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Abstract When we are investigating an object in a data set, which itself may
or may not be an outlier, can we identify unusual (i.e., outlying) aspects of the
object? In this paper, we identify the novel problem of mining outlying aspects
on numeric data. Given a query object o in a multidimensional numeric data
set O, in which subspace is o most outlying? Technically, we use the rank of
the probability density of an object in a subspace to measure the outlyingness
of the object in the subspace. A minimal subspace where the query object is
ranked the best is an outlying aspect. Computing the outlying aspects of a
query object is far from trivial. A näıve method has to calculate the probability
densities of all objects and rank them in every subspace, which is very costly
when the dimensionality is high. We systematically develop a heuristic method
that is capable of searching data sets with tens of dimensions efficiently. Our
empirical study using both real data and synthetic data demonstrates that our
method is effective and efficient.
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1 Introduction

In many application scenarios, a user may wish to investigate a specific object,
in particular, the aspects where the object is most unusual compared to the rest
of the data. For example, when a commentator mentions an NBA player, the
commentator may want to name the most distinguishing features of the player,
though the player may not be top ranked on those aspects or on any others
among all players. Take the technical statistics of the 220 guards on assist,
personal foul and points/game in the NBA Season 2012-2013 as an example1

(Figure 1), an answer for Joe Johnson may be “the most distinguishing feature
of Joe Johnson is his scoring ability with respect to his performance on personal
foul” (by comparing Figures 1 (a), (b) and (c) based on the notion of density).
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Fig. 1 Performance of NBA guards on assist, personal foul and points/game in the 2012-
2013 Season (the solid circle (•) represents Joe Johnson)

As another example, when evaluating an applicant to a university program,
who herself/himself may not necessarily be outstanding among all applicants,

1 http://sports.yahoo.com/nba/stats
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one may want to know the strength or weakness of the applicant, such as
“the student’s strength is the combination of GPA and volunteer experience,
ranking her/him in the top 15% using these combined aspects”. Moreover,
in an insurance company, a fraud analyst may collect the information about
various aspects of a claim, and wonder in which aspects the claim is most
unusual. Furthermore, in commercial promotion, when designing an effective
advertisement, it may be useful for marketers to know the most distinctive set
of features characterizing the product. Similar examples can easily be found
in other analytics applications.

The questions illustrated in the above examples are different from
traditional outlier detection. Specifically, instead of searching for outliers from
a data set, here we are given a query object and want to find the outlying
aspects whereby the object is most unusual. The query object itself may or may
not be an outlier in the full space or in any specific subspaces. In this problem,
we are not interested in other individual outliers or inliers. The outlying aspect
finding questions cannot be answered by the existing outlier detection methods
directly.

We emphasize that investigating specific objects is a common practice
in anomaly and fraud detection and analysis. Specifying query objects is an
effective way to explicitly express analysts’ background knowledge about data.
Moreover, finding outlying aspects extends and generalizes the popular exercise
of checking a suspect of anomaly or fraud. Currently, more often than not an
analyst has to check the features of an outlying object one by one to find
outlying features, but still cannot identify combinations of features where the
object is unusual.

Motivated by these interesting applications about analyzing outlying
aspects of a query object, in this paper, we model and tackle the problem of
mining outlying aspects on numeric data, which is related to, but critically
different from traditional outlier detection. Specifically, traditional outlier
detection finds outlier objects in a set, while the problem of outlying aspect
mining studied in this paper finds the subspaces best manifesting the un-
usualness of a specified query object, using the other objects as the background
in comparing different subspaces. We address several technical challenges and
make solid contributions on several fronts.

First, we identify and formulate the problem of outlying aspect mining on
numeric data. Although Angiulli et al (2009, 2013) recently studied detecting
outlying properties of exceptional objects, their methods find contextual
rule based explanations. We will discuss the differences between our model
and theirs in detail in Section 3. As illustrated, outlying aspect mining has
immediate applications in data analytics practice.

Second, how can we compare the outlyingness of an object in different
subspaces? While comparing the outlyingness of different objects in the same
subspace is well studied and straightforward, comparing outlyingness of the
same object in different subspaces is subtle, since different subspaces may
have different scales and distribution characteristics. We propose a simple yet
principled approach. In a subspace, we rank all objects in the ascending order
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of probability density. A smaller probability density and thus a better rank
indicates that the query object is more outlying in the subspace. Then, we
compare the rank statistics of the query object in different subspaces, and
return the subspaces of the best rank as the outlying aspects of the query
object. To avoid redundancy, we only report minimal subspaces. That is, if
a query object is ranked the same in subspaces S and S′ such that S is a
proper subspace of S′ (i.e., S ⊂ S′), then S′ is not reported since S is more
general. Our model can be extended to many outlyingness measures other than
probability density, which we leave for future work.

Third, how can we compute the outlying aspects fast, particularly on high
dimensional data sets? A näıve method using the definition of outlying aspects
directly has to calculate the probability densities of all objects and rank them
in every subspace. This method incurs heavy cost when the dimensionality is
high. On a data set of 100 dimensions, 2100 − 1 = 1.27× 1030 subspaces have
to be examined, which is unfortunately computationally prohibitive using the
state-of-the-art technology. To tackle the problem, we systematically develop
a heuristic method that is capable of searching data sets with dozens of
dimensions efficiently. Specifically, we develop pruning techniques that can
avoid computing the probability densities of many objects in many subspaces.
These effective pruning techniques enable our method to mine outlying aspects
on data sets with tens of dimensions, as demonstrated later in our experiments.

Last, to evaluate outlying aspect mining, we conduct an extensive empirical
study on both real and synthetic data sets. We illustrate the characteristics of
discovered outlying aspects, and justify the value of outlying aspect mining.
Moreover, we examine the effectiveness of our pruning techniques and the
efficiency of our methods.

The rest of the paper is organized as follows. We formulate the problem
of outlying aspect mining in Section 2, and review related work in Section 3.
In Section 4, we recall the basics of kernel density estimation, which is used
to estimate the probability density of objects, and present the framework of
our method OAMiner (for Outlying Aspect Miner). In Section 5, we discuss
the critical techniques in OAMiner. We report a systematic empirical study
in Section 6, and conclude the paper in Section 7.

2 Problem Definition

Let D = {D1, . . . , Dd} be a d-dimensional space, where the domain of Di is
R, the set of real numbers. A subspace S ⊆ D (S 6= ∅) is a subset of D. We
also call D the full space.

Consider a set O of n objects in space D. For an object o ∈ O, denote
by o.Di the value of o in dimension Di (1 ≤ i ≤ d). For a subspace S =
{Di1 , . . . , Dil} ⊆ D, the projection of o in S is oS = (o.Di1 , . . . , o.Dil). The
dimensionality of S, denoted by |S|, is the number of dimensions in S.

In a subspace S ⊆ D, we assume that we can define a measure of out-
lyingness degree OutDeg(·) such that for each object o ∈ O, OutDeg(o)
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measures the outlyingness of o. Without loss of generality, we assume that
the lower the outlyingness degree OutDeg(o), the more outlying the object o.

In this paper, we assume the generative model. That is, the set of objects O
are generated (i.e., sampled) from an often unknown probability distribution.
Thus, we can use the probability density of an object o, denoted by f(o), as
the outlyingness degree. The smaller the value of f(o), the more outlying the
object o. We discuss how to estimate the probability densities in Section 4.1.

How can we compare the outlyingness of an object in different subspaces?
Unfortunately, we cannot compare the outlyingness degree or probability
density values directly, since the outlyingness degree and the probability
density values depend on the properties of specific subspaces, such as their
scales. For example, it is well known that probability density tends to be low
in subspaces of higher dimensionality, since such subspaces often have a larger
“volume” and thus are sparser.

To tackle this issue, we propose to use rank statistics. Specifically, in a
subspace S, we rank all objects in O in their outlyingness degree ascending
order. For an object o ∈ O, we denote by

rankS(o) = |{o′ | o′ ∈ O,OutDeg(o′) < OutDeg(o)}|+ 1 (1)

the outlyingness rank of o in subspace S. The smaller the rank value, the more
outlying the object is comparing to the other objects in O in subspace S. We
can compare the outlyingness of an object o in two subspaces S1 and S2 using
rankS1(o) and rankS2(o). Object o is more outlying in the subspace where it
has the smaller rank. Apparently, in Equation 1, for objects with the same
outlyingness degree (probability density value), their outlyingness ranks are
the same.

Suppose for object o there are two subspaces S and S′ such that S ⊂ S′ and
rankS(o) = rankS′(o). Since S is more general than S′, S is more significant in
manifesting the outlyingness of o at the rank of rankS(o) relative to the other
objects in the data set. Therefore, S′ is redundant given S in terms of outlying
aspects. Note that we use rank statistics instead of the absolute outlyingness
degree values to compare the outlyingness of an object in different subspaces.

Rank statistics allows us to compare outlyingness in different subspaces,
which is an advantage. At the same time, in high dimensional subspaces
where the probability density values of objects are very small, comparing the
ranks may not be reliable, since the subtle differences in probability density
values may be due to noise or sensitivity to parameter settings in the density
estimation. Ranking such objects may be misleading. Moreover, more often
than not, users do not want to see high dimensional subspaces as answers,
since high dimensional subspaces are hard to understand. Thus, we assume a
maximum dimensionality threshold ` > 0, and consider only subspaces whose
dimensionality are not greater than `. Please note that the problem cannot be
solved using a minimum density threshold, since the density values are space
and dimensionality sensitive, as explained before.

Based on the above discussion, we formalize the problem as follows.
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Definition 1 (Problem definition) Given a set of objects O in a multi-
dimensional space D, a query object q ∈ O and a maximum dimensionality
threshold 0 < ` ≤ |D|, a subspace S ⊆ D (0 < |S| ≤ `) is called a minimal
outlying subspace of q if

1. (Rank minimality) there does not exist another subspace S′ ⊆ D (S′ 6= ∅),
such that rankS′(q) < rankS(q); and

2. (Subspace minimality) there does not exist another subspace S′′ ⊂ S such
that rankS′′(q) = rankS(q).

The problem of outlying aspect mining is to find the minimal outlying
subspaces of q.

Apparently, given a query object q, there exists at least one, and may be
more than one minimal outlying subspace.

3 Related Work

Outlier analysis is a well studied subject in data mining. A comprehensive
review of the abundant literature on outlier analysis is clearly beyond the
capacity of this paper. Several recent surveys on the topic (Aggarwal, 2013;
Chandola et al, 2009; Zimek et al, 2012), as well as dedicated chapters in
classical data mining textbooks (Han et al, 2011) provide thorough treatments.

Given a set of objects, traditional outlier detection focuses on finding
outlier objects that are significantly different from the rest of the data set.
There are different ways to measure the differences between an object and
the other objects, such as proximity, distance, and probability density. Many
existing methods, such as (Knorr and Ng, 1999; Ramaswamy et al, 2000;
Bhaduri et al, 2011), only return outliers, without focusing on explaining why
those objects are outlying.

Recently, some studies attempt to explain outlying properties of outliers.
The explanation may be a byproduct of outlier detection. For example, Böhm
et al (2013) and Keller et al (2012) proposed statistical approaches CMI and
HiCS to select subspaces for a multidimensional database, where there may
exist outliers with high deviations. Both CMI and HiCS are fundamentally
different from our method. They choose highly contrasting subspaces for all
possible outliers in a data set, while our method chooses subspaces based on
the query object.

Kriegel et al (2009) introduced SOD, a method to detect outliers in axis-
parallel subspaces. There are two major differences between SOD and our
work. First, SOD is still an outlier detection method, and the hyperplane is a
byproduct of the detection process. Our method does not detect outliers at all.
Second, the models to identify the outlying subspaces in the two methods are
very different. When calculating the outlyingness score, SOD only considers
the nearest neighbors as references in the full space. Our method considers
all objects in the database and their relationship with the query object in
subspaces.
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Müller et al (2012b) presented a framework, called OutRules, to find ex-
planations for outliers in different contexts. For each outlier, OutRules finds
a set of rules A → B, where A and B are subspaces, and the outlier is
normal in subspace A but deviates substantially in subspace B. The deviation
degree can be computed using some outlier score, such as LOF (Breunig et al,
2000). Then, a ranked list of rules is output as the explanation of the outlier.
Tang et al (2013) proposed a framework to identify contextual outliers in
a given multidimensional database. Only categorical data is considered. The
methods in (Müller et al, 2012b; Tang et al, 2013) find outliers and their ex-
planations at the same time, and are not designed for finding outlying aspects
for an arbitrary query object. Moreover, those two methods focus on finding
“conditional outliers”, while our method does not assume this constraint.

Müller et al (2012a) computed an outlier score for each object in a
database, providing a single global measure of how outlying an object is across
different subspaces. The method ranks different outliers instead of the outlying
behavior of one query object. In contrast, our approach investigates all possible
subspaces for an object and identifies the minimal ones where the object has
the lowest density rank (where it appears most unusual), and does not use the
notion of subspace clusters.

Given a multidimensional categorical database and an object, which is
preferably an outlier in the database, Angiulli et al (2009) found the top-
k subsets of attributes (i.e., subspaces) from which the outlier receives the
highest outlyingness scores. The outlyingness score for a given object in a
subspace is calculated based on the frequency of the value that the outlier
takes in the subspace. It tries to find subspaces E and S such that the outlier
is frequent in one and much less frequent than expected in the other. Searching
all such rules is computationally costly. To reduce the cost within a manageable
scope, the method takes two parameters, σ and θ, to constrain the frequencies
of the given object in subspaces E and S, respectively. Therefore, if a query
object is not outlying compared to the other objects, no outlying properties
may be detected.

To the best of our knowledge, (Angiulli et al, 2009, 2013) are the only
studies on finding explanation of outlying aspects and thus are most relevant to
our paper. There are several essential differences between (Angiulli et al, 2009,
2013) and this study. First, (Angiulli et al, 2009, 2013) find contextual rule
based explanations, while our method returns individual subspaces where the
query object is mostly outlying comparing to the other subspaces. The meaning
of the two types of explanation is fundamentally different. Second, (Angiulli
et al, 2009) focuses on categorical data, and our method targets on numeric
data. Although (Angiulli et al, 2013) considers numeric data, its mining target
is substantially different from this work. Specifically, given a set of objects O
in a multi-dimensional space D and a query object q ∈ O, (Angiulli et al,
2013) finds the pairs (E, d) satisfying E ⊆ D and d ∈ D \ E, such that there
exists a subset O′ ⊆ O, including q, in which objects are similar on E (referred
to as explanation), while q is essentially different from the other objects in O′
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on d (referred to as property). Besides one-dimensional attributes, our method
can find outlying subspaces with arbitrary dimensionality.

To some extent, outlyingness is related to uniqueness and uniqueness
mining. Paravastu et al (2008) discovered the feature-value combinations
that make a particular record unique. Their task formulation is reminiscent
of infrequent itemset mining, and uses a level-wise Apriori enumeration
strategy (Agrawal and Srikant, 1994). It needs a discretization step. Our
method is native for continuous data.

Müller et al (2011) proposed the OUTRES approach, which aims to assess
the contribution of some selected subspaces where an object deviates from its
neighborhood. OUTRES employs kernel density estimation. Different from our
approach, OUTRES uses the Epanechnikov kernel rather than the Gaussian
kernel. Our approach calibrates densities across subspaces using rank statistics,
rather than using an adaptive neighborhood. The emphasis of OUTRES is
mainly on finding outliers, rather than exploring subspaces where a query
object may or may not be an outlier. Consequently, OUTRES only considers
subspaces that satisfy a statistical test for non-uniformity. Moreover, for a
chosen object, OUTRES computes an aggregate outlier score that incorporates
only the contribution of subspaces where the object has significantly low
density.

Our method uses probability density to measure outlying degree in a
subspace. There are a few density-based outlier detection methods, such
as (Breunig et al, 2000; Kriegel et al, 2008; He et al, 2005; Aggarwal and
Yu, 2001). Our method is inherently different from those, since we do not find
outlier objects at all.

4 The Framework

In this section, we first review the essentials of kernel density estimation
techniques. Then, we present the framework of our OAMiner method.

4.1 Kernel Density Estimation

We use kernel density estimation (Scott, 1992; Silverman, 1986) to estimate
the probability density given a set of objects O. Given a random sample
{o1, o2, . . . , on} drawn from some distribution with an unknown probability
density f in space R, the probability density f at a point o ∈ R can be
estimated by

f̂h(o) =
1

n

n∑
i=1

Kh(o− oi) =
1

nh

n∑
i=1

K

(
o− oi
h

)
where K(·) is a kernel, and h is a smoothing parameter called the bandwidth.
A widely adopted approach to estimate the bandwidth is Silverman’s rule of
thumb (Silverman, 1986), which suggests h = 1.06σn−

1
5 , σ being the standard
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deviation of the sample. To further reduce the sensitivity to outliers, in this
work, we use a better rule of thumb (Härdle, 1990) and set

h = 1.06 min{σ, R

1.34
}n− 1

5 (2)

where R = X[0.75n] −X[0.25n], and X[0.25n] and X[0.75n], respectively, are the
first and the third quartiles.

For the d-dimensional case (d ≥ 2), o = (o.D1, . . . , o.Dd)
T , and oi =

(oi.D1, . . . , oi.Dd)
T (1 ≤ i ≤ n). Then, the probability density of f at point

o ∈ Rd can be estimated by

f̂H(o) =
1

n

n∑
i=1

KH(o− oi)

where H is a bandwidth matrix.
The product kernel, which consists of the product of one-dimensional

kernels, is a good choice for multivariate kernel density estimator in
practice (Scott, 1992; Härdle et al, 2004). We have

f̂H(o) =
1

n
d∏
j=1

hDj

n∑
i=1


d∏
j=1

K

(
o.Dj − oi.Dj

hDj

) (3)

where hDi is the bandwidth of dimension Di (1 ≤ i ≤ d).
Note that the product kernel does not assume that the dimensions are

independent. Otherwise, the density estimation would be

f̂H(o) =

d∏
j=1

(
1

n · hDj

n∑
i=1

K

(
o.Dj − oi.Dj

hDj

))

In this paper, we adopt the Gaussian kernel, which has been popularly
used. The distance between two objects is measured by Euclidean distance.
The kernel function is

K

(
o− oi
h

)
=

1√
2π
e−

(o−oi)
2

2h2 (4)

Note that other kernel functions and distance functions may be used in our
framework.

Plugging Equation 4 into Equation 3, the density of a query object q ∈ O
in subspace S can be estimated as

f̂S(q) = f̂S(qS) =
1

n(2π)
|S|
2

∏
Di∈S

hDi

∑
o∈O

e
−
∑

Di∈S

(q.Di−o.Di)
2

2h2
Di (5)
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Algorithm 1 rankS(q) – baseline
Input: a set of objects O, query object q ∈ O, and subspace S
Output: rankS(q)
1: for each object o ∈ O do
2: compute f̃S(o) using Equation 7
3: end for
4: return rankS(q) = |{o | o ∈ O, f̃S(o) < f̃S(q)}|+ 1

Since we are interested in only the rank of q, that is, rankS(q), and

c =
1

n(2π)
|S|
2

∏
Di∈S

hDi
(6)

is a factor common to every object in subspace S and thus does not affect the
ranking at all, we can rewrite Equation 5 as

f̂S(q) ∼ f̃S(q) =
∑
o∈O

e
−
∑

Di∈S

(q.Di−o.Di)
2

2h2
Di (7)

where symbol “∼” means equivalence for ranking.
For the sake of clarity, we call f̃S(q) the quasi-density of q in S. Please

note that, using f̃S(q) instead of f̂S(q) not only simplifies the description, but
also saves computational cost for calculating rankS(q). We will illustrate the
details in Section 5.

We can show an interesting property – invariance of ranking under linear
transformation. The proof can be found in Appendix A.

Proposition 1 (Invariance) Given a set of objects O in space S =
{D1, . . . , Dd}, define a linear transformation g(o) = (a1o.D1+b1, . . . , ado.Dd+
bd) for any o ∈ O, where a1, . . . , ad and b1, . . . , bd are real numbers. Let
O′ = {g(o)|o ∈ O} be the transformed data set. For any objects o1, o2 ∈ O
such that f̃S(o1) > f̃S(o2) in O, f̃S(g(o1)) > f̃S(g(o2)) if the product kernel is
used and the bandwidths are set using Härdle’s rule of thumb (Equation 2).

Using quasi-density estimation (Equation 7), we can have a baseline
algorithm for computing the outlyingness rank in a subspace S, as shown in
Algorithm 1. The baseline method estimates the quasi-density of each object
in a data set, and ranks them. Let the total number of objects be n. The
baseline method essentially has to compute the distance between every pair of
objects in every dimension of S. Therefore, the time complexity is O(n2|S|) in
each subspace S.

4.2 The Framework of OAMiner

To reduce the computational cost, we present Algorithm 2, the framework of
our method OAMiner (for Outlying Aspect Miner).
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Algorithm 2 The framework of OAMiner
Input: a set of objects O and query object q ∈ O
Output: the set of minimal outlying subspaces for q
1: initialize rbest ← |O| and Ans← ∅;
2: remove Di from D if the values of all objects in Di are identical;
3: compute rankDi (q) in each dimension Di ∈ D;
4: sort all dimensions in rankDi (q) ascending order;
5: for each subspace S searched by traversing the set enumeration tree in a depth-first

manner do
6: compute rankS(q);
7: if rankS(q) < rbest then
8: rbest ← rankS(q), Ans← {S};
9: end if

10: if rankS(q) = rbest and S is minimal then
11: Ans← Ans ∪ {S};
12: end if
13: if a subspace pruning condition is true then
14: prune all super-spaces of S
15: end if
16: end for
17: return Ans

{ }

{D1} {D2} {D3} {D4}

{D1, D2} {D1, D3} {D1, D4}

{D1, D2, D3}

{D1, D2, D3, D4}

{D1, D2, D4}

{D2, D3} {D2, D4} {D3, D4}

{D1, D3, D4} {D2, D3, D4}

Fig. 2 A set enumeration tree.

First of all, OAMiner removes the dimensions where all values of objects
are identical, since no object is outlying in such dimensions. As a result, the
standard deviations of all dimensions involved for outlying aspect mining are
greater than 0.

In order to ensure that OAMiner can find the most outlying subspaces, we
have to enumerate all possible subspaces in a systematic way. Here, we adopt
the set enumeration tree approach (Rymon, 1992), which has been popularly
used in many data mining methods. Conceptually, a set enumeration tree
takes a total order on the set, the dimensions in the context of our problem,
and then enumerates all possible combinations systematically. For example,
Figure 2 shows a set enumeration tree that enumerates all subspaces of space
D = {D1, D2, D3, D4}.

OAMiner searches subspaces by traversing the subspace enumeration tree
in a depth-first manner. Given a set of objects O, a query object q ∈ O, and a
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Table 1 A numeric data set
example

object oi.D1 oi.D2

o1 14.23 1.5
o2 13.2 1.78
o3 13.16 2.31
o4 14.37 1.97

Table 2 Quasi-density values of objects in Table 1

object f̃{D1}(oi) f̃{D2}(oi) f̃{D1,D2}(oi)

o1 2.229 1.832 1.305
o2 2.220 2.529 1.300
o3 2.187 1.626 1.185
o4 2.113 2.474 1.314

subspace S, if rankS(q) = 1, then every super-space of S cannot be a minimal
outlying subspace and thus can be pruned.

Pruning Rule 1 If rankS(q) = 1, according to the dimensionality
minimality condition in the problem definition (Definition 1), all super-spaces
of S can be pruned.

In the case of rankS(q) > 1, OAMiner prunes subspaces according to the
current best rank of q in the search process. More details will be discussed in
Section 5.3.

Heuristically, we want to find subspaces early where the query object q has
a low rank, so that the pruning techniques take better effect. Motivated by
this observation, we compute the outlyingness rank of q in each dimension Di,
and order all dimensions in the ascending order of rankDi(q).

In general, the outlyingness rank does not have any monotonicity with
respect to subspaces. That is, for subspaces S1 ⊂ S2, neither rankS1(q) ≤
rankS2(q) nor rankS1(q) ≥ rankS2(q) holds in general. Example 1 illustrates
this situation with a toy data set.

Example 1 Given a set of objects O = {o1, o2, o3, o4} with 2 numeric
attributes D1 and D2. The values of each object in O are listed in Table 1.
Using Equation 7, we estimate the quasi-density values of each object
on different subspaces (Table 2). We can see that f̃{D1}(o2) > f̃{D1}(o4)

and f̃{D2}(o2) > f̃{D2}(o4), which indicate rank{D1}(o2) > rank{D1}(o4)
and rank{D2}(o2) > rank{D2}(o4). However, for subspace {D1, D2}, since

f̃{D1,D2}(o2) < f̃{D1,D2}(o4), rank{D1,D2}(o2) < rank{D1,D2}(o4).

To make the situation even more challenging, probability density itself does
not have any monotonicity with respect to subspaces. Given a query object q,
and subspaces S1 ⊂ S2. According to Equation 5, we have

f̂S1
(q)

f̂S2(q)
=

∑
o∈O

e
−

∑
Di∈S1

(q.Di−o.Di)
2

2h2
Di

n(2π)
|S1|
2

∏
Di∈S1

hDi
/

∑
o∈O

e
−

∑
Di∈S2

(q.Di−o.Di)
2

2h2
Di

n(2π)
|S2|
2

∏
Di∈S2

hDi

= (2π)
|S2|−|S1|

2

∏
Di∈S2\S1

hDi

∑
o∈O

e
−

∑
Di∈S1

(q.Di−o.Di)
2

2h2
Di

∑
o∈O

e
−

∑
Di∈S2

(q.Di−o.Di)2

2h2
Di
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Table 3 Summary of notations

Notation Description
D a d-dimensional space
O a set of objects in space D
hDi the bandwidth of dimension Di

rankS(o) outlyingness rank of object o in subspace S

f̃S(o) quasi-density of object o in subspace S estimated by Equation 7

f̃O
′

S (o) the sum of quasi-density contributions of objects in set O′ to object o
in subspace S

TNε,o
S ε-tight neighborhood of object o in subspace S

LNε,o
S ε-loose neighborhood of object o in subspace S

dcS(o, o′) the quasi-density contribution of object o′ to object o in subspace S
CompS(o) a set of objects where OAMiner can determine that their densities are

less than the density of o in subspace S and its super-spaces

Since S1 ⊂ S2,
∑
o∈O

e
−

∑
Di∈S1

(q.Di−o.Di)
2

2h2
Di /

∑
o∈O

e
−

∑
Di∈S2

(q.Di−o.Di)
2

2h2
Di ≥ 1 and

(2π)
|S2|−|S1|

2 > 1. However, in the case
∏

Di∈S2\S1

hDi < 1, there is no guarantee

that
f̂S1 (q)

f̂S2 (q)
> 1 always holds. Thus, neither f̂S1

(q) ≤ f̂S2
(q) nor f̂S1

(q) ≥ f̂S2
(q)

holds in general.

5 Critical Techniques in OAMiner

In this section, we present a bounding-pruning-refining algorithm to efficiently
compute the outlyingness rank of an object in a subspace, and discuss the
critical techniques to prune subspaces.

Table 3 lists the frequently used notations in this section.

5.1 Bounding Probability Density

In order to obtain the rank statistics about outlyingness, OAMiner has to
compare the density of the query object with the densities of other objects. To
speed up density estimation of objects, we observe that the contributions from
remote objects to the density of an object are very small, and the density of
an object can be bounded. Technically, we can derive upper and lower bounds
of the probability density of an object using a neighborhood. Again, we denote
by f̃S(o) the quasi-density of object o in subspace S.

For the sake of clarity, we introduce two notations at first. Given objects
o, o′ ∈ O, a subspace S, and a subset O′ ⊆ O, we denote by dcS(o, o′) the
quasi-density contribution of o′ to o in S, and f̃O

′

S (o) the sum of quasi-density
contributions of objects in O′ to o. That is,

dcS(o, o′) = e
−
∑

Di∈S

(o.Di−o
′.Di)

2

2h2
Di
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f̃O
′

S (o) =
∑
o′∈O′

e
−
∑

Di∈S

(o.Di−o
′.Di)

2

2h2
Di

To efficiently estimate the bounds of f̃S(o), we define two kinds of
neighborhoods. For an object o ∈ O, a subspace S, and {εDi | εDi > 0, Di ∈
S}, the ε-tight neighborhood of o in S, denoted by TN ε,o

S , is {o′ ∈ O | ∀Di ∈
S, |o.Di− o′.Di| ≤ εDi}, the ε-loose neighborhood of o in S, denoted by LN ε,o

S ,
is {o′ ∈ O | ∃Di ∈ S, |o.Di − o′.Di| ≤ εDi}. An object is called as an ε-tight
(loose) neighbor if it is in the ε-tight (loose) neighborhood. We will illustrate
how to efficiently compute TN ε,o

S and LN ε,o
S in Section 5.2.

According to the definitions of TN ε,o
S and LN ε,o

S , we obtain the following
properties.

Property 1 TN ε,o
S ⊆ LN ε,o

S .

Property 2 TN ε,o
S = LN ε,o

S if |S| = 1.

Based on TN ε,o
S and LN ε,o

S , O can be divided into three disjoint subsets:
TN ε,o

S , LN ε,o
S \TN

ε,o
S and O \LN ε,o

S . For any object o′ ∈ O, we obtain a lower
bound and an upper bound of dcS(o, o′) as follows.

Theorem 1 (Single quasi-density contribution bounds) Given an
object o ∈ O, a subspace S, and a set {εDi | εDi > 0, Di ∈ S}. Then, for
any object o′ ∈ TN ε,o

S ,

dcεS ≤ dcS(o, o′) ≤ dcmaxS (o)

for any object o′ ∈ LN ε,o
S \ TN

ε,o
S ,

dcminS (o) ≤ dcS(o, o′) ≤ dcmaxS (o)

for any object o′ ∈ O \ LN ε,o
S ,

dcminS (o) ≤ dcS(o, o′) < dcεS

where

dcεS = e
−
∑

Di∈S

ε2Di
2h2
Di

dcmaxS (o) = e
−
∑

Di∈S

min
o′∈O

{|o.Di−o
′.Di|}

2

2h2
Di

dcminS (o) = e
−
∑

Di∈S

max
o′∈O

{|o.Di−o
′.Di|}

2

2h2
Di

The proof of Theorem 1 is given in Appendix B.
Using the size of TN ε,o

S and LN ε,o
S , we obtain a lower bound and an upper

bound of f̃S(o) as follows. The proof can be found in Appendix C.



Mining Outlying Aspects on Numeric Data 15

Corollary 1 (Bounds by neighborhood size) For any object o ∈ O,

|TN ε,o
S | dc

ε
S + (|O| − |TN ε,o

S |) dc
min
S (o) ≤ f̃S(o)

f̃S(o) ≤ |LN ε,o
S | dc

max
S (o) + (|O| − |LN ε,o

S |) dc
ε
S

Corollary 1 allows us to compute the quasi-density bounds of an object
without computing the quasi-density contributions of other objects to it.

Moreover, by Theorem 1, we can obtain following corollaries.

Corollary 2 (Bounds by ε-tight neighbors) For any object o ∈ O and
O′ ⊆ TN ε,o

S ,

f̃O
′

S (o) + (|TN ε,o
S | − |O

′|) dcεS + (|O| − |TN ε,o
S |) dc

min
S (o) ≤ f̃S(o)

f̃S(o) ≤ f̃O
′

S (o) + (|LN ε,o
S | − |O

′|) dcmaxS (o) + (|O| − |LN ε,o
S |) dc

ε
S

Corollary 3 (Bounds by ε-loose neighbors) For any object o ∈ O and
TN ε,o

S ⊂ O′ ⊆ LN ε,o
S ,

f̃O
′

S (o) + (|O| − |O′|) dcminS (o) ≤ f̃S(o)

f̃S(o) < f̃O
′

S (o) + (|LN ε,o
S | − |O

′|) dcmaxS (o) + (|O| − |LN ε,o
S |) dc

ε
S

Corollary 4 (Bounds by a supper set of ε-loose neighbors) For any
object o ∈ O and LN ε,o

S ⊂ O′ ⊆ O,

f̃O
′

S (o) + (|O| − |O′|) dcminS (o) ≤ f̃S(o)

f̃S(o) ≤ f̃O
′

S (o) + (|O| − |O′|) dcεS

The proofs of Corollary 2, Corollary 3 and Corollary 4 can be found in
Appendix D, Appendix E and Appendix F, respectively.

Since the density of o is the sum of the density contributions of all objects
in O, and the density contribution decreases with the distance, OAMiner first
computes the quasi-density contributions from the objects in TN ε,o

S , then from
the objects in LN ε,o

S \ TN
ε,o
S , and last from the objects in O \ LN ε,o

S .

By computing the bounds of f̃S(o), OAMiner takes a bounding-pruning-
refining method, shown in Algorithm 3, to efficiently perform density
comparison in subspace S. Initially, OAMiner estimates the quasi-density of
query object q, which is denoted by f̃S(q). Then, for an object o, OAMiner
first computes the bounds of f̃S(o) by the sizes of TN ε,o

S and LN ε,o
S (Corollary

1), and compares the bounds with f̃S(q) (Steps 1-8). If the relation between
f̃S(q) and the bounds can be determined, that is, either f̃S(q) < f̃S(o) or
f̃S(q) > f̃S(o), then Algorithm 3 ends. Otherwise, OAMiner updates the lower
and upper bounds of f̃S(o) by involving the quasi-density contributions of
objects in TN ε,o

S (Steps 10-20), in LN ε,o
S \TN

ε,o
S (Steps 21-31), and in O\LN ε,o

S

(Steps 32-42) one by one, and repeatedly compares the updated bounds with
f̃S(q), until the relationship between f̃S(q) and f̃S(o) is fully determined.
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Algorithm 3 Density comparison

Input: quasi-density of the query object f̃S(q), object o ∈ O, subspace S, the ε-tight
neighborhood of o TNε,o

S , and the ε-loose neighborhood of o LNε,o
S .

Output: a boolean value indicating f̃S(o) < f̃S(q) is true or not.
1: L← the lower bound of f̃S(o) computed by Corollary 1; // bounding
2: if L > f̃S(q) then
3: return false; // pruning
4: end if
5: U ← the upper bound of f̃S(o) computed by Corollary 1; // bounding
6: if U < f̃S(q) then
7: return true; // pruning
8: end if
9: O′ ← ∅; f̃O′S (o)← 0;

10: for each o′ ∈ TNε,o
S do

11: f̃O
′

S (o)← f̃O
′

S (o) + dcS(o, o′); O′ ← O′ ∪ {o′}; // refining

12: L← the lower bound of f̃S(o) computed by Corollary 2; // bounding
13: if L > f̃S(q) then
14: return false; // pruning
15: end if
16: U ← the upper bound of f̃S(o) computed by Corollary 2; // bounding
17: if U < f̃S(q) then
18: return true; // pruning
19: end if
20: end for
21: for each o′ ∈ LNε,o

S \ TNε,o
S do

22: f̃O
′

S (o)← f̃O
′

S (o) + dcS(o, o′); O′ ← O′ ∪ {o′}; // refining

23: L← the lower bound of f̃S(o) computed by Corollary 3; // bounding
24: if L > f̃S(q) then
25: return false; // pruning
26: end if
27: U ← the upper bound of f̃S(o) computed by Corollary 3; // bounding
28: if U < f̃S(q) then
29: return true; // pruning
30: end if
31: end for
32: for each o′ ∈ O \ LNε,o

S do

33: f̃O
′

S (o)← f̃O
′

S (o) + dcS(o, o′); O′ ← O′ ∪ {o′}; // refining

34: L← the lower bound of f̃S(o) computed by Corollary 4; // bounding
35: if L > f̃S(q) then
36: return false; // pruning
37: end if
38: U ← the upper bound of f̃S(o) computed by Corollary 4; // bounding
39: if U < f̃S(q) then
40: return true; // pruning
41: end if
42: end for
43: return false;

In OAMiner, the neighborhood distance in dimension Di, denoted by εDi ,
is defined as ασDi , where σDi is the standard deviation in dimension Di, and
α is a parameter. Our experiments show that α is not sensitive, and can be
set in the range of 0.8 ∼ 1.2, by which OAMiner runs efficiently. It is still an
open question about how to set the best neighborhood distance for bounding
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— this is a future research problem. Theorem 2 guarantees that no matter
how to set the neighborhood distance, the ranking results keep unchanged.

Theorem 2 Given an object o ∈ O, and a subspace S, for any neighborhood
distances ε1 and ε2, rankε1S (o) = rankε2S (o), where rankε1S (o) (rankε2S (o)) is
the outlyingness rank of o in S computed using ε1 (ε2).

The proof of Theorem 2 can be found in Appendix G.

5.2 Efficiently Estimating Density Bounds

In this subsection, we present strategies in Algorithm 3 that efficiently estimate
the lower and upper bounds of quasi-density.

Consider a candidate subspace S ⊆ D, and an object o ∈ O. To estimate
lower and upper bounds of f̃S(o), OAMiner has to compute TN ε,o

S , LN ε,o
S ,

dcεS , dcminS (o), dcmaxS (o) and dcS(o, o′) , where o′ ∈ O.
In the case |S| = 1, we compute TN ε,o

S , dcεS , dcminS (o), dcmaxS (o) and
dcS(o, o′) based on their definitions directly. As pointed out in Section 5.1,
TN ε,o

S = LN ε,o
S in this case. Moreover, the density contribution is symmetrical,

so that the computational cost for dcS(o′, o) can be saved if dcS(o, o′) is
available.

Please recall that OAMiner searches subspaces by traversing the subspace
enumeration tree in a depth-first manner. For a subspace S satisfying |S| ≥ 2,
denote by par(S) the parent subspace of S. Suppose S\par(S) = D′ (|D′| = 1).
Then, we have

TN ε,o
S = TN ε,o

par(S) ∩ TN
ε,o
D′ (8)

LN ε,o
S = LN ε,o

par(S) ∪ LN
ε,o
D′ (9)

dcεS = e
−
∑

Di∈S

ε2Di
2h2
Di = e

−(
∑

Di∈par(S)

ε2Di
2h2
Di

+
ε2
D′

2h2
D′

)

= dcεpar(S) · dc
ε
D′ (10)

dcminS (o) = e
−(

∑
Di∈par(S)

max
o′∈O

{|o.Di−o
′.Di|}

2

2h2
Di

+
max
o′∈O

{|o.D′−o′.D′|}2

2h2
D′

)

= dcminS\par(S)(o) · dc
min
D′ (o) (11)

dcmaxS (o) = e
−(

∑
Di∈par(S)

min
o′∈O

{|o.Di−o
′.Di|}

2

2h2
Di

+
min
o′∈O

{|o.D′−o′.D′|}2

2h2
D′

)

= dcmaxS\par(S)(o) · dc
max
D′ (o) (12)

dcS(o, o′) = e
−
∑

Di∈S

(o.Di−o
′.Di)

2

2h2
Di = e

−(
∑

Di∈par(S)

(o.Di−o
′.Di)

2

2h2
Di

+
(o.D′−o′.D′)2

2h2
D′

)

= dcpar(S)(o, o
′) · dcD′(o, o′) (13)

Thus, it is efficient for OAMiner to estimate the bounds of f̃S(o) using
par(S) and S \ par(s).
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5.3 Subspace Pruning

Recall that OAMiner searches subspaces by traversing the subspace
enumeration tree in a depth-first manner. During the search process, let S1 be
the set of subspaces that OAMiner has searched, and S2 the set of subspaces
that OAMiner has not searched yet. Clearly, |S1∪S2| = 2|D|−1. Given a query
object q, let rbest = min

S∈S1
{rankS(q)} be the best rank that q has achieved so

far. We can use rbest to prune some subspaces not searched yet. Specifically,
for a subspace S ∈ S2, once we can determine that rankS(q) > rbest, then S
cannot be an outlying aspect, and thus can be pruned.

Observation 1 When subspace S is met in a depth-first search of the subspace
set enumeration tree, let rbest be the best rank of q in all the subspaces searched
so far. Given object q with rankS(q) ≥ 1, if for every proper super-space
S′ ⊃ S, rankS′(q) > rbest, then all proper super-spaces of S can be pruned.

For the case that rankS(q) = 1, all super-spaces of S can be pruned directly
due to the dimensionality minimality condition in the problem definition
(Pruning Rule 1). Thus, we only consider the case rankS(q) > 1 here.

To implement Observation 1, in a subspace S where rankS(q) > 1, we
check whether there are at least rbest objects that are ranked better than q in
every super-space of S. If so, all the super-spaces of S can be pruned. Please
note that the condition OAMiner checks is sufficient, but not necessary.

Recall that the common factor c (Equation 6) does not affect the out-
lyingness rank. For simplicity, OAMiner computes the quasi-density f̃S(o)

(Equation 7) instead of probability density f̂S(o) (Equation 5) for ranking.
Then, we have the following monotonicity of f̃S(o) with respect to subspaces.

Lemma 1 Consider a set of objects O, and two subspaces S and S′ satisfying
S′ ⊃ S. Let Di ∈ S′ \ S. If the standard deviation of O in Di is greater than
0, then for any object o ∈ O, f̃S(o) > f̃S′(o).

Proof Consider Di ∈ S′ \ S, for any object o′ ∈ O, we have (o.Di−o′.Di)2
2h2
Di

≥ 0.

Since the standard deviation of O in Di is greater than 0, there exists at least

one object o′′ ∈ O, such that (o.Di−o′′.Di)2
2h2
Di

> 0, that is, e
− (o.Di−o

′′.Di)
2

2h2
Di < 1.

Thus,

f̃S(o) =
∑
o′∈O

e
−
∑

Di∈S

(o.Di−o
′.Di)

2

2h2
Di

>
∑
o′∈O

e
−
( ∑
Di∈S

(o.Di−o
′.Di)

2

2h2
Di

+
∑

Di∈S′\S

(o.Di−o
′.Di)

2

2h2
Di

)
= f̃S′(o)
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Recall that OAMiner removes the dimensions with standard deviation 0 in
the preprocessing step (Step 2 in Algorithm 2). Thus, the standard deviation
of any dimension Di ∈ S′ \ S is greater than 0.

OAMiner sorts all dimensions in D in the ascending order of rankDi(q)
(Di ∈ D), and traverses the subspace set enumeration tree in the depth-
first manner. Denote by R the ascending order of rankDi(q). For a subspace
S = {Di1 , ..., Dim}, listing in R, let R(S) = {Dj | Dj is behind Dim in R}. By
Lemma 1, for any subspace S′ such that S ⊂ S′ ⊆ S ∪ R(S), the minimum
quasi-density of q, denoted by f̃minsup(S)(q), is f̃S∪R(S)(q). An object o ∈ O is

called a competitor of q in S if f̃S(o) < f̃minsup(S)(q). The set of competitors of

q in S is denoted by CompS(q). Clearly, for any o ∈ CompS(q), by Lemma 1
we have f̃S′(o) < f̃S(o) < f̃minsup(S)(q) ≤ f̃S′(q). Thus, rankS′(o) < rankS′(q).

Moreover, we have the following property of CompS(q).

Property 3 Given a query object q and a subspace S, for any subspace S′ such
that S ⊂ S′, CompS(q) ⊆ CompS′(q).

Proof Since S ⊂ S′, by Lemma 1, for any o ∈ CompS(q),

f̃S′(o) < f̃S(o) < f̃minsup(S)(q).

Since f̃minsup(S)(q) ≤ f̃
min
sup(S′)(q), we have

f̃S′(o) < f̃S(o) < f̃minsup(S)(q) ≤ f̃
min
sup(S′)(q).

Thus, o ∈ CompS′(q). That is, CompS(q) ⊆ CompS′(q).

Correspondingly, OAMiner performs subspace pruning based on the
number of competitors.

Pruning Rule 2 When S is met in a depth-first search of the subspace set
enumeration tree, let rbest be the best rank of q in all the subspaces searched so
far. If there are at least rbest competitors of q in S, i.e., |CompS(q)| ≥ rbest,
then all proper super-spaces of S can be pruned.

Next, we discuss how to compute f̃minsup(S)(q) when the maximum dimen-

sionality threshold of an outlying aspect, `, is less than |S| + |R(S)|. In this
situation, |S| < |S′| ≤ ` < |S| + |R(S)|. Clearly, it is unsuitable to use
f̃S∪R(S)(q) as f̃minsup(S)(q). Intuitively, we can set f̃minsup(S)(q) to min{f̃S′(q) |
|S′| = `, S ⊂ S′ ⊂ S ∪ R(S)}. However, the computational cost may be high,

since the number of candidates is
(|R(S)|
`−|S|

)
. Alternatively, we suggest a method

to efficiently compute f̃minsup(S)(q), which uses a lower bound of f̃S′(q).

For object o′, the quasi-density contribution of o′ to q in S, denoted by

f̃S(q, o′), is e
−
∑

Di∈S

(q.Di−o
′.Di)

2

2h2
Di . Let R(S, o′) be the set of (`−|S|) dimensions in

R(S) with the largest values of
|q.Dj−o′.Dj |

hDj
(Dj ∈ R(S)). Then, the minimum
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Algorithm 4 rankS(q) – OAMiner
Input: query object q ∈ O, subspace S, the set of competitors of q discovered in the parent-

subspace of S Comp (Comp is empty if |S| = 1), and the best rank of q in the subspaces
searched so far rbest

Output: rankS(q)
1: compute f̃S(q) using Equation 7;
2: rankS(q)← |Comp|+ 1;
3: for each object o ∈ O \ Comp do
4: if f̃S(o) < f̃S(q) then
5: rankS(q)← rankS(q) + 1;
6: if f̃S(o) < f̃min

sup(S)
(q) then

7: Comp← Comp ∪ {o};
8: if |Comp| = rbest then
9: prune super-spaces of S and return; // pruning rule 2

10: end if
11: end if
12: if rankS(q) > rbest then
13: return;
14: end if
15: end if
16: end for
17: return rankS(q);

quasi-density contribution of o′ to q in S′ (S ⊂ S′) is f̃S∪R(S,o′)(q, o
′). Since

f̃S′(q) =
∑
o′∈O

f̃S′(q, o
′), we have f̃minsup(S)(q) =

∑
o′∈O

f̃S∪R(S,o′)(q, o
′) ≤ f̃S′(q).

Please note that if we compare f̃minsup(S)(q) with the quasi-density values of
all objects in O, the computational cost for density estimation is considerably
high. Especially, when the size of O is large, for the sake of efficiency, we make
a tradeoff between subspace pruning and object pruning. Specifically, when
we are searching a subspace S, once we can determine that rankS(q) > rbest,
then we terminate the search of S immediately.

Algorithm 4 gives the pseudo-code of computing outlyingness rank and
pruning subspaces in OAMiner. Theorem 3 guarantees that Algorithm 4 can
find all minimal outlying subspaces.

Theorem 3 (Completeness of OAMiner) Given a set of objects O in a
multi-dimensional space D, a query object q ∈ O and a maximum dimen-
sionality threshold 0 < ` ≤ |D|, OAMiner finds all minimal outlying subspaces
of q.

The proof of Theorem 3 is given in Appendix H.

6 Empirical Evaluation

In this section, we report a systematic empirical study using several real data
sets and synthetic data sets to verify the effectiveness and efficiency of our
method. All experiments were conducted on a PC with an Intel Core i7-3770
3.40 GHz CPU and 8 GB main memory, running the Windows 7 operating



Mining Outlying Aspects on Numeric Data 21

Table 4 The 20 technical statistics

1: Game played 6: 3-Points (M) 11: Free throw (Pct) 16: Turnover
2: Minutes 7: 3-Points (A) 12: Rebounds (Off) 17: Steal
3: Field goal (M) 8: 3-Points (Pct) 13: Rebounds (Def) 18: Block
4: Field goal (A) 9: Free throw (M) 14: Rebounds (Tot) 19: Personal foul
5: Field goal (Pct) 10: Free throw (A) 15: Assist 20: Points/game

Table 5 Data set characteristics

Data set # objects # attributes Data set # objects # attributes
Guards 220 20 Climate model 540 18

Forwards 160 20 Concrete slump 103 10
Centers 46 17 Parkinsons 195 22

Breast cancer 194 33 Wine 178 13

system. The algorithms were implemented in Java and compiled by JDK 7.
Since it may likely be too hard for the user to understand the meaning of
subspaces with dimensionality more than 5, we set ` = 5 and α = 1.0 as
default in OAMiner.

6.1 Mining Outlying Aspects on Real Data Sets

NBA coaches, sport agents, and commentators may want to know in which
aspects a player is most unusual. Using this application scenario as a case
study, we first investigate the outlying aspects of all NBA guards, forwards
and centers in the 2012-2013 Season. We collect the technical statistics on
20 numerical attributes from http://sports.yahoo.com/nba/stats. Table 4
shows the names of dimensions. The statistics for centers on 3-points (items 6, 7
and 8) are removed since the statistics for most centers are 0. Besides, we apply
OAMiner to several real world data sets from the UCI repository (Bache and
Lichman, 2013). In our experiments, we remove non-numerical attributes and
all instances containing missing values. Table 5 shows the data characteristics.

For each data set, we take each record as a query object q, and apply
OAMiner to discover the outlying aspects of q. Figure 3 shows the distributions
of the best outlyingness ranks of objects on the data sets. Surprisingly, the best
outlyingness ranks of most objects are small, that is, most objects are ranked
very good in outlyingness in some subspaces. For example, 90 guards (40.9%),
81 forwards (50.6%) and 32 centers (69.6%) have an outlyingness rank of 5 or
better. Most players have some subspaces where they are substantially different
from the others. The observation justifies the need for outlying aspect mining.

Figure 4 shows the distributions of the number of the minimal outlying
subspaces where the objects achieve the best outlyingness rank on the data
sets. For most objects, the number of outlying aspects is small, which is also
surprising. As shown in Figure 4(a), 150 (68.2%) objects in Guards have only
1 outlying aspect. This indicates that most objects can be distinguished from
the others using a small number of factors.
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Fig. 3 Distributions of outlyingness ranks (` = 5)

Table 6 summarizes the mining results of OAMiner on real data sets when
` = 4, 5, 6, respectively. Not surprisingly, the smallest values of outlyingness
rank, number of outlying aspects, dimensionality are 1. With larger value of `,
the average outlyingness rank decreases, while the average number of outlying
aspects and the average dimensionality increase. In addition, we can see that
more outlying aspects with a higher dimensionality can be found on data sets
with more attributes and more instances. For example, the average number of
outlying aspects discovered from Breast cancer is the largest.

6.2 Outlying Aspects Discovery on Synthetic Data Sets

Keller et al (2012) provided a collection of synthetic data sets, each consisting
1000 data objects. Each data set contains some subspace outliers, which
deviate from all clusters in at least one 2-5 dimensional subspace. As stated
in Keller et al (2012), an object can be an outlier in multiple subspaces inde-
pendently. We perform test on the data sets of 10, 20, 30, 40, 50 dimensions,
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Fig. 4 Distributions of total number of outlying aspects (` = 5)

and denote the data sets by Synth 10D, Synth 20D, Synth 30D, Synth 40D,
Synth 50D, respectively.

For an outlier q in a data set, let S be the ground truth about outlying
subspace of q. Please note that S may not be an outlying aspect of q if there
exists another outlier more outlying than q in S, since OAMiner finds the
subspaces whereby the query object is most outlying. To verify the effectiveness
of OAMiner using the known ground truth about outlying subspaces, in the
case of multiple implanted outliers in S, we keep q and remove the other
outliers, and take q as the query object. Since q is the only implanted strong
outlier in subspace S, OAMiner is expected to find the ground truth outlying
subspace S where q takes rank 1 in outlyingness, that is, rankS(q) = 1.

We divide the mining results of OAMiner into the following 3 cases:

– Case 1: only the ground truth outlying subspace is discovered by OAMiner
with outlyingness rank 1.

– Case 2: besides the ground truth outlying subspace, OAMiner finds other
outlying aspects with outlyingness rank 1.
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Table 6 Sensitivity of OAMiner’s effectiveness w.r.t. parameter `

Data set `
Outlyingness rank # of outlying aspects Dimensionality

Min. Max. Avg. Min. Max. Avg. Min. Max. Avg.

Guards
4 1 72 13.94 1 49 2.02 1 4 2.79
5 1 72 13.70 1 111 3.05 1 5 3.68
6 1 72 13.50 1 359 5.67 1 6 4.83

Forwards
4 1 48 8.79 1 40 2.24 1 4 2.77
5 1 47 8.54 1 41 2.37 1 5 3.13
6 1 46 8.43 1 71 2.93 1 6 3.77

Centers
4 1 13 3.70 1 15 3.28 1 4 2.74
5 1 13 3.57 1 15 3.65 1 5 3.08
6 1 13 3.54 1 18 3.61 1 6 3.23

Breast
cancer

4 1 70 8.04 1 232 9.57 1 4 3.47
5 1 62 7.74 1 2478 43.37 1 5 4.67
6 1 56 7.57 1 11681 243.10 1 6 5.77

Climate
model

4 1 33 1.97 1 30 4.57 1 4 3.65
5 1 15 1.45 1 78 10.18 1 5 4.43
6 1 15 1.28 1 149 16.97 1 6 5.07

Concrete
slump

4 1 27 4.67 1 8 1.56 1 4 2.38
5 1 24 4.44 1 8 1.64 1 5 2.59
6 1 24 4.41 1 8 1.65 1 6 2.66

Parkinsons
4 1 74 12.13 1 156 4.20 1 4 3.25
5 1 74 11.51 1 400 7.63 1 5 4.09
6 1 74 11.33 1 889 14.30 1 6 5.01

Wine
4 1 37 7.65 1 26 1.49 1 4 2.66
5 1 37 7.47 1 26 1.59 1 5 2.96
6 1 37 7.46 1 26 1.66 1 6 3.09

– Case 3: instead of the ground truth outlying subspace, OAMiner finds a
subset of the ground truth as an outlying aspect with outlyingness rank 1.

Table 7 lists the mining results2 on Synth 10D. For all outliers (query
objects), outlying aspects with outlyingness rank 1 are discovered. Moreover,
we can see that for objects 183, 315, 577, 704, 754, 765 and 975, OAMiner
finds not only the ground truth outlying subspace, but also some other outlying
subspaces (Case 2). For object 245, the outlying aspect discovered by OAMiner
is a subset of the ground truth outlying subspace (Case 3). For the other 11
objects, the outlying aspects discovered by OAMiner are identical with the
ground truth outlying subspaces (Case 1).

To further demonstrate the effectiveness of OAMiner, for object 245 in Case
2, we illustrate the outlying aspect {2, 5} in Figure 5(a), and for object 315
in Case 3, we illustrate the outlying aspect {3, 4} in Figure 5(b). Visually, the
objects show outlying characteristics in the corresponding outlying aspects.

Table 8 summarizes the mining results of OAMiner on the synthetic data
sets of 10, 20, 30, 40, 50 dimensions. As OAMiner finds all subspaces in which
the outlyingness rank of the query object are the minimum, we can see that
the number of Case 2 increases with higher dimensionality. In other words,
more outlying aspects can be found on data sets with more attributes. Please

2 The object id and dimension id in Tables 7 and 8 are consistent with the original data
sets in Keller et al (2012).
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Table 7 Outlying aspects on Synth 10D

Query object
Ground truth

outlying subspace
Outlying aspect with
outlyingness rank 1

Description

172 {8, 9} {8, 9} Case 1
183 {0, 1} {0, 1}, {0, 6, 8} Case 2
184 {6, 7} {6, 7} Case 1
207 {0, 1} {0, 1} Case 1
220 {2, 3, 4, 5} {2, 3, 4, 5} Case 1
245 {2, 3, 4, 5} {2, 5} Case 3
315 {0, 1}, {6, 7} {0, 1}, {6, 7}, {3, 4}, {3, 5, 9}, {4, 6, 9} Case 2
323 {8, 9} {8, 9} Case 1
477 {0, 1} {0, 1} Case 1
510 {0, 1} {0, 1} Case 1
577 {2, 3, 4, 5} {2, 3, 4, 5}, {0, 3, 7} Case 2
654 {2, 3, 4, 5} {2, 3, 4, 5} Case 1
704 {8, 9} {8, 9}, {0, 2, 3, 4} Case 2
723 {2, 3, 4, 5} {2, 3, 4, 5} Case 1
754 {6, 7} {6, 7}, {2, 4, 8}, {2, 6, 8}, {4, 6, 8} Case 2
765 {6, 7} {6, 7}, {1, 4, 6}, {3, 4, 5, 6} Case 2
781 {6, 7} {6, 7} Case 1
824 {8, 9} {8, 9} Case 1
975 {8, 9} {8, 9}, {2, 5, 9}, {5, 6, 8}, {2, 3, 5, 8} Case 2
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Fig. 5 Outlying aspects for objects 245 and 315 in Synth 10D

note that this observation is consistent with the experimental observations in
real data sets (Section 6.1). In addition, the number of Case 3 increases a bit,
since OAMiner applies the dimensionality minimality condition to outlying
aspect mining.

6.3 Outlying Aspects Discovery on NBA Data Sets

As a real case study, we verified the usefulness of outlying aspect mining by
analyzing the outlying aspects of some NBA players.

Please note that “outlying” is different from “outstanding”. A player
receives a good outlyingness rank in a subspace if very few other players
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Table 8 Statistics on the mining results of OAMiner on synthetic data sets

Data set # of outliers # of Case 1 # of Case 2 # of Case 3
Synth 10D 19 11 7 1
Synth 20D 25 1 23 1
Synth 30D 44 0 40 4
Synth 40D 53 0 52 1
Synth 50D 68 0 65 3

are close to him in the subspace, regardless of whether the performance is
“good” or not. Table 9 lists 10 guards who have the largest number of rank-1
outlying aspects, where the dimensions are represented by their serial numbers
in Table 4. (Due to space limits, Table 9 only lists the outlying aspects whose
dimensionality are not greater than 3.)

In Table 9, the first several players are not well-known. Their low out-
lyingness ranks arise due to no other players having similar statistics. For
example, Quentin Richardson, who has 18 outlying aspects, just played one
game in which he played very well at rebounds, but poor at field goal. Will
Conroy played four games and his performance on shooting is poor. Brandon
Rush played two games, and his number of personal fouls is large. Ricky Rubio
performs well at stealing. Rajon Rondo’s ability to assist is impressive, but
his statistics for turnover is large. Scott Machado did not make any personal
foul in the six games he played. The last four players in Table 9 are famous.
Their overall performance on every aspect is much better than most of the
other guards. For example, Kobe Bryant is a great scorer, Jamal Crawford’s
personal fouls are very low, James Harden is excellent at the free throw, and
Stephen Curry leads in 3-points scoring.

Please note that different objects may share some outlying aspects with
the same outlyingness rank. For example, both Quentin Richardson and Will
Conroy are ranked number 1 in {5, 8}. There are two reasons for this situation.
First, the values of objects are identical in these subspaces. Second, the
difference between the outlyingness degrees is so tiny that it is beyond the
precision of the program.

Table 10 lists the guards who have poor outlyingness ranks overall (i.e.
there are not any subspaces where they are ranked particularly well). Their
performance statistics is in the middle of the road, and do not have any obvious
shortcomings. They may be important to be included in a team as “the sixth
man”, even though they are not star performers.

As mentioned in Section 3, subspace outlier detection is fundamentally
different from outlying aspect mining, since subspace outlier detection finds
contrast subspaces for all possible outliers. However, we can make use of the
results of subspace outlier ranking to verify to some extent our discovered
outlying aspects. Specifically, we look at the objects that are ranked the best
by either HiCS (Keller et al, 2012) or SOD (Kriegel et al, 2009), and check their
outlyingness ranks. As HiCS randomly selects subspace slices, we run it 3 times
independently on each data set with the default parameters. The parameter
for the number of nearest neighbors in both LOF and SOD was varied across
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Table 9 The guards having the most rank-1 outlying aspects

Name Outlying aspects (` = 3)
Quentin Richardson {1}, {12}, {14}, {2, 17}, {3, 4}, {3, 13}, {4, 17}, {5, 8}, {5, 11},

{5, 13}, {13, 17}, {13, 20}, {2, 3, 16}, {2, 4, 5}, {2, 5, 6}, {2, 5, 7},
{2, 5, 9}, {4, 5, 7}

Will Conroy {2, 5}, {5, 8}, {5, 11}, {5, 12}, {5, 13}, {5, 14}, {5, 16}, {4, 5, 6},
{4, 5, 9}, {4, 5, 10}, {4, 5, 7}, {4, 5, 19}, {5, 6, 7}, {5, 7, 9}

Brandon Rush {5}, {1, 19}, {2, 19}, {17, 19}
Ricky Rubio {3, 17}, {7, 17}, {16, 17}, {17, 20}
Rajon Rondo {15}, {16}, {1, 17}, {1, 2, 20}

Scott Machado {19}, {2, 16}, {5, 8, 18}
Kobe Bryant {3}, {4}, {20}

Jamal Crawford {19, 20}, {4, 19}, {2, 3, 19}
James Harden {9}, {10}
Stephen Curry {6}, {7}

Table 10 The guards having poor ranks in outlying aspects

Outlyingness rank Name Outlying aspects
72 Terrence Ross {11}
70 E’Twaun Moore {18}
69 C.J. Watson {8, 12, 13, 14, 18}
61 Jerryd Bayless {2, 3, 4, 19, 20}
58 Nando De Colo {1, 2}, {3, 4, 5, 11, 20}
56 Alec Burks {2, 9, 10, 11}
55 Rodrigue Beaubois {1, 2, 8, 11, 15}
52 Marco Belinelli {9, 10, 12}
49 Aaron Brooks {2, 3, 5, 7, 16}
48 Nick Young {1, 3, 16, 18, 20}

Table 11 The outlyingness ranks of players ranked top in HiCS or SOD

Position Name rankHL rankSOD rankS (# of outlying aspects)

guard
Quentin Richardson 1 1 1 (54)

Kobe Bryant 1 9 1 (3)
Brandon Roy 32 1 1 (4)

forward
Carmelo Anthony 1 5 1 (26)

Kevin Love 3 1 1 (41)

center
Dwight Howard 1 2 1 (15)
Andrew Bogut 10 1 1 (9)

5, 10 and 20, and the best ranks were reported. In SOD (Kriegel et al, 2009),
the parameter l specifying the size of the reference sets cannot be larger than
the number of nearest neighbors. We set it to the number of nearest neighbors.
For a given object, we denote by rankHL and rankSOD the ranks computed
by HiCS and by SOD, respectively. We denote by rankS the outlyingness
rank computed by OAMiner. Table 11 shows the results. The results clearly
show that every player ranked top in either HiCS or SOD has some outlying
subspaces where he is ranked number 1. The results of outlying aspect mining
are consistent with those of subspace outlier ranking. At the same time, we
notice that the rankings of HiCS and SOD are not always consistent with each
other, such as for Kobe Bryant, Brandon Roy and Andrew Bogut.
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Fig. 6 Efficiency test

6.4 Efficiency

To the best of our knowledge, there is no other method tackling the exact
same problem as OAMiner. Therefore, we only evaluate the efficiency of
OAMiner and its variations. Specifically, we implemented the baseline method
(Algorithm 1 with Pruning Rule 1). Recall that OAMiner uses both upper
and lower bounds of quasi-density to speed up the computation of out-
lyingness ranks. To evaluate the efficiency of our techniques for quasi-density
comparison, we implemented a version OAMiner-part that does not use bounds
in quasi-density estimation and strategies presented in Section 5.2. Moreover,
we implement the full version OAMiner-full that uses all techniques.

Once again, we used a synthetic data set from Keller et al (2012). The
dimensionality of the data set is 50, and the data set consists of 1000 data
points. We randomly chose 10 data points (non-outliers) from the data set as
query objects, and reported the average runtime. Again, we set ` = 5 for all
three methods and α = 1.0 for OAMiner-full by default.

Figure 6(a) shows the runtime with respect to data set size. The runtime
is plotted using the logarithmic scale. The baseline method is time consuming,
which is consistent with our analysis. Our pruning techniques can achieve a
roughly linear runtime in practice. Both versions of OAMiner are substantially
faster than the baseline method. Moreover, OAMiner-full is more efficient than
OAMiner-part.

Figure 6(b) shows the runtime with respect to dimensionality. The runtime
is also plotted using the logarithmic scale. As dimensionality increases, the
runtime increases exponentially. However, our heuristic pruning techniques
speed up the search in practice. Again, OAMiner-full is more efficient than
OAMiner-part.

Figure 6(c) shows the runtime with respect to maximum dimensionality
threshold (`). The runtime is plotted using the logarithmic scale, too. As `
increases, more subspaces will be enumerated. Correspondingly, the runtime
increases. Once more, both versions of OAMiner are considerably faster than
the baseline method, and OAMiner-full is more efficient than OAMiner-part.
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Fig. 7 Runtime w.r.t. outlyingness rank

We also notice that the runtime of OAMiner is related with the outlyingness
rank of the query object. Figure 7 shows the runtime with respect to out-
lyingness rank on each real data set. Not surprisingly, the objects with large
outlyingness rank cost more runtime, since OAMiner prunes subspaces based
on the rank of the query object by either Pruning Rule 1 or Pruning Rule 2.

Last, we test the sensitivity of the parameter α for bounding quasi-density.
We vary the parameter α, which sets the ε-neighborhood distance. Table 12
lists the average runtime of OAMiner for a query object on each real data set.
The runtime of OAMiner is not sensitive to α in general. Experimentally, the
shortest runtime of OAMiner happens when α is in [0.8, 1.2].

7 Discussions and Conclusions

In this paper, we studied the novel and interesting problem of finding outlying
aspects of a query object on multidimensional numeric data. We systematically
developed a model and a heuristic method. Using both real and synthetic
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Table 12 Average runtime of OAMiner w.r.t parameter α

Data set
Average runtime (sec)

α = 0.6 α = 0.8 α = 1.0 α = 1.2 α = 1.4
Guards 4.459 4.234 4.213 4.303 4.315

Forwards 2.810 2.519 2.424 2.418 2.413
Centers 0.260 0.234 0.216 0.212 0.220

Breast cancer 58.476 58.228 57.927 57.613 57.982
Climate model 6.334 6.268 6.339 6.253 6.410
Concrete slump 0.047 0.044 0.044 0.045 0.045

Parkinsons 6.164 6.154 6.083 6.218 6.243
Wine 0.351 0.341 0.339 0.344 0.350

data sets, we verified that mining outlying aspects is interesting and useful.
Moreover, our experiments show that our outlying aspect mining method is
effective and efficient.

There are several interesting issues that deserve research effort in the
future. First, to further examine the quality of outlying aspects, we plan
to compute a statistical confidence interval on the rank via bootstrap
sampling, and select the subspace with tighter confidence interval on the
rank. Second, since OAMiner ranks the query object among all the objects by
their probability densities estimated by a Gaussian kernel , it is interesting
to consider using other kernel functions or outlierness degree measures
proposed by outlier detection methods, such as SOD (Kriegel et al, 2009)
and LOF (Breunig et al, 2000). Third, OAMiner discovers outlying aspects for
a given object. Obviously selecting appropriate query points requires domain
knowledge. Selecting appropriate background data sets for contrast against the
query point also requires background knowledge. It is interesting to explore
strategies for incorporating domain knowledge into outlying aspect mining. In
practice, it may be the case that a user may want to study a set of objects.
In addition, we will explore parallel computation approaches to improve the
efficiency of OAMiner, and extend OAMiner for mixed data containing both
numerical and non-numerical values. Finally, it is also interesting to investigate
concise representation of outlying aspects, such as maximal outlying aspects,
explore relations among outlying aspects, and investigate how to measure the
interpretability and the interestingness of an outlying aspect.
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A Proof of Proposition 1

Proof For any dimension Di ∈ S (1 ≤ i ≤ d), the mean value of {o.Di | o ∈ O},
denoted by µi, is 1

|O|
∑
o∈O

o.Di, the standard deviation of {o.Di | o ∈ O}, denoted by σi, is√
1
|O|

∑
o∈O

(o.Di − µi)2, and the bandwidth of Di (hi) is 1.06 min{σi, R
1.34
}|O|−

1
5 , where R

is the difference between the first and the third quartiles of O in Di.
We perform the linear transformation g(o).Di = aio.Di + bi for any o ∈ O. Then,

the mean value of {g(o).Di | o ∈ O} is 1
|O|

∑
o∈O

(aio.Di + bi) = aiµi + bi, and

the standard deviation of {g(o).Di | o ∈ O} is
√

1
|O|

∑
o∈O

(aio.Di + bi − aiµi − bi)2 =

ai
√

1
|O|

∑
o∈O

(o.Di − µi)2 = aiσi.

Correspondingly, the bandwidth of Di is 1.06 min{aiσi, aiR1.34
}|O|−

1
5 after the linear

transformation. As the distance between two objects in Di is also enlarged by ai, the quasi-
density calculated by Equation 7 keeps unchanged. Thus, the ranking is invariant under
linear transformation.

B Proof of Theorem 1

Proof (i) Given an object o′ ∈ TNε,o
S , for any dimension Di ∈ S, min

o′′∈O
{|o.Di − o′′.Di|} ≤

|o.Di − o′.Di| ≤ εDi . Thus,

e
−

∑
Di∈S

ε2Di
2h2
Di ≤ e

−
∑

Di∈S

|o.Di−o
′.Di|

2

2h2
Di ≤ e

−
∑

Di∈S

min
o′′∈O

{|o.Di−o
′′.Di|}

2

2h2
Di .
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That is, dcεS ≤ dcS(o, o′) ≤ dcmaxS (o).
(ii) Given an object o′ ∈ LNε,o

S \ TNε,o
S , for any dimension Di ∈ S, min

o′′∈O
{|o.Di −

o′′.Di|} ≤ |o.Di − o′.Di| ≤ max
o′′∈O

{|o.Di − o′′.Di|}. Thus,

e
−

∑
Di∈S

max
o′′∈O

{|o.Di−o
′′.Di|}

2

2h2
Di ≤ e

−
∑

Di∈S

|o.Di−o
′.Di|

2

2h2
Di ≤ e

−
∑

Di∈S

min
o′′∈O

{|o.Di−o
′′.Di|}

2

2h2
Di .

That is, dcminS (o) ≤ dcS(o, o′) ≤ dcmaxS (o).
(iii) Given an object o′ ∈ O \ LNε,o

S , for any dimension Di ∈ S, εDi < |o.Di − o′.Di| ≤
max
o′′∈O

{|o.Di − o′′.Di|}. Thus,

e
−

∑
Di∈S

max
o′′∈O

{|o.Di−o
′′.Di|}

2

2h2
Di ≤ e

−
∑

Di∈S

|o.Di−o
′.Di|

2

2h2
Di < e

−
∑

Di∈S

ε2Di
2h2
Di .

That is, dcminS (o) ≤ dcS(o, o′) < dcεS .

C Proof of Corollary 1

Proof We divide O into three disjoint subsets TNε,o
S , LNε,o

S \ TNε,o
S and O \ LNε,o

S . By
Theorem 1, for objects belonging to TNε,o

S , we have

|TNε,o
S | dc

ε
S ≤

∑
o′∈TNε,o

S

dcS(o, o′) ≤ |TNε,o
S | dc

max
S (o)

For objects belonging to LNε,o
S \ TNε,o

S , we have

(|LNε,o
S | − |TN

ε,o
S |) dc

min
S (o) ≤

∑
o′∈LNε,o

S
\TNε,o

S

dcS(o, o′) ≤ (|LNε,o
S | − |TN

ε,o
S |) dc

max
S (o)

For objects belonging to O \ LNε,o
S , we have

(|O| − |LNε,o
S |) dc

min
S (o) ≤

∑
o′∈O\LNε,o

S

dcS(o, o′) < (|O| − |LNε,o
S |) dc

ε
S

As

f̃S(o) =
∑
o′∈O

dcS(o, o′) =
∑

o′∈TNε,o
S

dcS(o, o′)+
∑

o′∈LNε,o
S
\TNε,o

S

dcS(o, o′)+
∑

o′∈O\LNε,o
S

dcS(o, o′),

Thus,

f̃S(o) ≥ |TNε,o
S | dc

ε
S + (|LNε,o

S | − |TN
ε,o
S |) dc

min
S (o) + (|O| − |LNε,o

S |) dc
min
S (o)

= |TNε,o
S | dc

ε
S + (|O| − |TNε,o

S |) dc
min
S (o)

f̃S(o) ≤ |TNε,o
S | dc

max
S (o) + (|LNε,o

S | − |TN
ε,o
S |) dc

max
S (o) + (|O| − |LNε,o

S |) dc
ε
S

= |LNε,o
S | dc

max
S (o) + (|O| − |LNε,o

S |) dc
ε
S

Moreover, if LNε,o
S ⊂ O, i.e. O \ LNε,o

S 6= ∅, then

f̃S(o) < |LNε,o
S | dc

max
S (o) + (|O| − |LNε,o

S |) dc
ε
S



34 Lei Duan et al.

D Proof of Corollary 2

Proof Since O′ ⊆ TNε,o
S , for objects belonging to O \ O′, we divide them into TNε,o

S \ O′,
LNε,o

S \ TNε,o
S and O \ LNε,o

S . Then

f̃S(o) = f̃O
′

S (o) +
∑

o′∈TNε,o
S
\O′

dcS(o, o′) +
∑

o′∈LNε,o
S
\TNε,o

S

dcS(o, o′) +
∑

o′∈O\LNε,o
S

dcS(o, o′),

By Theorem 1, for objects belonging to TNε,o
S \O′, we have

(|TNε,o
S | − |O

′|) dcεS ≤
∑

o′∈TNε,o
S
\O′

dcS(o, o′) ≤ (|TNε,o
S | − |O

′|) dcmaxS (o)

For objects belonging to LNε,o
S \ TNε,o

S , we have

(|LNε,o
S | − |TN

ε,o
S |) dc

min
S (o) ≤

∑
o′∈LNε,o

S
\TNε,o

S

dcS(o, o′) ≤ (|LNε,o
S | − |TN

ε,o
S |) dc

max
S (o)

For objects belonging to O \ LNε,o
S , we have

(|O| − |LNε,o
S |) dc

min
S (o) ≤

∑
o′∈O\LNε,o

S

dcS(o, o′) < (|O| − |LNε,o
S |) dc

ε
S

Thus,

f̃S(o) ≥ f̃O
′

S (o) + (|TNε,o
S | − |O

′|) dcεS + (|LNε,o
S | − |TN

ε,o
S |) dc

min
S (o) + (|O| − |LNε,o

S |) dc
min
S (o)

= f̃O
′

S (o) + (|TNε,o
S | − |O

′|) dcεS + (|O| − |TNε,o
S |) dc

min
S (o)

f̃S(o) ≤ f̃O
′

S (o) + (|TNε,o
S | − |O

′|) dcmaxS (o) + (|LNε,o
S | − |TN

ε,o
S |) dc

max
S (o) + (|O| − |LNε,o

S |) dc
ε
S

= f̃O
′

S (o) + (|LNε,o
S | − |O

′|) dcmaxS (o) + (|O| − |LNε,o
S |) dc

ε
S

Moreover, if LNε,o
S ⊂ O, i.e. O \ LNε,o

S 6= ∅, then

f̃S(o) < f̃O
′

S (o) + (|LNε,o
S | − |O

′|) dcmaxS (o) + (|O| − |LNε,o
S |) dc

ε
S

E Proof of Corollary 3

Proof Since TNε,o
S ⊂ O′ ⊆ LNε,o

S , for objects belonging to O \ O′, we divide them into
LNε,o

S \O′ and O \ LNε,o
S . Then

f̃S(o) = f̃O
′

S (o) +
∑

o′∈LNε,o
S
\O′

dcS(o, o′) +
∑

o′∈O\LNε,o
S

dcS(o, o′),

By Theorem 1, for objects belonging to LNε,o
S \O′, we have

(|LNε,o
S | − |O

′|) dcminS (o) ≤
∑

o′∈LNε,o
S
\TNε,o

S

dcS(o, o′) ≤ (|LNε,o
S | − |O

′|) dcmaxS (o)

For objects belonging to O \ LNε,o
S , we have

(|O| − |LNε,o
S |) dc

min
S (o) ≤

∑
o′∈O\LNε,o

S

dcS(o, o′) < (|O| − |LNε,o
S |) dc

ε
S
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Thus,

f̃S(o) ≥ f̃O
′

S (o) + (|LNε,o
S | − |O

′|) dcminS (o) + (|O| − |LNε,o
S |) dc

min
S (o)

= f̃O
′

S (o) + (|O| − |O′|) dcminS (o)

f̃S(o) ≤ f̃O
′

S (o) + (|LNε,o
S | − |O

′|) dcmaxS (o) + (|O| − |LNε,o
S |) dc

ε
S

Moreover, if LNε,o
S ⊂ O, i.e. O \ LNε,o

S 6= ∅, then

f̃S(o) < f̃O
′

S (o) + (|LNε,o
S | − |O

′|) dcmaxS (o) + (|O| − |LNε,o
S |) dc

ε
S

F Proof of Corollary 4

Proof Since LNε,o
S ⊂ O′ ⊆ O, Then

f̃S(o) = f̃O
′

S (o) +
∑

o′∈O\O′
dcS(o, o′),

By Theorem 1, for objects belonging to O \O′, we have

(|LNε,o
S | − |O

′|) dcminS (o) ≤
∑

o′∈O\O′
dcS(o, o′) ≤ (|O| − |O′|) dcεS

Thus,

f̃S(o) ≥ f̃O
′

S (o) + (|O| − |O′|) dcminS (o)

f̃S(o) ≤ f̃O
′

S (o) + (|O| − |O′|) dcεS

G Proof of Theorem 2

Proof We prove by contradiction.
Given a set of objects O, a subspace S, two neighborhood distances ε1 and ε2. Let q ∈ O

be the query object. For an object o ∈ O, denote by Lε1 the lower bound of f̃S(o) estimated

by ε1, Uε2 the upper bound of f̃S(o) estimated by ε2.

Assume that f̃S(q) < Lε1 and f̃S(q) > Uε2 .

As Lε1 is a lower bound of f̃S(o), and Uε2 is an upper bound of f̃S(o), so that Lε1 <

f̃S(o) < Uε2 . Then, we have f̃S(q) < Lε1 < f̃S(o) and f̃S(o) < Uε2 < f̃S(q). Consequently,

f̃S(o) < f̃S(q) < f̃S(o). A contradiction.
Thus, rankε1S (q) = |{o ∈ O | f̃S(o) < f̃S(q)}|+ 1 = rankε2S (q).

H Proof of Theorem 3

Proof We prove by contradiction.
Let Ans be the set of minimal outlying subspaces of q found by OAMiner, rbest the

best rank. Assume that subspace S /∈ Ans satisfying S ⊆ D and 0 < |S| ≤ ` is a minimal
outlying subspace of q.

Recall that OAMiner searches subspaces by traversing the subspace enumeration tree
in a depth-first manner. As S /∈ Ans, S is pruned by Pruning Rule 1 or Pruning Rule 2.

In the case that S is pruned by Pruning Rule 1, S is not minimal. A contradiction;
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In the case that S is pruned by Pruning Rule 2, then there exist a subspace S′, such
that S′ is a parent of S in the subspace enumeration tree and CompS′ (q) ≥ rbest. By the
property of competitors, we have CompS′ (q) ⊆ CompS(q). Correspondingly, rankS(q) ≥
|CompS(q)| ≥ |CompS′ (q)| ≥ rbest. A contradiction.


