
The VLDB Journal
DOI 10.1007/s00778-009-0162-1

REGULAR PAPER

Threshold-based probabilistic top-k dominating queries

Wenjie Zhang · Xuemin Lin · Ying Zhang · Jian Pei ·
Wei Wang

Received: 10 May 2008 / Revised: 5 May 2009 / Accepted: 27 June 2009
© Springer-Verlag 2009

Abstract Recently, due to intrinsic characteristics in many
underlying data sets, a number of probabilistic queries on
uncertain data have been investigated. Top-k dominating que-
ries are very important in many applications including deci-
sion making in a multidimensional space. In this paper, we
study the problem of efficiently computing top-k dominat-
ing queries on uncertain data. We first formally define the
problem. Then, we develop an efficient, threshold-based
algorithm to compute the exact solution. To overcome some
inherent computational deficiency in an exact computation,
we develop an efficient randomized algorithm with an accu-
racy guarantee. Our extensive experiments demonstrate that
both algorithms are quite efficient, while the randomized
algorithm is quite scalable against data set sizes, object areas,
k values, etc. The randomized algorithm is also highly accu-
rate in practice.

Keywords Uncertain objects · Top k · Dominating relation

W. Zhang · X. Lin (B) · Y. Zhang · W. Wang
The University of New South Wales and NICTA,
Sydney, Australia
e-mail: lxue@cse.unsw.edu.au

W. Zhang
e-mail: zhangw@cse.unsw.edu.au

Y. Zhang
e-mail: yingz@cse.unsw.edu.au

W. Wang
e-mail: weiw@cse.unsw.edu.au

J. Pei
Simon Fraser University, Burnaby, Canada
e-mail: jpei@cs.sfu.ca

1 Introduction

Managing uncertain data has been studied ever since the
eighties of the last century by the database society [1,4,24,
29]. A great deal of research attention has been drawn in
the field recently as a result of many emerging, important
applications related with data uncertainty, including sensor
data analysis, economic decision making, market surveil-
lance and trends predication, etc. Uncertainty is inherent in
such applications due to various factors such as data random-
ness and incompleteness, limitation of equipment, and delay
or loss in data transfer. A number of issues have been recently
addressed; these include modeling uncertainty [2,36], query
evaluation [10,13,14,37], indexing [11,41], top-k queries
[22,35,39,42], skyline queries [34], joins [26,27], nearest
neighbor query [5,9,27], clustering [28,30], etc.

Top-k dominating queries and skyline are shown as useful
tools in decision making [6,33,40,43] to rank certain data.
A top-k dominating query retrieves the k objects with the
highest dominating ability, that is, the k objects that domi-
nate the largest number of other objects. It is formally defined
as follows [43]. Suppose that X is a set of d-dimensional
points. For a point x ∈ X , the score function is defined as
the number of points dominated by x , namely, score(x) =
|{x ′ ∈ X |x ≺ x ′}|. Here, x ≺ x ′ if the coordinate value of x
is not greater than that of x ′ at each dimension with at least
one dimension at which the coordinate value of x is smaller
than that of x ′. score(x) is a useful ranking function due to
the following ordering property [43]: ∀x, x ′ ∈ X , x ≺ x ′ ⇒
score(x) > score(x ′). A top-k dominating query retrieves
the k points in X with the highest scores. The skyline opera-
tor retrieves all objects from X which are not dominated by
other objects.

The skyline operator and top-k dominating queries
rank objects in different ways: skyline ranks objects in a

123

W. Zhang et al.

5

10

15

20

1 2 3 4 5
(6 - AST)

(30 - PTS)

6

25

30

o

e

b

Fig. 1 Average

Kwame Brown (B)

Elton Brand (E)

Shaquille Oneal (O)

5

10

15

20

1 2 3 4 5
(6 - AST)

(30 - PTS)

o 3

6

25

30

o 2

o 1

e1

e2

e3

b 1

b 2

b 3

Fig. 2 NBA players

“defensive” way and outputs the objects which are not worse
than any other objects in a given dataset, while a top-k domi-
nating query ranks objects in an “assertive” way and provides
the objects that are better than the largest number of other
objects. As pointed out in [43], the benefit of using top-k
dominating queries is to assimilate the advantages of top-k
queries and the skyline operator. That is, the result size in a
top-k dominating query is strictly controlled by k, while like
skyline operators, top-k dominating queries do not require a
specific ranking function and are not affected by potentially
different scales at different dimensions.

Figure 1 shows the average performance of three popular
NBA players from three selected games in their rookie sea-
sons with respect to two statistics aspects, number of assists
(AST) and number of points (PTS). To retain the prefer-
ence of smaller values, we record (30 − PT S) and (6 −
AST) in Fig. 1, while the corresponding three game statistics
are depicted in Fig. 2. According to the aggregate informa-
tion (average performance), the skyline consists of Shaqu-
ille O’neal and Elton Brand and the top-2 dominating query
also returns O’neal and Brand in this example. Both domi-
nate Brown but there is no dominating relationship between
O’neal and Brand.

Motivating example. Take NBA players as an example.
NBA players may be ranked in various ways. Dominating
queries provide an effective way to rank a player accord-
ing to the number of other players whom this player outper-
forms. Using aggregates, such as AVERAGE per game, to
summarize game statistics and then to count dominating rela-
tionships by the top-k dominating computation techniques in
[43] is an option. While aggregates such as AVERAGE per
game is useful to summarize the statistic information, they
do not quite reflect the actual game-by-game performances
and may be potentially affected by “outliers”.

As depicted in Fig. 2, O’neal’s overall performance is
affected by a bad outlier-o3. Consequently, O’neal ties with
Brand if we choose the top-1 dominating player according
to the aggregate information in Fig. 1. However, intuitively
O’neal should be the winner based on the game-by-game sta-
tistics in Fig. 2. The examples depicted in Figs. 1 and 2 are
quite representative.

We have conducted an evaluation on the fourteen 1st picks
from 1991 to 2004 regarding their rookie seasons. To con-
duct a fair evaluation, we use the first 54 games (i.e. their
rookie season games) against three kinds of game-by-game
statistics, scores, rebounds, and assists since the year 1997
only has 54 games in the regular season. The second column
of Table 1 illustrates the ranks (bold number) of these players
based on the number (the number in the bracket) of players
dominated by them, respectively, using the average statistics
per player, where Duncan is ranked first, Johnson is ranked
2nd, Webber and Brand are tied at 3rd, and O’neal is ranked
5th. Note that it is commonly believed that O’neal has the
best rookie season among those players especially compar-
ing to Brand’s rookie season.1 Thus, the top-k dominating
queries against aggregates (average) may not provide right
semantics for the applications where each object has multiple
“instances” to occur.

Conducting an aggregate (e.g. average) after removing
outliers and then applying the top-k dominating computa-
tion technique in [43] is a possible paradigm. To verify the
affect of such a paradigm, we conduct the experiment on the
above rookie data. We first employ one of the most popu-
lar clustering algorithms, DBSCAN [17], to remove 2, 5, 10
and 20% of instances as outliers from each player by choos-
ing the distance and density parameters. Then, we calculate
the average performance over remaining data for each player
and then do the domination counting against the average per-
formance. The result is depicted in Table 1 where x% for
x = 2, 5, 10, 20 means x% of outliers have been removed.
Table 1 shows that removing outliers does not quite affect
the above rankings; this is because that there are bad outli-
ers and good outliers. Therefore, the paradigm of removing

1 See wikipedia and also http://armchairgm.wikia.com/Top_No.
_1_Overall_NBA_Draft_Picks.

123

http://armchairgm.wikia.com/Top_No._1_Overall_NBA_Draft_Picks
http://armchairgm.wikia.com/Top_No._1_Overall_NBA_Draft_Picks

Threshold-based probabilistic top-k dominating queries

Table 1 Ranks of NBA first
picks after removing outliers

Name Ranks

Agg 2% 5% 10% 20%

O’neal, S 5 (4) 5 (4) 3 (5) 5 (4) 5 (4)

Johnson, L 2 (6) 1 (7) 2 (6) 1 (8) 1 (10)

Duncan, T 1 (7) 1 (7) 1 (7) 2 (7) 2 (7)

Webber, C 3 (5) 3 (5) 3 (5) 3 (5) 3 (5)

Brand, E 3 (5) 3 (5) 3 (5) 3 (5) 3 (5)

James, L 6 (2) 6 (2) 6 (2) 6 (2) 6 (2)

Robinson, G 10 (1) 10 (1) 10 (1) 10 (1) 10 (1)

Smith, J 6 (2) 6 (2) 6 (2) 6 (2) 6 (2)

Iverson, A 10 (1) 10 (1) 10 (1) 10 (1) 10 (1)

Ming, Y 6 (2) 6 (2) 6 (2) 6 (2) 6 (2)

Howard, D 6 (2) 6 (2) 6 (2) 6 (2) 6 (2)

Martin, K 10 (1) 10 (1) 10 (1) 10 (1) 10 (1)

Olowokandi, M 13 (0) 13 (0) 13 (0) 13 (0) 13 (0)

Brown, K 13 (0) 13 (0) 13 (0) 13 (0) 13 (0)

Table 2 Ranks of NBA first picks

Name Ranks

Agg 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

O’neal, S 5 (4) 1 (1) 1 (2) 1 (2) 1 (3) 1 (4) 1 (5) 1 (5) 1 (6) 3 (7)

Johnson, L 2 (6) 2 (0) 2 (1) 1 (2) 1 (3) 1 (4) 1 (5) 1 (5) 1 (6) 1 (8)

Duncan, T 1 (7) 2 (0) 2 (1) 1 (2) 1 (3) 3 (3) 3 (4) 1 (5) 1 (6) 1 (8)

Webber, C 3 (5) 2 (0) 2 (1) 4 (1) 4 (2) 3 (3) 3 (4) 4 (4) 4 (5) 3 (7)

Brand, E 3 (5) 2 (0) 5 (0) 4 (1) 4 (2) 5 (2) 5 (3) 5 (3) 5 (4) 5 (6)

James, L 6 (2) 2 (0) 5 (0) 6 (0) 6 (1) 6 (1) 6 (2) 5 (3) 5 (4) 6 (5)

Robinson, G 10 (1) 2 (0) 5 (0) 6 (0) 6 (1) 6 (1) 6 (2) 7 (2) 7 (3) 8 (4)

Smith, J 6 (2) 2 (0) 5 (0) 6 (0) 8 (0) 6 (1) 6 (2) 7 (2) 7 (3) 8 (4)

Iverson, A 10 (1) 2 (0) 5 (0) 6 (0) 8 (0) 6 (1) 9 (1) 7 (2) 7 (3) 8 (4)

Ming, Y 6 (2) 2 (0) 5 (0) 6 (0) 8 (0) 6 (1) 9 (1) 7 (2) 7 (3) 6 (5)

Howard, D 6 (2) 2 (0) 5 (0) 6 (0) 8 (0) 11 (0) 9 (1) 11 (1) 11 (2) 12 (2)

Martin, K 10 (1) 2 (0) 5 (0) 6 (0) 8 (0) 11 (0) 9 (1) 11 (1) 11 (2) 11 (3)

Olowokandi, M 13 (0) 2 (0) 5 (0) 6 (0) 8 (0) 11 (0) 13 (0) 13 (0) 13 (1) 13 (1)

Brown, K 13 (0) 2 (0) 5 (0) 6 (0) 8 (0) 11 (0) 13 (0) 13 (0) 14 (0) 14 (0)

outliers and then applying the top-k dominating computation
may suffer from the following issues.

– The actual distributions of multiple instances are not
addressed.

– Since ‘bad” and “good” performance outliers have dif-
ferent affects, the contributions of “outliers” are not eval-
uated.

Probabilistic dominating queries. To address the appli-
cations where an object has multiple instances (e.g. game

statistics of a NBA player), in this paper we develop a prob-
abilistic model to measure the dominating ability of each
object. Unlike conventional dominating queries, from proba-
bilistic point of view each object could dominate any number
of objects even with a very small probability (say 0, or close
to 0). Therefore, we use the probability q by which an object
dominates at least l objects to measure the dominating abil-
ity; that is, the dominating ability of an object U is measured
by two parameters (q, l). Generally, the larger l, the smaller
q. Consequently, there are two ways to model a probabilistic
dominating query.

123

W. Zhang et al.

1. Given a probability threshold q, for each object U com-
pute the maximum l such that U dominates at least l
other objects with probability not smaller than q.

2. Given a threshold l, for each object U compute the max-
imum q such that U dominates at least l objects with
probability not smaller than q.

In the second model, q could be very small. To control the
value of q, in this paper we focus on the first model. Nev-
ertheless our techniques can be immediately applied to the
second model; we will discuss this in Section 7. In Table 2,
we show the ranking results according to the 1st model where
we assign each game statistic by the same occurrence proba-
bility. The 3rd to 11th columns show the ranks based on dif-
ferent probability thresholds, respectively. For example, in
the column headed by the threshold 0.5, O’neal dominates at
least 4 (the number in bracket) other players with at least the
probability 0.5; thus he is ranked 1st (bold number). Clearly,
O’neal is the winner against each of those probability thresh-
olds except when the probability threshold is 0.1 (worse than
Duncan and Johnson). The probabilistic rankings catch the
common perception better. It is also interesting to note that
Duncan dominates seven players with a probability between
0.1 to 0.2, while according to the average (aggregate) game
statistics Duncan actually dominates seven players. Clearly,
the domination counting regarding a small q is largely biased
towards to “good” outliers. On the other hand, the phenom-
enon for a very large q (close to 1) is not very meaningful
since q is always 1 if l = 0. The most interesting part of q is
towards the middle of (0, 1]; these values will show the dom-
inating ability among majority instances of objects, respec-
tively. In addition, our probabilistic model provides a tool for
us to “drill down” information against different probabilistic
threshold values to provide the breakdown information like
that in Table 2.

Probabilistic top-k dominating queries. In this paper, we
will study the problem of retrieval of k objects with the
maximum values of l for a given probability threshold q
(i.e., based on the 1st model). We will adopt the assump-
tion that the probability distribution of the object is indepen-
dent to each other due to the following reasons. Firstly, it
is a common model currently adopted in probabilistic query
processing. Secondly, handling dependence among a large
number of objects is not only complex but also expensive,
while applications with the assumption of independent dis-
tributions exist. For example, regarding the above example
there is no reason to believe a dependence among those 1st
picks’ performance in their rookie season across different
years, given the game rules are the same and the other play-
ers in each year have similar talents. Similarly, we could
also evaluate the top-k all-round gymnastics players with
the same gender by treating each competition record as an
instance of a player where each competition record consists

of scores for each individual programs. In male competitions,
scores from Vault, Floor, Parallel bars, Rings, Pommel horse
and Horizontal bar are recorded in each competition, respec-
tively, as a 6-dimensional instance. While the performances
of each female player in four programs (Vault, Floor, Uneven
bars and Balance beam) are recorded per each competition.
Clearly, the performances of the players are independent with
each others.

Contributions. As shown above, dominating relationships
among uncertain objects are quite complex and probabilistic
distribution dependent. Moreover, due to the nature of uncer-
tain data and dominating queries, an expensive computation
will be involved in exactly computing “probabilistic” scores
of objects; consequently, it is too expensive to compute such
scores for all objects.

In this paper, we investigate the problem of efficiently
computing the top-k dominating queries against uncertain
objects where object PDFs are not available; that is, we deal
with discrete cases. To the best of our knowledge, this is the
first work addressing the top-k dominating query over uncer-
tain data. Our contributions may be summarized as follows.

– We formally define a top-k dominating query on uncer-
tain data with a given probability threshold imposed to
support different confidence requirements.

– An efficient, threshold-based exact algorithm is proposed
to take an advantage of the threshold-based paradigm
[18]. Based on a novel application of laws of large num-
bers [20] and mathematic characterizations, a set of novel,
effective pruning techniques have been proposed to pur-
sue efficiency.

– We develop an efficient randomized algorithm with an
accuracy guarantee. Novel processing techniques and data
structures are developed in our randomized techniques.

An extensive experimental study over synthetic and real data
shows that our exact algorithm performs well, while our ran-
domized algorithm is not only highly accurate and more effi-
cient than the exact algorithm but also quite scalable against
data sizes, object uncertain areas, k values, etc.

Organization of the paper. The rest of this paper is orga-
nized as follows. Section 2 formally defines probabilistic top-
k dominating queries and presents preliminaries. Section 3
briefly outlines the framework of our exact and random-
ized algorithms. In Sect. 4, we present our exact algorithm.
Following the framework of exact algorithm, a novel ran-
domized algorithm is presented in Sect. 5. Our experiment
results are reported in Sect. 6. This is followed by the discus-
sions regarding the model where a threshold of a domination
counting is given and the general cases where probabilistic
distributions may be correlated. The related work is presented
in Sect. 8. We conclude our paper in Sect. 9.

123

Threshold-based probabilistic top-k dominating queries

Table 3 The summary of
notations Notation Definition

U Set of uncertain objects

U , V Uncertain objects

u, v Instances of uncertain objects

E Entry in an aR-tree of objects, instances, and samples

M B BU (M B BE) Minimum bounding box of U (E)

µU (µE) Upper-right corner of M B BU (M B BE)

ıU (ıE) Lower-left corner of M B BU (M B BE)

P(τ) Probability of τ to occur

q Probability threshold of a query

pscore(υ) Probabilistic score of υ (υ = U or u)

pscore+ Upper bound of pscore

P=l(U)(P=l (u)) Probabilities to dominate l objects

P≥l(U)(P≥l (u)) Probabilities to dominate ≥ l objects

γk Minimum pscore of the top-k objects

λk Minimum pscore of the current top-k objects

P(u ≺ V) Probability of u dominating V

� Set of possible worlds

Li (U) i th level entries in an aR-tree of U

Pupper Upper bound of probability P

P D(U) (F D(U)) Set of objects partially (fully) dominated by U

P D(E) (F D(E)) Set of entries (objects) partially (fully) dominated by E
−→U Partially ordered list of uncertain objects

2 Background information

We first model the problem and then, present the preliminar-
ies of the paper. For reference, notations used in this paper
are summarized in Table 3.

2.1 Problem statement

Our investigation in the paper will focus on discrete cases.
An uncertain object U is represented by a set of instances
such that each instance u ∈ U is a point in a d-dimensional
numeric space D = {D1, . . . , Dd} with the probability P(u)

to occur where 0 < P(u) ≤ 1 and
∑

u∈U P(u) = 1.
Given a set of uncertain objects U = {U1, . . . , Un}, a pos-

sible world W = {u1, . . . , un} is a set of n instances - one
instance per uncertain object. The probability of W to appear
is P(W) = ∏n

i=1 P(ui). Let � be the set of all possible
worlds; that is, � = U1×U2 · · ·×Un . Then,

∑
W∈� P(W) =

1.
��,U denotes the set of possible worlds in each of which

the instance u ∈ U dominates exactly � other instances.
Clearly, the probability P=�(U) of U dominating exactly �

objects is:

P=�(U) =
∑

W∈��,U

P(W). (1)

Example 1 Regarding the example in Fig. 2, we treat every
player as an uncertain object and each game statistic as an
instance of the object. Unless specified otherwise, the occur-
ring probability of each instance is 1/3. �1,O = {{o3, e1, b3},
{o3, e2, b3}, {o3, e3, b3}, }. Dominating probabilities of each
player are as follows.
P=0(O) = 2/9, P=1(O) = 3/27, P=2(O) = 2/3;
P=0(E) = 0, P=1(E) = 2/3, P=2(E) = 1/3;
P=0(B) = 1, P=1(B) = 0, P=2(B) = 0.

As mentioned earlier, unlike dominating queries on cer-
tain objects, an uncertain object can dominate any number
of objects with some probability. Nevertheless, such domi-
nating probabilities could be very small (even zero); results
with a small probability to occur are not very interesting. To
resolve this, in our problem definition we enforce a probabil-
ity threshold, and we model probabilistic dominating queries
in an accumulative way; that is, we look for the objects that
dominate at least �other objects with at least probability (con-
fidence) q. We assign a probabilistic score, pscoreq(U), to
each uncertain object U as follows.

Let P≥�(U) denote the probability of U dominating at
least � other objects. Clearly,

P≥�(U) =
n∑

i=�

P=i (U). (2)

123

W. Zhang et al.

fully dominated
y

x

partially dominated

not dominated

U

V 2V 3

V 1

Fig. 3 Dominating relationships

Definition 1 (pscoreq) pscoreq(U) is the maximum � such
that P≥�(U) ≥ q.

Note that for notation simplification, pscoreq is hereafter
abbreviated to pscore whenever there is no ambiguity.

Definition 2 (PtopkQ) Given a probability threshold q, an
integer k, and a set U of uncertain objects, PtopkQ retrieves
the k objects with the highest pscore values. Ties are broken
arbitrarily.

Example 2 Regarding the example in Fig. 2 when q = 2/3,
pscoreq(O) = 2, pscoreq(E) = 1 and pscoreq(B) = 0;
that is, O’neal is the top dominating player.

In this paper, we will develop efficient exact algorithms as
well as efficient and effective randomized algorithms to com-
pute PtopkQ.

2.2 Preliminaries

Dominating relationships. A pair U , V of uncertain objects
may have three relationships as illustrated in Fig. 3.

Let M B BU denote the minimum bounding box of the
instances of an uncertain object U . µU and ıU are the upper-
right and lower-left corner of M B BU , respectively. An object
U fully dominates another object V if µU ≺ ıV , and partially
dominates V if ıU ≺ µV but µU ⊀ ıV , including µU = ıV .
Otherwise, U does not dominate V . As depicted in Fig. 3,
U does not dominate V1, partially dominates V3, and fully
dominates V2.

Centroid. The dominating ability of an object is determined
by the distribution of its instances and its relationships to the
distributions of instances of other objects. The centroid ω(U)

of instances will be used in our algorithms to approximately
represent the distribution of instances. Formally, ω(U) =
∑

u∈U P(u) × u.

aR-tree. An aggregate R-tree (aR-tree) [31] is an extension
of R-tree [21] where each entry keeps the number of objects
contained. Figure 4 illustrates 9 data points indexed by an
aR-tree, bounded by 3 MBBs at the leaf level.

Top-k dominating query on certain data. Given a k and
a set of points, the CBT (cost-based traversal) algorithm in

Y

X

E1

E3

E2

root

Fig. 4 Certain data

[43] selects the k points with the highest dominating score
values. Recall that score(x) of a point is the number of other
points dominated by x . Below we briefly introduce CBT, to
be used as a black-box in the preprocessing of our algorithm
in Sect. 4.1.

In CBT, an aR-tree is used. The algorithm CBT traverses
the aR-tree level by level to calculate a lower bound score−
(E) and an upper-bound score+(E) of the number of points
dominated by a point in an entry E of aR-tree. An entry E is
pruned if score+(E) is not greater than the current kth larg-
est score− and the points in E are the solution if score−(E)

is not smaller than the current kth largest score+; otherwise
E will be drilled down to the lower level; these are con-
ducted by taking the consideration of the number of points
in intermediate entries of aR-tree. In our preprocessing, we
will make use of the entries that are either pruned or stayed in
the job queue when the algorithm CBT terminates. Clearly,
these entries are disjoint and cover all points. Note that these
entries can be either points or intermediate entries. Below is
an example.

Example 3 Regarding the example in Fig. 4, if k=2, the algo-
rithm terminates with the following entries in the job queue:

{ω1.[6, 6], ω4.[4, 4], ω2.[3, 3], ω3.[3, 3],
ω5.[0, 3], ω6.[0, 0]},

while E3.[0, 2] is pruned. In each entry representation, the
left-end in the bracket is score− and the right-end is score+.
Top-2 dominating results retrieved is thus ω1 and ω4.

Efficient computation of dominating probabilities. P(u ≺
V) denotes the probability that an instance u ∈ U dominates
an uncertain object V ; that is, the sum of the probabilities of
the instances in V which are dominated by u. For instance
regarding the example in Fig. 2, P(o3 ≺ B) = 1/3 (recall
each instance takes the probability 1/3 to occur).

Let P=�(u) denote the probability that an instance u ∈ U
dominates � other objects. �U−U

� (u) denotes the subset of
possible worlds in

∏
V ∈U−U V in each of which u dominates

exactly � instances. Clearly, P=�(u) = ∑
W∈�U−U

� (u)
P(W).

123

Threshold-based probabilistic top-k dominating queries

Example 4 Regarding Fig. 2, let U=E , and �=2. Then,
�U − U

� (e1) = {(o3, b1), (o3, b2), (o3, b3)}. P=2({e1}) =
1/3 ∗ 1/3 +1/3 ∗ 1/3 + 1/3 ∗ 1/3 = 1/3.

We can immediately verify that (1) can be re-written as fol-
lows.

P=�(U) =
∑

u∈U

P(u)P=�(u). (3)

Based on (2) and (3), P≥� can be rewritten as:

P≥�(U) =
∑

u∈U

(

P(u) ·
(

1 −
�−1∑

i=0

P=i (u)

))

. (4)

According to Eq. (3), a key to compute pscore(U) and
P=�(U) is to efficiently compute P=�(u) for each u ∈ U .
Suppose that we already computed P(u ≺ V) for every
V ∈ U − U . The dynamic programming based techniques
in [42] can be immediately used to compute P=�(u) (∀u ∈
U) with time complexity O(|U − U | × �) for a given u.
Assume that uncertain objects in U − U are represented by
{Vi : 1 ≤ i ≤ n − 1}; note that objects in U − U can follow
any order. We use pi to denote P(u ≺ Vi). For 0 ≤ n1 ≤ n2,
let Pn1,n2 denote the probability that u exactly dominates n1

objects from the first n2 objects of U − U . It is shown [42]
that ∀0 ≤ i ≤ j (P0,0 = 1),

P0, j = P0, j−1 · (1 − p j) = Π
j

k=1(1 − pk)

Pi, j = pi · Pi−1, j−1 + (1 − pi) · Pi, j−1 (5)

Let F D(u) denote the set of objects fully dominated by u;
that is, ∀U ∈ F D(u), P(u ≺ U) = 1. Let P D(u) denote the
set of objects partially dominated by u. It can be immediately
verified that:

P=�(u) = P=(�−|F D(u)|)|P D(u)(u ≺ P D(u)). (6)

Here, P=(�−|F D(u)|)(u)|P D(u) denotes the probability that u
dominates exactly (�−|F D(u)|) objects in P D(u) since the
probability for u to dominate each object in F D(u) is always
1. Consequently, in our techniques for each u we apply the
dynamic programming technique on objects in P D(u) only.
Whenever there is no ambiguity, P=l(u) (or P≥l(u)), there-
after, always refers to the dominating probability against
P D(u) and l = � − |F D(u)| where � > |F D(u)| since all
objects in F D(u) are dominated by u with the probability 1.

Example 5 Regarding Fig. 2, p1 = P(e1 ≺ O) = 1/3,
and p2 = P(e1 ≺ B) = 1. By the above dynamic pro-
gramming based algorithm, P0,1 = 1 − p1 = 2/3, P0,2 =
P0,1 ∗ (1 − p2) = 0, P1,1 = p1 = 1/3 , P1,2 = P0,1 ∗ p2 +
P1,1 ∗ (1 − p2) = 2/3. Thus, P=1(e1) = 2/3.

2.3 Challenges

1. A solution to PtopkQ highly depends on the probabil-
ity distribution of objects even if spatial locations of the
instances are fixed.

Example 6 Regarding the example of Fig. 2, if we fix
the spatial locations of these 9 instances but change the
probability of instances from O’neal as follows, P(o1) =
1/6, P(o2) = 1/6 and P(o3) = 2/3. The occurrence
probability of every other instance remains 1/3. Then, we
can immediately verify that regarding q = 2/3, pscore
(O) = 1, pscore(E) = 2 and pscore(B) = 0. In this
case, the top-1 dominating query retrieves Brand instead
of O’neal (the top-1 result in Example 2).

2. Techniques developed solely on aggregate information
cannot provide a correct solution to PtopkQ. It should be
very straightforward to construct two different scenar-
ios with the same aggregate information as depicted in
Fig. 1 such that they lead to different solutions towards
PtopkQ.

3. The computation of pscore(U) for an uncertain object
U takes O(|U |× pscore(U)×|P D(U)|) time as shown
above. Trivially computing pscore(U) for all U ∈ U and
then choosing k objects with the highest pscore values
is computationally very expensive and slow.

3 Framework

Our exact and randomized algorithms both follow the thresh-
old-based paradigm by using a combination of two thresholds
based on q and pscores, respectively, to efficiently prune
away objects not in PtopkQ as early as possible. Below, Algo-
rithm 1 is an outline of the framework to be adopted in the
exact and randomized algorithms. It follows three steps, pre-
ordering, initial computation and final computation.

Algorithm 1 Exact Algorithm
Step 1: Pre-ordering. For all uncertain objects U , generate an ordered

list
−→U of U .

Step 2: Initial Computation. Choose the first k objects {Ui : 1 ≤ i ≤
k} in

−→U and compute their pscore (for exact algorithm) or pscorer

(for randomized algorithm) values.
Step 3: Final Computation. Determine the solution of PtopkQ in a

“level-by-level” fashion.

Using
−→U resulted in Step 1, score values for the first k

objects are computed in Step 2. Such values serve as thresh-
olds in Step 3.

123

W. Zhang et al.

3.1 Data structures

In the exact and randomized algorithms, we maintain an
a R-tree on centroids to run CBT algorithm [43] as prepro-
cessing (Step 1). We also maintain an a R-tree on the MBBs
of uncertain objects to speed-up our pruning techniques at
the object level.

Moreover, in the exact algorithm, for each object U , we
build a local data structure, a R-tree, to organize its instances
to efficiently support a level-by-level pruning computation
in Step 3. However, the randomized algorithm indexes the
sampled instances of each uncertain object using a novel data
structure gCaR-tree for efficiency.

3.2 Monotonic property

The following monotonic property will be effectively used to
terminate our algorithm as early as possible. It immediately
derives from Eq. (2).

Monotonic property: For an uncertain object U and two
integers �1 and �2, if �1 ≥ �2, P≥�1(U) ≤ P≥�2(U).

3.3 Efficient level-by-level computation

In the exact algorithm, for each uncertain object U in U ,
instances in U are indexed using an aR-tree. Suppose that
E ∈ U is at the i th level of the aR-tree. Let Li (U) denote
the set of entries in the i th level of local aR-tree of U . Equa-
tion (4) can be rewritten as:

P≥l(U) =
∑

E∈Li (U)

P≥l(E) (7)

It will be too expensive to compute P≥l(E) in our level-by-
level computation. Instead, we use upper-bound techniques
to bound P≥l(E) for efficiency.

Let (U−U)i denote the objects inU−U with the following
modification regarding level i . For each object V ∈ U − U
and each entry EV at the i th level of the local aR-tree of
V , we move all the instances contained by EV to the upper-
right corner µEV of EV . Let ıE denote the lower-left corner
of E . Let P≥λ(ıE ≺ (U − U)i) denote the probability that
ıE dominates at least λ objects in (U − U)i .

Theorem 1 P≥λ(E) ≤ P≥λ(ıE ≺ (U − U)i)
∑

u∈E P(u).

Proof It can be immediately verified that for each possible
world in the original case where an instance u from E dom-
inates at least λ instances from different objects, its corre-
sponding instance as modified above retains such a property.

�
It is immediate that an application of the dynamic program-
ming based algorithm in Sect. 2.2 leads to the time complex-
ity O(m1×C×λ) to compute P≥l(E)where m1 is the number

Y

X

U1

U2

U3

U4

U5

U6

U7

U8

U9

Fig. 5 Uncertain data

of instances in E and C is the average cost to compute dom-
inating probability between an instance and an object, while
the computation of the upper-bound in Theorem 1 only takes
O(λ × m2) time where m2 is the number of entries partially
dominated by E . Clearly, m2 is much smaller than C .

Example 7 In Fig. 5, assume that we want to compute P≥λ

(U). Theorem 1 states that we can get an upper-bound of
P≥λ(U) at the root level of local aR-trees of objects. Let
ı3 be the lower left corner of the MBB of U3 and µi (for
1 ≤ i ≤ 9) be the upper right corner of Ui .

Then, (U−U3)1 = {µi |1 ≤ i ≤ 9 & i �= 3 & P(µi) = 1}.
Theorem 1 states that P≥λ(U) ≤ P≥λ(ı3 ≺ (U −U3)1) since
∑

u∈U3
P(u) = 1.

4 Exact algorithm

We present detailed techniques developed based on the frame-
work in Sect. 3. The first step and the second step are quite
straightforward and mainly based on the techniques in
[42,43]. The third step is the most important step in Algo-
rithm 1 to prevent as many objects as possible from an exact
computation of pscore; novel, effective, efficient pruning
techniques are developed.

4.1 Step 1: pre-ordering objects

Step 1 aims to generate such an access order so that the
maximal possible threshold value regarding pscore can be
reached as soon as possible. Clearly, the maximum possible
threshold value regarding pscore should be the minimum
value of the pscores of the top-k objects. Nevertheless, this
is infeasible to achieve without conducting an exact com-
putation of PtopkQ. The following heuristic is developed to
resolve this.

The centroid ω(U) (∀U ∈ U) is used to approximately
represent the probabilistic distribution of an uncertain object
U with the aim to use score(ω(U)) to approximately reflect

123

Threshold-based probabilistic top-k dominating queries

the rank of pscore(U). Note that it is quite expensive to com-
pute score(ω(U)) for each object U . Instead, we apply the
CBT algorithm (briefly introduced in Sect. 2.2) to generate

an approximately ordered list
−→U as follows.

In
−→U , we keep the scored entries of the aR-tree of cen-

troids, generated by CBT; that is, the entries pruned by CBT
or the entries remained in the job queue once it terminates

(as described in Sect. 2.2). Then, we sort entries in
−→U non-

increasingly according to their accompanied score+ values.
When a centroid ω(U) and the intermediate entry E have
the same score+ value, we always rank ω(U) before E in−→U . Then, if two score+ values from two centroids are the
same, we always rank a centroid with the exact score value
higher. In other cases, entries with the same score are ranked
randomly among them. Note that in an entry, each contained
centroid ω(U) corresponds to the object U ; we use U to

replace ω(U) in
−→U .

Example 8 Regarding the example in Figs. 4 and 5, Fig. 4
shows the centroids of uncertain objects in Fig. 5. As shown
in Example 3 when k = 2,

{ω1.[6, 6], ω4.[4, 4], ω2.[3, 3], ω3.[3, 3],
ω5.[0, 3], ω6.[0, 0]},

remain in job queue, while E3.[0, 2] is pruned by CBT. Con-
sider that ωi (for 1 ≤ i ≤ 9) corresponds to the uncertain

object Ui . Therefore,
−→U = {U1, U4, U2, U3, U5, E3, U6}

when k = 2. Their score+ values are 6, 4, 3, 3, 3, 2, and 0,
respectively.

4.2 Step 2: initial computation

Our algorithm to calculate the pscores for each U of the first

k objects in
−→U is outlined in Algorithm 2.

Algorithm 2 Calculate pscore
Step 2.1: Traverse the a R-tree of objects’ MBBs to obtain the number

of objects that U fully dominates |F D(U)|, and the set P D(U) of
objects that U partially dominates.

Step 2.2: Do a synchronous traversal [7,32] of the local a R-tree of U
against the local a R-trees of the objects in P D(U) to calculate
P(u ≺ V) for each V ∈ P D(U) and each instance u ∈ U .

Step 2.3: Calculate the pscore(U).

We conduct step 2.1 by window query techniques [21] by
using ıU to get all objects that U dominates (fully or partially)
and then use µU to check the full dominance.

We conduct Step 2.2 by the well known synchronous tra-
versal paradigms [7,32] to compute P(u ≺ V) (∀u ∈ U and
∀V ∈ P D(U)) since the synchronous traversal paradigm
has been shown effective in join computation. Moreover [43]
shows that on average the synchronous traversal strategy is

the most cost effective way to count the dominance relation-
ships. Finally, our techniques can be extended to cover any
traversal strategies.

Note P≥l(U) = ∑
u∈U P(u)P≥l(u). In Step 2.3, to calcu-

late P≥l(U) we apply the dynamic programming based algo-
rithm in Sect. 2.2 to calculate P≥l(u) (∀u ∈ U) restricted
to the objects in P D(U). Based on the monotonic property
in Sect. 3.2, when P≥l(U) ≥ q and P≥(l+1)(U) < q, the
computation stops and (l + |F D(U)|) is the pscore for U .
To avoid any redundant computation, we conduct the calcu-
lation in Eq. (4) iteratively from l = 0. After the completion
of calculation of P≥l(u) for each u ∈ U for the current l,
we examine if P≥l(U) ≥ q to determine whether we should
stop a further calculation of such probability. We can imme-
diately verify that the time complexity of Step 2.3 is O(l ×
|P D(U)| × |U |) for each U .

4.3 Step 3: final computation

The final computation is conducted by bounding-pruning-
refining. This will be based on a threshold of pscore and
the given confidence q. Clearly, the best available threshold
of pscore is the minimum value, denoted by λk , of pscores
of the current top-k objects. To pursue efficiency, for each
remaining U the Step 3 will be conducted level-by-level in
a synchronous traversal fashion among the local aR-trees of
U and the objects in P D(U);2 nevertheless, our techniques
can be extended to any traversal strategies. Our algorithm for
Step 3 is outlined in Algorithm 3.

Algorithm 3 Final Computation

Tk := {the first k objects from
−→U }; −→U := −→U − Tk ;

WHILE
−→U �= ∅ DO

Step 3.1 - Pruning at Object Level: Dequeue the first entry E from
−→U ;

Use window queries to check if objects in E can be completely
pruned away - if not, then go to Step 3.2.

Step 3.2 - Level-by-Level Pruning: For each remaining U , do a level-
by-level synchronous traversal among the local a R-tree of U and
the local a R-trees of the objects in P D(U) to conduct a level-by-
level pruning.

Step 3.3 - Compute pscore: For each remaining object U after Step
3.2,

– calculate the pscore(U);
– if pscore(U) > λk , then replace an object V in Tk with

pscore(V) = λk by U , and Update γk .

ENDWHILE
Return Tk .

2 Note that if local aR-trees have different height, the one that reaches
the bottom level first will stay at the bottom, while others traverse down
to the lower levels.

123

W. Zhang et al.

U1

U2

U3

other objects
E 4

E 5

E 6

E 7

E 8
E 9

E 1
E 2

E 3

Fig. 6 Level-by-level computation

While Steps 3.1 and 3.3 are relatively straightforward,
Step 3.2 is critical in Algorithm 3; it can significantly speed-
up the algorithm by avoiding as many objects as possible
to enter into the expensive Step 3.3; our experiment results
demonstrate that our pruning techniques can speed-up the
computation by orders of magnitude. We show the basic idea
of our algorithm of Step 3.2 in Example 9. Suppose that E
is an entry, at the i th level, of the local aR-tree of U , let
P D(E) denote the set of entries at the i th level of the local
aR-trees of other objects, which are partially dominated by
E . #obj (P D(E)) denotes the number of distinct objects con-
taining the entries in P D(E), while F D(E) denotes the set
of objects fully dominated by E .

Example 9 In Fig. 6, the 3 local aR-trees of U1, U2, and U3

have 3 levels, respectively, with one intermediate level E j

(∀1 ≤ j ≤ 9). Assume that λk = 1 and Step 3.2 is con-
ducted against U1.

Note that P D(U1) = {U2, U3} and F D(U1) = ∅. As
pscore+(U1) = |P D(U1)|+ |F D(U1)| ≥ λk , we expand U1,
U2, and U3 synchronously to the next level. The following is
immediate where each E j (for 1 ≤ j ≤ 9) is at level 2.

– P D(E1) = {U2.(E5, E6)}3 and F D(E1) = {U3}. Note
that #obj (P D(E1)) = 1.

– P D(E2) = {U3.(E9)} and F D(E2) = ∅. Note that #obj
(P D(E2)) = 1.

– P D(E3) = ∅ and F D(E3) = ∅.

Since pscore+(E3)(� #obj (P D(E3)) + |F D(E3)|) = 0
(< λk), we can exclude E3 from a further consideration. We
only need to check E1 and E2 by the following bounding-
pruning techniques to determine whether or not they need to
be expanded to the next level.

The key in Step 3 is to develop efficient and effective bound-
ing-pruning techniques for pruning purposes. They will be
conducted based on the following two principles.

3 Note that E6 is fully dominated by E1; consequently we no longer
need to expand E6 regarding E1 but just add P(E6) to calculate the
probabilities and scores of the children of E1.

1. Probability-based: efficiently and effectively comput-
ing an upper-bound Pupper

≥λk
(U) of P≥λk (U) so that U can

be pruned if Pupper
≥λk

(U) ≤ q.
2. Score-based: efficiently and effectively computing a

pscore+(U) such that U can be pruned if pscore+(U)

< λk .

4.3.1 Efficient and effective bounding techniques

In Theorem 1, for each entry E , we use P≥λ(ıE ≺ (U −U)i),
multiplied by

∑
u∈E P(u), as an upper bound of P≥λ(E).

This takes O(λk×|P D(E)|) time for each entry E . To further
speed-up the computation, the following two upper-bounds
of P≥λ(ıE ≺ (U −U)i) are developed; they reduce the costs
from O(λk × |P D(E)|) to O(|P D(E)|). This is significant
when λk is large.
1. Chernoff–Hoeffding bound-based upper-bound. For an
uncertain object V and an instance u in another uncertain
object U , we can regard the event that u dominates V as a
random variable. Consequently, we can employ the proba-
bilistic bounds to compute the upper bound of the pscore
of an uncertain object, which is very time efficient. Due to
the independence assumption, we apply a strong version of
Chernoff–Hoeffding Bound [16] in the paper.
Chernoff–Hoeffding bound [16]. Let X1, X2, X3, . . . , Xn be
independent random variables with values in [0, 1], X =
∑n

i=1 Xi and ε > 0. Then,

P(X > (1 + ε)E(X)) < exp−E(X)ε2/3 (8)

Recall ıE is the lower-left corner of an entry E . ıE partially
dominates l objects V1, V2, . . . , Vl . Since each Vi (1 ≤ i ≤ l)
is an uncertain object, the probability of ıE dominating a Vi

can be treated as the expected value of the following random
variable.

XVi =
{

1 if ıE dominates one instance of Vi

0 otherwise.
(9)

We can view the number of objects, dominated by ıE , as the
sum of following random variables.

XıE = XV1 + XV2 + · · · + XVl (10)

Clearly, E(XVi) = P(ıE ≺ Vi), and E(XıE) = ∑l
i=1

P(ıE ≺ Vi). Since all Vi s are mutually independent, we
can apply the above Chernoff–Hoeffding bound with ε =
(γ−E(XıE))

E(XıE)
to get Lemma 1, where γ = γk − |F D(ıE)| and

|F D(ıE)| is the number of objects fully dominated by ıE .

Lemma 1 If E(XıE) < γ , then P≥γ (ıE ≺ (U − U)i) ≤
exp

− (γ−E(XıE))2

3E(XıE) .

In our pruning technique, we will use exp
− (γ−E(XıE))2

3E(XıE) as
an upper-bound of P≥γ (ıE ≺ (U − U)i). This will reduce

123

Threshold-based probabilistic top-k dominating queries

the complexity of calculation from O(γ × l) to O(l) when
γ > E(XıE). This is significant when γ is large. Below, we
present another upper-bound estimation of P≥γ (ıE) when γ

is relatively small—γ ≤ E(XıE); in this case, Chernoff–
Hoeffding Bound does not yield interesting results.
2. Bisection-based upper-bound. Due to the above limita-
tion when applying the Chernoff–Hoeffding Bound based
upper-bound, we further develop a more general upper-bound
called bisection-based upper-bound. Following theorem is
the key to obtain this upper bound. Without loss of gener-
ality, suppose that the l objects, partially dominated by the
lower-left corner ıE of an entry E , are sub-indexed such that
P(ıE ≺ Ui) ≤ P(ıE ≺ U j) if i < j . Let pi = P(ıE ≺ Ui)

for 1 ≤ i ≤ l.

Theorem 2 Suppose that we replace pi by p∗
i for 1 ≤ i ≤ l

such that pi ≤ p∗
i . Then, the probability that u dominates at

least λ objects (for 1 ≤ λ ≤ l) regarding {pi : 1 ≤ i ≤ l} is
not greater than that regarding {p∗

i : 1 ≤ i ≤ l}.
Theorem 2 is quite intuitive, but the proof is lengthy. Please
refer to the appendix for the detailed proof.

Now, we can divide the probabilities of those partially
dominated objects (by ıE) into two groups G1 = {p1, p2,

. . . , p j } andG2 = {p j+1, p j+2, . . . , pl} such that we replace
each probability value in G1 by p j and replace each proba-
bility value in G2 by pl . The following Lemma is immediate.

Lemma 2 Without loss of generality, we assume that j ≤
(n − j), let y0 = max{0, λ − l + j}

P≥γ (ıE ≺ (U − U)i) ≤
j∑

y=y0

C y
j py

j (1 − p j)
j−y

×
⎛

⎝
l− j∑

x=λ−y

Cx
l− j px

l (1 − pl)
l− j−x

⎞

⎠

(11)

Proof Suppose that the instance u dominates l objects with

the probabilities,

j
︷ ︸︸ ︷
p j , p j , . . . , p j ,

l− j
︷ ︸︸ ︷
pl , pl , . . . , pl . It can be

immediately verified that the probability that ıE dominates
at least λ objects among these l objects is as what is stated
on the right hand-side of the inequality of (11). The lemma
immediately follows from Theorem 2.
�
Lemma 2 states that we can bisect the set of partially domi-
nated objects into two groups such that in each group, we use
the largest probability value as a representative. Then, we use
the right-side part of the inequality in (11) as an upper-bound.
Clearly, it can be calculated in O(l) time if we accumulatively
compute the part,

∑l− j
x=λ−y Cx

l− j px
l (1 − pl)

l− j−x , from the
tail.

The key to deliver a good upper-bound is to choose a p j

such that the value of upper-bound can be minimized. This

problem can be trivially solved in time O(l2) by enumerat-
ing all possible cases; nevertheless, such costs are even more
expensive than the costs O(λ × l) of the dynamic program-
ming based algorithm to produce the exact probability value.

In our computation, we choose the median to divide the
set into two groups. It is clear that the median can be calcu-
lated in O(l) time [12]. Therefore, the whole computation of
upper-bound can be executed in time O(l).

Remark 1 It seems hard to find an efficient algorithm with
costs lower than O(λl) to divide l probability values into
more than two groups; consequently we settle for a bisection.
The bisection-based upper-bound can also be used in case
when γ > E(XıE). However, our experiments, in Sect. 6,
demonstrate that the above Chernoff–Hoeffding bound based
upper-bound is tighter than the bisection-based upper-bound.
Therefore, in our implementation we only use the Chernoff–
Hoeffding bound for the case where γ > E(XıE). These
two bounds will be used to calculate the upper-bounds of
P≥λ(ıE ≺ (U − U)i) in our level-by-level computation.

We also examined Markov’s inequality [20] and Cheby-
shev’s inequality [20]; the upper-bounds generated by them
are not as tight as the above two upper-bounds.

3. Utilizing existing computation results. Below we show two
upper-bounds by utilizing the existing computation results.
One is dominating probability based, while another is pscore
based.

Theorem 3 Suppose that u is a point (or an instance of U1)
and u fully dominates an uncertain object, say, U2. Then,
P≥γ (u) ≥ P≥γ (U2) (∀γ ≥ 1).

The proof of Theorem 3 is quite lengthy and we leave it to
Appendix.

Note that Theorem 3 will be used to prune away objects,
fully dominated by u, if P≥λ(u) < q. The following Theorem
is immediate.

Theorem 4 Suppose that a point u (partially or fully) domi-
nates λ′ objects in total, and u dominates the lower-left cor-
ner of the MBB of an entry E of the local aR-tree of an object
U at the level i . Then, pscore+(E) ≤ λ′.

Note that in Theorem 4, level i = 1 means an object.

4.3.2 Effective pruning rules

The pruning rules below can be immediately verified from
the definitions; thus we omit the proofs.

Pruning Rule 1 Score-based: ∀U, if pscore+(U) ≤ λk ,
then U can be excluded from the solution of PtopkQ.

Let L+
i (U) denote the subset of entries of Li (U) with the

property that ∀E ∈ L+
i (U), the captured Pupper

≥λk
(E) �= 0.

Based on Eq. (7), the following pruning rule is immediate.

123

W. Zhang et al.

E1

E2

E3

E4

E5

E6

E7

E8

E9

E10

E11

E12

E13

E14

E15

Fig. 7 Entry distribution

U

Level 1

Level 2

Level 3

Level 4

E1

E2 E3

E4 E5 E6 E7

E8 E9 E10 E11 E12 E13 E14 E15

Fig. 8 Tree structure map

Pruning Rule 2 Level’s probability-based: Suppose that∑
E∈L+

i (U) P≥λk (E) ≤ q. Then, U can be excluded from the
solution of PtopkQ.

Note that when i = 1, L+
i (U) in Pruning Rule 2 only contains

the root entry: U .
In our computation if instances or entries in U are found

with 0 probability to dominate λk objects, we mark and
exclude them in further computation. For each entry E of
a local aR-tree, let I+

E denote the set of instances each of
which is not yet detected with 0 probability to dominate at
least λk objects, and P(I+

E) denotes the sum of probabili-
ties of instances in I+

E . The Pruning Rule 3 below is also
immediate if we make the upper-bound of probability for an
instance in I+

E to dominate at least λk objects be 1.

Pruning Rule 3 Drilling-down based: At the level i (for an
i), if

∑
E∈L+

i (U) P(I+
E) < q, then U can be excluded from

the solution of PtopkQ.

Pruning Rules 2 and 3 are fundemental to a level-by-level
computation (details in Sect. 4.3.3).

Remark 2 Note that in our level-by-level algorithm, an I+
E

may change when levels progress down. For instance, regard-
ing the example in Figs. 7 and 8, E13 and E15 are initially
detected with P≥λk (E15) = 0 and P≥λk (E13) = 0 because
they are fully dominated by one point that (partially or fully)
dominates no more than the current λk objects (formally
stated in Theorem 4); consequently, I+

E6
contains the

instances contained by E12. Nevertheless, once progress to
level 2, we may find that the total number of objects (fully
or partially) dominated by E6 is less than threshold λk ; con-
sequently, in I+

E6
we replace E12 by ∅. Thus I+

E6
is empty.

4.3.3 Algorithm details

Step 3.1 Objects corresponding to the centroids in an entry
E of the aR-tree on centroids may be spread to different
entries of the aR-tree on object MBBs.

Example 10 Regarding the centroidsω1,ω2, andω3 in Fig. 4,
their corresponding objects U1, U2, and U3 are spread to 2
entries in the local aR-tree on object MBBs.

In each entry E of the local aR-tree on object MBBs,
we record the lower left corner of the MBB encompassing
the objects that correspond to the contained centroids in E ,
denoted by jE . Note that jE is not the lower left corner of E .
Below is the algorithm presented in Algorithm 4.

Algorithm 4 Step 3.1
Description:
1: get pscore+(E);
2: if pscore+(E) ≤ λk (Pruning Rule 1) then
3: prune other objects dominated by jE
4: else
5: if E is an object U then
6: record P D(U) and goto Step 3.2;
7: else
8: for each child E ′ of E do
9: call Algorithm 4 regarding E ′;

To compute pscore+(E)—an upper-bound of the maxi-
mum number of objects (partially or fully) dominated by an
object in E , we use window query techniques by the “half-
open” window with jE as the lower-left corner to probe the
aR-tree on MBBs of objects and then count the number of
objects overlapping with the window as pscore+(E).

If the condition in line 2 holds, then objects correspond-
ing to the centroids in E will be excluded from a further
consideration. In this case, we can prune other objects by ıE

by using the above window to probe the aR-tree of objects
to get the objects fully dominated by jE . These objects will

be removed from
−→U or from an entry in

−→U . Note that when

objects removed from an entry E of
−→U , we need to update jE

and the corresponding information in its descendants. More-
over, if an entry in the aR-tree of objects is detected to be
fully dominated by jE , then it is marked so that the entry can
be skipped when another jE ′ is used to prune away objects.

Example 11 In Step 3.1, suppose the current λk is 3. When
the entry containing ω7, ω8, and ω9 is selected, we use the
recorded lower-left corner (with this entry) of the MBB of

123

Threshold-based probabilistic top-k dominating queries

objects U7, U8, and U9 to do the window query on the a R-tree
of objects. The window query does not intersect any object.
Consequently, the entry containing ω7, ω8, and ω9 will be
removed from candidates, and U7, U8, and U9 are excluded
from the candidates of PtopkQ.

Remark 3 At the object level, we also use Pruning Rule 3 to
check (line 2 of Algorithm 4) if an object should be removed
from the candidates of PtopkQ.

Step 3.2 For each remaining object U , we synchronously
traverse the local a R-trees of U and objects in P D(U) level-
by-level such that at each internal level i , we conduct the
following two substeps.

Step 3.2a. Use Pruning Rule 3 to check if U should be
removed. If U cannot be removed, then go to
Step 3.2b.

Step 3.2b. For each E ∈ L+
i (U), we compute P D(E) and

|F D(E)|. Then, based on Theorem 1 we use
Chernoff–Hoeffding bound-based upper bound
or Bisection based upper bound to bound P≥λ

(ıE ≺ (U − U)i), which is multiplied by
∑

u∈E
P(u) to give an upper bound Pupper

≥λk
(E) of P≥λk

(E). Then, we use Pruning Rule 2 to check if U
should be excluded or goto the next level. Note
that when applying Pruning Rule 2, we replace
P≥λk (E) by min{Pupper

≥λk
(E), P(I+

E)}.

To efficiently execute Pruning Rule 3, for each entry E we
record the summation p0(E) of occurrence probabilities of
detected instances that have 0 probability to dominate at least
λk objects. Once an entry E is detected to have every instance
with 0 probability dominating at least λk objects, this infor-
mation is propagated to all ancestors as follows if E is the
first time, (i.e. f ull(E) = 0), detected. Let f ull(E) = 1
denote the situation that every instance in E has already
been detected to be with 0 probability dominating at least
λk objects.

Algorithm 5 Propagation to Ancestors
Description:
1: if f ull(E) = 0 then
2: f ull(E) = 1; p′ := p0(E); p0(E) := P(E);
3: for each ancestor E ′ of E do
4: if f ull(E ′) = 0 then
5: p0(E ′) := p0(E ′) + P(E) − p′;
6: if P(E ′) = p0(E ′) then
7: f ull(E ′) = 1
8: else
9: Terminate

Example 12 Regarding the example in Figs. 7 and 8, suppose
that E15 is detected to be fully dominated by a point that

G 1 G 2 G 3 G 4

G 5 G 6

root

Global Tree
U1

U2
U3

8

8

4

4

5

5

7

7

3

3

2

6
6

E1,1

E2,1

E3,1

E4,1

E5,1

E6,1

E1,2

E2,2

E 3,2

E4,2

E5,2

E6,2

E1,3

E2,3

E3,3

E4,3

E5,3

E6,3

1

1 2

7

8

5

6

3

4

1
2

Fig. 9 Samples

has zero probability to dominate at least λk objects. Then,
P≥λk (E15) = 0. Further suppose that each entry at the bot-
tom level has instances with the total probability 1/8. Thus,
we record f ull(E15) = 1, P0(E15) = P0(E7) = P0(E3) =
P0(E1) = 1/8.

Assume that another such point is found to fully dominate
E3. Then, update f ull(E3) to be 1, and P0(E3) = 1/2 and
P0(E1) = 1/2. If we find the third such point that fully domi-
nates E15, the search of E15 will stop at E3 since f ull(E3) =
1.

Remark 4 Once the lower-left corner ıE of an entry E is
detected to have 0 probability to dominate at least λk objects,
we use window query techniques to check if entries from
other objects are fully dominated by ıE . For any entry fully
dominated by ıE , we apply Algorithm 5 to propagate to
ancestors of the entry. Moreover, when an object is processed
as a candidate in Step 3.2, we do not need to expand its entries
E with f ull(E) = 1.

Step 3.3 We use the dynamic programming method to cal-
culate pscore(U) as what is described in Step 2. Note that
when an instance u is detected P≥λk (u) < q, we can apply
Theorem 3; that is, we do window queries, in the same way
as described in the above step, by excluding all objects fully
dominated by u, and update

−→
U accordingly.

5 Randomized algorithm

The basic idea of our randomized algorithm is to sample all
possible worlds,

∏n
i=1 Ui from U = {Ui |1 ≤ i ≤ n}, by a

small number m of possible worlds Si (1 ≤ i ≤ m), where
each Si consists of n instances—one instance per object. An
instance u homo-dominates another instance v if u dominates
v, and they are in one sample Si . Let ui, j denote an instance
in sample Si from object U j . pscorer (ui, j) is defined as the
number of instances in sample Si that are dominated by ui, j ;
that is, the number of instances homo-dominated by ui, j .
For 1 ≤ j ≤ n, pscorer (U j) is the (q ∗ m)th largest in
{pscorer (ui, j)|1 ≤ i ≤ m}.
Example 13 Regarding the example in Fig. 9, suppose that
m = 8, k = 2, and q = 0.5. A circled number j in object

123

W. Zhang et al.

Ui means the sampled instance (from Ui) is in the sample
j . The pscorer of object U1 is 2. This is because that the
samples 1, 2, 3 and 4 homo-dominate two other samples
respectively (i.e. samples with the same sub-indexes) from
U2 and U3, while samples 5, 6, 7, and 8 homo-dominate 1
sample, respectively.

Similarly, we obtain that pscorer (U2) = 1 and pscorer

(U3) = 0. Therefore, Algorithm 6 returns U1 and U2 as the
top-k objects.

Algorithm 6 outlines our randomized algorithm.

Algorithm 6 Randomized Algorithm
Input: {Si : 1 ≤ i ≤ m}; 0 < q ≤ 1.
Output: Tk : the k objects with the largest pscorer .
Description:
1: Tk := Calculating-pscorer ({Si : 1 ≤ i ≤ m}, q);
2: return Tk

In Algorithm 6, Calculating-pscorer ({Si : 1 ≤ i ≤ m},
q) returns the k objects with the highest pscorer s. A naive
way of Calculating-pscorer is to compute the dominating
number for each sampled instance in Si for 1 ≤ i ≤ m;
consequently, we need to perform such computation m times
if there are m samples. Our experiments demonstrate such
a naive algorithm is very expensive, slow, and not scalable
against m. Below, we present a novel, efficient algorithm for
Calculating-pscorer with the aim to share the computation
among samples and to effectively prune away objects. First,
we show an accuracy guarantee of the algorithm.

5.1 Accuracy guarantee

For each object U j , the events whether in sample Si , the
randomly selected instance ui, j dominates at least l other
instances may be described by the following totally indepen-
dent random variables.

X≥l,i, j =
{

1 if ui, j dominates at least l instances in Si

0 otherwise

Clearly, E(X≥l,i, j) = ∑
u∈U j

P(u)P≥l(u) = P≥l(U j). Let

X≥l, j =
∑m

i=1 X≥l,i, j

m
.

It is immediate that E(X≥l, j) = P≥l(U j). Theorem 5 imme-
diately follows the Hoeffding’s inequality [20] (Theorem 6).

Theorem 5 If m = O(1
ε2 log 1

δ
) where 0 < δ, ε < 1, then

P(|X≥l, j − P≥l(U j)| ≥ ε) < δ.

Theorem 6 (Hoeffding’s inequality) Suppose that Y1, Y2,

. . . , Ym are independent random variables such that 0 ≤

Yi ≤ 1 for 1 ≤ i ≤ m. Let Y = ∑m
i=1 Yi . Then, we have

that:

P(Y − E(Y) ≥ εm) ≤ exp(−2ε2m)

P(E(Y) − Y ≥ εm) ≤ exp(−2ε2m)
(12)

Theorem 5 implies that P≥l(U j)−ε ≤ X≥l, j ≤ P≥l(U j)+ε

with confidence 1 − δ.
In our randomized algorithm—Algorithm 6, we use Xl, j

to approximately represent P≥l(U j); consequently, (q ∗m)th
greatest number (pscorer (U j)) of homo dominated instances
is used to approximately represent pscoreq (U j). Below is
a theoretical guarantee of our randomized algorithm.

Lemma 3 In Algorithm 6, suppose that we replace q by (1−
ε)q in Algorithm 6, replace ε by εq in Theorem 5, and change
m from O(1

ε2 log 1
δ
) to O(1

ε2q2 log n
δ
). Then the top-k objects

retrieved by Algorithm 6 have the following properties with
confidence 1 − δ. For 1 ≤ i ≤ k (∀k ≤ n),

Property 1: the pscorer of the top ith object Ui is not
smaller than the pscore of the top ith object to
PtopkQ (regarding q);

Property 2: P≥pscorer (Ui) > (1 − 2ε)q.

Proof It can be immediately verified that for each object Ui ,

X pscorer (Ui)+1,i > (1 − ε)q. (13)

Consequently, we have P≥pscorer (Ui)+1(Ui) ≤ q with very
small probability δ

n applying Theorem 5. The Property 1
immediate follows.

From Theorem 5, Property 2 immediately follows.
�
Note that the sample size in Theorem 5 and Lemma 5 is

irrelevant to the number of instances in an object; thus, the
randomized algorithm has a potential to support the applica-
tions where a large number of instances is involved.

While Theorem 5 and Lemma 3 provide theoretical per-
formance guarantee, our experiments demonstrate that Algo-
rithm 6 is quite accurate when m is up to 1,000 and q, instead
of (1 − ε)q used in Algorithm 6.

5.2 Efficient algorithm

We present an efficient algorithm to execute Calculating-
pscorer . It follows the framework of three Steps in Sect. 3,
Pre-ordering, Initial Computation, and Final Computation.
We first present a novel data structure to replace local
aR-trees.

gCaR-tree. The sampled instances of each object are orga-
nized into an R-tree like structure, gCaR-tree (Global Con-
strained aR-tree). Different from a conventional R-tree,
n gCaR-trees for n objects (one gCaR-tree per object) follow
a global tree structure as follows.

123

Threshold-based probabilistic top-k dominating queries

Corresponding to each node Gi in the global tree, for all
1 ≤ j, j ′ ≤ n, entries Ei, j and Ei, j ′ of U j and U j ′ con-
tain the instances from the same samples, respectively.
For example, in Fig. 9, corresponding to G2, E2,1, E2,2,
and E2,3 contain the sampled instances from the sam-
ples 5 and 6, respectively.

In a gCaR-tree, the number of sampled instances in each
entry is also recorded. Given a global tree structure, we aim
to minimize the sum of areas of gCaR-tree for all uncertain
objects. It can be immediately shown that this optimization
problem is NP-hard since a special case of the problem (i.e.,
when n = 1) is the area minimization problem of an R-tree
which is NP-hard.

We build n gCaR-trees following the techniques of build-
ing an R-tree except that we enforce the constraint of a global
tree structure as above. gCaR-trees have the advantage that in
level-by-level computation, only the homo-dominating rela-
tionships among objects need to be checked. An entry E
(fully or partially) homo-dominates another entry E ′ if E
and E ′ correspond to the same entry in the global tree and
E (fully or partially) dominates E ′.4 Consequently, for each
entry E we only need to check one entry per object to deter-
mine if there is a homo-dominating relationship. Thus, the
total costs to compute all entries, at the i th level of gCaR-
trees, homo-dominated by an entry in U takes O(n′) where
n′ is the number of objects partially dominated by U . This
is much lower than O(N) in the exact algorithm where N is
the number of total entries at the i th level.

However, such a global constraint may also bring a dis-
advantage—sizes of MBBs may be too large. Clearly, tra-
versing gCaR-trees from a parent E to a child E ′ does not
bring much extra geometric information if the MBB of E ′
has a similar size to that of E . To resolve this, we introduce
a post-processing as follows while building gCaR-trees.

Post-processing a gCaR-tree. We enforce the constraint that
for each group Gi ,

area(Gi)

area(G p
i)

≤ ρ. (14)

Here, area(Gi) denotes the total area of the MBBs from
n gCaR-trees corresponding to Gi , while G p

i denotes such
total area corresponding to the parent of Gi . If a Gi does not
satisfy the inequality (14), then we go to the children of Gi

and check the children of Gi one by one (still against G p
i),

so on and so forth. Below is the algorithm.

Example 14 In Fig. 9, suppose that we choose ρ = 1/3.
G6 does not follow the inequality in line 5; thus we link the
root to G3 and G4 (thus, remove G6). However, G5 follows

4 In Fig. 9, E6,1 fully homo-dominates E6,2 and E6,1 partially homo-
dominates E6,3.

Algorithm 7 gCaR post-processing
Input: n gCaR-trees; the root Gr of the gobal tree; 0 < ρ ≤ 1.
Output: n gCaR-trees following the inequality (14).
Description:
1: Q := {children of Gr};
2: while Q �= ∅ do
3: get a G from Q;
4: Q := Q − {G};
5: if area(G)

area(Gr)
< ρ then

6: if G is not children of Gr then
7: modify the global tree (thus n gCaR-trees) by using Gr as the

parent of G;
8: call Algorithm 7 with G as the root if G is not a data point;
9: else
10: add children of G to Q;

the inequality; consequently G5 is used as the root to call
Algorithm 7. None of G1 and G2 follows the inequality (14).
Therefore, the final result is that in these three gCaR-trees,
the root has three children corresponding to G5, G3, and G4,
respectively; the next level contains all sampled instances.

In our algorithm, those gCaR-trees are pre-computed. We
assign 1/4 to ρ since it leads to a very good performance
according to our initial experiments.

Calculating-pscorer . Our algorithm closely follows the
framework of the exact algorithm with the following mod-
ifications. Let λk denote the smallest pscorer value of the
current top-k candidates.
1: Pruning Rules.

For each object, we search for the (q∗m)th greatest homo-
dominating number pscorer among the sampled instances.
Below are the pruning rules that we will use in our random-
ized algorithm.

Pruning Rule 4 ∀U, if pscorer (U) ≤ λk , then U can be
excluded from the solution of PtopkQ.

Note that at the object level, we use the number of objects
(totally or partially) dominated by U as an upper-bound of
pscorer (U) for applying Theorem 4. Let M≤λk ,Ui denote
the number of sampled instances, from Ui , with their pscorer

≤ λk , respectively.

Pruning Rule 5 An object Ui can be excluded from the solu-
tion of PtopkQ (against the probability threshold q) if
M≤λk ,Ui ≥ (1 − q) × m + 1.

Note that Pruning Rule 5 will be used to replace Pruning
Rules 2 and 3 in the exact algorithm.
2: Step 1 and 2—Pre-ordering and Initial computation
While the Step 1 (pre-ordering objects) in our randomized
algorithm is the same as Step 1 in the exact algorithm, Step 2
for computing scores of the first k objects is conducted differ-
ently. We need to compute pscorer for each object instead
of pscore. Below is the algorithm, Algorithm 8, to calculate
the pscorer for one object.

123

W. Zhang et al.

Algorithm 8 Calculating pscorer

Input: U ; P D(U); F D(U); 0 < q ≤ 1; m samples.
Output: pscorer of U ;
Description:
1: for each sampled u ∈ U do
2: compute pscorer (u) against P D(U);
3: δ := the (q × m)th largest value of pscorer (u);
4: pscorer (U) := |F D(U)| + δ;

Note that the computation of pscorer (u) (∀u ∈ U) is
conducted within the sample that u belongs to. We incremen-
tally maintain a min-heap [12] against the current top-(q ×
m) instances (i.e., with the largest pscorer s) or a max-heap
against the current bottom-[(1 − q)m + 1] objects depend-
ing on whether q ≤ 0.5. Clearly, Algorithm 8 runs in time
O(m|P D(U)| + m log(q ∗ m)) for each object U .
3: Step 3—Final computation.

In this step, we use the same bounding-pruning-refining
framework as in the exact algorithm by effectively using the
following Theorem 7 in combination with Pruning Rules 4
and 5. Let νi, j denote the largest number of instances homo-
dominated by an instance contained by an entry Ei, j of a
gCaR-tree of object U j . For example, regarding the example
in Fig. 9, ν6,1 = 2.

Theorem 7 Suppose that an Ei, j fully homo-dominates l1
entries and partially homo-dominates l2 entries. Further sup-
pose that ıEi, j dominates ıEi, j ′ . Then,

1. νi, j ≤ l1 + l2,
2. νi, j ′ ≤ l1 + l2.

Theorem 7 is immediately based on the definitions, and is
used in level-by-level computation. Below we present our
algorithm details. It also consists of 3 steps: Step 3.1, Step 3.2,
and Step 3.3.

Step 3.1: Pruning at the object level. It is the same as Step
3.1 in the exact computation (Algorithm 4).

Step 3.2: Level-by-level pruning. The basic idea is to syn-
chronously traverse the gCaR-trees of a U j and the uncertain
objects in P D(U j). For an object U j , let L+

κ (U j) denote the
set of entries at the κ level of the gCaR-tree such that for
each entry Ei, j in L+

κ (U j), µi, j is not captured less than λk .
In our algorithm, we initialize each object U j by assigning
0 to M≤λk ,U j and the root entry of U j to L+

1 (U j). The step
proceeds as follows for each remaining object U j .

At each level κ , for every entry Ei, j in L+
κ (U j) we com-

pute l1 and l2. If l1+ l2 ≥ λk , we add the child entries, which
are not marked out, of Ei, j to L+

κ+1(U j) for the computation
at the next level.

Otherwise (l1 + l2 ≤ λk), according to Theorem 7 we do
the following two things.

1. For every entry Ei, j ′ (∀U j ′ ∈ P D(U j)) such that U j ′ has
not been processed in Step 3 and Ei, j ′ is not marked out,
if ıEi, j ≺ ıEi, j ′ , M≤λk ,U j ′ = M≤λk ,U j ′ + ai, j ′ .5 U j ′ will
be marked out for further consideration if the updated
M≤λk ,U ′

j
≥ (1 − q) × m + 1 (Pruning Rule 5). In case

that U j ′ cannot be excluded, Ei, j ′ is marked out by using
Algorithm 5; that is, it will not be considered while pro-
cessing U j ′ .

2. Update M≤λk ,U j to M≤λk ,U j + ai, j . Then exclude U j

from the result set if M≤λk ,U j ≥ (1−q)×m+1 (Pruning
Rule 5).

If U j is not pruned in Step 3.2, then we invoke Step 3.3.

Step 3.3: Final computation. At the leaf level, for all
instances in the remaining entries of U j we compute their
actual values of pscorer and return the (q × m)th largest
value as pscorer (U j). If pscorer (U j) > λk , then we replace
the object with the smallest psocrer (i.e., λk) among the cur-
rent top-k objects by U j and update λk .

6 Experimental study

In this section, we present a thorough performance evalua-
tion of the efficiency and effectiveness of our algorithms. All
algorithms are implemented in C++. Experiments are run
on PCs with Intel P4 2.8 GHz CPU and 2G memory under
Debian Linux.

We refer to the exact algorithm in Sect. 4 as EXACT, and
to the randomized algorithm in Sect. 5 as RAND.

Two types of datasets are used in our evaluation process.

Real dataset is extracted from NBA players’ game-by-game
statistics (http://www.nba.com), containing 339,721 records
of 1,313 players. Performance of a player is treated as an
uncertain object and the statistics of a player in a single game
is treated as an instance of an uncertain object. For one player,
all instances are assumed to take the same probability to
appear. In our experiment, we use three attributes, points,
assistances, and rebounds in an instance. Since larger values
of those attributes are preferred, we adopt the corresponding
negative values.6

Synthetic datasets are generated using methodologies in [6]
with respect to the following parameters. Dimensionality var-
ies from 2 to 5 with default value 3. Data domain along each
dimension is [0, 1]. Number of objects varies from 10,000 to

5 To avoid to over-count already marked-out entries, ai, j ′ is the number
of instances in the subentries of Ei, j ′ that have not been marked out. To
efficiently record such ai, j ′ for each entry, we apply Algorithm 5.
6 Note that there might be correlations among the player statistics. We
ignore the correlations so that NBA data can be used to test efficiency
and effectiveness of our techniques.

123

http://www.nba.com

Threshold-based probabilistic top-k dominating queries

Table 4 Parameter values

Dimensionality d 2, 3, 4, 5
Number of objects 10k, 20k, 30k, 40k, 50k

Edge length h 0.04, 0.08, 0.12, 0.16, 0.20

Number of instances M 400, 600, 800, 1k, 2k

k 10, 20, 30, 40, 50

q 0.6, 0.7, 0.8, 0.9, 0.95

Sample size S 1k, 1.5k, 2k, 2.5k

Data types A-U, A-Z, I-U, I-Z, NBA

50,000 where default value is 10, 000. Number of instances
per object follows a uniform distribution in [1, M] where M
changes from 400 to 2,000 with the default value 400. Each
MBB to bound an uncertain object is a hype-cube; and the
average edge length of MBB of uncertain objects follows a
normal distribution in the range [0,h] with the expectation
value h/2 and standard deviation 0.025; the default value of
h is 0.04−4% of the edge length of the whole data space. The
value k in PtopkQ varies from 10 to 50 with default value 10.
As for randomized algorithm, sample size varies from 1,000
to 2,500. Table 4 summarizes parameter ranges and default
values (in bold font). Note that in the default setting, the total
number of instances is about 2 millions.

Instances of an object follow either uniform (random) or
zipf distribution. In uniform distribution, instances are dis-
tributed uniformly inside the uncertain range with the same
occurrence probability. In zipf distribution, firstly an instance
u is randomly generated and the distances from all other
instances to u follow a zipf distribution with z = 0.5. The
occurrence probability for each instance also follows zipf
distribution with z = 0.2.

Centers of objects (objects’ MBBs) follow either anti-
correlated or independent distribution. So, in all we have

four types of synthetic datasets combining object centers and
instances distribution: Anti-Uniform, Inde-Uniform, Anti-
Zipf and Inde-Zipf. These are abbreviated to A-U, I-U, A-Z,
and I-Z in our experiment reports.

6.1 Efficiency evaluation

We evaluate our algorithms against the parameters in Table 4.

Overall performance. Figure 10a reports the result of our
performance evaluation over synthetic (with the default set-
ting) and real datasets. The experiment demonstrates that
while EXACT is very efficient against various synthetic data-
sets with the default setting, it is slower against the NBA data-
set. This is because in the NBA dataset, MBB sizes are large
relative to the whole data space; this gives a very high over-
lapping degree among objects’ MBBs. On the other hand,
RAND very effectively deals with such situation. RAND has
a very steady performance and is at least 10 times faster than
EXACT against all these datasets. We run the trivial exact
algorithm as discussed in Sect. 2.3; that is, compute pscore
for each object and then choose the top-k. Our experiment
results show that it is about 100 times slower than EXACT.
We also implement the trivial randomized algorithm as dis-
cussed in Sect. 5; that is, compute pscorer for each instance
in a sample. The costs are 1589(s), 1543(s), 3081(s), 3376(s),
and 115(s), respectively; it increases to 6685(s) when 2500
samples are used. Consequently we omit the evaluation of
both trivial algorithms in the rest of our experiments. Note
that the trivial randomized algorithm runs fast against NBA
data; this is because NBA data only have about 1,000 objects.

Varying MBB sizes, k and q. Figure 10b reports our sec-
ond experiment results, against synthetic datasets with differ-
ent average MBB sizes. Figure 10c reports our performance

10-1

100

101

102

103

A-U A-Z I-U I-Z NBA

P
ro

ce
ss

in
g

T
im

e
(s

)

20.9

2.0

8.7

1.2

16.5

1.1

13.4

1.2

362.5

2.3

EXACT
RAND

 0

 100

 200

 300

 400

0.04 0.08 0.12 0.16 0.20

P
ro

ce
ss

in
g

T
im

e
(s

) EXACT
RAND

 0

 20

 40

 60

 80

 100

 120

10 20 30 40 50

P
ro

ce
ss

in
g

T
im

e
(s

) EXACT
RAND

 0

 10

 20

 30

 40

0.6 0.7 0.8 0.9 0.95

P
ro

ce
ss

in
g

T
im

e
(s

) EXACT
RAND

 0

 5

 10

 15

 20

 25

 30

 35

2d 3d 4d 5d

P
ro

ce
ss

in
g

T
im

e
(s

) EXACT
RAND

100

101

102

103

400 600 800 1000 2000

P
ro

ce
ss

in
g

T
im

e
(s

) EXACT
RAND

 0

 2

 4

 6

 8

1000 1500 2000 2500

P
ro

ce
ss

in
g

T
im

e
(s

) RAND

 0

 100

 200

 300

10k 20k 30k 40k 50k

P
ro

ce
ss

in
g

T
im

e
(s

) EXACT
RAND

(a)

(e) (f) (g) (h)

(b) (c) (d)

Fig. 10 Runtime with respect to different parameters. a Varying datasets, b varying h, c varying k, d varying q, e varying d, f varying M, g
varying S, h varying #objects

123

W. Zhang et al.

 0

 50

 100

 150

 200

 250

 300

10 20 30 40 50

P
ro

ce
ss

in
g

T
im

e
(s

) EXACTNORD
EXACT

(a)

 0

 50

 100

 150

 200

 250

 300

 350

10 20 30 40 50

no

de
 a

cc
es

s
(M

) EXACTNORD
EXACT

(b)

Fig. 11 Performance versus diff. object access orders. a Processing
time versus k, b # node access versus k

evaluation against different k values. While the costs of
EXACT linearly increase when k increases, the performance
of RAND is quite steady. This is because that the costs of
computing the scores, pscorer , for objects in RAND are
no longer as dominant as that in EXACT. The experiment
results, depicted in Fig. 10d, show the impact from different
q values is quite minor.

Varying other parameters. Figures 10e–g report the pos-
sible impacts against dimensionality, average instance num-
bers, and average sample size. It is interesting to note that
the costs of EXACT generally increase with the increment
of dimensionality but the costs in 3d are slightly less than
that in 2d; this is because the ratio of average MBB vol-
ume against the data space decreases with the increment of
dimensionality. Nevertheless, the experiment demonstrates
that an increment of dimensionality plays a dominant role in
the costs from 3d.

The impact of the number of objects is plotted in Fig. 10h.
Although the processing time of two algorithms both
increases as more uncertain objects are involved, RAND
has overall better performance and also degrades much more
slowly than EXACT.

Accessing order. In order to evaluate the effectiveness of
the objects accessing order in Sect. 4.1, we also implement
another version of the exact algorithm, named
EXACTNORD, in which the objects are accessed with a
random order. We evaluate the processing time as well as
the number of node access of two algorithms with k vary-
ing from 10 to 50 in Fig. 11. As depicted in Fig. 11a, the
accessing order plays an important role for the computa-
tion as the EXACT algorithm significantly outperforms the
EXACTNORD. We also use the warm-buffer paradigm to run
our algorithms to evaluate I/O costs. In Fig. 11b, we record
the number of node access for the aR-Trees of the uncertain
objects during the computation. As expected, the number of
node access of EXACT Algorithms is much less than that of
EXACTNORD.

6.2 Pruning powers

Chernoff–Hoeffding versus bisection. We first evaluate the
effectiveness of the Chernoff–Hoeffding-bound based upper

 0

 0.05

 0.1

 0.15

 0.2

10 20 30 40 50

E
rr

or

Bisection
Chernoff-Hoeffding

 0

 0.05

 0.1

 0.15

 0.2

0.6 0.7 0.8 0.9 0.95

E
rr

or

Bisection
Chernoff-Hoeffding

(a) (b)

Fig. 12 Chernoff–Hoeffding based versus bisection based. a Varying
k, b varying q

 0

 50

 100

 150

 200

 250

 300

10 20 30 40 50

P
ro

ce
ss

in
g

T
im

e
(s

) NoPruning
D

DS
DSP

Fig. 13 Varying k

 0

 20

 40

 60

 80

 100

 120

 140

0.6 0.7 0.8 0.9 0.95

P
ro

ce
ss

in
g

T
im

e
(s

) NoPruning
D

DS
DSP

Fig. 14 Varying q

bound and the Bisection-based upper bound. The experi-
ment is conducted against the real data—NBA dataset. In
our experiment, we first vary k values and then vary q val-
ues. We record the average value of

Pupper
≥λk

(U) − P≥λk (U)

during query processing where P≥λk (U) is the actual prob-
ability and Pupper

≥λk
(U) represents the Chernoff–Hoeffding-

bound based upper bound and the Bisection-based upper
bound, respectively. Note that for a fair comparison, we only
record such average for the Bisection-based upper bounds
when Chernoff-Hoeffding Bound based upper bound can be
used. The results are reported in Fig. 12a and b. They demon-
strate that the Chernoff–Hoeffding Bound based upper bound
is tighter than the Bisection-based upper bound. This is the
reason that in our algorithm, we employ the Chernoff–Hoe-
ffding Bound based upper bound whenever applicable.

Various pruning techniques. Figures 13 and 14 report our
evaluation of the effectiveness of the pruning rules presented
in the paper with various k values and q values, respectively.

123

Threshold-based probabilistic top-k dominating queries

0%

1%

2%

3%

4%

5%

2 3 4 5

E
ar

ly
 P

ru
nn

ed
 O

bj
ec

ts
 R

at
io

EXACT
RAND

0%

1%

2%

3%

4%

5%

10 20 30 40 50

E
ar

ly
 P

ru
nn

ed
 O

bj
ec

ts
 R

at
io

EXACT
RAND

0%

5%

10%

15%

0.04 0.08 0.12 0.16 0.20

E
ar

ly
 P

ru
nn

ed
 O

bj
ec

ts
 R

at
io

EXACT
RAND

0%

1%

2%

3%

4%

5%

10k 20k 30k 40k 50k

E
ar

ly
 P

ru
nn

ed
 O

bj
ec

ts
 R

at
io

EXACT
RAND

0%

1%

2%

3%

4%

5%

0.6 0.7 0.8 0.9 0.95

E
ar

ly
 P

ru
nn

ed
 O

bj
ec

ts
 R

at
io

EXACT
RAND

(a) (b)

(d)(c)

(e)

Fig. 15 Node calculated ratio with respect to different parameters. a
Varying d, b varying k, c varying h, d varying n, e varying q

NoPruning denotes the exact algorithm without applying any
pruning rules in Sect. 4.3.2 at the instance levels, D denotes
that we apply the Drill-down-based pruning rule, DS denotes
that we apply the Drill-down-based pruning rule and the
Score based pruning rule at each level, and DSP denotes
that we apply Level’s Probability-based pruning rule (i.e.
Chernoff–Hoeffding Bound based upper-bound and the
Bisection-based upper-bound) each level in addition to DS.
They demonstrate that an application of the Drill-down-based
pruning rule alone does not improve much efficiency since
it basically still functions at the object level. While combin-
ing with level-by-level score based pruning rule does improve
efficiency noticeably, adding Chernoff–Hoeffding Bound
based upper-bound and the Bisection-based upper-bound sig-
nificantly improves the performance. This is because the
computation costs at each level are significantly reduced by
using those upper-bounds and the upper-bounds are tight.
Note that NoPruning is basically the combination of the tech-
niques in [43] and techniques in [22,42] on the top of our
pre-ordering techniques.

Effectiveness. We report our performance evaluation of
pruning power of EXACT and RAND in Fig. 15 against
dimensionality, k values, edge lengths, object numbers, and
q values. The experiment is conducted against syntectic data
in order to evaluate all possible impacts. We record “early
pruned object ratio”—the ratio of the number of objects, with
entries of local aR-trees accessed from the 2nd level onwards,
over the total number of objects. Our evaluation reports that

the exact algorithm has a very powerful set of pruning tech-
niques and up to 97% of objects have been pruned from the
candidate sets even when MBB is large.

6.3 Accuracy evaluation

We evaluate possible impacts of different parameters on the
accuracy of RAND. Evaluation is based on average relative
errors for a retrieved object’s dominating probability with its
pscorer computed using RAND regarding a given threshold
q. We use the following relative error metrics to evaluate the
ability of RAND to meet a given threshold q. Without loss of
generality, Ui denotes the top-i th object returned by RAND.

err p
i =

{
0 if P≥pscorer (Ui) ≥ q
|P≥pscorer (Ui)−q|

q otherwise.

Figure 16 reports our performance evaluation, regarding the

average relative error (
∑k

i=1 err p
i

k), against data types, number
of objects, k values, q values, different average MBB sizes,
dimensionality, and sample sizes. Our experiment results
demonstrate that when sample size reaches 1,000, the rela-
tive error is already very small. Moreover, the accuracy is not
quite related to the dimensionality, object number, k values,
or MBB sizes. Nevertheless, the accuracy decreases when
q gets smaller; this is because when q is smaller, RAND
requires more samples to retain the same accuracy accord-
ing to our theoretic results in Sect. 5. It also shows that the
accuracy increases when the sample size increases.

We also evaluate the accuracy in the top-k scores output

by RAND using the average relative error metrics -
∑k

i=1 errl
i

k
where

errl
i =

{
0 if P≥pscorer (Ui) ≥ pscorei
|pscorer (Ui)−pscorei |

pscorei
otherwise.

As demonstrated in Fig. 17, the performance of RAND is
very accurate—the average relative error is less than 0.4%.
It is interesting to note that such accuracy is not quite related
to these parameters.

6.4 Summary

Both of EXACT and R AN D are efficient when k is not
very large (a typical case for a top-k query), the average
MBB size of uncertain objects is reasonable (say, upto 20%
of the edge length of the data space), and the total data
size is about a few millions. Nevertheless, our randomized
algorithm is much more efficient and is also very scalable
against dimensionality, k values, data sizes, and object MBB
sizes; it is also highly accurate when the sample size reaches
1,000.

123

W. Zhang et al.

(a) (b) (c) (d)

(g)(f)(e)

Fig. 16 Relative error with respect to different parameters. a Varying dataset , b Varying n, c varying k, d varying q, e varying h, f varying d, g
varying S

(a) (b) (c) (d)

(g)(f)(e)

Fig. 17 Relative error of score with respect to different parameters. a Varying dataset , b varying n, c varying k, d Varying q, e varying h, f
varying d, g varying S

7 Discussions

The techniques developed in this paper can be immediately
used to the second model of the problem of top-k proba-
bilistic dominating queries; that is, given a threshold l and
a set of uncertain objects U , find k uncertain objects with
the highest P≥l(U) where each U ∈ U and ties are broken
arbitrarily. Recall that P≥l(U) denotes the probability of U
dominating at least l other uncertain objects. We can rede-
fine the pscore of an uncertain object U as P≥l(U). All of the
upper bound techniques and pruning rules in the exact algo-
rithm can be immediately applied. For instance, any uncer-
tain objects with Pupper

≥l ≤ qk can be pruned during the
computation where qk denotes the minimal pscore of current

top-k uncertain objects. Regarding the random algorithm, we
redefine pscorer of an uncertain object U as ml (U)

m where m
denotes the total number of sampled possible worlds and ml

represents the number of sampled possible worlds in which
U dominates at least l other objects. Then, the gCaR-tree and
pruning techniques in the random algorithm can be immedi-
ately applied as well.

In many applications, the instances of uncertain objects
might be correlated with each other. While exact algorithms
may be very expensive in processing correlations among
a large number of objects, we can draw the sampled pos-
sible worlds from the correlated data with Markov Chain
Monte Carlo(MCMC) methods [19], including several sam-
pling techniques. For instance, the Gibbs sampler can be

123

Threshold-based probabilistic top-k dominating queries

employed when the univariate conditional distributions of
the uncertain objects are available. Then our random algo-
rithm can be immediately applied to the sampled possible
worlds. Moreover, the accuracy guarantee in the paper holds
as long as the sampled possible worlds are independent with
each other. However, because of the independence assump-
tion, it is non-trivial to extend our exact algorithm to tackle
the problem against dataset with correlations. As a possible
future work, we will consider to develop efficient exact algo-
rithm based on the graph model [15,38] which can effectively
capture the correlations of the uncertain dataset.

8 Related work

Top-k dominating query in multi-dimensional space. It is
firstly investigated by Papadias et al in [33] as a variation of
skyline queries. To enhance the efficiency, Yiu and Mamoulis
[43] propose two techniques based on aR-tree index struc-
ture, counting-guided search, and priority-based traversal.
The k-dominant skyline query is studied by Chan et al. [8]
where skylines in a k-dimensional subspace is retrieved.

Uncertain data management. Considerable research effort
has been put into modeling and managing uncertain data in
recent years due to many emerging applications. Sarma et
al. [36] models uncertain data using possible world seman-
tics and a prototype of uncertain data management system,
Trio, is developed by the Stanford Info Lab [2]. Many gen-
eral issues in modelling and managing uncertain data have
been addressed in [2,3]. Managing correlated uncertain data
is investigated by Sen and Deshpande in [37]. Very recently
Dalvi and Suciu [14] have shown that the problem of evalu-
ating conjunctive probabilistic queries is either PT I M E or
#P-complete.

A number of problems in querying uncertain data have
also been studied, such as indexing [41], similarity join [26],
nearest neighbor query [27], skyline query [34], clustering
[28,30], etc.

Top-k query processing over uncertain data. Top-k query
is important in analyzing uncertain data since it captures the
inherent imprecise nature of data. Unlike a top-k query over
certain data which returns the k best alternatives accord-
ing to a ranking function, a top-k query against uncertain
data has inherently more sophisticated semantics. Soliman
et al. [39] first relate top-k queries with uncertain data. They
define two types of important queries - U -T opk and U -
k Rank, as well as develop novel techniques to approach
them. Based on novel observations, Yi et al. [42] significantly
improve the efficiency. Hua et al. [22] investigate the problem
of threshold-based probabilistic top-k uncertain objects. Re
et al. [35] deal with query evaluation on probabilistic data-
base and results are ranked according to the probability of
satisfying a given query.

To the best of our knowledge, the work presented in this
paper is the first one to study top-k dominating queries in
uncertain semantics. While the techniques in [43] and the
techniques in [23,42] are applicable, our experiments dem-
onstrate that the combination of them is much slower than our
techniques even with the help of our pre-ordering technique.

9 Conclusion

In this paper, we formally define a probabilistic threshold top-
k dominating query. To process such a query, we firstly pro-
pose an exact algorithm. The exact algorithm utilizes novel
and efficient pruning techniques based on novel mathematic
characterizations. While fairly efficient, it is quite sensitive to
sizes of data set, uncertain object sizes, k values, etc. To trade-
off between efficiency and accuracy, a randomized algorithm
with an accuracy guarantee is proposed together with a new
data structure, gCaR-tree; it is much more efficient than the
exact algorithm. The efficiency and effectiveness of these
two algorithms are extensively investigated in experimental
study.

Note that our algorithms are main memory based. It can
be immediately extended to external memory computation
using warm buffer; that is, keep things in the buffer and use a
buffer replacement policy once it is full. We have evaluated
the I/O costs for such a paradigm. Moreover, our techniques
developed in the paper can be immediately extended to cover
the dual problem. That is, given a threshold about the num-
ber of objects to be dominated, find top-k objects with the
maximum dominating probabilities. Finally, our randomized
algorithm can also be immediately extended to continuous
cases by sampling PDFs using Monte Carlo sampling [25].
As a possible future work, we will deal with the correlations
among objects as discussed in Sect. 7.

Acknowledgments We would like to thank the anonymous review-
ers for their efforts and valuable comments to help us to improve the
presentation of the paper. The work of Xuemin Lin is supported by Aus-
tralian Research Council Discovery Grants (DP0987557, DP0881035
and DP0666428) and Google Research Award. Wei Wang’s research is
supported by ARC Discovery Grants DP0987273 and DP0881779. Jian
Pei’s research is supported in part by a NSERC Discovery grant and a
NSERC Discovery Accelerator Supplement grant.

Appendix: Proofs of theorems

A.1 Proof of Theorem 2

Proof We use the possible world semantics to prove the the-
orem. Without loss of generality, we assume that there are n
objects where u does not dominate any instance from Ui for
l + 1 ≤ i ≤ n. For each uncertain object Ui with 1 ≤ i ≤ l,

123

W. Zhang et al.

we divide its instances into 2 groups Ui,1 and Ui,2 such that
the instances in Ui,1 are all dominated by u and none of the
instances in Ui,2 is dominated by u. Clearly, Pr(Ui,1) = pi

and Pr(Ui,2) = (1 − pi) for 1 ≤ i ≤ l.
It can be immediately verified that the possible worlds in

each of which u dominates at least λ instances from differ-
ent objects can be expressed by the union of the following
spaces.

�≥λ =
⋃

follows Condition λ

(
l∏

i=1

δi ×
n∏

i=l+1

Un

)

(15)

Here, Condition λ includes that for 1 ≤ i ≤ l, δi ∈ {Ui,1, Ui,2}
and there are at least λ δi s with the form of Ui,1. Clearly,

Pr(�≥λ) =
∑

Condition λ

(
l∏

i=1

Pr(δi) ×
n∏

i=l+1

Pr(Ui)

)

Now if we modify each instance in Ui,2 (for 1 ≤ i ≤ l)
by adding one instance at the position of M B B+.Ui with the
occurrence probability (p∗

i − pi) and totally reduce the prob-
abilities of the instances in the original Ui,2 by (p∗

i − pi);
clearly, the total probabilities of Ui,2 remain unchanged. It
can be immediately verified that each possible world from
(15) correspond to a possible world after such a modification
that dominates at least λ instances from different objects.

�

A.2 Proof of Theorem 3

Proof We prove this theorem using the possible world
semantics. There are two cases: case (1) u is not an instance
of any object, and case (2) u is an instance of the object U1.

Theorem 3 holds trivially for case 1) since in any possible
world where an instance v ∈ V dominates at least λ other
instances, u always dominates at least λ + 1 instances.

Regarding case (2), for each v ∈ U2 let �
U−U1−U2≥λ,v

(�U−U1−U2≥λ−1,v) denote the subset of possible worlds from
∏n

i=3 Ui such that v dominates at least λ (λ − 1) instances
in each possible world. We use U1,1,v to denote the set of
instances of U1, dominated by v, and U1,2,v denotes the set
of instances of U1, not dominated by v.

Consequently, all the possible worlds where an instance
v ∈ U2 dominates at least λ other instances can be repre-
sented below.

�v =
(

U1,2,v × v × �
U−U1−U2≥λ,v

)
∪

(
U1,1,v × v × �

U−U1−U2≥λ−1,v

)

Clearly, Pr(U1,2,v) + Pr(U1,1,v) = 1 and
∑

v∈U2

Pr(v) = 1. Note that�U−U1−U2≥λ,v ⊆ �
U−U1−U2≥λ−1,v and Pr(U2×

�
U−U1−U2≥λ−1,v) = Pr(�

U−U1−U2≥λ−1,v) for each v ∈ U2. Thus,

∑

v∈U2

Pr(�v) ≤ max
v∈U2

{
�

U−U1−U2≥λ−1,v

}

= max
v∈U2

{
Pr

(
U2 × �

U−U1−U2≥λ−1,v

)}

(16)

Let v∗ denote the instance in U2 that makes

Pr
(

U2 × �
U−U1−U2≥λ−1,v

)
= max

v∈U2

{
Pr

(
U2 × �

U−U1−U2≥λ−1,v

)}
.

Clearly, u dominates at least λ instances in any possible world
in U2 × �

U−U1−U2≥λ,v . Therefore, P≥λ(u) ≥ P≥λ(U2).
�

References

1. Abiteboul, S., Kanellakis, P., Grahne, G.: On the representation and
querying sets of possible worlds. In: SIGMOD (1987)

2. Agrawal, P., Benjelloun, O., Sarma, A.D., Hayworth, C., Nabar, S.,
Sugihara, T., Widom, J.: Trio: a system for data, uncertainty, and
lineage. In: VLDB (2006)

3. Antova, L., Koch, C., Olteanu, D.: 10106
worlds and beyond: Effi-

cient representation and processing of incomplete information.
In: ICDE (2007)

4. Barbara, D., Garcia-Molina, H., Porter, D.: The management of
probabilistic data. IEEE TKDE 4(5), 487–502 (1992)

5. Bekales, G., Soliman, M.A., Ilyas, I.F.: Efficient search for the
top-k probable nearest neighbors in uncertain databases In: VLDB
(2008)

6. Börzsönyi, S., Kossmann, D., Stocker, K.: The skyline operator.
In: ICDE (2001)

7. Brinkhoff, T., Kriegel, H.-P., Seeger, B.: Efficient processing of
spatial joins using r-trees. In: SIGMOD (1993)

8. Chan, C., Jagadish, H., Tan, K.-L., Tung, A.K., Zhang, Z.: Find-
ing k-dominant skylines in high dimensional space. In: SIGMOD
(2006)

9. Cheng, R., Chen, J., Mokbel, M.F., Chow, C.-Y.: Probabilistic ver-
ifiers: evaluating constrained nearest-neighbor queries over uncer-
tain data. In: ICDE (2008)

10. Cheng, R., Kalashnikov, D.V., Prabhakar, S.: Evaluating probabi-
listic queries over imprecise data. In: SIGMOD (2003)

11. Cheng, R., Xia, Y., Prabhakar, S., Shah, R., Vitter, J.S.: Efficient
indexing methods for probabilistic threshold queries over uncertain
data. In: VLDB (2004)

12. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction
to Algorithms, 2nd edn. The MIT Press, Cambridge (2001)

13. Dalvi, N., Suciu, D.: Efficient query evaluation on probabilistic
databases. In: VLDB (2004)

14. Dalvi, N., Suciu, D.: Management of probabilistic data: founda-
tions and challenges. In: PODS (2007)

15. Dalvi, N.N., Suciu, D.: Management of probabilistic data: founda-
tions and challenges. In: PODS (2007)

16. Dubhashi, D., Panconesi, A.: Concentration of measure for the
analysis of randomised algorithms, p. 12. http://citeseer.ist.psu.
edu/old/dubhashi98concentration.html (1998)

17. Ester, M., Kriegel, H.-P., Sander, J., Xu, X.: A density-based algo-
rithm for discovering clusters in large spatial databases with noise.
In: KDD (1996)

18. Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms
for middleware. JCSS 66, 614–656 (2003)

123

http://citeseer.ist.psu.edu/old/dubhashi98concentration.html
http://citeseer.ist.psu.edu/old/dubhashi98concentration.html

Threshold-based probabilistic top-k dominating queries

19. Gilks, W., Richardson, S., Spiegelhalter, D.: Markov Chain Monte
Carlo in Practice. Chapman & Hall, London (1996)

20. Goldreich, O.: Randomized Methods in Computation, Lecture 2.
http://www.wisdom.weizmann.ac.il/~oded/rnd.html (2001)

21. Guttman, A.: R-trees: A dynamic index structure for spatial search-
ing. In: SIGMOD (1984)

22. Hua, M., Pei, J., Zhang, W., Lin, X.: Ranking queries on uncertain
data: A probabilistic threshold approach. In: SIGMOD (2008)

23. Hua, M., Pei, J., Zhang, W., Lin, X.: Ranking queries on uncertain
data: a probabilistic threshold approach. In: SIGMOD (2008)

24. Imielinski, T., Lipski, W.: Incomplete information in relational dat-
abases. JACM 31(4), 761–791 (1984)

25. Kalos, M.H., Whitlock, P.A.: Monte Carlo Methods. Wiley Inter-
science, London (1986)

26. Kriegel, H.P., Kunath, P., Pfeifle, M., Renz, M.: Probabilistic sim-
ilarity join on uncertain data. In: DASFAA (2006)

27. Kriegel, H.P., Kunath, P., Renz, M.: Probabilistic nearest-neighbor
query on uncertain objects. In: DASFAA (2007)

28. Kriegel, H.P., Pfeifle, M.: Density-based clustering of uncertain
data. In: KDD (2005)

29. Lakshmanan, L.V.S., Leone, N., Ross, R., Subrahmanian,
V.S.: Probview: a flexible probabilistic database system. ACM
TODS 22(3), 419–469 (1997)

30. Ngai, W.K., Kao, B., Cheng, C.K.C.R., Chau, M., Yip, K.Y.: Effi-
cient clustering of uncertain data. In: ICDM (2006)

31. Papadias, D., Kalnis, P., Zhang, J., Tao, Y.: Efficient olap operations
in spatial data warehouses. In: SSTD (2001)

32. Papadias, D., Mamoulis, N., Theodoridis, Y.: Processing and opti-
mization of multiway spatial joins using R-trees. In: PODS (1999)

33. Papadias, D., Tao, Y., Greg, F., Seeger, B.: Progressive skyline com-
putation in database systems. ACM TODS 30(1), 41–82 (2003)

34. Pei, J., Jiang, B., Lin, X., Yuan, Y.: Probabilistic skyline on uncer-
tain data. In: VLDB (2007)

35. Re, C., Dalvi, N., Suciu, D.: Efficient top-k query evaluation on
probabilistic data. In: ICDE (2007)

36. Sarma, A.D., Benjelloun, O., Halevy, A., Widom, J.: Working mod-
els for uncertain data. In: ICDE (2005)

37. Sen, P., Deshpande, A.: Representing and querying correlated
tuples in probabilistic databases. In: ICDE (2007)

38. Sen, P., Deshpande, A.: Representing and querying correlated
tuples in probabilistic databases. In: ICDE (2007)

39. Soliman, M.A., Ilyas, I.F., Chang, K.C.: Top-k query processing in
uncertain databases. In: ICDE (2007)

40. Tan, K.-L., Eng, P.-K., Ooi, B.C.: Efficient progressive skyline com-
putation. In: VLDB (2001)

41. Tao, Y., Cheng, R., Xiao, X., Ngai, W.K., Kao, B., Prabhakar, S.:
Indexing multi-dimensional uncertain data with arbitrary probabil-
ity density functions. In: VLDB (2005)

42. Yi, K., Li, F., Kollios, G., Srivastava, D.: Efficient processing of
top-k queries in uncertain databases with x-relations. IEEE Trans.
Knowl. Data Eng. 20(12), 1669–1682 (2008)

43. Yiu, M.L., Mamoulis, N.: Efficient processing of top-k dominating
queries on multi-dimensional data. In: VLDB (2007)

123

http://www.wisdom.weizmann.ac.il/~oded/rnd.html

	Threshold-based probabilistic top-k dominating queries
	Abstract
	1 Introduction
	2 Background information
	2.1 Problem statement
	2.2 Preliminaries
	2.3 Challenges

	3 Framework
	3.1 Data structures
	3.2 Monotonic property
	3.3 Efficient level-by-level computation

	4 Exact algorithm
	4.1 Step 1: pre-ordering objects
	4.2 Step 2: initial computation
	4.3 Step 3: final computation

	5 Randomized algorithm
	5.1 Accuracy guarantee
	5.2 Efficient algorithm

	6 Experimental study
	6.1 Efficiency evaluation
	6.2 Pruning powers
	6.3 Accuracy evaluation
	6.4 Summary

	7 Discussions
	8 Related work
	9 Conclusion
	Acknowledgments

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

