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Abstract—Feature selection is important in many big data
applications. There are at least two critical challenges. Firstly,
in many applications, the dimensionality is extremely high, in
millions, and keeps growing. Secondly, feature selection has to
be highly scalable, preferably in an online manner such that
each feature can be processed in a sequential scan. In this
paper, we develop SAOLA, a Scalable and Accurate OnLine
Approach for feature selection. With a theoretical analysis on
a low bound on the pairwise correlations between features in the
currently selected feature subset, SAOLA employs novel online
pairwise comparison techniques to address the two challenges and
maintain a parsimonious model over time in an online manner.
An empirical study using a series of benchmark real data sets
shows that SAOLA is scalable on data sets of extremely high
dimensionality, and has superior performance over the state-of-
the-art feature selection methods.

Keywords—Online feature selection, Feature redundancy, Ex-
tremely high dimensionality

I. INTRODUCTION

In the era of big data, many novel applications, such as so-
cial media services, high resolution images, genomic data anal-
ysis, and document data analysis, consume data of extremely
high dimensionality, in the order of millions. For example, the
Web Spam Corpus 2011 [13] collected approximately sixteen
million features (attributes) for web spam page detection, and
the data set from KDD CUP 2010 about using educational
data mining to accurately predict student performance includes
more than twenty-nine million features. To handle millions of
features, the scalability of feature selection methods becomes
critical.

Moreover, in many applications, feature selection has to
be conducted in an online manner. For example, in SINA
Weibo, hot topics in Weibo keep changing daily. When a novel
hot topic appears, it may come with a set of new keywords
(or a set of features). And then some of the new keywords
may serve as key features to identify the new hot topics.
Another example is feature selection in bioinformatics, where
acquiring the full set of features for every training instance
is expensive because of the high cost in conducting wet lab
experiments [14]. Accordingly in some real-world applications,
it is impossible to wait for a complete set of features. Instead,
it is important to conduct feature selection from the features

available so far, and consume new features in an online manner
as they become available.

Feature selection on high-dimensional data has been gener-
ally viewed as a problem of searching for a minimal subset of
features that leads to the most accurate prediction model [4],
[7], [12], [15]. Two types of feature selection approaches were
proposed in the literature, namely batch methods and online
methods [2], [10], [14], [16].

A batch method has to access the entire feature set on
the training data and performs a global search for the best
feature at each round [2]. Accordingly, batch methods cannot
be highly scalable for high dimensional data applications that
require online feature selection.

Contrast to the batch methods, online (also known as
streaming) feature selection is a relative new direction, such
as the Fast-OSFS and alpha-investing algorithms [16], [21].
Such a method assumes that features arrive one at a time, and
maintains a best feature subset from the features seen so far
by processing each feature upon its arrival. Although there is
encouraging progress by the existing online feature selection
methods, they still meet difficulty in computational cost when
the dimensionality is in the scale of millions or more [16].

In this paper, we tackle the challenges in online feature
selection from extremely high dimensional data, and develop
SAOLA, a Scalable and Accurate OnLine Approach for fea-
ture selection. More specifically, to process each new feature
efficiently, we have a theoretical analysis to derive a low
bound on pairwise correlations between features so that we can
filter out redundant features. With this theoretical analysis, the
SAOLA algorithm employs novel online pairwise comparisons
to address the two challenges and maintain a parsimonious
model over time in an online manner. An empirical study using
a series of benchmark data sets illustrates that our method is
scalable on data sets of extremely high dimensionality, and has
superior performance over the state-of-the-art online feature
selection methods.

The rest of the paper is organized as follows. Section II
presents the preliminaries and reviews related work. Section
III proposes our SAOLA algorithm, and Section IV reports our
experimental results. Finally, Section V concludes the paper.
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II. PRELIMINARIES AND RELATED WORK

Given a set F of input features on a training data set,
the problem of feature selection is to select a subset of
relevant features from F without performance degradation of
prediction models. The features in F can be categorized into
three disjoint groups, namely, strongly relevant features, weak
relevant features, and irrelevant features [5].

Yu and Liu [18] further divided weakly relevant features
into redundant and non-redundant features based on Markov
blankets.

Definition 1 (Markov Blankets) [6] A Markov blanket of
feature Fi, denoted as M ⊆ F −{Fi} makes all other features
independent of Fi given M , that is,

∀Y ∈ F − (M ∪ {Fi}) s.t. P (Fi|M,Y ) = P (Fi|M).�

Definition 2 (Redundant Features) A feature Fi ∈ F is
a redundant feature and hence should be discarded from F , if
it has a Markov blanket within F .�

Accordingly, a desirable feature selection method
should select strongly relevant features and non-redundant
features from input features [5], [18], such as the
well-established mRMR (minimal-Redundancy-Maximal-
Relevance) algorithm [9] and the FCBF (Fast Correlation-
Based Filter) algorithm [18]. Recently, Brown et al. [2]
unified almost two decades of research on heuristic scoring
criteria for information theoretic feature selection into a new
framework using an optimization of the conditional likelihood
as a novel interpretation of information theoretic feature
selection. Zhao et al. [20] proposed a novel framework to
consolidate different criteria to handle feature redundancies.
To tackle a huge number of features, Tan et al. [11] proposed
the FGM (Feature Generating Machine) algorithm, and Zhai et
al. [19] further presented the efficient GDM (Group Discovery
Machine) algorithm that outperforms the FGM algorithm.

Since the batch methods have to access all features before
feature selection starts, they cannot be easily scalable for
high dimensional data analytics that calls for online feature
selection.

Contrast to the batch methods, recently, Wang et al. [14]
proposed an online feature selection method, OFS, which
assumes data instances are sequentially presented, and per-
forms feature selection upon each data instance’s arrival.
Different from OFS, Zhou et al. [21] presented Alpha-investing
which sequentially considers new features as the addition to
a predictive model by modeling the candidate feature set as
a dynamically generated stream. However, Alpha-investing
requires the prior information of the original feature set and
never evaluates the redundancy among the selected features as
time goes. To tackle the drawbacks, Wu et al. [16] presented
the OSFS (Online Streaming Feature Selection) algorithm
and its faster version, the Fast-OSFS algorithm. However,
facing the scalability and online processing challenges in big
data analytics, the computational cost inherent in those three
algorithms may still be prohibitive when the dimensionality is
extremely high in the scale of millions or more.

Accordingly, those challenges motivate us to develop a
scalable and online processing method to deal with data with
extremely high dimensionality.

III. THE PROPOSED ALGORITHM

A. Problem Definition

Given a training data set D = {(di, ci), 1 ≤ i ≤ N},
where N is the number of data instances, each data instance
di is a multidimensional vector that contains P features, and
C is the class attribute that has K distinct class labels, ci ∈
{c1, c2, ..., cK}.

We also denote D by D = {(Fi, C), 1 ≤ i ≤ P}, which
is a sequence of features that is presented in a sequential
order, where Fi = {f1, f2, ..., fN}T denotes the ith feature
containing N data instances, and C includes N class label
instances.

If D can be processed in a sequential scan, that is, one
dimension at a time, we can process high dimensional data
not only with limited memory, but also without requiring its
complete set of features available. The challenge is that, as
we process one dimension at a time, at any time ti, how to
online maintain a minimum feature subset S�

ti
of maximizing

its predictive performance for classification. Assuming S ⊆ F
is the feature set containing all features available till time ti−1

and Fi is a new coming feature at time ti, our problem can
be formulated as follows:

S�
ti
= argmin

S′

{|S′| : S′ = argmax
ζ⊆{S∪Fi}

P (C|ζ)}. (1)

We can further decompose it into the following key steps:

• Determine the relevance of Fi to C. Firstly, we deter-
mine whether Eq.(2) holds or not.

P (C|Fi) = P (C). (2)

If so, Fi is discarded as an irrelevant feature. If not,
secondly, we further evaluate whether Fi carries ad-
ditional predictive information to C given the selected
feature set S�

ti−1
at ti−1, that is, whether Eq.(3) holds.

If Eq.(3) holds, Fi will be discarded.

P (C|S�
ti−1

, Fi) = P (C|S�
ti−1

). (3)

• Calculate S�
ti

with F ′
is inclusion. Once Fi is added

to S�
ti−1

, at time ti, Sti={S
�
ti−1

, Fi}, we then solve
Eq.(4) to prune Sti to satisfy Eq.(1).

S�
ti
= argmax

ζ⊆Sti

P (C|ζ)}. (4)

Accordingly, solving Eq.(1) is decomposed to how to
sequentially solve Eq.(2) to Eq.(4) at each time point. Es-
sentially, Eq.(3) and Eq.(4) deal with the problem of feature
redundancy. We can apply Definition 2 in Section 2 to solve
Eq.(3) and Eq.(4). However, it is computationally expensive
to use Definition 2 when the number of features within S�

ti−1

is large. To evaluate whether Fi is redundant with respect
to S�

ti−1
using the standard Markov blanket filtering criterion

(Definitions 1 and 2), it is necessary to check all the subsets

of S�
ti−1

(the total number of subsets is 2
|S�

ti−1
|
) to determine

which subset subsumes the predictive information that Fi has
about C. If such a subset is found, Fi becomes redundant and
is removed. When handling a larger number of features, it is
computationally prohibitive to check all the subsets of S�

ti−1
.
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Methods such as greedy search are a natural fit for this
problem setting. In [16], a k-greedy search strategy is adopted
to evaluate redundant features. It checks all subsets of size
less than or equal to ι (1 ≤ ι ≤ |S�

ti−1
|), where ι is a user-

defined parameter. However, when the size of S�
ti−1

is large,
it is still computationally prohibitive to evaluate the subsets of
size up to ι. Moreover, selecting a proper value of ι is difficult.
Therefore, those challenges motivate us to develop a scalable
and online processing method to solve Eq.(3) and Eq.(4) for
big data analytics.

B. The Solutions to Eq.(2), Eq.(3), and Eq.(4)

In this section, to cope with computational complexity, we
propose pairwise comparisons to online calculate the correla-
tions between features, instead of computing the correlation
between features conditioned on all the feature subsets. For
pairwise comparisons, we employ the measure of mutual
information to calculate correlations between features. Given
two variables Y and Z, the mutual information between Y and
Z is defined as follows.

I(Y ;Z) = H(Y )−H(Y |Z). (5)

The entropy of a feature Y is defined as

H(Y ) = −Σyi∈Y P (yi) log2 P (yi). (6)

And the entropy of Y after observing values of another variable
Z is defined as

H(Y |Z) = −Σzj∈ZP (zj)Σyi∈Y P (yi|zi) log2 P (yi|zi), (7)

where P (yi) is the prior probability of value yi of variable Y ,
and P (yi|zi) is the posterior probability of yi given the value
zi of variable Z.

With mutual information as a correlation measure between
features, we propose solutions to Eq.(2), Eq.(3), and Eq.(4) as
follows.

1) The Solution to Eq.(2): Assuming S�
ti−1

is the selected
feature subset at time ti−1, and at time ti, a new feature
Fi comes, to solve Eq.(2), given a relevance threshold δ1, if
I(Fi, C) > δ1 (0 ≤ δ1 ≤ 1), Fi is said to be a relevant feature
to C; otherwise, Fi is discarded as an irrelevant feature and
will never be considered again.

2) The Solution to Eq.(3): If Fi is a relevant feature, at time
ti, how can we determine whether Fi should be kept given
S�
ti−1

, that is, whether I(C;Fi|S
�
ti−1

) = 0? If ∃Y ∈ S�
ti−1

such that I(Fi;C|Y ) = 0, it testifies that adding Fi alone to
S�
ti−1

does not increase the predictive capability of S�
ti−1

. With
this observation, we solve Eq.(3) with the following lemmas.

Lemma 1 With the current feature subset S�
ti−1

at time
ti−1 and a new feature Fi at time ti, if ∃Y ∈ S�

ti−1
such that

I(Fi;C|Y ) = 0, then I(Fi;Y ) ≥ I(Fi;C).

Proof. Making use of the identity, I(Fi;C|Y )−I(Fi;C) =
I(Fi;Y |C)− I(Fi;Y ), we get Eq.(8) as follows.

I(Fi;C|Y ) = I(Fi;C) + I(Fi;Y |C)− I(Fi;Y ). (8)

With Eq.(8), if I(Fi;C|Y ) = 0 holds, we get the following,

I(Fi;Y ) = I(Fi;C) + I(Fi;Y |C). (9)

Using Eq.(9), we get the following bound of I(Fi;Y ).

I(Fi;Y ) ≥ I(Fi;C).� (10)

Lemma 1 proposes a correlation bound between features
to testify whether a new feature can increase the predic-
tive capability of the current feature subset. Meanwhile, if
I(Fi;C|Y ) = 0 holds, Lemma 2 answers what the relationship
between I(Y ;C) and I(Fi;C) is.

Lemma 2 With the current feature subset S�
ti−1

at time ti−1

and a new feature Fi at time ti, ∃Y ∈ S�
ti−1

, if I(Fi;C|Y ) = 0
holds, then I(Y ;C) > I(Fi;C).

Proof. Considering the following identity,

I(Y ;Fi|C) = I(Y ;Fi)+H(Y |C)+H(Fi|C)−H(C|Y, Fi)−H(C),

we get I(Y ;Fi|C) = I(Fi;Y |C).

With the following relationship and Eq.(9),

I(Y ;C|Fi) = I(Y ;C) + I(Y ;Fi|C)− I(Fi;Y ),

we get the following,

I(Y ;C|Fi) = I(Y ;C)− I(Fi;C).

Since Y is in the current feature set S�
ti−1

, I(Y ;C|Fi) > 0.
Accordingly, the following holds.

I(Y ;C) > I(Fi;C).� (11)

Theorem 1 With the current feature subset S�
ti−1

at time
ti−1 and a new feature Fi at time ti, ∃Y ∈ S�

ti−1
, if

I(Fi;C|Y ) = 0 holds, then the following is achieved.

I(Y ;C) > I(Fi;C) and I(Fi;Y ) ≥ I(Fi;C). (12)

Proof. With Lemmas 1 and 2, Theorem 1 is proved.�

With Theorem 1, we deal with Eq.(3) as follows. With a
new feature Fi at time ti, ∃Y ∈ S�

ti−1
, if Eq.(12) holds, then

Fi is discarded; otherwise, Fi is added to S�
ti−1

.

3) The Solution to Eq.(4): Once Fi is added to S∗
ti−1

at
time ti, we will checking which features within S∗

ti−1
can be

removed due to the new inclusion of Fi. If ∃Y ∈ S�
ti−1

such

that I(C;Y |Fi) = 0, then Y is removed from S�
ti−1

.

Similar to Eq.(8) and Eq.(9), if I(C;Y |Fi) = 0, we have
I(Y ;Fi) ≥ I(Y ;C). At the same time, if I(C;Y |Fi) = 0,
similar to Eq.(11), we can get,

I(Fi;C) > I(Y ;C). (13)

With the above analysis and Eq.(13), we get the following,

I(Fi;C) > I(Y ;C) and I(Y ;Fi) ≥ I(Y ;C). (14)

Accordingly, the solution to Eq.(4) is as follows. With the
feature subset S�

ti
at time ti, and Fi ∈ S�

ti
, if ∃Y ∈ S�

ti
such

that Eq.(14) holds, then Y is removed.
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Algorithm 1: The SAOLA Algorithm

Data:
Fi : predictive features; C : the class attribute;
δ1: a relevance threshold (0 ≤ δ1 ≤ 1);
δ2: a correlation bound of I(Fi;Y );
S�
ti−1

: the selected feature set at time ti−1;
S∗
ti
: the selected feature set at time ti

1 repeat
2 Get a new feature Fi at time ti;
3 /*Solve Eq.(2)*/
4 if I(Fi, C) < δ1 then
5 Discard Fi, and go to Step 18;
6 end
7 for each feature Y ∈ S∗

ti−1
do

8 /*Solve Eq.(3)*/
9 if I(Y ;C) > I(Fi;C) & I(Fi;Y ) ≥ δ2 then

10 Discard Fi, go to Step 18;
11 end
12 /*Solve Eq.(4)*/
13 if I(Fi;C) > I(Y ;C) & I(Fi;Y ) ≥ δ2 then
14 St∗

i−1
= St∗

i−1
− Y ;

15 end
16 end
17 S∗

ti
= St∗

i−1
∪ Fi;

18 until no features are available;
19 Output S∗

ti
;

C. The SAOLA Algorithm

Using Theorem 1 and Eq.(14), we propose the SAOLA
algorithm in detail, as shown in Algorithm 1.

In Algorithm 1, δ2 is the correlation bound of I(Fi;Y ). Ac-
cording to Eq.(12) and Eq.(14), δ2 = min(I(Fi;C), I(Y ;C)).
The SAOLA algorithm is implemented as follows. At time ti,
as a new feature Fi arrives, if I(Fi, C) < δ1 holds at Step 4,
then Fi is discarded as an irrelevant feature and SAOLA waits
for a next coming feature; if not, at Step 9, SAOLA evaluates
whether Fi should be kept given the current feature set S∗

ti−1
.

If ∃Y ∈ S�
ti−1

such that Eq.(12) holds, we discard Fi and
never consider it again.

Once Fi is added to S∗
ti−1

at time ti, S
∗
ti−1

will be checked
whether some features within S∗

ti−1
can be removed due to

the new inclusion of Fi. At Step 13, if ∃Y ∈ S�
ti−1

such that
Eq.(14) holds, Y is removed.

To reduce computational cost, the SAOLA algorithm pro-
poses a set of pairwise comparisons between individual fea-
tures instead of conditioning on a set of features, as the
selection criterion for choosing features. This is essentially
the idea behind the well-established batch feature selection
algorithms, such as mRMR and FCBF [9], [18]. Although
FCBF proposed a concept of approximate Markov blankets
to calculate the correlation between features with pairwise
comparisons, it does not give a theoretical analysis on why an
approximate Markov blanket works well for feature selection.

The major computation in SAOLA is the computation of
the correlations between features (Steps 4 and 9 in Algorithm
1). At time ti, assuming the total number of features is up to P
and |S∗

ti
| is the number of the currently selected feature set, the

time complexity of the algorithm is O(P |S∗
ti
|). Accordingly,

the time complexity of SAOLA is determined by the number
of features within |S∗

ti
|. But the strategy of online pairwise

comparisons guarantees the scalability of SAOLA, even when
the size of |S∗

ti
| is large.

Comparing to Fast-OSFS, SAOLA employs a k-greedy
search strategy to filter out redundant features by checking
feature subsets for each feature in S∗

ti
. At time ti, the best time

complexity of Fast-OSFS is O(|S∗
ti
|ι|S

∗

ti
|), where ι

|S∗

ti
|

denotes
all subsets of size less than or equal to ι (1 ≤ ι ≤ |S�

ti−1
|)

for checking. With respect to Alpha-investing, at time ti,
the time complexity of Alpha-investing is O(P |S∗

ti
|2). Since

Alpha-investing only considers adding new features but never
evaluates the redundancy of selected features, the feature set
S∗
ti

always has a large size. Thus, when the size of candidate
features is extremely high and the size of |S∗

ti
| becomes large,

Alpha-investing and Fast-OSFS both become computationally
intensive or even prohibitive. Moreover, how to select a suit-
able value of ι for Fast-OSFS in advance is a hard problem,
since different data sets may require different ι to search for
a best feature subset.

Finally, for data with discrete values, we use the measure
of mutual information, while for data with discrete values, we
adopt the best known measure of the Fisher’s Z-test [8] to
calculate correlations between features. In a Gaussian distribu-
tion, Normal(μ,Σ), the population partial correlation p(XY |S)

between feature X and feature Y given a feature subset S is
calculated as follows.

p(XY |S) =
−((

∑
XY S)

−1)XY

((
∑

XY S)
−1)XX((

∑
XY S)

−1)Y Y

(15)

In the Fisher’s Z-test, under the null hypothesis of the condi-
tional independence between X and Y given S that p(XY |S) =
0. With the Fisher’s Z-test, assuming α is a given significance
level and ρ is the p-value returned by the Fisher’s Z-test, under
the null hypothesis of the conditional independence between
X and Y , X and Y are uncorrelated to each other, if ρ > α;
otherwise, X and Y are correlated to each other, if ρ ≤ α.
Accordingly, at time t, a new feature Fi correlated to C is
discarded given S∗

ti−1
, if ∃Y ∈ S∗

ti−1
s.t. pY,C > pFi,C and

pY,Fi
> pFi,C .

IV. EXPERIMENT RESULTS

A. Experiment Setup

We use fourteen benchmark data sets as our test beds,
including ten high-dimensional data sets [1], [17] and four
extremely high-dimensional data sets, as shown in Table I.
The first ten high-dimensional data sets include two biomed-
ical data sets (hiva and breast-cancer), three NIPS 2003
feature selection challenge data sets (dexter, madelon, and
dorothea), and two public microarray data sets (lung-cancer
and leukemia), two massive high-dimensional text categoriza-
tion data sets (ohsumed and apcj-etiology), and the thrombin
data set that is chosen from KDD Cup 2001. The last four
data sets with extremely high dimensionality are available at
the Libsvm data set website1.

1http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/
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In the first ten high-dimensional data sets, we use the
originally provided training and validation sets for the three
NIPS 2003 challenge data sets and the hiva data set, and for the
remaining six data sets, we adopt 2/3 instances for training and
the remaining 1/3 instances for testing. In the news20 data set,
we use the first 9996 data instances for training and the rest for
testing while in the url1 data set, we use the first day data set
(url1) for training and the second day data set (url2) for testing.
In the kdd2010 and webspam data sets, we randomly select
20000 data instances for training, and 100,000 and 78,000
data instances for testing, respectively. Our comparative study
compares the SAOLA algorithm with the following algorithms:

• Three state-of-the-art online feature selection meth-
ods: Fast-OSFS [16], Alpha-investing [21], and OFS
[14]. Fast-OSFS and Alpha-investing assume features
on training data arrive one by one at a time while OFS
assumes data examples come one by one;

• Three batch methods: one well-established algorithm
of FCBF [18], and two state-of-the-art algorithms,
SPSF-LAR [20] and GDM [19].

TABLE I. THE BENCHMARK DATA SETS

Dataset � features �training instances �testing instances

madelon 500 2,000 600

hiva 1,617 3,845 384

leukemia 7,129 48 24

lung-cancer 12,533 121 60

ohsumed 14,373 3,400 1,600

breast-cancer 17,816 190 96

dexter 20,000 300 300

apcj-etiology 28,228 11,000 4,779

dorothea 100,000 800 300

thrombin 139,351 2,000 543

news20 1,355,191 9,996 10,000

url1 3,231,961 20,000 20,000

webspam 16,609,143 20,000 78,000

kdd2010 29,890,095 20,000 100,000

We use two classifiers, KNN and J48 provided in the Spider
Toolbox2 to evaluate a selected feature subset in the experi-
ments. All experiments were conducted on a computer with
Interl(R) i7-2600, 3.4GHz CPU, and 24GB memory. In the
remaining sections, the parameter δ1 for SAOLA is set to 0
for discrete data while the significance level α for SAOLA is
set to 0.01 for the Fisher’s Z-test for continuous data.

B. Comparison of SAOLA with Three Online Algorithms

1) Comparison of SAOLA with Fast-OSFS and Alpha-
investing: Since Fast-OSFS and Alpha-investing can only
deal with the first ten high-dimensional data sets in Table I
due to high computational cost, in this section we compare
them with SAOLA in terms of prediction accuracy, size of
selected feature subsets, and running time on the first ten high-
dimensional data sets. The significance level is set to 0.01 for
Fast-OSFS, and for Alpha-investing, the parameters are set to
the values used in [21].

Tables II and III summarize the prediction accuracies of
SAOLA against Fast-OSFS and Alpha-investing using the
KNN and J48 classifiers. We conduct paired t-tests at a
95% significance level and summarize the win/tie/lose (w/t/l

2http://people.kyb.tuebingen.mpg.de/spider/

TABLE II. PREDICTION ACCURACY (J48)

Dataset SAOLA Fast-OSFS Alpha-investing

dexter 0.8133 0.8200 0.5000

lung-cancer 0.9500 0.9000 0.8333

hiva 0.9661 0.9635 0.9635

breast-cancer 0.6042 0.6771 0.7188

leukemia 0.9583 0.9583 0.6667

madelon 0.6083 0.6100 0.6067

ohsumed 0.9437 0.9450 0.9331

apcj-etiology 0.9872 0.9868 0.9828

dorothea 0.9343 0.9371 0.9343

thrombin 0.9613 0.9595 0.9613

average rank 2.25 2.30 1.45

w/t/l - 1/8/1 4/5/1

TABLE III. PREDICTION ACCURACY (KNN)

Dataset SAOLA Fast-OSFS Alpha-investing

dexter 0.7600 0.7800 0.5000

lung-cancer 0.9833 0.9667 0.9167

hiva 0.9635 0.9635 0.9531

breast-cancer 0.6771 0.6667 0.5833

leukemia 0.9167 0.7917 0.6250

madelon 0.5617 0.5283 0.5767

ohsumed 0.9275 0.9306 0.9325

apcj-etiology 0.9793 0.9702 0.9851

dorothea 0.9613 0.9457 0.7400

thrombin 0.9374 0.9300 0.9371

average rank 2.45 1.85 1.70

w/t/l - 5/4/1 6/3/1

for short) counts of SAOLA against Fast-OSFS and Alpha-
investing in the last rows of Tables II and III. The highest
prediction accuracy is highlighted in bold face. Table IV gives
the number of selected features of SAOLA, Fast-OSFS, and
Alpha-investing. We have the following observations.

(1) SAOLA vs. Fast-OSFS. With the counts of win/tie/loss
(w/t/l) in Table II, we observe that SAOLA is very competitive
with Fast-OSFS. In Table III, we can see that SAOLA is
superior to Fast-OSFS. Fast-OSFS selects fewer features than
SAOLA on all data sets as shown in Table IV. The explanation
is that Fast-OSFS employs a k-greedy search strategy to filter
out redundant features by checking all feature subsets for each
feature in the current feature set while SAOLA only uses
pairwise comparisons. But this strategy makes Fast-OSFS very
expensive in computation and even prohibitive on some data
sets, such as apcj-etiology and thrombin as shown in Table V,
as the size of the current feature set is large at each time point.

(2) SAOLA vs. Alpha-investing. With Tables II and III,
we can see that SAOLA outperforms Alpha-investing on most
data sets using the KNN and J48 classifiers. Alpha-investing
selects many more features than SAOLA on the last four data
sets in Table IV, since Alpha-investing only considers to add
new features but never evaluates the redundancy of selected
features. An exception is that Alpha-investing only selects
one feature on the dexter data set. A possible explanation is
that the dexter data set is a very sparse real-valued data set.
Furthermore, Alpha-investing is less efficient than SAOLA as
shown in Table V.

To validate whether SAOLA, Fast-OSFS, and Alpha-
investing have no significant difference in prediction accuracy,
with the Friedman test at 95% significance level [3], under the
null-hypothesis, which states that the performance of SAOLA
and that of Fast-OSFS and Alpha-investing have no significant
difference, for the KNN classifier, the average ranks calculated
from the Friedman test for SAOLA, Fast-OSFS, and Alpha-
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TABLE IV. NUMBER OF SELECTED FEATURES

Dataset SAOLA Fast-OSFS Alpha-investing

dexter 21 9 1

lung-cancer 35 6 7

hiva 12 5 48

breast-cancer 46 7 2

leukemia 17 5 2

madelon 3 3 4

ohsumed 65 11 297

apcj-etiology 75 67 634

dorothea 63 5 113

thrombin 20 9 60

investing are 2.45, 1.85, and 1.70 (the higher the average
rank, the better the performance) in Table III, respectively.
Meanwhile, with respect to J48, the average ranks for SAOLA,
Fast-OSFS, and Alpha-investing are 2.25, 2.30, and 1.45 in
Table II (how to calculate the average ranks, please see [3]),
respectively.

In summary, in prediction accuracy, SAOLA is very com-
petitive, or even better than Fast-OSFS, and is superior to
Alpha-investing. Furthermore, Fast-OSFS and Alpha-investing
cannot deal with extremely high-dimensional data sets due to
computational cost while SAOLA is accurate and scalable.

TABLE V. RUNNING TIME (SECONDS)

Dataset SAOLA Fast-OSFS Alpha-investing

dexter 3 4 6

lung-cancer 6 4 2

hiva 1 36 7

breast-cancer 5 4 3

leukemia 2 2 1

madelon 0.1 0.1 0.1

ohsumed 6 343 497

apcj-etiology 22 > 3 days 9,781

dorothea 58 375 457

thrombin 63 18,576 291

2) Comparison of SAOLA with OFS: The OFS algorithm
is a recently proposed online feature selection method. Since
OFS uses a user-defined parameter k to control the size of
the final selected feature subset, we set the parameter for the
number of selected features as follows: (1) OFS1, selecting
the same number of features as the SAOLA algorithm; (2)
OFS2, setting the user-defined parameter k, i.e., the number
of selected features to the top 5, 10, 15 ,..., 100 features, then
selecting the feature set with the highest prediction accuracy
as the reporting result.

TABLE VI. PREDICTION ACCURACY (KNN)

Dataset SAOLA OFS1 OFS2

dexter 0.7600 0.4700 0.5400

lung-cancer 0.9833 0.7500 0.8500

hiva 0.9635 0.9661 0.9661

breast-cancer 0.6771 0.5938 0.6667

leukemia 0.9167 0.7500 0.8750

madelon 0.5617 0.5183 0.6433

ohsumed 0.9275 0.9287 0.9431

apcj-etiology 0.9793 0.9835 0.9872

dorothea 0.9613 0.8000 0.9086

thrombin 0.9374 0.9263 0.9411

news20 0.7755 0.8423 0.6884

url1 0.9627 0.9757 0.9607

kdd10 0.8780 0.8527 0.7755

webspam 0.9532 0.9650 0.9516

average rank 2.2143 1.7500 2.0357

w/t/l - 8/3/3 7/5/2

With Tables VI and VII, to evaluate whether the per-
formance of SAOLA and that of OSF1 and OFS2 have no

TABLE VII. PREDICTION ACCURACY (J48)

Dataset SAOLA OFS1 OFS2

dexter 0.8133 0.5600 0.5667

lung-cancer 0.9500 0.7667 0.8667

hiva 0.9661 0.9635 0.9635

breast-cancer 0.6042 0.6458 0.6563

leukemia 0.9583 0.7500 0.9583

madelon 0.6083 0.5600 0.6367

ohsumed 0.9437 0.9431 0.9431

apcj-etiology 0.9872 0.9872 0.9872

dorothea 0.9343 0.9314 0.9371

thrombin 0.9613 0.9263 0.9374

news20 0.8276 0.7757 0.7332

url1 0.9744 0.9027 0.9720

kdd10 0.8723 0.8532 0.8577

webspam 0.9611 0.9689 0.9689

average rank 2.4643 1.3929 2.1429

w/t/l - 8/5/1 5/7/2

significant difference in prediction, we use the Friedman test
at 95% significance level under the null-hypothesis, which
states that the performance of SAOLA and that of OSF1 and
OFS2 have no significant difference in prediction accuracy.
For the J48 classifier, the null-hypothesis is rejected, and
the average ranks for SAOLA, OSF1, and OFS2 are 2.4643,
1.3929, 2.1429, respectively.

Then we proceed with the Nemenyi test [3] as a post-hoc
test. With the Nemenyi test, the performance of two methods is
significantly different if the corresponding average ranks differ
by at least the critical difference (how to calculate the critical
difference, please see [3]). With the Nemenyi test, the critical
difference is up to 0.8275. Thus, with the critical difference
and the average ranks calculated above, the performance of
SAOLA and that of OSF2 have no significant difference,
but SAOLA is significantly better than OSF1. For KNN,
the null-hypothesis cannot be rejected, and the average ranks
for SAOLA, OSF1, and OFS2 are 2.2143, 1.7500, 2.0357,
respectively. Accordingly, for the KNN classifier, SAOLA,
OSF1, and OFS2 have no significant difference in prediction
accuracy.

Table VIII gives the running time of SAOLA, OSF1, and
OSF2. For OFS2, we record the running time of the feature
subset with the highest accuracy as its running time. In Table
III, we only give the running time of eight data sets, since on
the the remaining six data sets, the running time of SAOLA,
OSF1, and OFS2 is no more than five seconds. SAOLA is
faster than both OSF1 and OSF2, except for the dorothea and
thrombin data sets. The dorothea and thrombin data sets only
include 800 samples and 2000 samples, respectively. When
the number of data samples becomes large and the number
of features of training data is increased to millions, OFS1
and OFS2 become very costly, and SAOLA is still scalable
and efficient. The explanation is that the time complexity
of SAOLA is determined by the number of features within
the currently selected feature set, and the strategy of online
pairwise comparisons makes SAOLA very scalable, even when
the size of the current feature set is large. Moreover, setting a
desirable size of a feature set selected by OFS2 in advance is
a non-trivial task.

Figure 1 shows the number of selected features in SAOLA
and OSF2. OSF1 is set to select the same features as SAOLA.
Thus we do not plot OSF1 in Figure 1. We can see that SAOLA
selects fewer features than OSF2 on all data sets except for
breast-cancer, ohsumed, acpj, news20, and kdd10.
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TABLE VIII. RUNNING TIME (SECONDS)

Dataset SAOLA OFS1 OFS2

ohsumed 6 9 9

apcj-etiology 22 77 100

dorothea 58 7 10

thrombin 63 36 40

news20 944 1910 1572

url1 200 1234 1837

kdd10 1056 26793 28536

webspam 1456 20127 18342
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Fig. 1. Number of selected features (The labels of the x-axis from 1 to
10 denote the data sets: 1. dexter; 2. lung-cancer; 3. hiva; 4. breast-cancer; 5.
leukemia; 6. madelon; 7. ohsumed; 8. apcj-etiology; 9. dorothea; 10. thrombin;
11. news20; 12. url1; 13. kdd10; 14. webspam)

C. Comparison with Three Batch Methods

1) Comparison with FCBF and SPSF-LAR: Since FCBF
and SPSF-LAR can only deal with the first ten high-
dimensional data sets in Table I, in this section we compare
them with our proposed algorithm in terms of prediction
accuracy, size of selected feature subsets, and running time.
The information threshold for FCBF is set to 0. We set the user-
defined parameter k, i.e., the number of selected features to the
top 5, 10, 15 ,..., 65 features for the SPSF-LAR algorithm, and
choose the feature subsets of the highest prediction accuracy.

Tables IX and X report the prediction accuracies of SAOLA
against FCBF and SPSF-LAR. With the counts of win/tie/loss
(w/t/l) in the last rows of Tables IX and X, we can see that even
without requiring the entire feature set on a training data set
in advance, SAOLA is still very competitive with both FCBF
and SPSF-LAR in prediction accuracy.

To further validate whether the performance of SAOLA
is comparable to that of FCBF and SPSF-LAR in prediction
accuracy, we use the Friedman test at 95% significance level.
For the KNN classifier, the average ranks calculated from the
Friedman test for SAOLA, Fast-OSFS, and SPSF-LAR are
2.10, 1.85, and 2.05, respectively. For J48, the average ranks
for SAOLA, FCBF and SPSF-LAR are 1.85, 2.15, and 2.00,
respectively. Thus, with the Friedman test at 95% significance
level, on both KNN and J48, SAOLA, FCBF and SPSF-
LAR have no significant difference in prediction accuracy.
Accordingly, we conclude that the performance of SAOLA
is comparable to that of FCBF and SPSF-LAR.

As for the number of selected features, SPSF-LAR selects
the feature set with the highest prediction accuracy from 5,
10, 15 ,..., 65 features, and then we record the running time of
this feature set as the running time of SPSF-LAR. In Figure
2, FCBF selects the most features among SAOLA, FCBF and
SPSF-LAR while SAOLA and SPSF-LAR are similar to each
other. For the running time as shown in Figure 3, SAOLA is

TABLE IX. PREDICTION ACCURACY (J48)

Dataset SAOLA FCBF SPSF-LAR

dexter 0.8133 0.8567 0.8700

lung-cancer 0.9500 0.9500 0.9833

hiva 0.9661 0.9661 0.9635

breast-cancer 0.6042 0.6042 0.6458

leukemia 0.9583 0.9583 0.9583

madelon 0.6083 0.6067 0.6183

ohsumed 0.9437 0.9444 0.9431

apcj-etiology 0.9872 0.9866 0.9872

dorothea 0.9343 0.9314 0.9029

thrombin 0.9613 0.9576 0.9558

average rank 1.85 2.15 2.00

w/t/l - 0/9/1 1/5/4

TABLE X. PREDICTION ACCURACY (KNN)

Dataset SAOLA FCBF SPSF-LAR

dexter 0.7600 0.7967 0.7233

lung-cancer 0.9833 0.9500 0.9833

hiva 0.9635 0.9609 0.9635

breast-cancer 0.6771 0.6563 0.6771

leukemia 0.9167 1.0000 1.0000

madelon 0.5617 0.5767 0.5633

ohsumed 0.9275 0.9300 0.9113

apcj-etiology 0.9793 0.9826 0.9803

dorothea 0.9613 0.9200 0.8857

thrombin 0.9374 0.9429 0.9650

average rank 2.10 1.85 2.05

w/t/l - 3/4/3 3/5/2

the fastest algorithm among SAOLA, FCBF and SPSF-LAR
while SPSF-LAR is the slowest.

2) Comparison with the GDM Algorithm: In this section,
we select the GDM algorithm [19] which is one of the most re-
cent batch feature selection methods in dealing with very large
dimensionality. GDM uses a user-defined parameter to control
the size of the final selected feature subset. We set the selected
feature subset sizes to the top 10, 20, 30, ..., 260 features for
the GDM algorithm, report the running time of the feature
subset with the highest accuracy as the running time of GDM,
and choose the highest prediction accuracies achieved among
those selected feature subsets. Table XI reports the prediction
accuracies of SAOLA and GDM. We can see that our algorithm
is very competitive with GDM on both J48 and KNN. With
the Friedman test on prediction accuracy at 95% significance
level, for both KNN and J48, we observe the same average
ranks for SAOLA and GDM, 1.3929 and 1.6071, respectively.
With the Friedman test at 95% significance level, both Knn and
J48 do not have significant difference in prediction accuracy
using the feature sets selected by SAOLA and GDM.

Figure 4 shows the running time of SAOLA against GDM.
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Fig. 2. Number of selected features (The labels of the x-axis from 1 to
10 denote the data sets: 1. dexter; 2. lung-cancer; 3. hiva; 4. breast-cancer; 5.
leukemia; 6. madelon; 7. ohsumed; 8. apcj-etiology; 9. dorothea; 10. thrombin)
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Fig. 3. Running time (The labels of the x-axis are the same as the labels of
the x-axis in Figure 2.)

TABLE XI. PREDICTION ACCURACY

Dataset
KNN J48

SAOLA GDM SAOLA GDM

dexter 0.7600 0.9100 0.8133 0.9100

lung-cancer 0.9833 0.9833 0.9500 0.9833

hiva 0.9635 0.9661 0.9661 0.9661

breast-cancer 0.6771 0.4792 0.6042 0.4792

leukemia 0.9167 1.0000 0.9583 1.0000

madelon 0.5617 0.5833 0.6083 0.5833

ohsumed 0.9275 0.9438 0.9437 0.9438

apcj-etiology 0.9793 0.9879 0.9872 0.9879

dorothea 0.9613 0.9371 0.9343 0.9371

thrombin 0.9374 0.7300 0.9613 0.7300

news20 0.7755 0.7354 0.8276 0.7354

url1 0.9627 0.9765 0.9744 0.9765

kdd10 0.878 0.8179 0.8723 0.8179

webspam 0.9532 0.9617 0.9611 0.9617

Ave rank 1.3929 1.6071 1.3929 1.6071

w/t/l - 5/4/5 - 5/6/3

Since GDM is implemented in C++, we developed a C++
version of SAOLA for the comparison with GDM, in addition
to its Matlab version. In Figure 4, we only give the last four
data sets with extremely high dimensionality in Table I, since
on the the first ten data sets, the running time of both SAOLA
and GDM is no more than ten seconds. We can see that both
GDM and SAOLA are very efficient to handle extremely high-
dimensional data sets. Except for the news20 data set, SAOLA
is a little faster than GDM. On the sparse data sets, SAOLA
is faster than GDM, while on the dense data sets, such as
the news20 data set, GDM is faster than SAOLA. Finally,
Figure 5 reports the number of selected features of SAOLA
comparing to GDM. Except for the breast-cancer data set,
SAOLA selects fewer features than GDM to achieve the very
competitive prediction accuracy with GDM.

In summary, our SAOLA algorithm is a scalable and
accurate online approach. This validates that without requiring
a complete set of features on a training data set before feature

+���,� ���� -������ &�+���
�

��

��

��

��

��

��

	�


�

��

#�
&&
'&(

��'�
�)�

��
�&
��
* .�/

�����

Fig. 4. Running time of SAOLA and GDM
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Fig. 5. Number of selected features (The labels of the x-axis from 1 to
10 denote the data sets: 1. dexter; 2. lung-cancer; 3. hiva; 4. breast-cancer; 5.
leukemia; 6. madelon; 7. ohsumed; 8. apcj-etiology; 9. dorothea; 10. thrombin;
11. news20; 12. url1; 13. kdd10; 14. webspam)

selection starts, SAOLA is very competitive comparing to
the well-established and state-of-the-art batch feature selection
algorithms, FCBF, SPSF-LAR, and GDM.

D. Analysis of the Effect of Parameters

1) Analysis of Correlation Bounds: In Section III.B, we
derived the correlation bound of I(Fi;Y ), that is, δ2 =
min(I(Fi;C), I(Y ;C)). To further validate the correlation
bound δ2 in Eq.(12) and Eq.(14), in this section, we conduct
an empirical study by setting δ2 = max(I(Fi;C), I(Y ;C))
in Algorithm 1, and derive a variant of the SAOLA algo-
rithm, called the SAOLA-max algorithm. In the experiments,
SAOLA-max uses the same parameters as SAOLA.

Table XII shows the prediction accuracies of SAOLA and
SAOLA-max. With the summary of the win/tie/lose (w/t/l)
counts in Table XII (paired t-tests at 95% significance level),
we can see that SAOLA is very competitive with SAOLA-
max in prediction accuracy. With the Friedman test at 95%
significance level, under the null-hypothesis, which states that
the performance of SAOLA and that of SAOLA-max have
no difference, for the KNN classifier, the null-hypothesis
cannot be rejected. The average ranks calculated from the
Friedman test for SAOLA and SAOLA-max are 1.4643 and
1.5357, respectively. Meanwhile, with respect to J48, the
average ranks for SAOLA and SAOLA-max are 1.4286 and
1.5714, respectively. The Friedman test testifies that SAOLA
and SAOLA-max have no significant difference in prediction
accuracy, although SAOLA-max gets the higher average ranks.

TABLE XII. PREDICTION ACCURACY

Dataset
KNN J48

SAOLA SAOLA-max SAOLA SAOLA-max

dexter 0.7600 0.8000 0.8133 0.8300

lung-cancer 0.9833 0.9500 0.9500 0.9500

hiva 0.9635 0.9505 0.9661 0.9557

breast-cancer 0.6771 0.6875 0.6042 0.6458

leukemia 0.9167 1.0000 0.9583 0.9583

madelon 0.5617 0.5617 0.6083 0.6083

ohsumed 0.9275 0.9256 0.9437 0.9437

apcj-etiology 0.9793 0.9807 0.9872 0.9870

dorothea 0.9613 0.9171 0.9343 0.9257

thrombin 0.9374 0.9484 0.9613 0.9503

news20 0.7755 0.7592 0.8276 0.8295

url1 0.9627 0.9732 0.9744 0.9761

kdd2010 0.8780 0.8766 0.8723 0.8751

webspam 0.9532 0.9546 0.9611 0.9635

Ave rank 1.4643 1.5357 1.4286 1.5714

w/t/l - 4/5/5 - 2/10/2
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However, on the running time, Table XIII shows that
SAOLA is much more efficient than SAOLA-max on all
data sets, especially on those of extremely high dimen-
sionality. In Table XIII, we can also see that SAOLA se-
lects fewer features than SAOLA-max. The explanation is
that SAOLA-max uses a bigger relevance threshold (δ2 =
max(I(X;C), I(Y ;C)) for removing redundant features than
SAOLA (δ2 = min(I(X;C), I(Y ;C)). Clearly, the larger the
relevance threshold δ2, more features are added to the current
feature set (see Steps 9 and 13 of Algorithm 1).

Compared to SAOLA-max, we can conclude that it is
accurate and scalable to use the correlation bound, δ2 =
min(I(X;C), I(Y ;C) in the SAOLA algorithm, for pairwise
comparisons to filter out redundant features.

TABLE XIII. RUNNING TIME AND NUMBER OF SELECTED FEATURES

Dataset
Running time (seconds) Number of selected features

SAOLA SAOLA-max SAOLA SAOLA-max

dexter 3 3 21 39

lung-cancer 6 62 35 260

hiva 1 3 12 58

breast-cancer 5 40 46 93

leukemia 2 4 17 70

madelon 0.1 0.1 3 3

ohsumed 6 8 65 89

apcj-etiology 22 38 75 105

dorothea 58 327 63 516

thrombin 63 497 20 498

news20 944 2100 212 449

url1 200 526 64 346

kdd2010 1056 2651 180 193

webspam 1456 11606 51 165

2) The Effect of Input Order of Features: Since the di-
mensions are presented in a sequential scan, does the input
order of the features have an impact on the quality of the
selected feature set? To evaluate the effect on the SAOLA
algorithm, we generate a number of trials in which each trial
represents a random ordering of the features in the input feature
set. We apply the SAOLA algorithm to each randomized
trial and report the results in Figures 6 to 7, where the x-
axis represents the randomized trials and the y-axis represents
prediction accuracies of the corresponding trials. On the last
eight very high-dimensional data sets, the results in Figures 6
to 7 confirm that varying the order of the incoming features
does not affect much the final outcomes. Our explanation is
that with various feature orders, Steps 9 and 13 of Algorithm
1 can select the feature with the highest correlation with the
class attribute among a set of correlated features and remove
the corresponding correlated features of this feature.

The only difference is that in some feature orders, the final
feature subset may include some weakly relevant features. For
example, assuming at time t, Fi arrives and has only one
feature Y that satisfies Eq.(12) in the input features, and Y
arrived before Fi and has stayed in the currently selected
feature set S∗

ti−1
. Then Fi can be removed at time t given

Y . But if Fi arrives before Y , and Y is removed before Fi’s
arrival, Fi cannot be removed later and may be kept in the final
feature set. This also explains why there is a little fluctuation of
prediction accuracy in each input order of features in Figures
6 and 7.

3) The Effect of Relevance Thresholds: The SAOLA al-
gorithm has two versions: SAOLA with information gain for
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Fig. 6. Prediction accuracies on varied input orders of features (the top figure
with J48 while the bottom figure with KNN)
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Fig. 7. Prediction accuracies on varied input orders of features (the top figure
with J48 while the bottom figure with KNN)

discrete data and SAOLA with the Fisher’s Z-test for continu-
ous data. For both versions, SAOLA needs to set a relevance
threshold (δ1 in Algorithm 1) in advance to determine whether
two features are relevant. For discrete data, we set 11 different
relevance thresholds for SAOLA on the dorothea and thrombin
data sets. From Figure 8, we can see that in the term of
prediction accuracy, the relevance thresholds do not have an
significant impact on the SAOLA algorithm.

For the Fisher’s Z-test, the relevance threshold is the sig-
nificance level, α, and is always set to 0.01 or 0.05. Table XIV
shows the results of SAOLA under the different significance
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TABLE XIV. PREDICTION ACCURACIES UNDER DIFFERENT

SIGNIFICANCE LEVELS

Dataset 0.01/0.05(KNN) 0.01/0.05(J48)

ohsumed 0.9275/0.9394 0.9437/0.9437

apcj-etiology 0.9793/0.9838 0.9872/0.9873

news20 0.7755/0.7749 0.8276/0.8276

url1 0.9627/0.9642 0.9744/0.9744

kdd2010 0.8780/0.8678 0.8723/0.8723

webspam 0.9532/0.9493 0.9611/0.9611
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Fig. 8. Prediction accuracies on varied relevance thresholds (the top figure
with J48 while the bottom figure with KNN)

levels. It is clear that a significant level does not impose a
significant impact on the SAOLA algorithm either.

V. CONCLUSIONS

In this paper, we presented the SAOLA algorithm, a scal-
able and accurate online approach to tackle feature selection
with extremely high dimensionality in a sequential scan. We
conducted a theoretical analysis and derived a low bound of
correlations between features for pairwise comparisons, and
then proposed a set of online pairwise comparisons to maintain
a parsimonious model over time in an online manner.

Using a series of benchmark real data sets, we compared
the SAOLA algorithm with three state-of-the-art online feature
selection methods and three batch feature selection algorithms.
Our empirical study demonstrated that SAOLA is scalable on
data sets of extremely high dimensionality, has superior per-
formance over the three state-of-the-art online feature selection
methods, and is very competitive with the three state-of-the-art
batch feature selection methods in accuracy, while much faster
in running time.
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