uncertain objects using the skyline probabilities of other instances.

According to the first inequality in the lemma, the skyline probability of an
instance can be bounded by those of other instances dominating or dominated by it.
In other words, when the skyline probability of an instance is calculated, the bounds
of the skyline probabilities of some other instances of the same object may be refined
accordingly.

The second inequality in the lemma indicates that the minimum and the maximum
corners of the MBB can play important roles in bounding the skyline probability of
a set of instances.

4.2 Pruning techniques

If the skyline probability of an uncertain object or an instance of an uncertain object
is computed, can we use this information to prune the other uncertain instances
or objects? Following with Lemma 1, we immediately have the following rule to
determine the p-skyline membership of an uncertain object using its minimum or
maximum corners.

Pruning Rule 1 For an uncertain object U and probability threshold p, if Pr(Umin) <

p, then U is not in the p-skyline. If Pr(Umax) ≥ p, then U is in the p-skyline.

Moreover, we can prune an uncertain object using the upper bounds and the lower
bounds of the skyline probabilities of instances.

Pruning Rule 2 Let U be an uncertain object. For each instance u ∈ U, let Pr+(u)

and Pr−(u) be the upper bound and the lower bound of Pr(u), respectively. If
1

|U |
∑

u∈U Pr+(u) < p, then U is not in the p-skyline. If 1
|U |

∑
u∈U Pr−(u) ≥ p, then

U is in the p-skyline.

We can also use the information about one uncertain object to prune other
uncertain instances or objects. First, if an instance u of an uncertain object U is
dominated by the maximum corner of another uncertain object V, then u can never
be in the skyline in any possible world. Figure 4 illustrates this pruning rule.

Pruning Rule 3 Let U and V be uncertain objects such that U �= V. If u is an instance
of U and Vmax ≺ u, then Pr(u) = 0.

By pruning some instances in an uncertain object using the above rule, we can
reduce the cost of computing the skyline probability of the object.
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Fig. 4 An illustration of
Pruning Rule 3

U u
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When the skyline probabilities of some instances of an uncertain object are
computed, we can use the information to prune some other uncertain objects.

Pruning Rule 4 Let U and V be two uncertain objects and U ′ ⊆ U be a subset of
instances of U such that U ′

max � Vmin. If

|U − U ′|
|U | · min

u∈U ′{Pr(u)} < p,

then Pr(V) < p and thus V is not in the p-skyline.

Proof Figure 5 illustrates the situation. Since Vmin is dominated by all instances in U ′.
An instance of V can be in the skyline only if U does not appear as any instance in
U ′. Even if no instance in (U − U ′) dominates any instance of V, the probability that
V is in the skyline still cannot reach the probability threshold p, since U ′

max � Vmin

and |U−U ′ |
|U | · minu∈U ′ {Pr(u)} < p. Thus V cannot be in the p-skyline.

Formally, since every instance of V is dominated by all instances in U ′, only when
U takes an instance in (U − U ′), V may have a chance of not being dominated by U .
The probability that an instance of V is not dominated by an instance of U cannot be

Fig. 5 An illustration of
Pruning Rule 4

U

V

U'max

Vmin

U'
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more than (1 − |U ′ |
|U | ) = |U−U ′ |

|U | . Moreover, since U ′
max � Vmin, all instances of objects

other than U and V dominating U ′
max also dominate Vmin.

Thus,

Pr(V) ≤ Pr(Vmin) ≤
(

1 − |U ′|
|U |

)

· Pr(U ′
max) = |U − U ′|

U
· Pr(U ′

max)

≤ |U − U ′|
U

· min
u∈U ′{Pr(u)} < p

V is not in the p-skyline. �	

As a special case of Pruning Rule 4, if there exists an instance u ∈ U such that
Pr(u) < p and u � Vmin, then Pr(V) < p and V can be pruned.

The pruning rule is powerful since even an uncertain object partially computed
can be used to prune other objects.

4.3 Refinement strategies

For an uncertain object U , we want to determine whether U is in the p-skyline by
computing the skyline probabilities of as few instances of U as possible. Finding an
optimal subset of instances to compute is a very difficult online problem since, with-
out computing the probabilities of the instances, we do not know their distribution.
Here, we propose a layer-by-layer heuristic method.

4.3.1 Layers of instances

According to the first inequality in Lemma 1, among all instances of an object U , we
can first compute the skyline probabilities of the instances that are not dominated by
any other instances, i.e., the skyline instances in the object. Those instances are the
layer-1 instances, as illustrated in Fig. 6. The skyline probabilities of the instances at
layer-1 can serve as the upper bounds of the skyline probabilities of other instances,
and generate an upper bound of the skyline probability of U .

Fig. 6 The layers of an
uncertain object

layer-1
layer-2

layer-3

layer-4

layer-5
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If the upper bounds using the layer-1 instances are not enough to qualify or
disqualify U in the p-skyline, we need to refine the upper bounds. We can compute
the skyline probabilities of the instances at layer-2 which are dominated only by the
instances at layer-1, as shown in Fig. 6, too. Similarly, we can partition the instances
of an object into layers.

Formally, for an uncertain object U , an instance u ∈ U is at layer-1 if u is not
dominated by any other instance in U . An instance v is at layer-k (k > 1) if, v is not
at the 1st, . . . , (k − 1)-th layers, and v is not dominated by any instances except for
those at the 1st, . . . , (k − 1)-th layers.

The advantage of partitioning instances of an object into layers is that, once the
skyline probabilities of all instances at one layer are calculated, the probabilities can
be used as the upper bounds of the instances at the higher layers.

Lemma 2 In an uncertain object U, let u1,1, . . . , u1,l1 be the instances at layer-k1, and
u2,1, . . . , u2,l2 be the instances at layer-k2, k1 < k2. Then, for any instance at layer-
k2 u2, j2 (1 ≤ j2 ≤ l2), there exists an instance at layer-k1 u1, j1 (1 ≤ j1 ≤ l1) such that

Pr(u1, j1) ≥ Pr(u2, j2). Moreover,
l1max

i=1
{Pr(u1,i)} ≥ l2max

j=1
{Pr(u2, j)}.

Proof Since k1 < k2, instance u2, j2 must be dominated by an instance at layer-k1.
Otherwise, u2, j2 is at layer-k1 or some lower layer. Let u1, j1 be an instance at layer-
k1 that dominates u2, j2 . Then, the first inequality follows with Lemma 1. The second
inequality follows with the first inequality. �	

4.3.2 Partitioning instances to layers

How can instances of an object be assigned quickly into layers?
For each instance u, we define the key of the instance as the sum of its values

in all attributes, that is, u.key =
n∑

i=1

u.Di. Then, we sort all the instances in the key

ascending order. This is motivated by the SFS algorithm (Chomicki et al. 2003). The
sorted list of instances has a nice property: for instances u and v such that u ≺ v, u
precedes v in the sorted list.

We scan the sorted list once. The first instance has the minimum key value, and is
assigned to layer-1. We compare the second instance with the first one. If the second
one is dominated, then it is assigned to layer-2; otherwise it is assigned to layer-1.

Generally, when we process an instance u, suppose at the time there already exist
h layers. We compare u with the instances currently at layer- h

2 �. One of the two
cases may happen.

– If u is dominated by an instance at that layer, then u must be at some layer higher
than  h

2 �.
– Otherwise, u is neither dominated by, nor dominates, any instance at that layer.

Then, u must be at that layer or some lower layer.

We conduct this binary search recursively until u is assigned to a layer.
Lemma 1 indicates that the minimum corner of the MBB of an uncertain object

leads to the upper bounds of the skyline probabilities of all instances as well as the
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object itself. As a special case, we assign this minimum corner as a virtual instance at
layer-0.

The above partitioning method has a nice property: all instances at a layer are
sorted in the key ascending order.

4.3.3 Scheduling objects

From which objects should we start the skyline probability computation?
In order to use the pruning rules discussed in Section 4.2 as much as possible, those

instances in uncertain objects that likely dominate many other objects or instances
should be computed early. Heuristically, those instances which are close to the origin
may have a better chance to dominate other objects and instances.

The instances of an uncertain object are processed layer by layer. Within each
layer, the instances are processed in the key ascending order. As discussed in
Section 4.2, some pruning rules enable us to use the partial information of some
uncertain objects to prune other objects and instances, we interleave the processing
of different objects.

Technically, all instances of an uncertain object are kept in a list. The minimum
corner of its MBB is treated as a special instance and put at the head of the list. The
heads of lists of all uncertain objects are organized into a heap. We iteratively process
the top instance in the heap. If an object cannot be pruned after its minimum corner
is processed, we organize the rest of instances in its list in the layer and key value
ascending order. Once an instance from an object is processed, the object sends the
next instance into the heap if its skyline membership is not determined. The proper
pruning rules are triggered if the conditions are satisfied.

4.4 Algorithm and implementation

The bottom-up algorithm is shown in Fig. 7. We explain some critical implementation
details here.

4.4.1 Finding possible dominating objects

For an object U , we want to find all the other objects that may contain some instances
dominating U . Those objects are called the possible dominating objects of U . The
skyline membership of U depends on only those possible dominating objects. All
other objects that do not contain any instances dominating U do not need to be
considered.

To speed up the search of possible dominating objects, we employ R-
trees (Guttman 1984). An R-tree is a tree data structure for indexing multidimen-
sional data, such as points, etc. A node of an R-tree contains a set of entries. Each
entry at a leaf node is in the form of 〈pI D, coords〉 where pI D refers to the point
ID and coords is the coordinates of the point. Each entry in a non-leaf node is in the
form of 〈child, child.MBB〉 where child refers to a child node, and child.MBB is the
minimum bounding box of all entries in this child node. Approximately, an R-tree
can be built in time O(n log n) where n is the number of points indexed. A range
query can be answered in time O(log n).

We organize the minimum corners of MBBs of all objects into a global R-tree.
To find the possible dominating objects of U , we issue a window query with the
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Fig. 7 The bottom-up
algorithm

origin and Umax as the opposite corners on the global R-tree. The possible dominating
objects for an object are computed only when the minimum corner of the object is
popped from the heap.

If an object U does not have any possible dominating objects, then every instance
of U is not dominated by any instance of other objects. In other words, the skyline
probability of U is 1.

4.4.2 Computing skyline probability

To compute the skyline probability Pr(u) for an instance u ∈ U , we compare u with
the possible dominating objects of U one by one. To facilitate the comparison, we
incrementally maintain a local R-tree TV for each object V. TV is set to empty in the
initialization. When an instance u ∈ U is compared with object V, we insert into TV

the instances in V that have a key value less than u.key, since only those instances
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in V may dominate u. Then, we issue a window query with the origin and u as the
opposite corners to compute |{v ∈ V|v ≺ u}|.

After comparing u with all possible dominating objects of U , using (4), we can
calculate Pr(u). We also update the lower bound of the probability of object U
immediately as

Pr−(U) = Pr−(U) + 1
|U | Pr(u).

Once all instances in a layer are processed, as discussed in Lemma 2, we use
the maximum probability of instances in this layer as the upper bound (denoted by
U.Prmax) of the probabilities of instances in the higher layers. Moreover, the upper
bound of the probability of U is updated as

Pr+(U) = Pr−(U) + U.Prmax · |Ũ |
|U | ,

where Ũ ⊆ U is the set of instances whose probabilities are not calculated yet.

4.4.3 Using Pruning Rule 4

In order to use Pruning Rule 4 to prune other objects, for each object U , we
maintain U ′ as the set of instances which precede the current processing instance
in its instance list. The skyline probability of those instances are already computed.
Once U ′ satisfies the condition in the rule, we compute U ′

max, the maximum corner
of the MBB of U ′, and issue a window query on the global R-tree described in
Section 4.4.1 with U ′

max and the maximum corner of the MBB of all objects in the
data set as the opposite corners. For each minimum corner returned from this query,
the corresponding uncertain object satisfies the pruning rule and thus is not in the p-
skyline. We note that for each object, this rule is applied at most once. This is because
once this condition is satisfied, it will be always satisfied afterwards.

4.5 Cost analysis of the bottom-up algorithm

It can be immediately verified that the cost of the bottom-up algorithm is pre-
dominated by computing the skyline probabilities of instances as presented in
Section 4.4.2. Suppose that R is the average cost of querying the local R-trees of
possible dominating objects, with all pruning techniques are applied, for computing
the skyline probabilities of instances. Let Wtotal denote the number of instances
whose skyline probabilities are computed in the algorithm. Then, the average cost
of the algorithm is O(Wtotal · R).

As shown in our experimental results, in practice many instances and objects can
be pruned sharply. The bottom-up algorithm only has to compute a small portion of
instances. That is, Wtotal is much smaller than the total number of instances. Thus,
the bottom-up algorithm has good scalability on the large data sets used in our
experiments.
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5 The top-down method

In this section, we present a top-down method for probabilistic skyline computation.
The method starts with the whole set of instances of an uncertain object. The skyline
probability of the object can be bounded using the maximum and the minimum
corners of the MBB of the object. To improve the bounds, we can recursively
partition the instances into subsets. The skyline probability of each subset can be
bounded using its MBB in the same way. Facilitated by (4), the skyline probability of
the uncertain object can be bounded as the weighted mean of the bounds of subsets.
Once the p-skyline membership of the uncertain object is determined, the recursive
bounding process stops.

5.1 Partition trees

To facilitate the partitioning process, we use a partition tree data structure for each
uncertain object. A partition tree is binary. Each leaf node contains a set of instances
and the corresponding MBB. Each internal node maintains the MBB of all instances
in its descendants and the total number of instances.

The construction of a partition tree for an uncertain object is somewhat similar to
that of kd-trees (Bentley 1975). We start with a tree of only one node—the root node
which contains all instances of the object and the MBB. The tree grows in rounds. In
each round, a leaf node with l instances (l > 1) is partitioned into two children nodes
according to one attribute such that the left child and the right child contain  l

2� and
� l

2� instances, respectively.
We take a simple round robin method to choose the attributes to grow a partition

tree. The attributes are sorted into D1, . . . , Dn in an arbitrary order. The root node
(level-0) is partitioned into two children in attribute D1, those children (level-1) are
split into grand-children in attribute D2, and so on. To split the nodes at level-n,
attribute D1 is used again.

The time complexity to grow one level of the tree for an uncertain object U is
O(|U |). The cost to fully grow a partition tree (i.e., each leaf node contains only one
instance) is O(|U | log2 |U |) since the tree has at most log2 |U | levels.

5.2 Bounding using partition trees

For a node N in a partition tree, we also use N to denote the set of instances allocated
to N. Let N.MBB be the MBB of the instances allocated to N, and Nmax and Nmin

be the maximum and the minimum corners, respectively. Then, by Lemma 1, for any
instance u ∈ N, the skyline probability of u can be bounded by

Pr(Nmax) ≤ Pr(u) ≤ Pr(Nmin). (7)

Moreover, if the partition tree of uncertain object U has l leaf nodes N1, . . . , Nl , then

1
|U |

l∑

i=1

|Ni|·Pr(Ni,max)≤ Pr(U) ≤ 1
|U |

l∑

i=1

|Ni|·Pr(Ni,min), (8)

where Ni,max and Ni,min are the maximum and the minimum corners of Ni.MBB,
respectively, and |Ni| is the number of instances in Ni.
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Computing the exact skyline probabilities for all corners can be costly. Instead,
we estimate the bounds. To bound the skyline probabilities for Nmin and Nmax for a
node N in the partition tree of uncertain object U , we query the possible dominating
objects of U as described in Section 4.4.1. We traverse the partition tree of each
possible dominating object V of U in the depth-first manner. When a node M in the
partition tree of V is met, one of the following three cases happens.

– If Mmax dominates Nmin (as shown in Fig. 8a), then Nmin and Nmax are dominated
by all instances in M. That is, Pr(Nmin) ≤ Pr(Mmax).

– If Mmin does not dominate Nmax (as shown in Fig. 8b), then no instance in M can
dominate either Nmin or Nmax.

– If the above two situations do not happen, then some instances in M may
dominate some instances in N (as shown in Fig. 8c). If M is an internal node, we
traverse the left and the right children of M recursively. Otherwise, M is a leaf
node. Then, we estimate a lower bound of Pr(Nmax) by assuming all instances in
M dominate Nmax, and an upper bound of Pr(Nmin) by assuming no instance in
M dominates Nmin.

By traversing all partition trees of the possible dominating objects, we apply (3)
to compute the upper bound for Pr(Nmin) and the lower bound for Pr(Nmax). With
the two bounds and inequality (8), we can immediately bound the skyline probability
of object U . We use only the maximum and the minimum corners of the MBBs, and
never compute the skyline probability of any one in a subset of instances.

5.3 Pruning and refinement using partition trees

When one level is grown for the partition trees of all uncertain objects whose skyline
memberships are not determined, the possible dominating objects of them are also
partitioned to the same level. For all new leaf nodes grown in this round, we bound
their probabilities by traversing the partition trees of the corresponding possible
dominating objects. We note that the computation of such bounding for the leaf
nodes which have the same MBB can be shared.

After that, we check whether some uncertain objects or some leaf nodes in some
partition trees may be pruned. That is, their skyline probabilities do not need to be
computed any more. Pruning those nodes can make the skyline computation faster.

M

N

Mmax

Nmin

(a)

M

N
Nmax

Mmin

(b)

M

N

(c)

Fig. 8 Three cases of bounding Pr(N)
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Consider a node N in the partition tree of uncertain object U . If there exists
another uncertain object V �= U such that Nmin is dominated by Vmax, then any
instance in N cannot be in the skyline. In other words, Pr(u) = 0 for any u ∈ N. We
do not need to compute any subset of N anymore since the instances there cannot
contribute to the skyline probability of U . Figure 9 illustrates this pruning rule.

Pruning Rule 5 Let N be a node in the partition tree of uncertain object U. If there
exists an object V �= U such that Vmax � Nmin, then node N can be pruned.

Moreover, if Pr(Nmin) = Pr(Nmax), according to inequality (7), the skyline proba-
bility of any instance in N is determined. N can be pruned.

Pruning Rule 6 Let N be a node in the partition tree of uncertain object U. If
Pr(Nmin) = Pr(Nmax), then for each u ∈ N, Pr(u) = Pr(Nmin) = Pr(Nmax) and node
N can be pruned.

Last, once the skyline probability of an uncertain object can be bounded at least
p or less than p, then whether the object is in the p-skyline is determined. We do not
need to refine the estimation of the probability of this object anymore.

Pruning Rule 7 Let p be the probability threshold. Suppose the partition tree of an
uncertain object U has l leaf nodes N1, . . . , Nl. Let Ni,max and Ni,min be the maximum
and the minimum corners of Ni.MBB, respectively.

– If 1
|U |

l∑

i=1

|Ni| · Pr(Ni,max) ≥ p, then U is in the p-skyline.

– If 1
|U |

l∑

i=1

|Ni| · Pr(Ni,min) < p, then U is not in the p-skyline.

In both cases, the partition tree of U can be pruned.

Fig. 9 An illustration of
Pruning Rule 5

U

Nmin

V

Vmax

N
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After the pruning step using the above rules, only the partition trees of those
uncertain objects which cannot be determined in the p-skyline or not are left. In
such trees, only those nodes whose skyline probabilities are not determined survive.

In a refinement step, we partition those surviving leaf nodes and their possible
dominating objects to one more level. With the refinement, the bounds of skyline
probabilities are tighter.

5.4 The top-down algorithm and cost analysis

The top-down algorithm is shown in Fig. 10. In the implementation, we use an R-
tree to index the minimum corners of the MBBs of all objects so that the search of
possible dominating objects can be conducted efficiently.

Let P be the average cost of querying partition trees of possible dominating
objects for bounding the skyline probabilities of the minimum and maximum corners
of MBBs, and Mtotal be the number of tree nodes whose skyline probabilities are
bounded in the algorithm. Then, the average cost of the algorithm is O(Mtotal · P).

As will be shown in our experimental results, many nodes can be pruned sharply
by the pruning rules. The top-down algorithm only has to grow a small number of

Fig. 10 The top-down
algorithm
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tree nodes (i.e., Mtotal is small), and has good scalability with respect to cardinality of
the data sets.

6 The hybrid method

In this section, we develop a hybrid method combining the advantages of the bottom-
up method and the top-down method. The general idea is to partition the set S of
uncertain objects into two subsets SBU and ST D such that they likely can be processed
by the bottom-up method and the top-down method efficiently, respectively.

In Section 6.1, we analyze the advantages and the disadvantages of the bottom-up
method and the top-down method, and present the framework of the hybrid method.
In Section 6.2, we discuss how to partition uncertain objects into two subsets SBU and
ST D. In Section 6.3, we apply the layer structure in the bottom-up method to improve
the top-down method.

6.1 The framework of the hybrid method

In our bounding-pruning-refining framework, we refine the upper bound and the
lower bound of the skyline probability of every uncertain object. If the upper bound
of the skyline probability of an uncertain object is less than p, the probability
threshold, the object is not in the p-skyline and thus can be pruned. If the lower
bound of the skyline probability of an uncertain object is at least p, the object is in
the p-skyline and can be removed from further refinement. Interestingly, the bottom-
up method and the top-down method have different edges in bounding the skyline
probabilities of uncertain objects and pruning them.

The bottom-up method is good at pruning non-skyline objects. A non-skyline
object has a skyline probability smaller than the probability threshold. For a non-
skyline object U , the bottom-up method can quickly obtain a tight upper bound
of Pr(U) using the layer structure, since the instances in U having large skyline
probabilities are processed before those having small skyline probabilities. Once the
upper bound of the skyline probability of U is determined lower than the probability
threshold, U can be pruned.

However, for a skyline object U ′, the lower bound of Pr(U ′) may not increase fast
in the bottom-up method, since the lower bound is the sum of the skyline probabili-
ties of the instances of U ′ processed so far. For example, if the probability threshold
p = 0.9 and every instance in an uncertain object U ′ takes the same probability to
appear, in the bottom-up method, we have to process at least 90% of the instances
of U ′ before the lower bound can be at least 0.9. In such a situation, U ′ cannot
be determined early. However, the top-down algorithm is good at determining the
skyline membership of skyline objects quickly.

In the top-down method, the recursive partitioning isolating the instances of low
skyline probabilities quickly and thus the lower bound of the skyline probability of
an uncertain object can be estimated tighter and quicker than the bottom-up method.

Based on the above discussion, we propose a hybrid method. Using a method will
be given in Section 6.2, we quickly estimate whether an uncertain object may be in the
skyline. For the subset of uncertain objects ST D whose estimations are positive (i.e.,
the objects are likely in the skyline), we use the top-down method. For the subset
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Fig. 11 The hybrid algorithm

of uncertain objects SBU whose estimations are negative (i.e., the objects are likely
not in the skyline), we apply the bottom-up method. The framework of the hybrid
method is shown in Fig. 11.

6.2 Estimating skyline probability

How can we quickly estimate whether an uncertain object has a good chance to be
in the p-skyline? The skyline probability of an uncertain object U depends on two
aspects.

– Instance distribution: the distribution of the instances of U ; and
– Uncertain object distribution: the distribution of the instances of other uncertain

objects.

To quickly estimate the skyline probability of an object, we assume that the
instances of an uncertain object are uniformly distributed within its MBB, so that
we can approximate the estimation using the MBBs of uncertain objects.

For an uncertain object U , let V be a possible dominating object of U . Let
DAVmin(U) denote the area of U dominated by the minimum corners of V, i.e., the
gray area in Fig. 12. Moreover, let DAVmax(U) denote the area of U dominated by the
maximum corner of V, i.e., the shaded area in Fig. 12. Then, under the assumption

Fig. 12 Estimate skyline
probability U

V

Vmin

Vmax
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that the instances in U and V are uniformly distributed in their MBBs, we estimate
the probability of V dominating U as

Prest[V ≺ U] = DAVmin(U) + DAVmax(U)

2 · area(U)
(9)

where area(U) is the area of the MBB of U .
We can see that the larger DAVmin(U) and DAVmax(U), the larger the probability

of V dominating U . As an extreme case, when Vmax dominates Umin, that is, every
instance of V dominates all instances of U , DAVmin(U)= DAVmax(U)=area(U),
then Prest[V ≺ U] = 1. And when Vmin does not dominate Umax, DAVmin(U) =
DAVmax(U) = 0, then Prest[V ≺ U] = 0.

Let PDO(U) denote the set of possible dominating objects of U . Then, the
estimated skyline probability of U is the product of the estimated probability of every
V ∈ PDO(U) not dominating U . That is,

Prest(U) =
∏

V∈PDO(U)

(1 − Prest[V ≺ U]). (10)

In the hybrid algorithm (Step 3 in Fig. 11), for each uncertain object U , we
estimate its skyline probability using the above method. If the estimated skyline
probability is less than the probability threshold p, then U is assigned to subset SBU

which will be processed by the bottom-up method. Otherwise, U is assigned to subset
ST D which will be processed by the top-down method.

6.3 Improving the top-down method using the layer structure

We can improve the top-down method by applying the layer structure developed in
the bottom-up method (Section 4.3) to obtain a good processing order of leaf nodes
in every iteration of partitioning.

In the top-down method (Fig. 10), for each object U in an iteration, we grow one
level of the partition tree of U , and bound the skyline probabilities of the maximum
and the minimum corners of every leaf node to obtain the upper bound and the lower
bound of Pr(U). Any arbitrary order can be used in the top-down method to process
the leaf nodes. Fortunately, we can schedule the leaf nodes in a good order so that
the efficiency can be improved. Although we cannot obtain an optimal order without
knowing the skyline probabilities of the instances, the layer structure developed in
the bottom-up method provides a heuristically good processing order.

For a partition tree, we define the key of a node N as the sum of all attribute values

of Nmin, i.e.,
n∑

i=1

Nmin.Di. Then, we partition all leaf nodes into layers in the same

way as we partition the instances of an uncertain object in the bottom-up method
(Section 4.3.2). We have the following result based on Lemma 2.

Proposition 1 In a partition tree of an uncertain object U, let N1,1, . . . , N1,l1 be the
leaf nodes at layer-k1, N2,1, . . . , N2,l2 be the leaf nodes at layer-k2, and k1 < k2. Then,



J Intell Inf Syst

for any leaf node at layer-k2 N2, j2 (1 ≤ j2 ≤ l2), there exists a leaf node at layer-k1

N1, j1 (1 ≤ j1 ≤ l1) such that Pr(N1, j1 min) ≥ Pr(N2, j2 min), where N1, j1 min and N2, j2 min
are the minimum corners of the MBBs of N1, j1 and N2, j2 , respectively. Moreover,

l1max
i=1

{Pr(N1,imin)} ≥ l2max
j=1

{Pr(N2, jmin)}.

According to Proposition 1, we process the leaf nodes of the partition tree of every
uncertain object U layer by layer so that the upper bound and the lower bound of
Pr(U) both approach the actual value of Pr(U) quickly. Using Proposition 1, we can
estimate the upper bound of Pr(Nmin) for an unprocessed leaf node N. Thus, after
a leaf node is processed, we can obtain a tighter upper bound of Pr(U) according
to (8). Moreover, heuristically, the skyline probabilities of leaf nodes decrease as the
layer number increases. When we process the leaf nodes in the layer increasing order,
the lower bound of Pr(U) also increases in a faster pace heuristically.

7 Related work

A preliminary version of this paper appeared as Pei et al. (2007b), which is the
first paper to explore skyline analysis on uncertain data. Our study is related to the
previous work on querying uncertain data and skyline computation. In this section,
we review the major existing results in these two aspects and also the work of Pei
et al. (2007b) on probabilistic skyline computation.

7.1 Querying uncertain spatial data

In statistics, there are a number of tools dealing with uncertain and probabilistic
data, such as graphical models including Bayesian networks, Markov Random Fields,
Influence Diagrams, etc. (Deshpande and Sarawagi 2007). Graphical models present
an option for representing the uncertainty in the data and evaluating queries over
uncertain data (Dalvi and Suciu 2007; Sen et al. 2007). Particularly, they are useful
to model dependence between objects. In this paper, we assume that objects are
independent to each other. For future work, we would like to explore graphical mod-
els to handle more complex relationship between objects in computing probabilistic
skylines.

Modeling and querying uncertain data have also attracted considerable attention
from the database research community (see Aggarwal and Yu 2007; Sarma et al.
2006; Dalvi and Suciu 2004, and the references therein). The work that relates closest
to our problem is management and query processing of uncertain data in spatial-
temporal databases (Cheng et al. 2003, 2004; Tao et al. 2005; Dai et al. 2005; Kriegel
et al. 2006).

Cheng et al. (2003) proposed a broad classification of probabilistic queries over
uncertain data, and developed novel techniques for evaluating probabilistic queries.
Cheng et al. (2004) are the first to study probabilistic range queries. They developed
two auxiliary index structures to support querying uncertain intervals effectively.
Tao et al. (2005) investigated probabilistic range queries on multi-dimensional space
with arbitrary probability density functions. They identified and formulated several
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pruning rules and proposed a new access method to optimize both I/O cost and CPU
time. Dai et al. (2005) introduced an interesting concept of ranking probabilistic
spatial queries on uncertain data which selects the objects with highest probabilities
to qualify the spatial predicates. On the uncertain data indexed by R-tree, several
efficient algorithms were developed to support ranking probabilistic range queries
and nearest neighbor queries. Kriegel et al. (2006) proposed to use probabilistic
distance functions to measure the similarity between uncertain objects. They pre-
sented both the theoretical foundation and some effective pruning techniques of
probabilistic similarity joins.

Different from the previous work on querying uncertain spatial data, our study
introduces skyline queries and analysis to uncertain data. As shown in Sections 1
and 8, skyline queries are meaningful for uncertain data and can disclose some inte-
resting knowledge that cannot be identified by the existing queries on uncertain data.

7.2 Skyline computation and analysis

Computing skylines was first investigated by Kung et al. (1975) in computational
geometry. Bentley et al. (1978) proposed an efficient algorithm with an expected
linear runtime if the data distribution on each dimension is independent.

Borzsonyi et al. (2001) introduced the concept of skylines in the context of
databases and proposed a SQL syntax for skyline queries. They also developed the
skyline computation techniques based on block-nested-loop and divide-and-conquer
paradigms, respectively. Chomicki et al. (2003) proposed another block-nested-loop
based computation technique, SFS (sort-f ilter-skyline), to take the advantages of
pre-sorting. The SFS algorithm was further significantly improved by Godfrey et al.
(2005).

The first progressive technique that can output skyline points without scanning the
whole dataset was delveloped by Tan et al. (2001). Kossmann et al. (2002) presented
another progressive algorithm based on the nearest neighbor search technique,
which adopts a divide-and-conquer paradigm on the dataset. Papadias et al. (2003)
proposed a branch-and-bound algorithm (BBS) to progressively output skyline
points on datasets indexed by an R-tree. One of the most important properties of
BBS is that it minimizes the I/O cost.

Variations of skyline computation have been explored. Pei et al. (2005, 2007a)
and Yuan et al. (2005) proposed a skyline cube data structure that completely pre-
computes the skylines of all possible subspaces for a given data set. Xia and Zhang
(2006) addressed the incremental maintenance of skyline cubes. Tao et al. (2006)
developed the SUBSKY algorithm to answer subspace skyline queries efficiently
in any subspaces. To tackle the problem of skylines in high dimensional spaces,
Chan et al. (2006b) relaxed the notion of dominance to k-dominance and proposed
k-dominant skylines. Dellis and Seeger (2007) proposed the reverse skyline query,
which consists of objects whose dynamic skyline contains a given query point q. The
dynamic skyline of an object p corresponds to a transformed data space where p
becomes the origin and all other points are represented by their distance vectors to
p. Denis Mindolin (2009) investigated skylines in a case where some attributes are
considered to be more important than the others. Lin et al. (2005), Tao and Papadias
(2006), and Morse et al. (2006) answered skyline queries over data streams, where
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the skyline keeps updating as new data elements come and old data elements expire.
Sarma et al. (2009) developed a randomized skyline algorithm for streaming. Jiang
and Pei (2009) applied skyline analysis on time series data, where every data object is
a time series. Balke et al. (2004) and Wu et al. (2006) computed skylines in distributed
systems. Park et al. (2009) computed skyline on multicore architectures. Huang
et al. (2006) computed skyline on mobile lightweight devices such as MANETs.
Sharifzadeh and Shahabi (2006) proposed spatial skyline queries, where a dimension
of a data point is the distance to some query point. Chan et al. (2005) and Sacharidis
et al. (2009) considered skyline computation in partially ordered domains. Chen
and Lian (2008) considered skyline queries in metric spaces. Zhang et al. (2009b)
worked on skyline maintenance to handle frequent updates of the data set. Zhang
et al. (2009c) estimated the skyline cardinality based on density estimation. Wong
et al. (2007) and Jiang et al. (2008) used skylines to mine user preferences and make
recommendations.

All of the studies on skyline computation and analysis reviewed above focus on
certain data. Our study extends the skyline computation and analysis to uncertain
data. As shown in the previous section, extending skyline queries to uncertain data
is far from straightforward. It involves both the development of skyline models and
the design of novel algorithms for efficient computation.

7.3 Probabilistic skyline computation on uncertain data

After our preliminary work (Pei et al. 2007b) introduced the concept of probabilistic
skyline on uncertain data, there are some following studies adopting our probabilistic
skyline model (Section 2).

Lian and Chen (2008) studied the bichromatic probabilistic reverse skyline
(BPRS) queries over uncertain data. A BPRS query takes two data sets A, B and
a query object q as the input, and outputs those objects o ∈ A such that the dynamic
skyline of o in the data set B contains q. The dynamic skyline of an object p
corresponds to a transformed data space where p becomes the origin and all other
points are represented by their distance vectors to p. The main techniques to answer
a BPRS query also follow our bounding-pruning-refining framework.

Atallah and Qi (2009) proposed to compute the skyline probability of all instances
of all objects without setting a threshold. They developed algorithms based on a
space partitioning technique. The worst-case time complexity is sub-quadratic to the
number of objects, however, exponential to the dimensionality. So, their algorithms
mainly focus on the 2-dimensional case, and it is not practical for higher dimensional
cases.

Böhm et al. (2009) studied the continuous case of the probabilistic skyline query
where every object is modeled as a mixture Gaussian distribution. Their techniques
cannot be applied directly to the discrete case.

Zhang et al. (2009a) extended the probabilistic skyline operator to data streams
using a sliding window model. Their techniques are also under the bounding-pruning-
refining framework with an index structure to efficiently handle updates.

The above studies investigated the variations of our p-skyline query in different
environments under the probabilistic skyline model. The techniques developed
within either follow the bounding-pruning-refining framework or cannot be applied
directly to answer p-skyline queries.
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8 Empirical study

In this section, we report an extensive empirical study to examine the effectiveness
and the efficiency of probabilistic skyline analysis on uncertain data. All the experi-
ments were conducted on a PC with Intel P4 3.0 GHz CPU and 2 GB main memory
running the Debian Linux operating system. All algorithms were implemented in
C++.

8.1 Effectiveness of probabilistic skylines

To verify the effectiveness of probabilistic skylines on uncertain data, we use a real
data set of the NBA game-by-game technical statistics from 1991 to 2005 downloaded
from www.NBA.com. The NBA data set contains 339,721 records about 1,313
players. We treat each player as an uncertain object and the records of the player as
the instances of the object. Three attributes are selected in our analysis: number of
points, number of assists, and number of rebounds. The larger those attribute values,
the better.

Table 2 shows the 0.1-skyline players in the skyline probability descending order.
We also conducted the traditional skyline analysis. We calculated the average statis-
tics for each player in each attribute. That is, each player has only one record in the
aggregate data set. We computed the skyline on the aggregate data set, which is called
the aggregate skyline for short hereafter. All skyline players in the aggregate skyline
are annotated by a “*” sign in Table 2. We obtain several interesting observations.

Table 2 0.1-skyline players in skyline probability descending order

Name Skyline Name Skyline
probability probability

LeBron James* 0.350699 Magic Johnson* 0.151813
Dennis Rodman* 0.327592 Chris Paul* 0.149264
Shaquille O’Neal* 0.323401 Gilbert Arenas 0.142883
Charles Barkley* 0.309311 Clyde Drexler 0.138993
Kevin Garnett* 0.302531 Patrick Ewing 0.13577
Jason Kidd* 0.293569 Rod Strickland 0.135735
Allen Iverson* 0.269871 Brad Daugherty 0.133572
Michael Jordan* 0.250633 Steve Francis 0.131061
Tim Duncan* 0.241252 Dirk Nowitzki 0.130301
Karl Malone* 0.239737 Paul Pierce 0.127079
Chris Webber* 0.22153 Gary Payton* 0.126328
Kevin Johnson* 0.208991 Baron Davis 0.125298
Hakeem Olajuwon 0.203641 Vince Carter 0.122946
Kobe Bryant 0.200272 Antoine Walker 0.121745
Dwyane Wade 0.199065 Steve Nash 0.115874
Tracy Mcgrady 0.198185 Andre Miller 0.11275
Grant Hill* 0.191164 Isiah Thomas 0.11076
John Stockton* 0.183591 Elton Brand 0.10966
David Robinson 0.177437 Scottie Pippen 0.108941
Stephon Marbury* 0.16683 Dominique Wilkins 0.104323
Tim Hardaway* 0.166206 Lamar Odom* 0.101803

http://www.NBA.com
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First, probabilistic skylines can capture the knowledge obtained from traditional
skyline analysis. The top-12 players with the largest skyline probabilities are also in
the aggregate skyline. All of them are great players. Those players not only have good
average performance so that they are in the aggregate skyline, but also performed
outstandingly in some games so that they have a high skyline probability.

Second, traditional skylines can be biased by outliers. Some players that are not in
the aggregate skyline may still have a high skyline probability. There are 22 players
who are not in the aggregate skyline, but have a higher skyline probability than
Odom who is a skyline player in the aggregate data set. Olajuwon is an example.
Figure 13 plots the number of points and the number of rebounds of the game records
of Olajuwon and Odom at a sample rate of 5% (so that the figure is readable). We
observe that Olajuwon has some bad games (e.g, zero point and three rebounds)
which hinder his average statistics. On the other hand, Odom has a few good games
(e.g, more than 25 points and 12 rebounds) which help his average statistics. But
overall, Olajuwon could be a better player since he has many more great games (e.g.,
40 points and 19 rebounds).

In more details, Olajuwon is dominated by four other players in the aggregate
data set: O’Neal, Barkley, Duncan, and Webber. In Fig. 14, we plot their game
records. Olajuwon has some records (e.g., 40 points and 19 rebounds) dominating
most records of other players. On the other hand, he also has some records (e.g.,
zero point and three rebounds) that are dominated by many records of other players.
Comparing to the four players dominating him, Olajuwon’s performance has a
sparser distribution.

Comparing to the aggregate skyline, the probabilistic skyline finds not only players
consistently performing well, but also outstanding players with relatively inconsistent
performance possibly due to aging or injuries.

Third, a player A may have a higher skyline probability than a player B who
dominates A in the aggregate data set. As an example, Ewing has a higher skyline
probability than Brand, though Ewing is dominated by Brand in the aggregate data
set. We plot a sample with ratio 5% of both players in Fig. 15. Their aggregate values
are also shown in the figure. The performance of Ewing is more diverse than that
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of Brand. Ewing played very well in a few games, which explains why Ewing has a
higher skyline probability.

In summary, probabilistic skylines disclose more knowledge about uncertain data
by considering the instance distributions of objects which cannot be captured by
traditional skyline analysis, and provide a more comprehensive view on advantages
of uncertain objects than skylines using only the aggregate of such objects. Inter-
estingly, we can rank uncertain objects using skyline probabilities, while the skyline
on aggregate of uncertain data cannot reflect the differences on the opportunities of
uncertain objects not to be dominated by other objects. This is another significant
advantage of probabilistic skyline analysis.

8.2 Performance evaluation

To verify the efficiency and the scalability of our algorithms, we use the NBA real
data set as well as synthetic data sets in anti-correlated, independent, and correlated
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distributions. For the synthetic data sets, the domain of each dimension is [0, 1]. The
dimensionality d by default is 4. The cardinality (i.e., number of uncertain objects)
m by default is 10,000. We first generated the centers of all uncertain objects using
the benchmark data generator described in Borzsonyi et al. (2001). Then, for each
uncertain object, we use the center to generate a hyper-rectangle region where the
instances of the object appear. The edge size of the hyper-rectangle region follows
a normal distribution in range [0, 0.2] with expectation 0.1 and standard deviation
0.025. The instances of the object distributed uniformly in the region. The number of
instances of an uncertain object follows uniform distribution in range [1, l], where l is
400 by default. Thus, in expectation, each object has l

2 instances, and the total number
of instances in a data set is ml

2 (2,000,000 by default). The probability threshold p is
0.3 unless otherwise specified. Table 3 summarizes the experiment settings.

8.2.1 Probabilistic skyline size

Figure 16 shows the size of probabilistic skylines (i.e., the number of objects in
a probabilistic skyline) with respect to three important factors: the probability
threshold, the dimensionality and the cardinality. Generally, anti-correlated data sets
have the largest skyline size. Correlated data sets have the smallest skyline size. This
is similar to the situations of skylines on certain objects. As shown in Fig. 16a, the
higher the probability threshold, the smaller the skyline size. This is because a p-
skyline contains a p′-skyline if p < p′. Figure 16b shows the results on the NBA
data set, which is in a consistent trend. Figure 16c and d show that the skyline size
increases with higher dimensionality and larger cardinality, which is also similar to
the situations of skylines on certain data sets. As the dimensionality increases, the
data set becomes sparser. An object has a better opportunity not to be dominated in
all dimensions. As the cardinality increases, more objects may have chances not to
be dominated.

8.2.2 Ef f iciency and scalability

Figure 17 shows the overall performance of the bottom-up algorithm (BU), the top-
down algorithm (TD), the hybrid algorithm (HY), and an exhaustive algorithm (EX)
for benchmarking purpose. To compute the p-skyline on a data set, without any
pruning techniques, EX has to compute the skyline probability for each uncertain
object. The numbers on the bars give the exact runtime of the algorithms on the data
sets.

BU, TD, and HY are much faster than EX. The results clearly indicate that
the pruning techniques in BU and TD significantly save the cost of computing the
exact skyline probabilities of many instances and objects. HY is the fastest on anti-
correlated and independent data sets while it is a little slower than BU on the NBA
data set.

Table 3 The summary of
experiment settings

Notation Definition (default values)

m Cardinality of the data set (10,000)
d Dimensionality of the data set (4)
l Maximum number of instances per object (400)
p Probability threshold (0.3)
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Fig. 16 The size of p-skyline with respect to probability threshold p, dimensionality d, and
cardinality m

Computing skylines on anti-correlated data sets is much more challenging than
the other cases as reflected the runtime in Fig. 17. In the rest of this section, we focus
on analyzing in detail the performance of our algorithms on anti-correlated data sets.

Figure 18 compares BU, TD, and HY with respect to probability threshold,
dimensionality, and cardinality. All algorithms follow similar trends. The hybrid

Fig. 17 Overall performance
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Fig. 18 Scalability with respect to probability threshold

algorithm outperforms BU and TD and reduces the worst case runtime by 50% (e.g.,
case 6d in Fig. 18b and case 20k in Fig. 18c).

Figure 18a shows that the runtime of the three algorithms decreases as the
probability threshold p increases from 0.1 to 0.9, because when p becomes larger,
there are less p-skyline objects and it is easier to prune non-skyline objects. We can
also see that BU performs better than TD when p < 0.5, while worse when p ≥ 0.5.
As described in Section 6, BU needs to process at least p × 100% instances of a
skyline object to boost the lower bound to at least p. Thus, BU runs slower than TD
when p is large.

In Fig. 18b, the runtime of the three algorithms increases when the dimensionality
increases from 2 to 6, but decreases afterward. On the one hand, the cost of
dominance testing between two instances, which is the basic operation in both
algorithms, increases as the dimensionality increases. On the other hand, the average
number of possible dominating objects for an uncertain object decreases since the
data set becomes sparser when the dimensionality increases. The trend of runtime
reflects the compromise of the two factors.

The higher the dimensionality, the sparser the data set. The larger the cardinality,
the denser the data set. Figure 18b and c indicate that TD performs better when the
data set is sparser. In sparse data sets, the subset instances of uncertain objects may
have a smaller chance to overlap, and a better chance to be pruned by some subset
instances of other objects. Besides, objects in sparse data sets are likely to have large
skyline probabilities, since for each object, there are less possible dominating objects
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Fig. 19 Pruning effect in BU
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and the dominance relations are weaker. This is not a good case for BU as it takes
high cost for BU to accumulate lower bounds. Thus, TD has better performance. On
the other hand, in dense data sets, the skyline probability of an instance may improve
the bounds of the probabilities of more other instances and objects, and BU performs
better.

8.2.3 Ef fectiveness of pruning techniques

The performance of BU mainly depends on the efficiency of pruning instances and
objects so that their skyline probabilities do not need to be computed. Figure 19
counts, for each object, the percentage of instances whose skyline probabilities are
computed by BU. We group the objects by the percentage in six ranges, and count
the proportion of each group in the whole data set. It is clear that more than 90% of
the objects in the NBA, independent, and correlated data sets are pruned after 20%
of the instances are processed. Even for anti-correlated data sets, the corresponding
figure is 66%. The pruning is more effective on independent and correlated data sets.
That explains the difference of runtime on synthetic data sets.

Figure 20 counts the percentage of objects pruned by the pruning rules in BU
(Section 4.2). Rule 3 is not counted since it prunes instances only. Every rule

Fig. 20 Effectiveness of
pruning in BU
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Fig. 21 Pruning effect in TD—runtime in each round

takes effect in some situations. Rule 4 is particularly effective on independent and
correlated data sets where 84 and 97% objects are pruned, respectively. In those
data sets, it is more likely that an object is completely dominated by another.

Figures 21 and 22 examine the effectiveness of the pruning techniques in TD.
Figure 21a and b show the runtime of each round of partitioning on the NBA data
set and the synthetic data sets, respectively. On all data sets, the runtime increases
at first, since after such a round the leaf nodes not pruned are partitioned into more
nodes. The runtime decreases in the later rounds. This is because the effectiveness
of pruning in TD becomes stronger when the leaf nodes are smaller, such that the
numbers of remaining objects and nodes decrease significantly.

Figure 22 shows in each round the number of objects whose probabilistic skyline
memberships are determined. Recall that in round 0, the top-down method prunes
uncertain objects using their MBBs. On the NBA data set, rounds 2–8 prune most
of the objects, while on the synthetic data sets, most of the objects are pruned in the
first round. Again, the pruning is more effective on independent and correlated data
sets.

In summary, our two algorithms are effective and efficient in computing proba-
bilistic skylines. They are also scalable on our large data sets containing millions of
instances.
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9 Discussion and conclusions

In this paper, we extended the well-known skyline analysis to uncertain data, and de-
veloped four efficacious algorithms to tackle the problem of computing probabilistic
skylines on uncertain data. Using real data sets and synthetic data sets, we illustrated
the effectiveness of probabilistic skylines and the efficiency and scalability of our
algorithms.

Although we focused on the discrete case, some of our ideas can be applied to
handle the continuous case, i.e., each uncertain object is represented by a probability
density function. For example, in the top-down algorithm, for each uncertain object,
we can initially partition the space into two regions such that the probability of the
object in each region is 0.5. Each region can be represented by a bounding box. We
can estimate the skyline probabilities of the bounding boxes and recursively partition
the bounding boxes into smaller ones until the skyline probabilities of uncertain
objects can be determined against the threshold. A detailed exploration on efficient
methods for computing probabilistic skylines on continuous data will be given by
another study.

Advanced data analysis on uncertain data is an interesting direction. In the future,
we plan to exploit the probabilistic skyline analysis in real applications, and explore
more analytical tasks on uncertain data.
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