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Abstract—Uncertainty is common in real-world applications,
for example, in sensor networks and moving object tracking,
resulting in much interest in itemset mining for uncertain
transaction databases. In this paper, we focus on pattern mining
for uncertain sequences and introduce probabilistic frequent
spatial-temporal sequential patterns with gap constraints. Such
patterns are important for the discovery of knowledge given
uncertain trajectory data. We propose a dynamic programming
approach for computing the frequentness probability of these
patterns, which has linear time complexity, and we explore its
embedding into pattern enumeration algorithms using both
breadth-first search and depth-first search strategies. Our
extensive empirical study shows the efficiency and effectiveness
of our methods for synthetic and real-world datasets.

Keywords-Uncertain databases, Uncertain pattern mining,
Sequential patterns, Spatial-temporal data

I. INTRODUCTION

Sequential pattern mining is an important task in data
mining and has been extensively studied [1], [2], [3], [4],
[5]. Spatio-temporal sequential pattern mining in trajectory
databases is one of its major variations that has also drawn a
considerable amount of attention [6], [7], [8], [9], [10], [11].
A trajectory of a moving object consists of time-stamped
location data across a sequence of ordered timestamps. A
spatio-temporal sequential pattern in a trajectory database is
a set of objects (also known as an object cluster) that move
“together” for a subsequence of timestamps. This type of
pattern has proved attractive in a number of real-world ap-
plications. For example, identifying common routes among
convoys may lead to more effective traffic control [10], and
the discovery of common movements of animals may serve
as a basis for knowledge discovery in ecology [11].

The main computational challenge in mining spatio-
temporal sequential patterns is the extraction of objects
co-occurring at a minimum number (mint ) of consecutive
timestamps. This can be seen as a generalization of the
frequent itemset mining problem [12], where the order of
transactions is additionally being taken into account. To
provide more flexibility, the consecutiveness requirement
may be relaxed and a maximum gap constraint imposed
instead. For example, vehicles (objects) in a convoy may

mostly be traveling together for consecutive timestamps, but
may temporarily become separated at traffic lights (causing
a gap in being together), then being together at a later time.

In the frequent itemset mining problem, items are con-
sidered as occurring “together” if they occur in the same
transaction. In comparison, objects are considered as being
together at a timestamp if their locations are in close proxim-
ity. A common way to determine the spatial proximity of ob-
jects is through a clustering algorithm (e.g., DBSCAN [13]).
Alternatively, objects are considered as close to each other at
a given timestamp, if they occur at the same point of interest
(POI). Spatial proximity of objects is usually application-
dependent and commonly considered as a data preprocessing
step. In this paper, we consider objects as being together
if they are in the same cluster according to some closeness
measure. The number of timestamps where the same objects
are together is analogous to the pattern’s “support”. A spatio-
temporal sequential pattern is considered as frequent if there
are at least mino objects together for at least mint timestamps
and the timestamps satisfy a maximum gap constraint g.

Our work tackles the problem of mining spatio-temporal
sequential patterns where the input data is uncertain.

A. Uncertainty in Pattern Mining

Recent research [14], [15] has shown that the modeling of
uncertainty can be important in a wide range of real-world
applications. Various factors contribute to data uncertainty,
including incompleteness of data sources, the addition of
artificial noise in privacy-sensitive applications and, most
importantly, uncertainty arising from imprecision in mea-
surements and observations. In the case of ubiquitous com-
puting applications, object trajectory data is often acquired
by position-aware devices such as GPS and WiFi systems.
However, such devices have limitations in their measurement
accuracy and so the location data they record is sometimes
represented by a probability-density function (pdf) [16] to
represent this uncertainty.

Two types of frequentness (or support) measurements
for an uncertain pattern have been proposed: expected sup-
port [14], [17], [18] and probabilistic frequentness [19], [20],



[21]. In the former, the support of an itemset is estimated by
the expected value of its support. However, as pointed out
in [20], [21], one major drawback of such a measure is that
it does not indicate the confidence level of the estimation,
which may lead to the loss of important patterns. In [19],
[20], [21], a probabilistic threshold τ based on possible
world semantics is introduced. A pattern is considered as
frequent if its probabilistic measurement exceeds τ . We will
use possible world semantics to assess the frequentness of
an uncertain spatio-temporal sequential pattern.

As an example scenario, Figure 1 shows moving objects in
an uncertain trajectory database. In this example, the location
of an object is defined by a one-dimensional pdf due to its
positional uncertainty, which is represented as a line in the
figure. The circles at each timestamp can be seen as a POI or
a cluster boundary depending on the application. To compute
the spatial proximity of objects with uncertain locations,
one could apply first an uncertain clustering algorithm (e.g.
UK-means [16]) to obtain precise (hard) clusters and then a
classical pattern mining algorithm. However, similar to the
use of expected support, such a method would not provide
any explicit confidence measure in the result. Alternatively,
fuzzy clustering [22] would assign each object a “degree of
belongingness” (belongingness probability) for each cluster,
i.e., one object can belong to more than one cluster. The be-
longingness probability is not necessarily based on positional
uncertainty. Various fuzzy clustering algorithms [22], [23]
handling both certain and uncertain data have been proposed
to produce soft clusters.

Our proposed methods do not rely on a particular pdf or
technique for deciding the spatial closeness of objects, which
are instead modeled as preprocessing steps. We only require
a set of (fuzzy) clusters as input for each timestamp, where
each object is associated with a belongingness probability
that specifies the confidence the object is in a cluster at a
given timestamp. An example of such an input is shown in
the right hand side of Figure 1. To measure the frequentness
of an uncertain pattern, we need to calculate the confidence
that the set of objects O is in the same cluster for at least mint
timestamps that fulfil the gap constraint g, where |O| ≥mino.
If the confidence exceeds a user-given probabilistic threshold
τ , then this pattern is considered as probabilistic frequent.
Given an uncertain database, our problem is to find all
probabilistic frequent spatio-temporal sequential patterns.

B. Related Work

The problem of classical sequential pattern mining has
been an area of extensive research in the context of de-
terministic databases [1], [2], [3], [4], [5]. Several varia-
tions have been proposed. Sequential patterns in trajectory
databases [6], [7], [8], [9], [10], [11] and sequential patterns
in event databases [24], [25] are two popular approaches.

In the context of uncertain databases, the problem of
uncertain frequent itemset mining in probabilistic databases
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5 (o1:0.3), (o2:0.2), (o3:0.5) 

 

t Clusters 

1 {o1:0.6,o2:1.0,o3:0.8};  

{o4:0.7,o5:1.0,o6:0.8}; 

{o1:0.4}; {o3:0.2}; {o4:0.3}; {o6:0.2} 

2 {o1:0.8,o2:1.0}; {o3:1.0,o4:0.5};  

{o5:0.7,o6:0.5} 

{o1:0.2}; {o4:0.5}; {o5:0.3};{o6:0.5}; 

3 {o1:0.4,o2:1.0};  

{o3:0.8,o4:0.5,o5:0.6} 

{o1:0.6}; {o3:0.2}; {o4:0.5}; {o5:0.4} 

4 {o1:0.6,o2:1.0}; {o1:0.4} 

5 {o1:0.8,o2:1.0}; {o3:0.9,o4:0.6,o5:1.0} 

{o1:0.2}; {o3:0.1}; {o4:0.4} 

6 {o1:0.4,o2:1.0}; 

{o3:1.0,o4:0.9,o5:0.9,o6:0.8} 

{o1:0.6}; {o4:0.1}; {o5:0.1}; {o6:0.2} 
 

Figure 1. An example of an uncertain database. The location of an object
is represented as an one-dimensional pdf due to its positional uncertainty.
Each object is associated with a belongingness probability specifying the
confidence that it is in the cluster.

was earlier studied under the expected support measure
in [17], [14], [18], [26]. However, later [19], [20], [21]
found that the use of expected support may lead to the
loss of important patterns. Thus, the use of a probabilistic
frequentness measure has been more popular recently. A
recent survey for comparing these two measures and analyz-
ing their relationships is given in [27]. For the problem of
uncertain sequential patterns, to the best of our knowledge,
the approaches in [28], [29] are the only studies in the
literature. In [28], the authors measure the frequentness of
a pattern in uncertain event databases based on its expected
support, but this may sometimes lead to the loss of interest-
ing patterns [20], [21]. In comparison, our methods proposed
in this paper are based on probabilistic frequentness support.
In a more recent work, Zhao et al. [29] addressed uncertain
sequence mining under two different models of uncertainty,
sequence level uncertainty and element level uncertainty.
Their study is complementary, yet distinct from our work in
this paper, since they focus on the case where unlimited gaps
are permitted when matching a query subsequence against a
longer sequence. In contrast, in our study gaps are allowed
in a pattern according to a maximum gap constraint g.

C. Challenges and Contributions

Mining spatio-temporal patterns from uncertain trajectory
data is a challenging problem. In particular:
• As the length of a trajectory (sequence) increases, the

number of possible worlds grows exponentially. This
makes naive methods for checking pattern characteris-
tics (such as support) infeasible.

• Enabling maximum gap constraints increases flexibility
for spatio-temporal patterns. However, checking pattern
characteristics for uncertain data in the presence of gaps
is considerably more complex than without gaps.

• Mining collections of spatio-temporal patterns for un-
certain trajectory data requires a pattern enumeration
framework (e.g., breadth first or depth first). The merits
of different frameworks are currently an open question.



In this paper, we address these challenges. In particular,
we make the following contributions:
• We define a probabilistic model for uncertain spatio-

temporal sequential patterns under the possible world
semantics and incorporate a maximum gap constraint.

• We introduce a linear time approach to calculate the
frequentness probability of an uncertain spatio-temporal
sequential pattern. This is the first such linear time
result we are aware of for uncertain sequences. Previous
linear time results [20] have been developed in the
context of itemsets rather than sequences.

• We explore integration of our probabilistic frequentness
checking algorithm within apriori-based approaches us-
ing both breadth-first and depth-first search. We analyze
the relative merits of each of these approaches.

II. PROBLEM DEFINITION

Let TS = {t1, t2, ..., tn} be a linearly ordered list of n
timestamps (called the time space). Let OS = {o1,o2, ...,om}
be a collection of m objects that appear in TS (called the
object space). Objects O ⊆ OS are observed at timestamps
T ⊆ TS in various locations. We refer to T as a timestamp
sequence and its length is |T |. A trajectory database D
contains location data of moving objects OS across TS. We
first provide definitions of our patterns for certain databases.

Definition 1: A set of moving objects O (called the ob-
jectset) that are in the same cluster for a timestamp sequence
T is denoted as S = (O : T ) and called a spatio-temporal
sequential pattern, where O⊆ OS and T ⊆ TS.

Definition 2: Given a sequence of timestamps T repre-
sented by {tk1 , tk2 , . . . , tkp} where tki ∈ T , the maximum gap
in T is calculated by max(kq+1−kq−1), ∀q ∈ [1, p), and is
denoted as tT .

Example 1: For T = {t1, t2, t4, t7, t8} the maximum gap is
tT = 2.

Definition 3: A (maximum) gap constraint is a user-
specified integer g, g≥ 0. We say S = (O : T ) fulfils the gap
constraint g iff the occurrence of O in T satisfies tT ≤ g.

Definition 4: Given user specified values for mino, mint
and g, S = (O : T ) is called a frequent spatio-temporal
sequential pattern iff |O| ≥ mino, |T | ≥ mint and tT ≤ g.

Example 2: Given mino = 2, mint = 3, g = 1, we say
that S = (o1,o2 : t1, t2, t3, t4, t6) is a frequent spatio-temporal
sequential pattern.

A. Uncertain Trajectory Database Model

We now describe our model for representing uncertainty
for object trajectory data. To generalize our methods, we
treat the computation of the spatial proximity of objects with
uncertain locations as a preprocessing step. This enables the
use of different pdfs for the representation of uncertainty and
different clustering algorithms depending on the application.
Specifically, we assume that at each timestamp t, the objects
have been partitioned into a set Ct of (fuzzy) clusters.
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i World P(Wi) i World P(Wi) 

1 t1:c11={o1,o2} 

t2:c21={o1,o2} 

t3:c31={o1,o2} 

0.144 5 t1:c11={o2}, c12={o1} 

t2:c21={o1,o2} 

t3:c31={o1,o2} 

0.096 

2 t1:c11={o1,o2} 

t2:c21={o1}, c23={o2} 

t3:c31={o1,o2} 

0.036 6 t1:c11={o2}, c12={o1} 

t2:c21={o1}, c23={o2} 

t3:c31={o1,o2} 

0.024 

3 t1:c11={o1,o2} 

t2:c21={o2}, c22={o1} 

t3:c31={o1,o2} 

0.336 7 t1:c11={o2}, c12={o1} 

t2:c21={o2}, c22={o1} 

t3:c31={o1,o2} 

0.224 

4 t1:c11={o1,o2} 

t2:c22={o1}, c23={o2} 

t3:c31={o1,o2} 

0.084 8 t1:c11={o2}, c12={o1} 

t2:c22={o1}, c23={o2} 

t3:c31={o1,o2} 

0.056 

Figure 2. An example of a spatio-temporal database of uncertain clusters
and its possible worlds.

An object o ∈ OS with an uncertain location observed
at timestamp t ∈ TS has a belongingness probability of
P(o ∈ c) being in cluster c ∈ Ct , where P(o ∈ c) ∈ [0,1]
and ∑c∈Ct P(o ∈ c) = P(o@t) = 1, where P(o@t) is the
probability that o is observed at t. Conversely, if o is not
observed at t, then o is not in any cluster and P(o@t) = 0.
We assume that different objects and different timestamps
are mutually independent, i.e., the belongingness probability
of an object has no effect on those of other objects. Similar
probabilistic independence assumptions have been made in
previous related work [14], [20]. Therefore, for objectset
O, we have P(O ∈ c) = ∏o∈O P(o ∈ c). The probability
that objects O are in the same cluster at t is P(O@t) =
∑c∈Ct P(O ⊆ c). We also say that O@t means O occurs at
timestamp t in the same cluster.

Example 3: Given t1:c11 = {o1:0.3, o2:0.5, o3:1.0}, c12 =
{o1:0.6, o2:0.5, o5:1.0}), c13 = {o1:0.1} and O = {o1, o2},
then P(o1 ∈ c11) = 0.3, P(O ∈ c11) = 0.15 and P(O@t1) =
P(O ∈ c11)+P(O ∈ c12) = 0.45.

We define a spatio-temporal database of uncertain
clusters D = {Ct1 ,Ct2 , ...,Ctn} as a collection of objects
with uncertain locations within the clusters at timestamps
{t1, t2, ..., tn}. Figure 2 shows an example of D with three
timestamps and two objects.

An uncertain database D can be instantiated into a possi-
ble world w that contains a collection of certain clusters at
each timestamp. Suppose for an object o at each timestamp,
that M is the number of clusters for which P(o∈ c)> 0. Then
there are M possible memberships for o at each timestamp.
The number of possible worlds of D increases exponentially
with both |OS| and |TS| (i.e. M|OS|·|TS|). The right hand
side of Figure 2 shows all possible worlds derived from
D. The probability of whether a possible world w exists is
denoted as P(w) and ∑P(w) = 1. Assuming independence,
the probability that w exists is computed as:

P(w) = ∏
t∈TS

∏
o∈t

P(o ∈ ct(o,w)) (1)

where ct(o,w) is the cluster that o is in at timestamp t in
possible world w. For example, P(o1 ∈ ct1(o1,W6)) = P(o1 ∈
c12) = 0.4.



Example 4: In Figure 2, P(w = W6) = P(o1 ∈
ct1(o1,w))×P(o2 ∈ ct1(o2,w))×P(o1 ∈ ct2(o1,w))×P(o2 ∈
ct2(o2,w))×P(o1 ∈ ct3(o1,w))×P(o2 ∈ ct3(o2,w)) = 0.024.

Note that the assumption of independence between objects
is not always true, since in some applications, the locations
of objects can be dependent. For example, two classmates
might go to the lecture theatre at the same time and we
can infer one location from the other’s. Furthermore, the
locations of an object at two consecutive timestamps are
normally constrained by a speed limit, i.e., the current
location of an object depends on its location at a previous
timestamp. More sophisticated models using conditional
probabilities (e.g. a Markov model) might be used in these
scenarios. If such knowledge is available, it can be integrated
into our techniques, by modifying Equation 1.

B. Probabilistic Frequent Spatio-Temporal Sequential
Patterns

Recall that given thresholds mino, mint and g, we say
S = (O : T ) is frequent if |O| ≥ mino, |T | ≥ mint and
tT ≤ g. In the uncertain scenario, co-occurrence of the
objects at the timestamps T is no longer certain. Instead co-
occurrence is described by a discrete probability-distribution
function (d-pdf). For example, in Figure 2, the d-pdf of T
for objectset O = {o1,o2} is: P(T = {t1, t2, t3}) = P(W1) =
0.144, P(T = {t1, t3}) = P(W2) + P(W3) + P(W4) = 0.456,
P(T = {t2, t3}) = P(W5) = 0.096, P(T = {t3}) = P(W6) +
P(W7)+P(W8) = 0.304.

Let T be the timestamps that objects of O are in the
same cluster, the probability that |T | ≥ mint and tT ≤ g
is called the frequentness probability and it is denoted as
Pg
≥mint

(O). The frequentness probability is interpreted as the
probability that objects of O are in the same cluster for
at least mint timestamps that satisfy gap constraint g. An
uncertain spatio-temporal sequential pattern is denoted as
Ŝ =O (co-occurrence of the objects at T is uncertain). Using
a confidence threshold τ , we formally define a probabilistic
frequent spatio-temporal sequential pattern as follows:

Definition 5: Ŝ = O is called a probabilistic frequent
spatio-temporal sequential pattern iff |O| ≥ mino and
Pg
≥mint

(O)≥ τ .
Definition 6 (Problem definition): Find for a spatio-

temporal database D of uncertain clusters the complete set
of probabilistic frequent spatio-temporal sequential patterns.

The main computational challenge of our mining task is
the calculation of frequentness probabilities for candidate
patterns. This is detailed in the next section.

III. CALCULATING FREQUENTNESS PROBABILITIES

A simple way to compute the frequentness probability
is to enumerate all possible worlds of D and sum up the
probabilities of possible worlds with |T | ≥mint and tT ≤ g:

Pg
≥mint

(O) = ∑
w∈W :(|T |≥mint ,tT≤g)

P(w) (2)

Table I
SUMMARY OF THE USE OF NOTATIONS.

tT The maximum gap produced by T .

∨T, j The tail gap produced by T at the first j timestamps.

Tj First j timestamps of TS, and Tj = {t1, t2, ..., t j}.

P(O@t) Probability that objects in O are in the same cluster at t, i.e. “O
occurs at t”.

P(O@t) Probability that objects in O are NOT in the same cluster at t.

Pg
≥mint

Probability that O occurs at least mint timestamps of TS with
gap constraint g.

Px
≥i, j Probability that O occurs at least i timestamps of Tj with gap

constraint x.

P∨y,x
≥i, j Probability that O occurs at least i timestamps of Tj with tail

gap constraint y and gap constraint x.

Example 5: In Figure 2, if we set mint = 2 and g = 1, for
pattern S = (o1,o2 : P1

≥2(O)), we have P1
≥2(O) = P(W1) +

P(W2)+P(W3)+P(W4)+P(W5) = 0.696.
As mentioned before, as the size of D increases, the

number of possible worlds increases exponentially, up to
|W |=M|TS|×|OS| where M is the number of clusters for which
P(o ∈ c) > 0. With the assumption that timestamps in TS
are mutually independent [14], [20], we can simplify the
calculation as follows:

Pg
≥mint

(O)= ∑
T⊆TS:(|T |≥mint ,tT≤g)

(∏
t∈T

P(O@t)× ∏
t∈TS−T

P(O@t))

(3)
where P(O@t) = 1 − P(O@t). The computation of
Pg
≥mint

(O) via Equation 3 needs to enumerate ∑
|TS|
i=mint

(TS
i

)
combinations of T where tT ≤ g, which is still inefficient
and the computation cost still increases exponentially with
respect to |TS| (the total length of the trajectory).

Example 6: In Figure 2, to calculate P1
≥2(O) for pat-

tern S = (o1,o2 : P1
≥2(O)), the combinations of T fulfilling

|T | ≥ 2,tT ≤ 1 are {t1, t2}, {t2, t3}, {t1, t3} and {t1, t2, t3}.
P(O@t1) = 0.6, P(O@t2) = 0.24, P(O@t3) = 1.0. Thus,
P1
≥2(O) = P(O@t1) × P(O@t2) × P(O@t3) + P(O@t1) ×

P(O@t2)× P(O@t3) + P(O@t1)× P(O@t2)× P(O@t3) +
P(O@t1)×P(O@t2)×P(O@t3) = 0.696.

A. A Dynamic Programming Approach

To avoid the exhaustive enumeration of possible worlds
(or different combinations of mutually independent times-
tamps), we propose a dynamic programming approach to
efficiently calculate the frequentness probability. We first
introduce some notations, which are summarized in Table I.

Let Tj = {t1, t2, ..., t j} be the first j timestamps of TS,
where Tj ⊆ TS. The probability that O occurs at least i
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Figure 3. Details of how to calculate P2
≥3,6(O) using our dynamic

programming approach (4 layers in total).

timestamps of Tj with gap constraint x is:

Px
≥i, j(O) = ∑

T⊆Tj :(|T |≥i,tT≤x)
(∏
t∈T

P(O@t)× ∏
t∈TS−T

P(O@t))

(4)
Thus, the frequentness probability is given by Pg

≥mint ,|TS|
(O).

1) Tail gap: The treatment of gap constraints is a central
feature of our approach. To develop a dynamic programming
method that can handle the gap constraint, we introduce the
notion of a tail gap.

Definition 7: Given a sequence of timestamps T repre-
sented by {k1,k2, ...,kp}, where tki ∈ T , and given Tj =
{t1, t2, ..., t j} where T ⊆ Tj ⊆ TS. The tail gap produced by
T at the first j timestamps, denoted as ∨T, j, is defined as
∨T, j = j− kp.

Example 7: For T = {t1, t2} and T6 = {t1, ..., t6}, ∨T,6 =
6−2 = 4.

Definition 8: Given a positive integer y and Tj =
{t1, t2, ..., t j} where Tj ⊆ TS, we say T ⊆ Tj fulfills the tail
gap constraint iff T satisfies ∨T, j ≤ y.

Definition 9: P∨y,x
≥i, j (O) is defined as the probability that

O occurs at least i timestamps of Tj with tail gap constraint
∨y and gap constraint x.
Lemma 1 shows one important property of P∨y,x

≥i, j (O) which
will be used in our dynamic programming approach.

Lemma 1: 1 P∨y,x
≥i, j (O) = P∨( j−i),x

≥i, j (O), ∀y > j− i.
Example 8: P∨2,2

≥3,4(O) = P∨1,2
≥3,4(O).

2) A dynamic programming scheme: Let T be the
timestamps that O occurs at the first j timestamps Tj =
{t1, t2, ..., t j}, then Pg

≥i, j(O) is equal to the probability that
T fulfills |T | ≥ i and tT ≤ g. Our dynamic programming
approach is to split the problem of computing Pg

≥i, j(O) at
the first j timestamps into subproblems of computing the
frequentness probabilities at the first j−1 timestamps. Let T ′

be the timestamps that O occurs at the first j−1 timestamps

1The proofs of the lemmas in this paper can be found on
http://www.csse.unimelb.edu.au/∼jbailey/stsp.pdf.

Tj−1. The information we require is what conditions must
be met by T ′ to ensure |T | ≥ i and tT ≤ g.

The conditions T ′ needs to meet to make |T | ≥ i as
follows. If O@t j, then O must occur at least i−1 timestamps
of Tj−1 (|T ′| ≥ i− 1). Otherwise, O must occur at least i
timestamps of Tj−1 (|T ′| ≥ i). This technique has also been
used in previous work on probabilistic top-k queries [30].
However, we take the order into account and the maximum
gap is allowed in a sequence. Thus, techniques for handing
the gap constraint are required, which leads to Lemma 2.

Lemma 2 shows the conditions T ′ needs to meet to
make tT ≤ g as follows. If O@t j, T ′ needs to satisfy both
gap constraint tT ′ ≤ g and tail gap constraint ∨T ′, j−1 ≤ g.
Otherwise, T ′ needs to satisfy gap constraint tT ′ ≤ g.

Lemma 2: Let T and T ′ be the timestamps that O occurs
at Tj and Tj−1 respectively. If O@t j, tT ≤ g⇔ (tT ′ ≤ g and
∨T ′, j−1 ≤ g). Otherwise, tT ≤ g⇔tT ′ ≤ g.

With the above discussions, we can split the problem of
computing Pg

≥i, j(O) as follows. If O@t j, then Pg
≥i, j(O) is

equal to the probability that T ′ fulfills thresholds |T ′| ≥ i−1,
tT ′ ≤ g and ∨T ′, j−1 ≤ g. Otherwise, Pg

≥i, j(O) is equal to
the probability that T ′ fulfills thresholds |T ′| ≥ i and tT ′ ≤
g. Lemma 3 shows how to use the dynamic programming
scheme to compute Pg

≥mint ,|TS|
(O) .

Lemma 3: Entry: x = g, i = mint , j = |TS|

Px
≥i, j(O) = P∨x,x

≥i−1, j−1(O)×P(O@t j)+Px
≥i, j−1(O)×P(O@t j)

(5)
where if 1≤ i < mint :

P∨y,x
≥i, j (O)=P∨x,x

≥i−1, j−1(O)×P(O@t j)+P∨y−1,x
≥i, j−1 (O)×P(O@t j)

(6)
or if i = 0 : P∨y,x

≥i, j (O) = P0, j(O)+P∨y,x
≥1, j(O) (7)

recursion termination conditions:

P∨y,x
≥0,0(O) = P0,0(O) = 1; (8)

P∨y,x
≥i, j (O) = Px

≥i, j(O) = 0,∀i > j or ∀x < 0,y < 0; (9)

Lemma 3 is explained as follows. Equation 5 is the entry of
our dynamic programming approach with x= g, i=mint and
j = |TS|. Then P∨x,x

≥i−1, j−1(O) of Equation 5 is calculated by
Equation 6 if 1≤ i < mint or by Equation 7 if i = 0. P0, j(O)
of Equation 7 is the probability that objects in O are not in
the same cluster at the first j timestamps. It is calculated by
P0, j(O) = ∏1≤k≤ j P(O@tk) = P0, j−1(O)× P(O@t j). These
equations are calculated recursively. The recursion termina-
tion conditions are shown in Equation 8 and Equation 9.

Figure 3 shows an example of how to use our dynamic
programming approach to calculate P2

≥3,6(O). Theoretically,
the equations in Lemma 3 can be used as a top-down
approach. However, this approach leads to repeated cal-
culations of internal results. For example, in Figure 3,
P∨1,2
≥2,3(O) is used by both P1

≥3,4(O) and P∨2,2
≥2,4(O). Instead,

as a dynamic programming method, we use a bottom-up



approach. As shown in Figure 3, we start from the bottom
layer, and store internal results for further calculations
until we reach the leftmost node of the top layer. In each
layer, j ∈ [i, |TS| −mint + i], thus the width of each layer
is |TS| −mint + 1. For mint > 1, there are mint + 1 layers
in total. For mint = 1, we still need one internal layer, i.e.,
three layers in total.

Figure 4 (a) provides a zoom in of the internal layer i= 1.
In each column j, only those P∨y,x

≥i, j (O),y ∈ [∨ymin,∨ymax]
need to be calculated and stored. The rightmost node of each
row gets the ∨ymax for its column, where ∨ymax = min( j−
i,g) (Lemma 2). For example, P∨2,2

≥1,3(O) gets ∨ymax = 2 for
column j = 3. Whilst the leftmost node of each row gets
∨ymin for its column, which is calculated as follows. j of the
upper-left node is |TS|−mint + i where ymin get the maximum
value of ∨ymin = g. The difference in j between the upper-
left node and other leftmost nodes is (|TS| −mint + i)− j.
Then ymin of each leftmost node is equal to g minus that
difference. Also, ∨y, j ≥ 0. Thus, ∨ymin = max(g− (|TS| −
mint + i− j),0). For example, P∨1,2

≥1,3(O) gets ∨ymin = 2−
(4−3) = 1 for column j = 3.

As shown in Figure 4 (a), each internal layer can be
seen as a parallelogram with width = |TS| −mint + 1− g
and height = g + 1. Thus, the number of nodes in each
layer is given by (|TS| −mint + 1− g)× (g + 1) = −g2 +
(|TS|−mint)×g+ |TS|−mint +1. It is a quadratic function
that reaches its peak for g = (|TS| −mint)/2. Figure 4 (b)
shows the number of nodes per internal layer for calculating
Pg
≥5,20(O), g ∈ [0,15]. #node is minimal when g = 0 or

g = |TS|−min, and maximal when g = (|TS|−mint)/2.
Intuitively, g = 0 means all the timestamps of T are

consecutive without a gap. While g = |TS|−min means there
is no gap constraint with T . In this case, timestamps are
treated as a set and can be seen as transactions in frequent
itemset mining.

We now state a key theorem for the computational com-
plexity of our method to compute probabilistic frequentness.

Theorem 1: 2 Both the time complexity and space com-
plexity for calculating Pg

≥mint ,|TS|
(O) are O(|TS|).

Proof: To calculate Pg
≥mint ,|TS|

(O), we need one bottom
layer and one top layer, and mint−1 internal layers (or one
internal layer for mint = 1). Thus the total number of nodes
needed is 2 · (|TS|−mint +1)+(mint−1) · (|TS|−mint +1−
g) ·(g+1) for mint > 1, or 2 ·(|TS|−mint +1)+(|TS|−mint +
1−g) ·(g+1) for mint = 1. Thus, it requires O(mint ·g · |TS|−
min2

t ·g−mint ·g2) = O(|TS|) time and O(|TS|) space.
Our dynamic programming approach can check proba-

bilistic support in linear time with respect to the length of
the trajectory TS. This is a substantial improvement over the
naive approach of enumerating all possible worlds.

Example 10 in Appendix shows how to use our approach
to calculate P2

≥3,6(O) from Figure 1, where O = {o1,o2}.

2Assuming parameters mint and g are constants, as was done in [20].

|TS| ̶  mint + 1
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Width = |TS| ̶  mint + 1 ̶  g

High = g + 1
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˅ymax = min(j ̶  i, g)
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Figure 4. (a) Zoom in of the internal layer of i = 1 in Figure 3. The shape
can be considered as a parallelogram. (b) Number of nodes in each internal
layer of Pg

≥5,20(O) with respect to maximum gap constraint g.

B. Probabilistic Monotonicity Discussion

In this subsection, we explore and discuss probabilistic
monotonicity criteria related to our formulation. We also
show that how these monotonicity criteria can be used
as a probabilistic pruning technique to further reduce the
computation cost of our dynamic programming approach.

Lemma 4: P∨y+1,x
≥i, j (O)≥ P∨y,x

≥i, j (O).
Lemma 4 indicates that increasing the tail gap allowed in
a sequence increases the chance a pattern fulfills the tail
gap constraint. In contrast, Lemma 5 shows that increasing
the minimum number of timestamps required in a sequence
decreases the chance a pattern fulfills mint threshold.

Lemma 5: P∨y,x
≥i, j (O)≥ P∨y,x

≥i+1, j(O).
Compared to the support monotonicity criterion of uncertain
frequent itemset mining [20], Lemma 5 extends the criterion
by applying gap constraints to two sides of the equation.
Based on Lemma 4 and Lemma 5, we have:

Lemma 6: P∨x,x
≥i, j (O)≥ P∨x,x

≥i+1, j+1(O).
Lemma 6 suggests that the frequentness probability of the
upper-left node of the ith internal layer is no less than that
of the upper-left node of the (i+1)th internal layer.

Lemma 7: P∨x,x
≥i, j (O)≥ Px

≥i+1, j+1(O), if x = j− i.
Lemma 7 indicates that, under the setting of x = j− i, the
frequentness probability of the upper-left node of the (mint−
1)th internal layer is no less than that of the leftmost node of
the top layer. Recall that only patterns with Pg

≥mint ,|TS|
(O)≥ τ

are of interest in our task. Together with Lemma 6, we now
have the following probabilistic pruning rule.

Pruning Rule 1: During the bottom-up computation of
Pg
≥mint ,|TS|

(O), where g = |TS| − mint , if the frequentness
probability of the upper-left node of an internal layer
P∨g,g
≥mint−k,|TS|−k(O), where 1 ≤ k < mint , is less than τ , then

this pattern can be pruned.

IV. MINING PROBABILISTIC FREQUENT
SPATIO-TEMPORAL SEQUENTIAL PATTERNS

We introduced a linear time solution to calculate the fre-
quentness probability. We now need to efficiently enumerate
different combinations of objectsets with |O| ≥ mino in OS
to find all patterns which are probabilistic frequent in an
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Figure 5. Two implementations of Apriori-based algorithms running on
the database in Figure 1.

uncertain database. We discuss both breadth-first and depth-
first implementations of Apriori-based algorithms.

Breadth-first implementation: It has been shown that the
Apriori algorithm [12], which uses a breadth-first strate-
gy, is promising for identifying frequent itemsets in both
certain and uncertain transaction databases [20]. The anti-
monotonicity of support, also called the Apriori property,
can reduce the search space and thus speed up the mining
process. In order to apply an Apriori-based algorithm, we
first need to show that the anti-monotonicity property still
holds for the frequentness probability with gap constraint g.

Lemma 8: Pg
≥mint

(O)≥ Pg
≥mint

(O′), ∀O⊆ O′.
Lemma 8 provides a pruning technique for bottom-up pat-
tern searching. That is, if Pg

≥mint
(O) does not fulfill the

probabilistic threshold, then Pg
≥mint

(O′) does not fulfill the
probabilistic threshold if O ⊆ O′. We call this the Apriori
pruning rule. Similar to the classical Apriori algorithm, our
algorithm using breadth-first implementation also involves
two main steps: a join step and a prune step. The join
step is responsible for generating new candidates. In the
prune step we calculate the frequentness probability for each
candidate and extract probabilistic frequent patterns where
|O| ≥ mint . We start with an objectset containing a single
object, then iteratively generate new candidates by a join
operation. In each iteration, we scan the database to calculate
the frequentness probability for each candidate. Next, we
output those patterns satisfying |O| ≥mint and probabilistic
support. Finally, we use the Apriori pruning rule to eliminate
those candidates with Pg

≥mint
(O)< τ .

Example 9: Patterns discovered from the database in
Figure 1 with the setting of mino = 2, mint = 3, g = 2,
τ = 0.1: {o1,o2 : 0.82},{o3,o4 : 0.43},{o3,o5 : 0.39},{o4,o5 :
0.24},{o3,o4,o5 : 0.10}.The process is shown in Figure 5 (a).

Depth-first implementation: One bottleneck of the Apriori
algorithm is that the join step becomes time-consuming for
a large number of candidates. In our depth-first implementa-

Algorithm 1 Depth-first implementation
1: Calculate the frequentness probability p for each 1-

objectset and insert into OFeq if p≥ τ

2: m← maximum object in OFeq
3: Call Extend({o}, m, OFeq) for each o ∈ OFeq

4: Function Extend(O, m, OFeq)
5: n← maximum object in O
6: for i ∈ OFeq and n < i≤ n do
7: O← O∪{i}
8: p← CalculateFrequentnessProbability(O, D, mint , g)
9: if p≥ τ then {//Apriori property}

10: OUTPUT (O : p), if |O| ≥ mino
11: Extend(O, m, OFeq)

tion, we simplify the candidate generation by simply adding
one object to the k-objectset to form the (k+ 1)-objectset,
which does not require a join operation. Such a search
order also carries over from a smaller objectset to a larger
objectset. It means the depth-first implementation also can
take the advantage of the Apriori property in the generation
of candidate (k+1)-objectset from k-objectset.

Algorithm 1 shows the depth-first implementation. We
first select frequent 1-objectsets (line 1), and then recursively
generate candidate (k + 1)-objectset from k-objectset (line
5-12). At each iteration, only the frequent k-objectsets are
extended (Apriori property, line 10). We use a bucket tree
structure to store candidate patterns and Figure 5 (b) shows
an example of using the depth-first implementation to find
patterns from the database in Figure 1. The tree grows from
left to right. Each bucket store a pattern represented by
the path from root. For example, the bottom-left bucket
represents the objectset {o1,o2,o3}. The tree stops growing
once it encounters the infrequent pattern.

Compared with the former implementation, the depth-first
strategy does not fully use the downward closure of the
probabilistic support. This is due to the fact that the depth-
first implementation does not know all frequent k-objectsets
before considering the (k+ 1)-objectset. This may lead to
a bigger search space. For example, Figure 5 (b) needs
to calculate the frequentness probability of 20 candidates
compared to 17 candidates of Figure 5 (a). The frequentness
probabilities of three candidates {o1,o2,o3}, {o1,o2,o4} and
{o1,o2,o5} are not calculated by the former implementation
since they contain infrequent subset {o2,o3}, {o2,o4} and
{o2,o5} respectively.

V. EXPERIMENTS

We first consider large synthetic datasets to test the effi-
ciency of our dynamic programming approach for computing
the frequentness probability. Then, we use both synthetic
datasets and real-world vehicle tracking datasets to evaluate
the effectiveness of our two Apriori-based algorithms. All
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Figure 6. Synthetic Dataset: (a) Dynamic programming approach vs. Basic
method. (b) Scalability of DP method. (c) Effect of maximum gap g for
DP method.
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Figure 7. Synthetic Dataset: Effect of probabilistic pruning rule on elapsed
time with respect to mint .

experiments were performed on an Intel Core i5 2.3GHz
machine with 8GB main memory.

A. Evaluation on Calculating the Frequentness Probability

We first use synthetic datasets with varying parameter set-
tings to test the performance of our dynamic programming
approach. The size of the datasets varies from 10 timestamps
to 106 timestamps. The probability that an objectset O occurs
at t is randomly chosen as P(O@t) ∈ (0,1). All results are
the average of ten runs. The probability threshold τ is 0.9.
Both mint and gap constraint g were set to 10 unless stated
otherwise. Abbreviations used in our figures: (1) Basic: basic
approach of probability calculation (c.f. Equation 3); (2)
DP: our dynamic approach; (3) DP+Pruning: our dynamic
approach with pruning (c.f. Section III-B); (4) BFS: the
breadth-first implementation of our algorithm; (5) DFS: the
depth-first implementation of our algorithm.

Figure 6 (a) compares the performance of our dynam-
ic programming approach against the basic method. The
elapsed time of the basic method increases exponentially
when |TS| increases. The elapsed time of the basic method
is out of the scale from the figure if |TS| is less than 50.
In fact, the total number of combinations of timestamps in
the basic method has already reached

(50
10

)
> 1010. Thus

the basic method is not practical. The scalability of our
proposed dynamic approach is illustrated in Figure 6 (b).
The performance of proposed approach is very promising:
as TS increases, the running time grows in a linear trend as
in line with our time complexity theorem (c.f. Theorem 1).
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Figure 8. The number of patterns discovered from two real-world datasets
and the effect of τ .
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Figure 9. Experiments on the datasets generated by the Brinkhoff
simulator.

Effect of the Gap Constraint g: To isolate the effect of
the maximum gap constraint g on the running time, we turn
off the minimum timestamp threshold by setting mint = 1.
This minimizes the effect of mint on the running time. The
running time for calculating Pg

≥1,104(O) is shown in Figure 6
(c), where g varies from 0 to 9999. The running time reaches
a peak at g = 5000 (the mid point) which is consistent with
our analysis from Figure 4 (b).

Effect of Probabilistic Punning Rule: In Section III-B,
we showed that the probabilistic pruning rule can be applied
if g= |TS|−mint . Using this setting for g, we test the running
time with three different values of mint as shown in Figure 7.
Setting a strict mint = |TS|×75% threshold, the probabilistic
pruning rule shows a significant speed up. In contrast, if we
apply a relatively loose mint , then the two lines in Figure 7
(a) overlap, since patterns in such a setting more likely fulfill
the probabilistic threshold and cannot be pruned.

B. Evaluation on Mining Probabilistic Frequent Spatio-
temporal Sequential Patterns

Two real-world vehicle traffic datasets3 and synthetic
datasets generated by the Brinkhoff generator4 were used
to evaluate our two Apriori-based algorithms for mining
probabilistic spatio-temporal frequent sequential patterns.

1) Traffic Datasets: The settings for our two real-world
dataset are as follows: (1) a bus dataset recording 2 school

3http://www.rtreeportal.org
4http://www.fh-oow.de/institute/iapg/personen/brinkhoff/



buses collecting and delivering students around Athens for
108 days and consisting of 145 trajectories; (2) a truck
dataset recording 50 trucks delivering concrete to construc-
tion sites around Athens over 33 days and consisting of
276 trajectories. To increase the size of moving objects, we
considered each distinct trajectory as the ID of an object,
yielding 145 buses with 1713 timestamps and 276 trucks
with 2449 timestamps. This is a common pre-processing
method [10]. The timestamp update frequency was set to
every 30 seconds. Any second of a timestamp falling into the
range [0”, 30”) was normalized to 15” and to 45” otherwise.
For example, the timestamp 23:22:22 gets normalized to
23:22:15 and 23:22:58 to 23:22:45. The soft clusters at
each timestamp are obtained by the fuzzy c-means clustering
algorithm [22] with m = 2 and EPS = 0.01, where m is the
weighting exponent and EPS is the termination criterion.
Each object is assigned a belongingness probability by the
fuzzy clustering algorithm. The number of clusters at each
timestamp is drawn from [2, 5].

We first ran our algorithms on the datasets with mino = 2,
mint = g = 10 and τ = 0.5. The number of found patterns
is illustrated in Figure 8 (a). The largest object cluster we
discovered from the bus dataset has 6 objects, compared
to 4 for the truck dataset. In addition, 2-objectsets and 3-
objectsets are a dominant proportion of the patterns found
in the truck dataset, whilst the size of objectsets in the bus
dataset is more uniform. We further test the effect of the
probabilistic threshold τ on the running time and number of
patterns found, see Figure 8 (b) and (c) respectively. As τ in-
creases, the Apriori rule has more effect and thus the running
time of both implementations decreases. The effect is more
obvious for the truck dataset. With a smaller search space,
the breadth-first implementation outperforms the depth-first
implementation for both datasets. In Figure 8 (c), the truck
dataset returns more patterns than the bus dataset does for
lower τ . However, as τ increases, the number of patterns
found in both datasets decreases significantly especially for
the truck dataset. There are only 25 patterns found in the
truck dataset with τ = 0.95.

2) Brinkhoff Generator: Synthetic Datasets: We use the
map of Oldenburg as input map data. To control the exact
size of the objectset we test, we vary the number of objects
from 100 to 1000 and set the number of newly generated
objects at each timestamp to zero. The maximum number
of timestamps is set to 10000. To make moving objects
last longer (thus the data has more timestamps), we set
the speed divided by 250 which is the default value for
slow. Other parameters were set as default. In order to test
the effect of the probabilistic distribution of belongingness
probabilities on our algorithms, we assign the belongingness
probabilities to objects manually, rather than by applying a
fuzzy clustering algorithm. We first apply DBSCAN [13]
with MinPoints = 2 and ε = 0.05 to obtain (certain) clusters
at each timestamp. MinPoints denotes the minimum number

of objects in a cluster with a radius of ε . Then, we assign the
belongingness probability to each object. The belongingness
probabilities of these datasets were assigned according to
two different distributions: (1) Each object was assigned a
probability according to a uniform distribution in the range
of (0.5, 1.0]. (2) Each object was assigned a probability
according to a normal distribution with a mean of 0.5 and a
standard deviation of 0.2 in the range of [0, 1.0] (if the prob-
ability is outside the range, we assign the boundary value of
0 or 1). The parameters of our algorithms are set as mino = 2,
mint = g= 10 and τ = 0.5. The results are shown in Figure 9.
Again, the algorithm using the breadth-first implementation
generally outperforms the depth-first implementation. The
elapsed time for each of the two different probabilistic
distributions is not significantly different. However, there are
many more patterns found in the datasets that use a uniform
distribution than the datasets with a normal distribution as
shown in Figure 9 (c).

VI. CONCLUSIONS

In this paper, we have formulated and studied the problem
of mining probabilistic frequent spatio-temporal sequential
patterns in uncertain databases. We proposed a dynamic
programming approach for computing the frequentness prob-
ability with linear time complexity. This is a somewhat
surprising result. Linear time support checking has been
shown to be possible for uncertain itemsets. However, se-
quences have a more complex structure than itemsets and
gap constraints add even further complexity.

We further introduced and evaluated two Apriori-based al-
gorithms using breadth-first and depth-first implementations
for efficient enumeration of all probabilistic frequent spatio-
temporal sequential patterns from uncertain databases.

In our further study, we aim to extend our current ap-
proach to be able to handle the trajectory data where the
identity of objects is uncertain.
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APPENDIX

Example 10: The calculation of P2
≥3,6(O) in

Figure 1, where O = {o1,o2} and P(O@ti) =
{0.6,0.8,0.4,0.6,0.8,0.4}. Note that here Px

≥i, j is short for
Px
≥i, j(O), and P(ti) (P(ti)) is short for P(O@ti) (P(O@ti)).

(1) Bottom layer: i = 0, j ∈ [0,3]
P0,0 = 1; P0,1 = P0,0×P(t1) = 0.4;
P0,2 = P0,1×P(t2) = 0.8; P0,3 = P0,2×P(t3) = 0.48
(2) Internal layer: i = 1, j ∈ [1,4]
(2.1) j = 1,∨ymin = ∨ymax = 0
P∨0,2
≥1,1 = P∨2,2

≥0,0× t1 +P∨−1,2
≥1,0 × t1 = 0.6

(2.2) j = 2,∨ymin = 0,∨ymax = 1



P∨0,2
≥1,2 =(P0,1+P∨2,2

≥1,1)×P(t2)+P∨−1,2
≥1,1 ×P(t2)

[
P∨2,2
≥1,1=P∨0,2

≥1,1

]
= 0.8

P∨1,2
≥1,2 =(P0,1+P∨2,2

≥1,1)×P(t2)+P∨0,2
≥1,1×P(t2)

[
P∨2,2
≥1,1=P∨0,2

≥1,1

]
= 0.92

(2.3) j = 3,∨ymin = 1,∨ymax = 2

P∨1,2
≥1,3 =(P0,2+P∨2,2

≥1,2)×P(t3)+P∨0,2
≥1,2×P(t3)

[
P∨2,2
≥1,2=P∨1,2

≥1,2

]
= 0.88

P∨2,2
≥1,3 = (P0,2 + P∨2,2

≥1,2) × P(t3) + P∨1,2
≥1,2 × P(t3)

[
P∨2,2
≥1,2=P∨1,2

≥1,2

]
=

0.952
(2.4) j = 4,∨ymin = ∨ymax = 2
P∨2,2
≥1,4 = (P0,3 +P∨2,2

≥1,3)×P(t4)+P∨1,2
≥1,3×P(t4) = 0.952

(3) Internal layer: i = 2, j ∈ [2,5]
(3.1) j = 2,∨ymin = ∨ymax = 0
P∨0,2
≥2,2 = P∨2,2

≥1,1×P(t2)+P∨−1,2
≥1,1 ×P(t2) = 0.48

(3.2) j = 3,∨ymin = 0,∨ymax = 1

P∨0,2
≥2,3 = P∨2,2

≥1,2×P(t3)+P∨−1,2
≥2,2 ×P(t3)

[
P∨2,2
≥1,2=P∨1,2

≥1,2

]
= 0.368

P∨1,2
≥2,3 = P∨2,2

≥1,2×P(t3)+P∨0,2
≥2,2×P(t3)

[
P∨2,2
≥1,2=P∨1,2

≥1,2

]
= 0.656

(3.3) j = 4,∨ymin = 1,∨ymax = 2
P∨1,2
≥2,4 = P∨2,2

≥1,3×P(t4)+P∨0,2
≥2,3×P(t4) = 0.7184

P∨2,2
≥2,4 = P∨2,2

≥1,3×P(t4)+P∨1,2
≥2,3×P(t4) = 0.8336

(3.4) j = 5,∨ymin = ∨ymax = 2
P∨2,2
≥2,5 = P∨2,2

≥1,4×P(t5)+P∨1,2
≥2,4×P(t5) = 0.9052

(4) Top layer: i = mint = 3, j ∈ [3,6]

P2
≥3,3 = P0

≥3,3 = P∨2,2
≥2,2 × P(t3) + P2

≥3,2 × P(t3)

[
P∨2,2
≥2,2=P∨0,2

≥2,2

]
=

0.192
P2
≥3,4 = P1

≥3,4 = P∨2,2
≥2,3 × P(t4) + P2

≥3,3 ×

P(t4)

[
P∨2,2
≥2,3=P∨1,2

≥2,3 ,P
2
≥3,3=P0

≥3,3

]
= 0.4704

P2
≥3,5 = P∨2,2

≥2,4×P(t5)+P2
≥3,4×P(t5)

[P2
≥3,4=P1

≥3,4]
= 0.761

P2
≥3,6 = P∨2,2

≥2,5×P(t6)+P2
≥3,5×P(t6)= 0.8187
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