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ABSTRACT
Cross media retrieval systems have received increasing inter-
est in recent years. Due to the semantic gap between low-
level features and high-level semantic concepts of multimedia
data, many researchers have explored joint-model techniques
in cross media retrieval systems. Previous joint-model ap-
proaches usually focus on two traditional ways to design
cross media retrieval systems: (a) fusing features from dif-
ferent media data; (b) learning different models for different
media data and fusing their outputs. However, the process
of fusing features or outputs will lose both low- and high-
level abstraction information of media data. Hence, both
ways do not really reveal the semantic correlations among
the heterogeneous multimedia data. In this paper, we in-
troduce a novel method for the cross media retrieval task,
named Parallel Field Alignment Retrieval (PFAR), which in-
tegrates a manifold alignment framework from the perspec-
tive of vector fields. Instead of fusing original features or
outputs, we consider the cross media retrieval as a manifold
alignment problem using parallel fields. The proposed man-
ifold alignment algorithm can effectively preserve the met-
ric of data manifolds, model heterogeneous media data and
project their relationship into intermediate latent semantic
spaces during the process of manifold alignment. After the
alignment, the semantic correlations are also determined.
In this way, the cross media retrieval task can be resolved
by the determined semantic correlations. Comprehensive
experimental results have demonstrated the effectiveness of
our approach.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content
Analysis; H.3.3 [Information Search and Retrieval]: Re-
trieval Models
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1. INTRODUCTION
In recent years, multimedia contents including text, im-

age, audio and video on the web have been growing rapidly.
With the role switch between social media (Twitter, Face-
book) and traditional media (newspapers, etc.), more and
more multimedia contents are published on the web by peo-
ple. However, the explosion of multimedia contents has not
been matched by an equivalent increase in the sophistication
of multimedia content retrieval technology [7, 24, 25]. Nowa-
days, the dominate search engines for multimedia retrieval,
such as Google and Bing, are still text-based. To effectively
leverage the massive explosion of multimedia content, a large
number of approaches have been proposed in the areas such
as information retrieval, multimedia retrieval and computer
vision [2, 3, 5, 11, 16]. One of the well known challenges
in the area of multimedia retrieval is the so called semantic
gap, i.e., low-level features are not sufficient to character-
ize high-level semantics of media data [34, 35]. Aiming at
this point, many previous works [27] have been proposed
to simultaneously utilize multiple types of information such
as the original multimedia contents, surrounding texts (or
labels), and links to improve the multimedia retrieval per-
formance. However, these works do not consider the seman-
tic correlation among different media types. Generally, they
can be viewed as uni-media retrieval, in which the query
example and the retrieved results are of the same media
type [7].

It is common knowledge that an important requirement
for further progress in these areas is the development of so-
phisticated joint models for multiple media types. In which
the most significant is the development of models that sup-
port inference with respect to content that is rich in multiple
media types [24]. Specifically, these models should utilize the
full structure of document which has a body of text accom-
panied with images or videos. For example, wikipedia page
or newspaper article usually contains several paragraphs of



text and a number of related images for illustration. The
performance of such models is referred as a cross media re-
trieval problem: the retrieval of all documents with the other
media types in response to a media type query data. The
task is crucial to many practical applications, such as finding
images on the web that best illustrate a given text, finding
the texts which are most related to a given image, or further,
searching using a combination of different types of multime-
dia data and labelling media data automatically [24]. Fig-
ure 1 illustrates the following example, given an image of
a horse, the cross media retrieval model should return all
the contents related to the horse concept, e.g ., the sound of
horse, the introduction text.

Figure 1: An example of cross media retrieval
model.

To address the cross media retrieval problem, advances
have been reported over the last decades [7, 26, 28]. These
methods focus on two traditional ways to design cross media
retrieval systems: (a) fusing features from different media
data into a single vector [23, 33]; (b) learning different mod-
els for different media data and fusing their outputs [14,
32]. And most of these approaches require multiple-type
queries, e.g ., queries composed of both image and text fea-
tures. Hence, these methods are extensions of the classic
uni-media retrieval systems.

The key challenge of cross media retrieval is to explore
the semantic correlations among the heterogeneous media
data. However, both of previous ways do not really reveal
the semantic correlations. Semantic correlations can help us
to better understand, organize and make use of the media
data [34].

Recently, some developments bring new perspective to
solve the cross media retrieval problem. Multimedia Corre-
lation Space [34] and Correlation Semantic Space [24] intro-
duce the idea of constructing a joint model to project orig-
inal multimedia features to the semantic correlation space.
And in the same period, manifold alignment methods [10,
29, 31] are proposed and shown that they are appropri-
ate joint models for pair matching between heterogeneous
data sources. However, most of existing manifold align-
ment methods use graph based regularizer e.g ., graph Lapla-
cian, which focus on ensuring the first order smoothness of
the mapping functions [21] in manifold alignment process.
The first order smoothness of the mapping functions is not

enough to reveal the underlying semantic correlations be-
tween heterogeneous types of multimedia data. In order to
discover the latent semantic correlations, we would like to
ensure the second order smoothness of the mapping func-
tions in manifold alignment which preserve the geodesic dis-
tance of the manifolds. In some recent work, parallel fields
[22] are found capable to keep the second order smoothness
of the mapping functions [18].

Inspired by these developments in the cross media re-
trieval area, we propose a novel approach for cross media
retrieval, called Parallel Field Alignment Retrieval (PFAR),
which integrates a manifold alignment framework from the
perspective of vector fields. Instead of fusing original fea-
tures or outputs, we consider the cross media retrieval as a
manifold alignment problem using parallel fields. The pro-
posed manifold alignment algorithm can effectively preserve
the metric of data manifolds, model heterogeneous media
data and project their relationship into intermediate latent
semantic spaces during the process of manifold alignment.
After the alignment, the semantic correlations are also de-
termined. In this way, the cross media retrieval task can
be resolved by the determined semantic correlations. The
empirical results from a real world data demonstrate the
benefits of our approach over state-of-the-art cross media
retrieval methods.

The rest of this paper is organized as follows. In Sec-
tion 2, we introduce some basic background information
about manifold alignment and parallel fields. In Section 3,
we describe the proposed cross media retrieval algorithm
(PFAR) in great detail. The experimental results of real
world cross media data are presented in Section 4. Finally,
Section 5 provides some concluding remarks.

2. BACKGROUND
As discussed in the previous section, our cross media re-

trieval approach involves manifold alignment and parallel
fields techniques. In this section, we introduce some back-
ground on mainfold alignment and parallel fields.
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Figure 2: An example of manifold alignment. Two
data manifold samples are shown in the left.The re-
sult of these two manifolds after alignment is shown
in the right.

2.1 Manifold alignment



In many areas of machine learning and data mining, one
is often confronted with very high dimensional data such
as high definition videos and large vector-space documents.
Learning problems involving these datasets are usually chal-
lenging. However, in many cases, there is a strong intuition
that the high dimensional data may have a lower dimen-
sional intrinsic representation. Manifold alignment is a class
of machine learning algorithms which takes advantage of this
assumption to produce projections between sets of data by
aligning their underlying manifold representations [9, 30].

One of the pioneering work in manifold alignment is the
paper of semi-supervised alignment [10]. Given certain la-
beled samples, semi-supervised alignment aims to find two
maps which map two datasets to the new common space
while satisfying the label constraint. Suppose U is the vertex
space, there are l labeled vertices Vlabel = {v1, v2, . . . , vl},
Vlabel ⊂ U, and Tlabel = {t1, t2, . . . , tl} (ti ∈ R), which is the
vector of labeled target values. Similar to regression models,
we would like to find a map defined on the vertices of the
graph f : U → R which matches known target values for
the labeled vertices. This can be solved by minimizing the
following objective function:

E(f) =
∑
i

µ|f(vi)− ti|+ fTLf (1)

Here vi ∈ Vlabel, ti ∈ Tlabel, and L is the graph Laplacian
matrix. The relative weighting of these terms is given by the
coefficient µ. The symmetric graph Laplacian matrix L =
LT provides the information of the data manifold structure.
Given two datasets with corresponding labels, we can learn
manifolds for each datasets according to Equation 1, and
align these two manifold with the intrinsic coordinates of
labels. An illustration of manifold alignment is shown in
Figure 2.

2.2 Parallel field regularization
Given a manifoldM, a vector field is a mapping from the

manifold to tangent spaces on the manifold [22]. We can
think of a vector field on the manifold M in the same way
as we think of the vector field in Euclidean space. For each
point on the manifold, we assign an arrow on it, with a given
magnitude and direction, chosen to be tangent to the man-
ifold M. A smooth vector field means that tangent vectors
vary smoothly on the manifold. An example of vector fields
is shown in Figure 3.

One kind of the most important vector fields are parallel
fields. The definition of parallel fields on the manifold is
given as follows.

Definition 1. (Parallel Fields [22]) A vector field X on the
manifold M is a parallel field if

∇X ≡ 0,

where ∇ is the covariant derivative on M.

The parallel field is closely related to the linear function on
the manifold. Let V be a parallel field on the manifold. If it
is also a gradient field for function f , V = ∇f , then f must
be a linear function on the manifold.

Parallel fields essentially captures the second order smooth-
ness of functions on the manifold [18]. Some recent theo-
retical results [15] shows that penalizing the second order
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Figure 3: A vector field on punched sphere.

smoothness of functions helps achieve faster rates of conver-
gence for semi-supervised regression problems. Moreover,
parallel fields can also captures the metric structure of the
manifold [17]. In other words, we can use parallel fields to
preserve the distance on the manifold.

Next we briefly introduce Parallel Field Regularization
(PFR). Let M be a d-dimensional manifold embedded in
Euclidean space Rm. Given l labeled data points (xi, yi)

l
i=1,

xi ∈ M and yi ∈ R, the goal of semi-supervised regression
on the manifold is to learn a function f : M→ R. Specifi-
cally, PFR tries to learn the function f and it gradient field
∇f simultaneously via regularization. Formally, PFR aims
to learn a function f and a vector field V by optimizing the
following objective function:

E(f, V ) =
1

l

l∑
i=1

R0(xi, yi, f) + λ1R1(f, V ) + λ2R2(V ), (2)

where

R1(f, V ) =

∫
M
‖∇f − V ‖2 (3)

and

R2(V ) =

∫
M
‖∇V ‖2F . (4)

The first term in Equation 2 is the loss function, and the
second term enforces the vector field V to be close to the
gradient field ∇f of f . ∇V in the third term measures the
change of the vector field V . If ∇V vanishes, V must be a
parallel field.

3. CROSS MEDIA RETRIEVAL
In this section, we present a novel approach to solve cross

media retrieval problem.

3.1 The problem
Suppose we have a dataset X = {X1, . . . , X|X|} which

contains documents of two different types of media data A
and B, e.g ., A is a collection of texts and B consists of im-
ages. Specifically, all Xi, i ∈ (1, |X |), in X can be quite di-
verse: from documents where a single text is complemented



by one or more images to documents containing multiple
images and texts. For simplicity, we consider the case where
each document in X consists of two sample components, one
is from A and the other one is from B, i.e. Xi = (Ai,Bi).
All data points of A and B are of vector forms in feature
spaces RA and RB, respectively. Under this circumstances,
each document establishes a one-to-one mapping between
component from the A and component from B media data
spaces.

We consider cross media retrieval problem based on the
doument dataset X . The fundamental concept of cross me-
dia retrieval is rather straightforward. Given a query QA ∈
RA (or QB ∈ RB), the goal of cross media retrieval is to re-
turn the closest matches in the B (or A) space RB (or RA).
Whenever the A and B media data spaces have a natural
correspondence, the original cross media retrieval problem
can reduce to a classical retrieval problem: finding an in-
vertible mapping function f between A and B:

f : RA →RB. (5)

Hence, if a query QA ∈ RA is given, we would be able to
find the nearest neighbor of f(QA) in RB. Similarly, given
a query QB ∈ RB, it would be easy for us to find the nearest
neighbor of f−1(QB) in RA [24].

However, since A and B are different types of media data,
they tend to adopt different feature representations. There-
fore, it is hard to reveal semantic correlations between RA
and RB, which means the semantic gap still exists. For ex-
ample, suppose A is a dataset consists of texts and B is a
dataset consists of images. And we adopt TF/IDF and His-
togram of Oriented Gradients (HOG) [4] to be the feature
representations for texts and images, respectively. Thus, it
is hard for us to directly explore the semantic correlations
between text and image data spaces.

In order to abridge the semantic gap betweenRA andRB,
it is possible to map these two representations into two inter-
mediate spaces which have a natural correspondence [24] and
semantic correlations [36]. Consider following mappings:

fA : RA → IA, (6)

and

fB : RB → IB. (7)

Here, fA and fB map originalRA andRB media data spaces
to a pair of intermediate spaces IA and IB, respectively.
Further, we would like to ensure that there is also an invert-
ible mapping between IA and IB:

fI : IA → IB. (8)

Now, if a query QA ∈ RA is given, the cross media re-
trieval task becomes finding the nearest neighbor of f−1

B ◦
fI ◦ fA(QA) in RB. Similarly, the goal becomes finding the
nearest neighbor of f−1

A ◦ f−1
I ◦ fB(QB) in RA if a query

QB ∈ RB is given [24]. Under this circumstances, the orig-
inal problem of cross media retrieval is equivalent to learn
the intermediate spaces IA and IB.

In our approach, we use manifold alignment with parallel
fields to model disparate media A and B data and project
their relationship into intermediate spaces, and the semantic
correlations are determined during the process of manifold
alignment. In this way, the cross media retrieval task can be
resolved by the determined semantic correlation. We next

show our proposed method, the parallel field alignment re-
trieval (PFAR), in detail.

3.2 Parallel field alignment retrieval
In order to learn intermediate spaces IA and IB, An opti-

mal correspondence between the representations in the orig-
inal spaces RA and RB [24] is needed. One possible way
is to apply the subspace learning framework which utilize
some extremely well developed dimensionality reduction ap-
proaches, such as Principal Component Analysis (PCA) [13]
or Latent Semantic Indexing (LSI) [6].

Our approach here utilizes manifold alignment algorithms
[10, 30] to find mappings defined on the media data mani-
folds, and use these mappings to align the underlying media
manifold representations in intermediate semantic spaces.
In the sense of manifold alignment, the semantic correla-
tions are learned after the alignment of the underlying me-
dia manifold representations. In addition, we would like to
use parallel fields, which preserve the metric of the manifold
to measure the disparate media data manifolds. Most of ex-
isting manifold alignment algorithms focus on ensuring the
first order smoothness of the function. However, researchers
have shown that the second order smoothness of the function
is particularly important for preserving the metric. And the
second order smoothness of the function is equivalent to the
parallelism of the gradient field of the function [18]. Thus,
we propose to learn two mapping functions and two vector
fields simultaneously with two constraints in the process of
manifold alignment. By designing the two constraints, we
ensure each vector field to be close to the gradient field of
each corresponding mapping function, and the vector fields
should be as parallel as possible. In this way, the second
order smoothness of the function is also ensured. The whole
concept of our proposed parallel field alignment retrieval ap-
proach is shown in Figure 4.

We now consider aligning disparate media data manifolds,
given some additional information of datasets, from the par-
allel field perspective. In our approach, the desired coordi-
nates for labeled samples are provided. In detail, the coor-
dinates of labels indicate the intrinsic information of paired
data samples within the manifolds. With a small number
of labeled examples, it is crucial to exploit manifold struc-
tures of datasets in manifold alignment [10]. Specifically, we
first estimates the gradient field of the prediction function
by a vector field, and then require the vector field to be as
parallel as possible.

In the setting of parallel field alignment retrieval (PFAR),
we denote the notations A ⊂ RA and B ⊂ RB as the
datasets, and s = {s1, s2, . . . , sl} and t = {t1, t2, . . . , tl}
are the vectors referred to the target paired information of
the l “labeled” data samples for A and B respectively. Let
f and g denote two mapping functions defined on the data
manifolds that match known target labeled pairs. Following
the above analysis, we try to integrate vector fields VA and
VB on the manifold with two constraints to our alignment
functions:

E(f, VA) =
1

lA

lA∑
i=1

(f(ai)−si)2+µA,1R1(f, VA)+µA,2R2(VA)

(9)



Figure 4: The PFAR concept illustration.

and

E(g, VB) =
1

lB

lB∑
i=1

(g(bi)−ti)2+µB,1R1(g, VB)+µB,2R2(VB),

(10)
where ai ∈ A and bi ∈ B, R1 and R2 are regularizers defined
in Equation 3 and 4, R1 enforces vector fields VA and VB to
be close to gradient fields ∇f and ∇g of mapping functions.
As shown in Section 2, if R2 vanishes, VA and VB must be
parallel fields.

In order to explore how underlying data manifolds can be
mapped into intermediate spaces and then aligned to each
other through a common set of paired media data informa-
tion in the process of PFAR, we should make sure that the
vector field is close to the gradient field of the function and
further the vector field should be as parallel as possible.

Next we show that how to discretize the continuous ob-
jective function. First of all, we give some notations:

• Let TaiM denote the d dimensional tangent space of
ai on the manifold M.

• Let Ti ∈ Rm×d denote the matrix whose columns con-
stitute an orthonormal basis for TaiM.

• Let Vai denote the value of the vector field V at data
point ai.

Following the above notations, define Pi = TiT
T
i . It can

be shown that Pi is the unique orthogonal projection from
Rm onto the tangent space TaiM [8]. According to the
definition of vector fields, each vector Vai should be on the
tangent space TaiM. Thus we can represent Vai by the
coordinates of tangent spaces, i.e., Vai = Tivi. Let VA =
(vT1 , . . . , v

T
n )T ∈ Rdn be a dn-dimension column vector which

concatenates all the vi’s, i ∈ (1, . . . , n).

Then the regularizers R1 and R2 can be discretely reduced
to:

R1(f,VA) =
∑
i

∑
j∼i

wij((ai − aj)T Tivi − fj + fi)
2 (11)

and

R2(VA) =
∑
i

∑
j∼i

wij‖PiTjvj − Tivi‖2, (12)

where wij , weight parameters, which can be approximated
by heat kernel weights exp(−‖ai−aj‖2/δ) or by 0 - 1 weights
for simplicity.

Now, let IA denote an n×n diagonal matrix where IAii = 1
if ai is labeled and IAii = 0 otherwise. Then the dis-
crete form of our parallel field alignment objective function
E(f, VA) can be written as:

E(f,VA) =
1

lA
(f − s)T IA(f − s)

+ µA,1

∑
i

∑
j∼i

wij((ai − aj)T Tivi − fj + fi)
2

+ µA,2

∑
i

∑
j∼i

wij‖PiTjvj − Tivi‖2

.

(13)

The optimal solution to this objective function is then
obtained via solving the following linear systems:(

1
lA

IA + 2µA,1LA −µA,1C
T
A

−µA,1CA µA,1GA + µA,2KA

)(
f
VA

)
=

(
1
lA

s

0

)
,

(14)
where L denotes the Laplacian matrix of the graph with
weights wij , GA is a dn×dn block diagonal matrix, and CA

is a dn × dn block matrix. Let us denote GAii and CAi as
the i-th d×d diagonal block of G and the i-th d×n block of
C respectively, and zij ∈ Rn is a selection vector of all zero



elements except for the i-th element being −1 and the j-th
element being 1. Then GAii and CAi are defined as

GAii =
∑
j∼i

wijT
T
i (aj − ai)(aj − ai)TTi (15)

and

CAi =
∑
j∼i

wijT
T
i (aj − ai)zTij , (16)

KA is a dn×dn sparse block matrix. If we use KAij to index
each d× d block in A, i, j ∈ (1, . . . , n), we have

KAii =
∑
j∼i

wij(QijQ
T
ij + I) (17)

and

KAij =

{
−2wijQij , if ai ∼ aj
0, otherwise

(18)

where Qij = TT
i Tj .

Similarly, the optimal solution for data set B is as follows:(
1
lB

IB + 2µB,1LB −µB,1C
T
B

−µB,1CB µB,1GB + µB,2KB

)(
g
VB

)
=

(
1
lB

t

0

)
.

(19)
Given two datasets A and B with target paired values of

labeled data samples, the solutions to f and g of Equation
14 and Equation 19 can be used to estimate coordinates
of the other unlabeled data points in intermediate spaces,
which further can be utilized to align their intrinsic data
manifolds.

Given any query q from A, we use the mapping function f
obtained in the training step to project the query q into the
intermediate space. And the projected q is then semantic
correlated aligned in the intermediate space. To find the
best match samples in B, we can use the metric defined
as: let F = (f1, . . . , fr)T and G = (g1, . . . , gr)T be the r
dimensional representations of aligned manifolds of A and
B. If the coordinates in F and G are aligned from known
coordinates, the distance between ai ∈ A and bj ∈ B is then
given by [10]:

d(ai, bj)
2 =

∑
k

|Fik −Gjk|2, (20)

then the best match bj ∈ B to a ∈ A is given by:

arg min
j

d(a, bj). (21)

The alignment framework is similar to some of the exist-
ing alignment methods [9, 10, 30]. However, most of the
existing alignment approaches focus on preserving the pair-
wise similarity between data pairs. In this case, they may
not preserve the relative order of the similarity measure. For
example, suppose object A and object B are similar, object
A and object C are also similar, however B is more simi-
lar to A than C. In existing alignment methods, they can
find a space in which A, B, C are close, but they cannot
tell whether B is closer to A than C or not. By using vec-
tor fields, we require the mapping function varies linearly
along the geodesics on the manifolds and naturally the or-
der can be preserved. This property is extremely important
for multimedia retrieval problems.

4. EXPERIMENTS
In this section, we conduct some extensive experimental

evaluation to demonstrate the effectiveness of our proposed
Parallel Field Alignment Retrieval (PFAR) approach.

4.1 Dataset
The evaluation of a cross media retrieval system usually

needs a document corpus with paired contents from dis-
parate domains of multimedia source. In this experiment,
we use the recently proposed Wikipedia dataset composed of
text and image pairs1 [24]. This real world dataset consists
of a continually updated collection of Wikipedia’s featured
articles spread over 29 categories, since 2009. The articles
are accompanied by one or more images from the Wikipedia
Commons, supplying a pairing of the desired kind. Since
some categories are very scarce, we will only consider the
top 10 most categories in the experiment.

Each article was split into sections based on its section
headings, and each image was assigned to the correspond-
ing section in which it was placed by the author(s) of the
Wikipedia page. Then this dataset was pruned to keep only
sections that contained a single image and at least 70 words.
The final corpus contains 2866 text-image pairs, each be-
longs to one of 10 semantic categories. And the corpus is
random split into a training set with 2173 documents, and
a test set with 693 documents [24]. The detail information
of this corpus is summarized in Table 1.

Table 1: Experiment Dataset Summary [24]
Category Training Query Total

Art & architecture 138 34 172
Biology 272 88 360

Geography & places 244 96 340
History 248 85 333

Literature & theatre 202 65 267
Media 178 58 236
Music 186 51 237

Royalty & nobility 144 41 185
Sport & recreation 214 71 285

Warfare 347 104 451
Summary 2173 693 2866

4.2 Data representation and evaluation
The data representation is similar to those of two previ-

ous works [20, 24]. In terms of image representations RI ,
we represented the image using the histogram over the pop-
ular scale-invariant feature transformation (SIFT) [19] with
the codebook of 512 codewords. The text representation is
derived from a Latent Dirichlet Allocation (LDA) [1] model
with 10 topics (for training data, label information is derived
based on the topics). Thus, in RT , text documents are rep-
resented by their topic assignment probability distributions
among these 10 topics.

To test the proposed PFAR approach on real data, we
conduct the retrieval task with two parts: text retrieval us-
ing an image query, and image retrieval using a text query.
In the first part, each image in the test set is used as a query,
and the goal is to rank all the texts in the test set based on
their match to the query image. In the second, a text query

1http://www.svcl.ucsd.edu/projects/crossmodal
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Figure 5: Precision recall curves: (a) text query and (b) image query

is used to rank the images. In both parts, the performance
is measured using precision-recall (PR) curves and the mean
average precision (MAP).

In the experiment, our approach learns the aligned in-
termediate spaces by incorporating the information of me-
dia data. We use k = 8 nearest neighbors method to con-
struct the neighborhood for each media source in formula-
tion of Equation 9, and we apply the 10-fold cross validation
to select the parameters (e.g ., µA,1 for R1, µA,2 for R2).
To demonstrate the performance of PFAR, we compare a
number of state-of-the-art cross media retrieval approaches,
CCA [12], Semantic Correlation Matching (SCM) [24], Fast
version of Maximum Covariance Unfolding (Fast-MCU) [20]
and Manifold Alignment (MA) [10] with PFAR.

In these retrieval approaches, given a test sample (image
or text), it is first projected into the learned intermediate
space. For CCA and SCM, this involves a linear transforma-
tion to the low dimensional subspace, while for Fast-MCU,
the nearest neighbors of the test point among the training
samples in the original space are used to obtain a mapping of
the point as a weighted combination of these neighbors [20].

For PFAR, we use training datasets to learn the interme-
diate spaces during the parallel field alignment process and
two manifolds are aligned at the same time. The same map-
ping is then applied to the projection of the neighbors in the
learned intermediate space to compute the projection of the
test point. To perform retrieval, all the test samples from
both models, image and text, are projected on the aligned
manifolds, respectively. For a given test point from one kind
of media, we use the correlation distance shown in Equation
21 to compute its distance to all the other projected test
points of the other medium, and then these distances are
ranked. If a retrieved sample belongs to the same category
as the query, it is considered to be correct.

4.3 Test of the cross media retrieval
The result of the retrieval task is shown in Table 2, which

summarizes the MAP scores obtained for the 5 cross media
retrieval approaches. This table contains scores for both
image retrieval from a text query, and text retrieval from
an image query, and the average. The performance of the
random retrieval test is also shown to indicate the baseline

chance level. From Table 2, it is clear that our proposed
approach PFAR outperforms CCA, SCM and Fast-MCU in
both image-to-text (image query) and text-to-image (text
query) cross media retrieval tasks. PFRA leads non-trivial
improvements over other approaches. In both parts, the
average MAP of our approach is more than 2.5 times that
of random method.

Table 2: Retrieval Performance (MAP Scores)
Experiments Image Query Text Query Average

Random 0.118 0.118 0.118
CCA 0.246 0.196 0.221
SCM 0.274 0.225 0.250

Fast-MCU 0.287 0.224 0.256
MA 0.262 0.225 0.243

PFAR 0.298 0.273 0.286

To further analyze the performance of our proposed ap-
proach, we also presents the results of precision-recall (PR)
curves for both image and text queries in Figure 5. Ac-
cording to the results of Figure 5, it is clear that our pro-
posed approach PFAR, Fast-MCU, SCM, and CCA all gain
improvements over random retrieval at all levels of recall.
Compared the PR curves of PFAR with those of SCM and
Fast-MCU, it shows that PFAR gets higher precision at all
levels of recall for both text queries (on the left) and image
queries (on the right). It shows that the PFAR approach
is more effective to precisely find matches than the other
approaches.

Figure 6 illustrates two examples of text queries and the
top ranked images retrieved by PFAR to provide the visu-
alization of cross media retrieval. These two examples are
chosen from geography category and sport category, respec-
tively. In each case, the query text is shown at the top,
and the first image in the images row is the groundtruth im-
age. As indicated in Figure 6, top four retrieved images are
shown next to the groundtruth image. We can see that the
retrieved images are quite semantic correlated to the query
texts.

Figure 7 shows an example about topics distribution of
retrieved texts by CCA, SCM, Fast-MCU, MA and our pro-



(a) Text query from geography category

(b) Text query from sport category

Figure 6: Two examples of text queries and the top images retrieved by PFAR. The query texts of (a) and
(b) are chosen from geography category and sport category, respectively. In both (a) and (b), first image in
bottom row is the groundtruth image, and others are top ranked retrieved images.
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Figure 7: A comparison example of cross media retrieval with given image query.

posed PFAR. Given a query image, we compared the top-
ics distribution of all retrieved texts with respect to above
methods. In Figure 7, the query image is taken from Seattle,
the groudtruth text gives some description about the geog-
raphy of Seattle. The result of PFAR can accurately give
the topics distributions over other methods.

Actually, all methods tend to retrieve texts that are re-
lated specifically to the query image. However, PFAR is able
to retrieve texts which are closer to the query image on the
categorical level. This also indicates that the abstraction
work with relative order infomation preserved by PFAR is
especially important for exploratory tasks.

According to the experiment result analysis, PFAR can
be viewed as one kind of semantic correlation spaces projec-
tion methods. In addition, the parallel field in the alignment
process, which preserves the geodesic distance of media man-
ifolds, also significantly contribute to the performance of the
text and image cross media retrieval.

5. CONCLUSIONS
In this paper, we have proposed a novel approach for cross

media retrieval, called Parallel Field Alignment Retrieval
(PFAR), which integrates a manifold alignment framework
from the perspective of vector fields. Our goal is to solve the
fundamental problem in cross media retrieval area. Given
a query QA ∈ RA (or QB ∈ RB), the goal of cross media
retrieval is to return the closest matches in the B (or A)
media space RB (or RA).

Due to the semantic gap between low level features and
high level semantic concepts of multimedia data, it is not
easy for us to reveal the underlying semantic correlations
among the heterogeneous multimedia data. Previous stud-
ies have shown that manifold alignment method is an appro-
priate model for pair matching between heterogeneous data
sources. Hence, we consider the cross media retrieval as a
manifold alignment problem and use parallel fields, which
can effectively preserve the metric of media data manifolds,
to model heterogeneous multimedia data and project their
relationship into intermediate latent semantic spaces during
the process of manifold alignment. And the most important
factor is that the semantic correlations are also determined
in the manifold alignment process.

Finally, the experimental results from a real world data
illustrate the validity of our approach. In text and image

cross media retrieval tasks, our approach attains significant
in the retrieval performance over state-of-the-art cross media
retrieval methods.
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