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Abstract While frequent pattern mining is fundamental for many data mining tasks,
mining maximal frequent patterns efficiently is important in both theory and applications
of frequent pattern mining. The fundamental challenge is how to search a large space of item
combinations. Most of the existing methods search an enumeration tree of item combinations
in a depth-first manner. In this paper, we develop a new technique for more efficient max-
pattern mining. Our method is pattern-aware: it uses the patterns already found to schedule
its future search so that many search subspaces can be pruned. We present efficient tech-
niques to implement the new approach. As indicated by a systematic empirical study using
the benchmark data sets, our new approach outperforms the currently fastest max-pattern
mining algorithms FPMax* and LCM2 clearly. The source code and the executable code
(on both Windows and Linux platforms) are publicly available at http://www.cs.sfu.ca/~jpei/

Software/PADS.zip.
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1 Introduction

Let I be a set of items. An itemset X is a subset of . A transaction is a tuple (tid, Y) where
tid is a unique transaction-id and Y is an itemset. Transaction (tid, Y) is said to contain
itemset X if X C Y. For a given transaction database TDB which consists of a set of
transactions, the support of an itemset X is the number of transactions containing X, that
is, sup(X) = |{(tid, Y) € TDB|X C Y}|. For a given minimum support threshold min_sup,
an itemset X is a frequent pattern if sup(X) > min_sup. Given a transaction database and a
minimum support threshold, the problem of frequent pattern mining [4] is to find the complete
set of frequent patterns.

For example, consider the transaction database TDB in Fig. 1. For the sake of simplicity,
we write an itemset as a string of items. For example, itemset {a, ¢, d} is written as acd. Let
the support threshold min_sup = 2. Since abcd is contained in transactions 20, 30 and 40,
sup(abcd) = 3 and abced is a frequent pattern.

Frequent pattern mining is fundamental for many data mining tasks, such as mining
association rules [5], correlations [10], causality [29], sequential patterns [6], episodes [22],
partial periodicity [16], iceberg-cube computation [8], associative classification [19], and
subspace clustering [3]. It is also important in many applications, such as market analysis
and network intrusion detection.

Frequent patterns have the well-known monotonic Apriori property [4]: if X is frequent,
then every nonempty subset of X is also frequent. For an itemset X, | X| is called the length of
X. According to the Apriori property, a long frequent pattern of length n leads to (2" —2) shor-
ter non-empty frequent patterns. For example, in Fig. 1, if min_sup = 2, abcd is a frequent
pattern. All subsets of abcd including a, b, ¢, d, ab, . .., bcd are also frequent patterns.

To avoid mining all frequent patterns, we can mine only those max-patterns [7]. An itemset
X is a maximal frequent pattern or a max-pattern for short if X is frequent and every proper
superset of X is infrequent. In Fig. 1, when min_sup = 2, the max-patterns are abcd, bcde
and df . The problem of mining maximal frequent patterns (or mining max-patterns for short)
is to find the complete set of max-patterns.

Mining max-patterns efficiently is important in both theory and applications of frequent
pattern mining. On the theoretical side, the max-patterns serve as the border between the
frequent patterns and the infrequent ones. With the set of max-patterns, whether an itemset is
frequent or not can be determined quickly using the Apriori property. On the application side,
max-patterns are used in a few interesting and challenging data mining tasks. For example,
using max-patterns, we can find emerging patterns [12] which are patterns frequent in the
positive samples and infrequent in the negative samples. Emerging patterns can be used to

Fig. 1 A transaction database K .
tid itemset

10 bede
20 abed
30  abcdf
40  abcde
50 def
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construct effective classifiers [18]. As another example, using max-patterns with respect to
a series of support thresholds, we can summarize and approximate the support information
of all frequent patterns [24].

More broadly, mining max-patterns is also related to many data mining problems, inclu-
ding mining generators [20], mining borderline description [13], mining maximal sequential
patterns [21], web log mining [28], condensed representations of constrained frequent pat-
terns [9], and summarizing association rules [23].

The fundamental challenge of mining max-patterns is how to search a large space of
itemsets and identify max-patterns. Most of the existing methods search an enumeration tree
of itemsets in a depth-first manner. The search is often arranged according to some heuristics
such as the frequencies of items. [2] provides a good survey.

One important and interesting issue overlooked in the previous studies is how the max-
patterns already found can help to plan the search of new max-patterns. In this paper, we
develop a novel pattern-aware approach which dynamically schedules the search based on
the max-patterns already found. A distinct advantage is that many branches in the dynamic
scheduled search space can be pruned sharply. We also present efficient techniques to imple-
ment the new approach. As indicated by a systematic empirical study using the benchmark
data sets, our new approach outperforms the currently fastest max-pattern mining algorithms
FPMax* [15] and LCM2 [30] in a clear margin.

2 Search space and search strategies

Due to the Apriori property, only frequent items can appear in a max-pattern. Thus, the search
space of max-pattern mining is the lattice of itemsets consisting of only frequent items, which
is called the itemset lattice. Figure 2a shows the itemset lattice of the transaction database in
Fig. 1, where I = {a, b, c,d, e, f}, min_sup = 2, and every item is frequent.

Essentially, the itemset lattice can be searched in an either breadth-first or depth-first
manner. Consider the transaction database TDB in Fig. 1. In a breadth-first search, we start
with finding the frequent items, i.e., a, b, ¢, d, e and f. Then, we combine the frequent items
to generate length-2 itemsets, i.e., ab, ac, ..., ef. The supports of those length-2 candidates
are counted, and the length-2 frequent patterns are found. A length-3 pattern X is gener-
ated as a candidate only if every length-2 subset of X is frequent. For example, abc is
generated as a length-3 candidate since ab, ac and bc are frequent, while def should not

ab ac ad ae af bc bd be bf cd ..

INSSSS s N

abc abd abe abf acd ace acf ... abc abd abe abf acd ace acf ...

abcde abcdf abcef abdef acdef bcdef abcde abcdf abcef abdef acdef bedef

abcdef abcdef
(a) the itemset lattice (b) a set enumeration tree

Fig. 2 An itemset lattice and a set enumeration tree
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378 X. Zeng et al.

be generated as a length-3 candidate since ef is infrequent. The search continues until all
candidates of the current iteration are infrequent, or no longer candidates can be generated.

A few methods such as MaxMiner [7] search an itemset lattice in a breadth-first manner.
As indicated by some previous studies such as [2], the breadth-first search methods may have
to search many patterns that are not maximal or even infrequent.

To reduce the number of patterns searched, some recently developed methods such as
DepthProject [1], Mafia [11], GenMax [14], FPMax* [15] and LCM2 [30] conduct depth-
first searches. A global order called the enumeration order on all frequent items can be used
to enumerate all itemsets systematically in a set enumeration tree [27]. Figure 2b shows a
set enumeration tree of the lattice in Fig. 2a where the lexicographic order of items is used
as the enumeration order. In the subtree of a, we search for patterns having item a. In the
subtree of b, we search for patterns having item b but no item a. The search space of other
subtrees can be specified similarly.

Depth-first searches can be implemented efficiently using projected databases. To search
patterns in the subtree of a, we only need to check the transactions containing a, which is
called the a-projected database. Similarly, to search patterns in the subtree of ab, we only
need to check the ab-projected database, which is a subset of the a-projected database. Since
ab is achild of a in the set-enumeration tree, the depth-first search takes a divide-and-conquer
strategy.

A critical pruning technique called head-and-tail pruning was firstly proposed in Max-
Miner, and was adopted by DepthProject, Mafia, GenMax and FPMax*. Consider Fig. 1
again and let min_sup = 2. Suppose we use the lexicographic order of items in a depth-first
search of max-patterns. The a-projected database consists of transactions 20, 30 and 40.
Items b, ¢ and d are frequent in the a-projected database and form the tail of a, denoted by
Tail(a) = bcd. According to the Apriori property, any pattern X containing a can have only
items from Tail(a) or a itself, i.e., X € a U Tail(a) = abcd. Before we unfold the subtree
of a, we can first check sup(abcd). Since abcd is frequent and no other max-patterns found
later will contain a (due to the divide-and-conquer partitioning in the set-enumeration tree),
abcd is a max-pattern. Any frequent pattern in the subtree of @ must be a subset of abcd and
thus cannot be a max-pattern. We do not need to search the subtree. Similarly, we can find
max-pattern bcde from the subtree of b. Now, let us consider c¢. Tail(c) = de which means
any pattern containing ¢ but no a or b must be a subset of ¢ U Tail(c) = cde. Since cde is
a subset of bede, a max-pattern found before, the subtree of ¢ does contain any max-pattern
and thus can be pruned immediately.

In the head-and-tail pruning, finding long max-patterns early may prune more subtrees. A
heuristic called dynamically ordering of frequent items was firstly proposed in MaxMiner, and
was adopted by DepthProject, Mafia, GenMax and FPMax*. When we search the subtree of
itemset X, we find the set of items that are frequent in the X -projected database. We sort those
frequent items in the support ascending order to construct the subtree of X. The rationale is
that a set enumeration tree constructed using such an order may have a small left subtree,
and may lead to max-patterns early.

The previous studies such as [2] suggest that depth-first searches often have a better
performance than breadth-first searches in mining max-patterns.

3 Pattern-aware dynamic search
Consider TDB in Fig. 1 again. From the a-projected database, we can find max-pattern abcd.

Now, let us consider how to search the subtree of b. Tail(b) = cde. Since bUTail(b) Z abcd,
we need to search the subtree of b.
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Fig. 3 The pruning effect of {} {}
pattern-aware dynamic search /* '/$
a b a b

D F S

.. e |d c
A
1
1
1

c d e
RN LAV LR\

AN
pruned

(a) static scheduling (b) dynamic scheduling

If we use the order of c—d—e to enumerate patterns containing b but no a, as shown in
Fig. 3a, then, we need to search all the three subtrees of the children of b, namely bc, bd and be.

Given abcd is a max-pattern found before, one critical observation here is that e is the
only item in b U Tail(b) but not in abcd. Any pattern in the subtree of b not containing item
e is a subset of max-pattern abcd and thus cannot be a max-pattern. In other words, in the
subtree, we only need to search the patterns containing e. Thus, in the subtree of b, if we
sort the items such that e precedes ¢ and d, as shown in Fig. 3b, we only need to search the
subtree of e, and the subtrees of ¢ and d can be pruned immediately. In fact, the ordering
between ¢ and d does not matter.

The essential idea of pattern-aware dynamic search is simple. When a subtree is searched,
based on the max-patterns found before, we construct the subtree in a way that the potential
max-patterns are scheduled into some branches that have to be searched, and the patterns that
are subsets of max-patterns found before are organized into branches that can be pruned.

Let us generalize the idea technically. Suppose we want to search the subtree of an itemset
X.LetY D X be amax-pattern found before. Then, we can schedule the search of the subtree
of X as follows. We partition Tail(X) into two subsets: 77 = Tail(X) — Y is the set of items
that do not appear in Y; and 7> = Tail(X) N Y is the set of items that appear in Y. Any
max-pattern in the subtree of X must contain at least one item from 77. Thus, we order the
items such that the items in 77 precede the items in 7>.

Using this order, we only need to search the children of X that are in 77. The children
of X in 7> and their subtrees can be pruned immediately. The above process is called the
pattern-aware dynamic search (PADS for short), and an order where items in 77 precede
items in 77 is called a PADS order with respect to Y. Max-pattern Y is called the key pattern
of the search scheduling.

We prove the correctness of the above scheduling.

Theorem 1 (Correctness) Let X be a frequent pattern, and Y be a max-pattern such that
X C Y. If a PADS order with respect to Y is used to construct the set enumeration subtree
of X, then for any item z € Tail(X) N'Y and any pattern Z in the subtree of X U{z}, Z C Y.

Proof As discussed before, Tail(X U {z}) C Tail(X). Since a PADS order with respect to Y
is used, z is behind all items in Tail(X) — Y in the order. That is, Tail(X U {z}) C Y. Since
zeTail(X)NYand X C Y,wehave Z C (X U{z} UTaill(X U {z})) C Y. m]

The pattern-aware dynamic search technique is different from the technique of dynami-
cally ordering frequent items developed in the previous studies, which uses the item frequency
ascending order to construct a set enumeration subtree. Dynamically ordering frequent items
is a heuristic method. Due to the correlations among frequent items, there exist counter
examples where sorting frequent items in support ascending order does not help pruning.
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380 X. Zeng et al.

In contrast, the effect of pattern-aware dynamic search is determined once the key pattern
is chosen. To search the subtree of a pattern X, once there exists at least one key pattern
Y D X found before, a PADS order based on Y can be used to prune some children of X by
pattern-aware dynamic search. It is not heuristic.

4 Choosing a good PADS order

To the best our knowledge, LCM2 [30] is the only existing method adopting a similar idea
in mining max-patterns. What is the critical difference between our method and LCM2?

For a pattern X, if there are more than one pattern Y such that Y O X, then each pattern
can serve as a key pattern, and thus multiple PADS orders are feasible. Now, the problem
becomes how to select a good PADS order.

In LCM2, an arbitrary item e in the tail of Y is picked, and the max-patterns containing
Y U {e} are mined. Then, the longest max-pattern containing ¥ U {e} is chosen as the key
pattern, and the PADS order is determined accordingly. However, the method may not lead
to good performance all the time.

First, issuing a sub-routine to find all max-patterns containing ¥ U{e} may lead to searching
a large part of the subtree of Y U {e}. Those max-patterns are not necessarily good since e is
chosen arbitrarily.

Instead of searching many new max-patterns containing ¥ U {e}, PADS reuses the max-
patterns already found as much as possible to find a good key pattern. Therefore, we avoid
the cost of searching many new max-patterns in order to scheduling the future search.

Second, the longest max-pattern may not be always good. For example, suppose the
current pattern Y = fgh, tail(Y) = ijk, and item i is chosen. Furthermore, suppose the
longest max-pattern found containing Y U {i} = fghi is X1 = abcdfghi. It in fact does not
provide any pruning power in the scheduling. Suppose another max-pattern X, = efghik is
found before. Then, X, provides a good pruning power in the scheduling: we only need to
search the Y U {j} subtree.

Instead of choosing key patterns based on length, PADS measures the pruning powers of
the max-patterns already found, and selects key patterns accordingly.

As analyzed, the effect of the pattern-aware dynamic search technique depends on the
choice of key patterns. In this section, we discuss how to choose a good key pattern.

Let us consider choosing a key pattern for an itemset X. If Y D X is chosen, as indicated
by Theorem 1, all children of X in Tail(X) N Y can be pruned. Therefore, the more items in
Tail(X) appear in the key pattern, the more children can be pruned. Thus, we can choose a
max-pattern ¥ D X as the key pattern such that ¥ has the largest overlap with Tail(X). That s,

Y = argmaxp,x pattern z > x {1Z N Tail(X)|}

Please note that Y contains at least one item that is not in Tail(X). Otherwise, X U Tail(X)
is a subset of Y, and thus X is pruned by the head and tail pruning technique. In the example
shown in Fig. 3b, pattern abcd is a perfect choice for b since we only need to search one
child of b.

We choose key patterns for itemset X in two steps.

4.1 Step 1
In the first step, we check all max-patterns Y; found before that are supersets of X and

measure | Y1 N Tail(X)|. The max-pattern with the most overlap with Tail(X) is chosen as the
candidate.
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PADS: a simple yet effective pattern-aware dynamic search method 381

This step can be implemented as a byproduct of the head-and-tail pruning. For each itemset
X, to apply the head-and-tail pruning, we have to check X UTail(X) against the max-patterns
found so far. We also collect the information of |Y; N Tail(X)| at the same time. Thus, the
cost of computing the candidate in this step is very little.

There can be many (millions or more) max-patterns found so far in a large database. To
speed up checking whether X is a subset of some max-patterns found before, we adopt the
progressive focusing search strategy developed in GenMax. When we search an itemset X
and its subtree, any patterns found in the subtree must be a superset of X. Thus, we can
maintain the set of max-patterns found so far that are supersets of X. Any patterns found in
the subtree of X only need to be checked against those max-patterns.

The technique can be applied recursively. For itemset X U {y} that is a child of X in the
set enumeration tree, the max-patterns containing X U {y} is a subset of those containing X.
Thus, the maintenance of the matching max-patterns is progressive.

4.2 Step 2

In some situations, max-patterns found so far may not have heavy overlaps with the tail of X.
Thus, as the second step, we also find in the projected database of X’s parent one max-pattern
Y suchthat Y, D X and Y» C X UTail(X). This can be done quickly as follows. According to
the order used by the parent of X, items in Tail(X) can be ordered into a list, say x1, ..., x,.
Since x is frequent in the X-projected database, X U {x;} must be frequent. We first assign
Y> = X U {x1} and check the supports of Y» U {x2}, Y2 U {x3},...,Y2> U {x,}. If none of
them is frequent, then Y5 is the candidate key pattern. Otherwise, let i be the smallest index
number such that ¥» U {x;, } is frequent. Then, we update Y> to Y> U {x;, }. We recursively use
Xij+1s Xi|+2, - - - » Xp to expand Y> until it cannot be expanded longer. It is easy to see that the
pattern Y; found as such is a max-pattern if it is not a subset of a max-pattern found before.

By the second step, we can find at least one max-pattern that can be used as a key pattern.
We compare the two key pattern candidates found from the two steps, and pick the one Y
having the better pruning power as the key pattern. The PADS order is made accordingly.

In implementation, we use FP-trees [17] as the core data structure to store transactions and
projected databases. We also integrate the advantages in the existing methods. Particularly,
we adopt the pattern expansion technique which was firstly proposed in CLOSET [26] and
CHARM [32] in the context of frequent closed itemset mining, and later used by Mafia and
GenMax in max-pattern mining. Consider the situation where every transaction containing
itemset X also contains item y € Tail(X). Then, it is impossible that a max-pattern contains
X but does not contain y. Therefore, we do not need to search any subtree of X where y does
not appear. In other words, instead of searching the subtree of X, we can directly search the
subtree of X U {y}.

The algorithm PADS (for pattern-aware dynamic search) is summarized in Fig. 4.
Moreover, we make the source code and the executable code (on both Windows and
Linux platforms) publicly available at http://www.cs.sfu.ca/~jpei/Software/PADS.zip.

Complexity analysis

As indicated in [31], the problem of mining max-patterns is NP-hard. Therefore, all max-
pattern mining algorithms developed so far unfortunately have the exponential complexity.

Our PADS method shares the same depth-first search framework with the state-of-the-
art, depth-first search methods such as FPMax* and LCM2. To analytically understand the
efficiency of the PADS method, the critical issue is to analyze the cost of implementing
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Input: a transaction database T'DB and support threshold min_sup;
Output: the set of max-patterns;

Method:

1:  find I, the set of frequent items in 7D B;

2:  CALL PADS(TDB,0,1);

Function PADS(PDB<X<T) // PDB is the X-projected database, T is the tail of X
11: let Z ={z € T\sup(z) =\PDB\}X =X UZT=T - Z,
// pattern expansion
12: FOR EACH item x in 7' DO
13: X' =XU{z};
14: let PDB, be the X’-projected database;
15: T’ = the set of frequent items in PDB,;
16:  IF (X'UT’) is a subset of some max-pattern found before THEN RETURN;
17: let Y7 be candidate key pattern as the max-pattern with the largest overlap with 7"
obtained as the byproduct of the subpattern checking; // Section 4.1
18: let Y5 be the candidate key pattern obtained from the projected database PD B;
// Section 4.2
19: IF Y =Y, and Y3 is a max-pattern THEN output Ya;
20: let Y be the better key pattern between Y7 and Ya;
21: make a PADS order on T” according to Y;
22:  CALL PADS(PDB,<X'<T");
END FOR
RETURN

Fig.4 The PADS algorithm

the pattern-aware dynamic search. Particularly, the cost of finding key patterns in PADS is
important.

First of all, let us consider the complexity of finding the first max-pattern. Algorithm PADS
works as any depth-first search max-pattern mining algorithm. It starts with the first frequent
item x; in the alphabetical order,' and sets pattern ¥ = x;. Recursively, a projected database
TDBy is formed and the frequent items in TDBy are found. The first frequent item in the
alphabetical order in TDBy, say x, is used to expand Y to a longer pattern ¥ U {x}. The
recursion continues until no frequent item can be found in the projected database.

Clearly, we have the following result.

Lemma 1 The time complexity of finding the first max-pattern is O (|TDB| - 1) where [ is the
length of the longest transaction in TDB.

Proof Trivially, a projected database can be formed and the frequent items in the projected
database can be found in time O (]TDB|). There are at most / recursion steps is needed to
find the first max-pattern, since any frequent pattern cannot be longer than the length of the
longest transaction. Thus, we have the lemma. O

In implementation, PADS adopts pseudo-projection [25] to find the first max pattern.
In pseudo projection, no physical projected databases are constructed. Instead, PADS only
manipulates pointers to construct “virtual” projected database.

As analyzed before, for an itemset X, algorithm PADS chooses a key pattern for X in
two steps. In the first step, PADS finds a max-pattern Y| found before which maximizes the
overlap between Y and Tail(X). Clearly, the complexity of this step is linear with respect to
the number of max-patterns found so far that contain X.

! In fact, any total order works here. For the sake of simplicity, we use alphabetical order in our discussion.
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In the second step, PADS finds a max-pattern containing X by considering the items in
Tail(X). Therefore, the complexity of this step is linear with respect to | Tail(X)|. Moreover,
since a max-pattern cannot be longer than /, the length of the min_sup-th longest transaction
in the X-projected database, the cost of this step is also linear with respect to /. In the worst
case where min_sup = 1,/ is the length of the longest transaction in the X -projected database.
Last, the cost in this step is linear with respect to the number of transactions in the X -projected
database, since PADS needs to scan the database iteratively to count the support of items in
Tail(X). In summary, we have the following claim about the cost in the second step.

Lemma 2 For an itemset X, the cost of Line 8 in Fig. 4 is O(|TDBy| - min{|Tail(X)|, [}),
where | is the length of the longest transaction in the X -projected database.

Taking both the cost of the two steps in finding key patterns together, we have the following
result about the cost of finding a key pattern.

Theorem 2 For an itemset X, the cost of finding a key pattern for X in PADS is O (m +
ITDBy| - min{|Tail(X)|, [}), where m is the number of max-patterns containing X and l is
the length of the longest transaction in the X -projected database.

How can we compare the cost of finding key patterns against the benefit of pruning
sub-trees in the set-enumeration search space using the pattern-aware dynamic search? One
important observation is that the cost of determining whether a frequent pattern X is maximal
is O (m), where m is the number of max-patterns containing X . Therefore, the cost of finding a
key pattern is mainly the cost of step 2, which is of complexity O (|TDBx|-min{|Tail(X)|, /}).
Following with the results in [31], the cost of finding all max-patterns in a sub-tree rooted
at X in the set-enumeration search space is of complexity O (2/TX¥)) Therefore, once a
pruning case happens in PADS, we save the search cost of O (2!T(X)l) using a key pattern
searching cost O(|TDBy| - min{|Tail(X)|, [}).

Both PADS and LCM?2 use pattern-aware dynamic search. Then, what is the difference
between their efficiency? For an itemset X, LCM2 chooses an arbitrary item x € Tail(X)
and use the longest max-pattern containing X U {x} as the key pattern. The cost of finding
such a key pattern is of complexity O (2!T(XUDIy wwhich is much higher that the cost of
key pattern finding in PADS. However, the effectiveness of the key pattern chosen by LCM2
may not be always better than that of PADS since PADS considers all max-patterns found so
far (step 1) and also one max-pattern of good coverage in Tail(X) (step 2). Our experimental
results clearly show that PADS outperforms LCM?2 in both the number of patterns checked
and the number of projected databases generated.

5 Empirical evaluation

We conducted an extensive performance study to evaluate the effectiveness of the pattern-
aware dynamic search and the efficiency of our PADS algorithm. Here we report the expe-
rimental results on five real data sets. Those five real data sets were prepared by Roberto
Bayardo from the UCI datasets and PUMSB. They have been used extensively in the previous
studies as the benchmark data sets. Some characteristics of the five data sets are shown in
Table 1. We downloaded the data sets from http://fimi.cs.helsinki.fi/data/.

All the experiments were conducted on a PC computer running the Microsoft Windows
XP SP2 Professional Edition operating system, with a 3.0 GHz Pentium 4 CPU, 1.0 GB
main memory, and a 160 GB hard disk. The programs were implemented in C/C++ using
Microsoft Visual Studio. NET 2003.
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Table 1 Characteristics of

benchmark data sets Data set No. of tuples ~ No. of items  Average trans len
Chess 3,196 76 37
Mushroom 8, 124 120 23
Pumsb* 49, 046 2,088 50
Pumsb 49, 046 2,113 74
Connect 67,557 150 43
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Fig.5 The runtime comparison between PADS and FPMax* on the five benchmark data sets
We compare our method with FPMax* and LCM2, the currently fastest max-pattern
mining methods according to the extensive empirical study reported in the Frequent Itemset

Mining Implementations Repository website (http://fimi.cs.helsinki.fi/). We used the code
of the two algorithms published by the authors.
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Fig. 6 Number of projected databases generated

It should be mentioned that LCM2 has execution problems under some circumstances.
On the Pumsb data set with min_sup lower than 40%, on the Pumsb* data set with min_sup
lower than 6%, and on the Connect data set with min_sup lower than 0.2%, LCM2 gives
segmentation faults and cannot finish properly. Therefore parts of its curves are missing.

Figure 5 shows the runtime comparison among the three algorithms on the five data sets.
In the figures, a support threshold is presented as a percentage with respect to the total number
of transactions in the data set, i.e., mllnﬁTup where D is the data set in question.

Figure 5 clearly shows that PADS outperforms FPMax* on all data sets. The lower the
support threshold, the larger the difference in runtime. With a smaller support threshold, more

patterns and longer patterns are qualified as frequent patterns. This trend suggests that PADS
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Fig. 7 Number of patterns checked against max-patterns

is more scalable than FPMax* on mining a large number of long patterns. When the support
threshold is low, the difference in runtime between the two methods can be more than 60%.

Most of the time, PADS outperforms LCM2 clearly, especially on the Mushroom and the
Connect data sets. The only circumstance where LCM2 outperforms PADS is on the Chess
data set with min_sup < 15%. The reason is that the number of max-patterns is large (more
than 1 million) but the database size is very small (only 3,196 tuples). The advantage of
selecting a good key pattern is not clear in this situation.

What are the major reasons that PADS outperforms FPMax* and LCM2? The major cost
of max-pattern mining in depth-first manner comes from two aspects: generating projected
databases and checking whether a pattern is a subset of some max-patterns found before.

In Fig. 6, we compare the three methods in terms of the number of projected databases ge-
nerated on the five data sets. PADS generates much (about 80%) less projected databases than
FPMax*. LCM2 generates the largest number of projected databases. This clearly shows the
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Fig. 8 Memory usage

power of pattern-aware dynamic search in PADS. Many subtrees can be pruned by scheduling
using good key patterns carefully chosen by our method.

InFig. 7, we compare the three methods in terms of the number of patterns that are checked
against the max-patterns found before. PADS also conducts less subpattern checking than
FPMax* and LCM2. The reason is that the pattern-aware dynamic search prunes many
subtrees. Some patterns in those subtrees that are checked in FPMax* and LCM2 do not
need to be checked by PADS. The savings in generating projected databases and checking
subpatterns explain the advantage of PADS in performance.

Last, Fig. 8 compares the memory usage of the three methods. Both PADS and FPMax*
use FP-trees as the major data structure. Thus, their memory usage is very similar. Their
memory usage increases as the support threshold decreases, since they store the max-patterns
already found in memory, and the number of such patterns increases as the support threshold
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decreases. On the other hand, LCM2 stores max-patterns on disk, and uses an array in main
memory to store the database and the projected databases. Thus, its memory usage is insen-
sitive with respect to support thresholds. In large data sets such as Mushroom and Connect,
PADS and FPMax* use less memory than LCM2. In small data sets, LCM2 consumes a
smaller amount of main memory than the other two methods.

6 Conclusions

Max-pattern mining is important in both theory and applications of frequent pattern mining.
In this paper, we developed a novel pattern-aware dynamic search method for fast max-pattern
mining. The major idea is to schedule the depth-first search according to the max-patterns
found so far, and prune the search space systematically. We present efficient methods to
implement pattern-aware dynamic search. An empirical evaluation using the benchmark real
data sets clearly shows that our method outperforms the currently fastest max-pattern mining
algorithms FPMax* and LCM2 in a clear margin.

As future work, it is interesting to explore how the pattern-aware dynamic search method
can be extended to other frequent pattern mining tasks, such as mining frequent closed
itemsets, max- and closed sequential patterns, and max- and closed graph patterns.
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