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Abstract— Recently, as more and more social network data
has been published in one way or another, preserving privacy
in publishing social network data becomes an important con-
cern. With some local knowledge about individuals in a social
network, an adversary may attack the privacy of some victims
easily. Unfortunately, most of the previous studies on privacy
preservation can deal with relational data only, and cannot be
applied to social network data. In this paper, we take an initiative
towards preserving privacy in social network data. We identify
an essential type of privacy attacks: neighborhood attacks. If an
adversary has some knowledge about the neighbors of a target
victim and the relationship among the neighbors, the victim may
be re-identified from a social network even if the victim’s identity
is preserved using the conventional anonymization techniques. We
show that the problem is challenging, and present a practical
solution to battle neighborhood attacks. The empirical study
indicates that anonymized social networks generated by our
method can still be used to answer aggregate network queries
with high accuracy.

I. INTRODUCTION

Recently, as more and more social network data has been
made publicly available [1], [2], [3], [4], preserving privacy in
publishing social network data becomes an important concern.
Is it possible that releasing social network data, even with
individuals in the network aonymized, still intrudes privacy?

A. Motivation Example

With some local knowledge about individual vertices in a
social network, an adversary may attack the privacy of some
victims. As a concrete example, consider a synthesized social
network of “close-friends” shown in Figure 1(a). Each vertex
in the network represents a person. An edge links two persons
who are close friends.

Suppose the network is to be published. To preserve privacy,
is it sufficient to remove all identities as shown in Figure 1(b)?
Unfortunately, if an adversary has some knowledge about the
neighbors of an individual, the privacy may still be leaked.

If an adversary knows that Ada has two close friends who
know each other, and has another two close friends who
do not know each other, i.e., the 1-neighborhood graph of
Ada as shown in Figure 1(c), then the vertex representing
Ada can be identified uniquely in the network since no other
vertices have the same 1-neighborhood graph. Similarly, Bob
can be identified in Figure 1(b) if the adversary knows the
1-neighborhood graph of Bob.

Identifying individuals from released social networks in-
trudes privacy immediately. In this example, by identifying
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Fig. 1. Neighborhood attacks in a social network.

Ada and Bob, an adversary can even know from the released
social network (Figure 1(b)) that Ada and Bob are close
friends, and they share one common close friend. Other private
information can be further derived such as how well a victim
is connected to the rest of the network and the relative position
of the victim to the center of the network.

To protect the privacy satisfactorily, one way is to guaran-
tee that any individual cannot be identified correctly in the
anonymized social network with a probability higher than 1

k ,
where k is a user-specified parameter carrying the same spirit
in the k-anonymity model [5]. By adding a noise edge linking
Harry and Irene, the 1-neighborhood graph of every vertex in
Figure 1(d) is not unique. An adversary with the knowledge
of 1-neighborhood cannot identify any individual from this
anonymous graph with a confidence higher than 1

2 .

B. Challenges

Although privacy preservation in data publishing has been
studied extensively and several important models such as k-
anonymity [5] and l-diversity [6] as well as many efficient
algorithms have been proposed, most of the existing studies
can deal with relational data only. Those methods cannot be
applied to social network data straightforwardly.

As elaborated in Section I-A, privacy may be leaked if a
social network is released improperly to public. In practice, we
need a systematic method to anonymize social network data
before it is released. However, anonymizing social network



data is much more challenging than anonymizing relational
data on which most of the previous work focuses.

First, it is much more challenging to model the background
knowledge of adversaries and attacks about social network
data than that about relational data. On relational data, it is of-
ten assumed that a set of attributes serving a quasi-identifier is
used to associate data from multiple tables, and attacks mainly
come from identifying individuals from the quasi-identifier.
However, in a social network many pieces of information
can be used to identify individuals, such as labels of vertices
and edges, neighborhood graphs, induced subgraphs, and their
combinations. It is much more complicated and much more
difficult than the relational case.

Second, it is much more challenging to measure the infor-
mation loss in anonymizing social network data than that in
anonymizing relational data. Typically, the information loss
in an anonymized table can be measured using the sum of
information loss in individual tuples. Given one tuple in the
original table and the corresponding anonymized tuple in the
released table, we can calculate the distance between the two
tuples to measure the information loss at the tuple level.
However, a social network consists of a set of vertices and a set
of edges. It is hard to compare two social networks by compar-
ing the vertices and edges individually. Two social networks
having the same number of vertices and the same number of
edges may have very different network-wise properties such
as connectivity, betweenness, and diameter. Thus, there can
be many different ways to define the measures of information
loss and anonymization quality.

Last but not least, it is much more challenging to de-
vise anonymization methods for social network data than for
relational data. Divide-and-conquer methods are extensively
applied to anonymization of relational data due to the fact
that tuples in a relational table are separable in anonymization.
In other words, anonymizing a group of tuples does not
affect other tuples in the table. However, anonymizing a
social network is much more difficult since changing labels
of vertices and edges may affect the neighborhoods of other
vertices, and removing or adding vertices and edges may
affect other vertices and edges as well as the properties of
the network.

C. Contributions and Organization

Privacy preservation in publishing social networks is a new
challenging problem that cannot be solved by one shot. In
this paper, we take the initiative to tackle the problem. We
identify an essential type of privacy attacks in social networks:
neighborhood attacks, which are illustrated in Section I-A. We
model the attacks and the anonymization problem systemati-
cally, show its difficulty, and develop a practical solution. We
conduct an empirical study which indicates that anonymized
social networks generated by our method can still be used to
answer aggregate network queries with satisfactory accuracy.

The rest of the paper is organized as follows. We model
neighborhood attacks and review related work in Section II.
A practical solution is developed in Section III, and examined
empirically using both a real data set and a series of synthetic

data sets in Section IV. In Section V, we discuss some
other related privacy attacks in social networks as the further
challenges for future work, and also conclude the paper.

II. PROBLEM DEFINITION AND RELATED WORK

In this section, we first formulate the problem of privacy
preserving in social networks by anonymization. Then, we
review the related work briefly.

A. Preliminaries
In this paper, we model a social network as a simple graph

G = (V, E, L,L), where V is a set of vertices, E ⊆ V × V
is a set of edges, L is a set of labels, and a labeling function
L : V → L assigns each vertex a label. For a graph G, V (G),
E(G), LG, and LG are the set of vertices, the set of edges,
the set of labels, and the labeling function in G, respectively.
To keep our discussion simple, we assume that edges do not
carry labels. However, our methods can be straightforwardly
extended to remove this assumption.

The items in the label set L form a hierarchy. For example,
if occupations are used as labels of vertices in a social
network, L contains not only the specific occupations such as
dentist, general physician, optometrist, high
school teacher, and primary school teacher,
but also general categories like medical doctor,
teacher, and professional. We assume that there
exists a meta symbol ∗ ∈ L which is the most general
category generalizing all labels. For two labels l1, l2 ∈ L, if
l1 is more general than l2, we write l1 ≺ l2. For example,
medical doctor ≺ optometrist. Moreover, l1 ¹ l2 if
and only if l1 ≺ l2 or l1 = l2. ¹ is a partial order on L.

For a graph G and a set of vertices S ⊆ V (G), the induced
subgraph of G on S is G(S) = (S,ES , LG,LG) where ES =
{(u, v)|(u, v) ∈ E(G) ∧ u, v ∈ S}.

In a social network G, the neighborhood of u ∈ V (G)
is the induced subgraph of the neighbors of u, denoted by
NeighborG(u) = G(Nu) where Nu = {v|(u, v) ∈ E(G)}.

Given a graph H = (VH , EH , L,L) and a social network
G = (V,E, L,L), an instance of H in G is a tuple (H ′, f)
where H ′ = (VH′ , EH′ , L,L) is a subgraph in G and f :
VH → VH′ is a bijection function such that (1) for any u ∈
VH , L(f(u)) ¹ L(u), and (2) (u, v) ∈ EH if and only if
(f(u), f(v)) ∈ EH′ . Literally, the first condition states that
the corresponding labels in H ′ can be more general than those
in H .

B. Problem Formulation
To define the problem of privacy preservation in publishing

social network data, we need to formulate the following
issues. First, we need to identify the privacy information
to be preserved. Second, we need to model the background
knowledge that an adversary may use to attack the privacy.
Last, we need to specify the usage of the published social
network data so that an anonymization method can try to retain
the utility as much as possible while the privacy information
is fully preserved.

Different formulations of the above issues may lead to
different versions of privacy preservation in social networks.



Here, we propose a version which we believe is useful in many
applications.

1) Privacy in Social Networks and Anonymization: In this
paper, we are interested in preserving the privacy of individ-
uals which are represented as vertices in a social network.
Specifically, how a small subset of vertices are connected in a
social network is considered as the privacy of those vertices.

Consider a social network G = (V, E, L,L) and the
anonymization G′ = (V ′, E′, L′,L′) for publishing. We as-
sume that no fake vertices are added in the anonymization.
That is, there is a bijection function A : V → V ′. This
assumption is often desirable in applications since introducing
fake vertices may often change the global structure of a
social network. Moreover, we assume that for (u, v) ∈ E,
(A(u),A(v)) ∈ E′. That is, the connections between vertices
in G are retained in G′.

For a vertex u ∈ V , if an adversary can identify a vertex
u′ ∈ V ′ such that how u connects to other vertices in G is
very similar to how u′ connects to other vertices in G′, and
is substantially different from how any other vertices connect
to others, then the privacy of u is leaked.

Therefore, privacy preservation in publishing social network
data is to prevent any vertex u ∈ V (G) from being re-
identified in G′ with high confidence. Technically, given a
positive integer k, G′ preserves the privacy in G if every vertex
u ∈ V (G) cannot be re-identified in G′ with a confidence
larger than 1

k .
2) Adversary Background Knowledge: In order to attack

the privacy of a target individual in the original network, i.e.,
analyze the released anonymization network and re-identify
the vertex, an adversary needs some background knowledge.
Equipped with different background knowledge, an adversary
may conduct different types of attacks against privacy. There-
fore, the assumptions of adversaries’ background knowledge
play a critical role in both modeling privacy attacks on social
networks and developing anonymization strategies to protect
privacy in social network data.

In this paper, we assume that an adversary may have the
background knowledge about the neighborhood of some target
individuals. This assumption is realistic in many applications.
Among many types of information about a target victim that
an adversary may collect to attack the victim’s privacy, one
essential piece of information easy to be collected is the
neighborhood, i.e., what the neighbors of the victim are and
how the neighbors are connected.

Generally, we can consider the d-neighbors of the target
vertex, i.e., the vertices within distance d to the target vertex
in the network where d is a positive integer. However, when
d is large, collecting information about the d-neighbors of a
target vertex may often be impractical for an adversary since
the adversary may often have a limited access to a large social
network. Moreover, as found in many social networks, the
network diameter is often small. In other words, when d >
1, an adversary may have to collect information about many
vertices. Therefore, we confine our discussion in this paper to
the essential case where only the immediate neighbors, i.e.,
vertices in NeighborG(u), are considered. The case of d > 1

is interesting for future work.
An adversary may attack the privacy using the neighbor-

hoods. For a social network G, suppose an adversary knows
NeighborG(u) for a vertex u ∈ V (G). If NeighborG(u) has
k instances in G′ where G′ is an anonymization of G, then u
can be re-identified in G′ with confidence 1

k .
Similar to the philosophy in the k-anonymity model [5], to

protect the privacy of vertices sufficiently, we want to keep the
re-identification confidence lower than a threshold. Let k be a
positive integer. For a vertex u ∈ V (G), u is k-anonymous
in anonymization G′ if there are at least (k − 1) other
vertices v1, . . . , vk−1 ∈ V (G) such that NeighborG′(A(u)),
NeighborG′(A(v1)), . . ., NeighborG′(A(vk−1)) are isomor-
phic. G′ is k-anonymous if every vertex in G is k-anonymous
in G′. Analogous to the correctness of k-anonymity model [5]
on relational data, we have the following claim.

Theorem 1 (K-anonymity): Let G be a social network and
G′ an anonymization of G. If G′ is k-anonymous, then with the
neighborhood background knowledge, any vertex in G cannot
be re-identified in G′ with confidence larger than 1

k .
An adversary knowing the neighborhood of a target vertex

is a strong assumption. Provided privacy is preserved under
this assumption, privacy is also preserved when an adver-
sary knows only part of the neighborhood (i.e., only some
neighbors and some connections among neighbors) of a target
vertex.

3) Usage of Anonymized Social Networks: An impor-
tant aspect of anonymizing social network data is how the
anonymized networks are expected to be used. Different ap-
plications may have different expectations. In some situations,
anonymized networks may be used to analyze the global struc-
tures. In some other situations, anonymized networks may be
used to analyze the micro-structures. Clearly, different usage
expectations may lead to different anonymization schemes.

In this paper, we focus on using anonymized social networks
to answer aggregate network queries. An aggregate network
query computes the aggregate on some paths or subgraphs
satisfying some given conditions. As an example, suppose a
user is interested in the average distance from a medical doctor
vertex to a teacher vertex in a network. For each doctor vertex,
we can find the nearest neighbor vertex that is a teacher. Then,
the aggregate network query returns the average of the distance
between a doctor vertex to its nearest teacher neighbor.

Aggregate network queries are useful in many applica-
tions, such as customer relationship management. While many
types of queries on social networks are interesting, we are
particularly interested in aggregate network queries in this
paper since typically detail data is needed to answer such
queries accurately. Using aggregate network queries we can
examine the effectiveness of social network anonymization in
a meaningful way.

4) Problem Definition and Complexity: Given a social
network G, we want to compute an anonymization G′ such that
(1) G′ is k-anonymous; (2) each vertex in G is anonymized
to a vertex in G′ and G′ does not contain any fake vertex; (3)
every edge in G is retained in G′; and (4) G′ can be used to
answer aggregate network queries as accurately as possible.



To understand the difficulty of the problem, we consider a
simple case where all vertices in G carry the same label, or
equivalently, G is not labeled.

Theorem 2 (Complexity): The following k-anonymity prob-
lem in social network is NP-hard.
Instance: a social network G = (V, E, L,L) where L = ∗
and ∀u ∈ V , L(u) = ∗, positive integers k and n.
Question: is there an anonymized social network G′ =
(V, E′, L,L) such that E ⊂ E′, |E′ − E| = n, and G′ is
k-anonymous?
Proof sketch. The proof is constructed by reducing the NP-
hard k-DIMENSIONAL PERFECT MATCHING problem [7]
to the k-anonymity problem in social networks. Limited by
space, we omit the details here.

C. Related Work

Privacy becomes a more and more serious concern in many
applications. The development of techniques that incorporate
privacy concerns has become a fruitful direction for database
and data mining research.

One of the privacy concerned problems is publishing mi-
crodata for public use [8], which has been extensively studied
recently. A large category of privacy attacks is to re-identify
individuals by joining the published table with some external
tables modeling the background knowledge of users. To battle
this type of attacks, the mechanism of k-anonymity was
proposed in [9], [5]. Specifically, a data set is said to be k-
anonymous (k ≥ 1) if, on the quasi-identifier attributes (i.e.,
the minimal set of attributes in the table that can be joined with
external information to re-identify individual records), each
record is indistinguishable from at least k − 1 other records
within the same data set. The larger the value of k, the better
the privacy is protected.

Machanavajjhala et al. [6] showed that a k-anonymized
dataset has some subtle but severe privacy problems due to
the lack of diversity in the sensitive attributes. In particular,
they showed that, the degree of privacy protection does not
really depend on the size of the quasi-identifier attribute set.
Instead, it is determined by the number of distinct sensitive
values associated with each quasi-identifier attribute set. The
observation leads to the notion of l-diversity [6]. [10] proved
that l-diversity always guarantees stronger privacy preservation
than k-anonymity.

In this paper, we focus on k-anonymity since k-anonymity
is the most essential and most applicable privacy model, which
can be used even when sensitive attributes are not defined. A
few governmental privacy regulations including HIPAA and
European Union Data Directive adopted k-anonymity.

Beyond microdata, some other data sources such as social
network data also have privacy concerns when they are pub-
lished for public use. Typically, social network data can be
represented as a graph, in which vertices correspond to people
or other social entities, and edges correspond to social links
between them [11]. As a first step to hide information about
social entities while preserving the global network proper-
ties, the released social network data has to go through the
anonymization procedure which replaces social entity names

with meaningless unique identifiers [12]. Although this kind of
anonymization can exactly preserve the unannotated structure
of the social network, it may still leak a lot of information.

Attacks in social network data can be regarded as one
kind of link mining [13]. Specifically, as a pioneer work
about privacy in social network data, Backstrom et al. [12]
described a family of attacks based on random graph theory.
For example, an attacker may plant some well constructed sub-
structures associated with the target entities in advance. Once
the social network data is collected and published, the attacker
can first try to identify the planted structures and thus peek
the linkage between the target vertices. However, there is no
practical solution proposed in [12] to counter those attacks.

The attacks proposed in [12] are different from the neigh-
borhood attacks addressed in this paper. The attacks in [12]
need to plant a set of deliberative structures before the social
network data is anonymized, which is a task hard to achieve
in some situations. As shown before, even without planting
deliberative structures, the released social network data is still
in danger, as neighborhood attacks are still possible.

Wang et al. [14] adopted description logic as the underly-
ing knowledge representation formalism, and proposed some
metrics of anonymity for assessing the risk of breaching
confidentiality by disclosing social network data. However,
they did not give any anonymization algorithms for social
network data.

Simultaneous to our study, Hay et al. [15] presented
a framework for assessing the privacy risk of sharing
anonymized network data. They modeled the adversaries’
background knowledge as vertex requirement structural
queries and subgraph knowledge structural queries, and pro-
posed a privacy requirement k-candidate anonymity which
is similar to k-anonymity in tabular data. They developed a
random graph perturbation method by randomly deleting or
adding edges to anonymize a social network. Their model
assumes that the nodes and the edges in a social network are
not labeled.

Recently, Zheleva et al. [16] proposed a model different
from ours. They focused on social networks where nodes
are not labeled but edges are labeled. Some types of edges
are sensitive and should be hidden. They provided the edge
anonymization methods based on edge clustering and removal
to prevent link re-identification.

III. AN ANONYMIZATION METHOD

In this section, we introduce a practical method to
anonymize a social network to satisfy the k-anonymity re-
quirement. The method is in two steps.

First, we extract the neighborhoods of all vertices in the
network. To facilitate the comparisons among neighborhoods
of different vertices including the isomorphism tests which will
be conducted frequently in anonymization, we propose a sim-
ple yet effective neighborhood component coding technique to
represent the neighborhoods in a concise way.

In the second step, we greedily organize vertices into groups
and anonymize the neighborhoods of vertices in the same
group. Due to the well recognized power law distribution of
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the degrees of vertices in large social networks, we start with
those vertices of high degrees.

A. Neighborhood Extraction and Coding

In order to meet the k-anonymity requirement, we need to
put vertices into groups and anonymize the neighborhoods of
vertices in a group. Ideally, vertices having similar neighbor-
hoods should be grouped together. As the first step, we extract
neighborhoods of vertices and represent them in a concise way.

Extracting the neighborhood of a vertex is straightforward.
The challenge is how we can represent the neighborhood
information to facilitate the later operations in anonymization.
Since we need to anonymize all neighborhoods of the vertices
in one group to the same, isomorphism tests are frequently
conducted.

The general graph isomorphism problem which determines
whether two graphs are isomorphic is NP-hard [17]. Here,
we propose a coding technique for neighborhood subgraphs
so that whether two neighborhoods are isomorphic can be
determined by the corresponding coding.

In a social network G, a subgraph C of G is a neighborhood
component of u ∈ V (G) if C is a maximal connected
subgraph in NeighborG(u).

Example 1 (Neighborhood component): Figure 2 shows
NeighborG(u), the neighborhood of a vertex u.
NeighborG(u) contains three neighborhood components, C1,
C2, and C3 as shown in the figure.

Clearly, the neighborhood of a vertex can be divided into
neighborhood components. To code the whole neighborhood,
we need to first code each component.

The depth-first search tree (DFS-tree for short) [18] is
popularly used for navigating connected graphs. Thus, it is
natural to encode the edges and vertices in a graph based on
its DFS-tree. All the vertices in G can be encoded in the pre-
order of T . However, the DFS-tree is generally not unique for a
graph. That is, there can be multiple DFS-trees corresponding
to a given graph.

For example, Figures 3(b) and 3(c) show two DFS-trees of
the graph G in Figure 3(a). The thick edges in Figures 3(b)
and 3(c) are those in the DFS-trees, and are called the
forward edges, while the thin edges are those not in the DFS-
trees, and are called the backward edges. The vertices in the
graph are encoded v0 to v3 according to the pre-order of the
corresponding DFS-trees.

To solve the uniqueness problem, a minimum DFS code
notation is proposed in [19]. For any connected graph G, let
T be a DFS-tree of G. Then, an edge is always listed as
(vi, vj) such that i < j. A linear order ≺ on the edges in
G can be defined as follows. Given edges e = (vi, vj) and
e′ = (vi′ , vj′). e ≺ e′ if (1) when both e and e′ are forward
edges (i.e., in DFS-tree T ), j < j′ or (i > i′ ∧ j = j′); (2)
when both e and e′ are backward edges (i.e., edges not in
DFS-tree T ), i < i′ or (i = i′ ∧ j < j′); (3) when e is a
forward edge and e′ is a backward edge, j ≤ i′; or (4) when
e is a backward edge and e′ is a forward edge, i < j′.

For a graph G and a DFS-tree T , a list of all edges
in E(G) in order ≺ is called the DFS code of G with
respect to T , denoted by code(G,T ). For example, the
DFS code with respect to the DFS-tree T1 in Figure 3(b)
is code(G,T1) = 〈(v0, v1, x, x)-(v1, v2, x, z)-(v2, v0, z, x)-
(v1, v3, x, y)〉, where an edge (vi, vj) is written as (vi, vj ,
L(vi), L(vj)), i.e., the labels are included. Similarly, the
DFS code with respect to the DFS-tree T2 in Figure 3(c) is
code(G,T2) = 〈(v0, v1, y, x)-(v1, v2, x, x)-(v2, v3, x, z)-
(v3, v1, z, x)〉.

Suppose there is a linear order over the label set L. Then,
for DFS-trees T1 and T2 on the same graph G, their DFS
codes can be compared lexically according to the vertex pairs
as labels of edges. For example, we have code(G,T1) <
code(G,T2) in Figures 3(b) and 3(c).

The lexically minimum DFS code is selected as the repre-
sentation of the graph, denoted by DFS(G). In our example
in Figure 3, DFS(G) = code(G,T1).

Minimum DFS code has a nice property [19]: two graphs G
and G′ are isomorphic if and only if DFS(G) = DFS(G′).
Using minimum DFS code, we can code every component of
the neighborhood of a vertex. Now, the problem becomes how
we can combine the minimum DFS codes of all components
in a neighborhood into one code.

For two neighborhood components Ci and Cj in
NeighborG(u), we define Ci ≺ Cj if (1) |V (Ci)| < |V (Cj)|;
or (2) |V (Ci)| = |V (Cj)| and |E(Ci) < |E(Cj)|; or (3)
|V (Ci)| = |V (Cj)|, |E(Ci) = |E(Cj)|, and DFS(Ci) is
smaller than DFS(Cj).

Based on the neighborhood component order, we can
assign a canonical label for each neighborhood. In a so-
cial network G, for vertex u ∈ V (G), the neigh-
borhood component code of NeighborG(u) is a vector
NCC(u) = (DFS(C1), . . . , DFS(Cm)) where C1, . . . , Cm

are the neighborhood components of NeighborG(u), i.e.,
NeighborG(u) = ∪m

i=1Ci, Ci ¹ Cj for 1 ≤ i < j ≤ m.
Example 2 (Neighborhood component code): In Figure 2,

the neighborhood component code of NeighborG(u) is
NCC(u) = (DFS(C1), DFS(C2), DFS(C3)).



Using neighborhood component code, we can easily identify
isomorphic neighborhoods.

Theorem 3 (Neighborhood component code): For two ver-
tices u, v ∈ V (G) where G is a social network, NeighborG(u)
and NeighborG(v) are isomorphic if and only if NCC(u) =
NCC(v).

Using neighborhood component code to label and index
neighborhoods has some advantages. First, it is easy to ex-
amine whether a group of neighborhoods are isomorphic.
Second, since each neighborhood is decomposed into several
neighborhood components, it is easy to calculate the structure
similarity between two neighborhoods. Third, we can find sim-
ilar components between two neighborhoods. Anonymizing
similar components can lead to low information loss and high
similarity between the anonymization and the original social
network.

B. Social Network Anonymization

One major challenge in anonymizing a social network is that
changing labels of vertices and adding edges may affect the
neighborhoods of some other vertices as well as the properties
of the network. It has been well recognized that the following
two properties often hold in practical social networks. The
properties help us in designing anonymization methods.
Property 1: vertex degree in power law distribution. The
degrees of vertices in a large social network often follow the
power law distribution [20]. Such degree distributions have
been identified in various social networks including Internet,
biological networks, and co-authorship networks.
Property 2: the “small-world phenomenon” [11]. It is also
popularly known as “six degrees of separation”, which states
that large social networks in practice often have surprisingly
small average diameters.

Our social network anonymization method processes ver-
tices in the degree descending order, and utilizes the above
two properties of large social networks in practice.

The k-anonymity requires that each vertex u ∈ V (G) is
grouped with at least (k − 1) other vertices such that their
anonymized neighborhoods are isomorphic. For a group S of
vertices having the isomorphic anonymized neighborhoods,
all vertices in S have the same degree. Since the degrees
of vertices in a large social network follow a power law
distribution, only a small number of vertices have a high
degree. Processing those vertices of high degrees first can
keep the information loss about those vertices low. There are
often many vertices of a low degree. It is relatively easy to
anonymize those low degree vertices and retain high quality.
Moreover, as will be shown soon, low degree vertices can be
used to anonymize those high degree vertices and do not affect
the diameters of the network too much.

1) Anonymization Quality Measure: In our social network
anonymization model, there are two ways to anonymize the
neighborhoods of vertices: generalizing vertex labels and
adding edges. Each of the two methods leads to some in-
formation loss.

The information loss due to generalization of vertex labels
can be measured by the normalized certainty penalty [21].

Consider a vertex u of label l1, where l1 is at the leaf level
of the label hierarchy, i.e., l1 does not have any descendant.
Suppose l1 is generalized to l2 for u where l2 ≺ l1. Let
size(l2) be the number of descendants of l2 that are leafs in
the label hierarchy, and size(∗) be the total number of leafs
in the label hierarchy. Then, the normalized certainty penalty
of l2 is NCP (l2) = size(l2)

size(∗) .
The information loss due to adding edges can be measured

by the total number of edges added and the number of vertices
that are not in the neighborhood of the target vertex and are
linked to the anonymized neighborhood for the purpose of
anonymization.

Consider two vertices u1, u2 ∈ V (G) where G is a social
network. Suppose NeighborG(u1) and NeighborG(u2) are
generalized to NeighborG′(A(u1)) and NeighborG′(A(u2))
such that NeighborG′(A(u1)) and NeighborG′(A(u2)) are
isomorphic. Let H = NeighborG(u1) ∪ NeighborG(u2)
and H ′ = NeighborG′(A(u1)) ∪ NeighborG′(A(u2)). The
anonymization cost is

Cost(u, v) = α ·∑v′∈H′ NCP (v′)
+β · |{(v1, v2)|(v1, v2) 6∈ E(H), (A(v1),A(v2)) ∈ E(H ′)}|
+γ · (|V (H ′)| − |V (H)|)

where α, β and γ are the weights specified by users. Lit-
erally, the cost consists of three parts. The first part is the
normalized certainty penalty measuring the information loss
of generalizing labels of vertices. The second part measures
the information loss due to adding edges. The last part counts
the number of vertices that are linked to the anonymized
neighborhoods to achieve k-anonymity.

The anonymization cost of two vertices u and v measures
the similarity between NeighborG(u) and NeighborG(v).
The smaller the anonymization cost, the more similar the two
neighborhoods.

2) Anonymizing Two Neighborhoods: Now, let us con-
sider a greedy method to anonymize two neighborhoods
NeighborG(u) and NeighborG(v).

We first find all perfect matches of neighborhood compo-
nents in NeighborG(u) and NeighborG(v). Two components
perfectly match each other if they have the same minimum
DFS code. Those perfect matches are marked as “matched”
and pass over for further consideration.

For example, consider two vertices u and v whose neigh-
borhoods are shown in Figure 4. Each vertex is shown in the
form of (id, label). The neighborhood component C2(u) ∈
NeighborG(u) perfectly matches C3(v) ∈ NeighborG(v).

For those unmatched components, the anonymization al-
gorithm tries to pair similar components and anonymize
them. The similarity between two components is based on
the anonymization cost. To calculate the similarity between
two components, we try to match similar vertices in the
two components as much as possible. This is a traditional
substructure similarity search problem, which has been proved
NP-hard [22]. Instead of computing the optimal matching, we
conduct a greedy match.

To start with, we first try to find two vertices with the
same degree and the same label in the two components to be
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Fig. 4. Anonymizing two neighborhoods.

matched. If there are multiple matching vertex pairs, the pair
with the highest vertex degree is chosen. If there is no such a
pair of matching vertices, we relax the matching requirement
(vertex degree and label), calculate the difference of degrees
and the normalized certainty penalty of generalizing the labels
in the label hierarchy, and choose the one with the minimum
anonymization cost. Then, we conduct a breadth-first search to
match vertices one by one, until all possible vertex matchings
are found. The anonymization cost is calculated according to
the matching, and is used to measure the similarity of the two
components.

Consider components C1(u) and C1(v) in Figure 4. Vertices
u1 and v1 match. We start from these two vertices and conduct
a breadth-first search. Vertex v2 partially matches vertex u2.
Vertex v3 partially matches vertex u3. The vertex matching
stops since all possible vertex matchings are found. However,
vertex u4 does not find any vertex matching in C1(v). Thus
we have to find a vertex w1 ∈ V (G) that is neither in C1(v)
nor in C1(u), and add it into C1(v), so that C1(u) and C1(v)
can be anonymized to the same.

When a vertex has to be introduced into the neighborhood
for the sake of anonymization, the following rules are used: we
first consider those vertices in V (G) that are unanonymized.
The vertex with smallest degree has the highest priority. If
there are more than one candidate with the same smallest
degree, we choose the one having the closest label in terms of
normalized certainty penalty. If we cannot find any other ver-
tex that is unanonymized, we select one anonymized vertex w
with the smallest degree and satisfying the label requirement,
and mark w and its (k − 1) other vertices anonymized in the
same group as “unanonymized”.

In our example, suppose we can find an unanonymized
vertex (w1, l4) to be added to C1(u), the anonymization cost of
C1(u) and C1(v) is α·

∑

v′∈V (C1(u))∪V (C1(v))

NCP (L(A(v′))+

β · 1 + γ · 1 = α · 4
5

+ β + γ.

Input: a social network G = (V, E), the anonymization requirement
parameter k, the cost function parameters α, β and γ;

Output: an anonymized graph G′;
Method:
1: initialize G′ = G;
2: mark vi ∈ V (G) as “unanonymized”;
3: sort vi ∈ V (G) as VertexList in neighborhood size descending

order;
4: WHILE (VertexList 6= ∅) DO
5: let SeedVertex = VertexList.head() and remove it

from VertexList;
6: FOR each vi ∈ VertexList DO
7: calculate Cost(SeedVertex, vi) using the anonymization

method for two vertices;
END FOR

8: IF (VertexList.size() ≥ 2k − 1) DO
let CandidateSet contain the top k − 1 vertices with the
smallest Cost;

9: ELSE
10: let CandidateSet contain the remaining unanonymized

vertices;
11: suppose CandidateSet= {u1, . . . , um}, anonymize

Neighbor(SeedVertex) and Neighbor(u1) as
discussed in Section III-B.2;

12: FOR j = 2 to m DO
13: anonymize Neighbor(uj) and {Neighbor(SeedVertex),

Neighbor(u1), . . . ,Neighbor(uj−1)} as discussed in
Section III-B.2, mark them as “anonymized”;

14: update VertexList;
END FOR

END WHILE

Fig. 5. Anonymizing a Social Network.

Based on the component similarity, we can pair similar
components. We start with the component with the largest
number of vertices. This component is paired with the most
similar component in the other neighborhood. The two paired
components are anonymized to the same, marked “matched”,
and removed from consideration. The matching continues until
all components in one neighborhood are marked “matched”.

If there are some components left in the other neighborhood
say NeighborG(u), we use some other vertices in V (G) that
are not in NeighborG(u) to construct a component and add it
to NeighborG(u) to construct the matching and anonymiza-
tion. The vertices are selected using the same criteria as
selecting vertices to match two components.

We anonymize each pair of matched neighborhood com-
ponents to the same. The two neighborhoods then are
anonymized. For example, in Figure 4, the algorithm matches
components C1(u) and C1(v), and C2(v) and C3(u) in turn.
As a result, two vertices w1 and w2 from V (G) have to be
added into components C1(v) and C3(u), respectively.

3) Anonymizing a Social Network: We propose a greedy
method to anonymize a social network as shown in Figure 5.

First, we mark all vertices in the network as
“unanonymized”. We maintain a list VertexList of
“unanonymized” vertices in the neighborhood size descending
order: for vertices u, v ∈ V (G), if |V (NeighborG(u))|
< |V (NeighborG(v))|, or |V (NeighborG(u))| =
|V (NeighborG(v))| and |E(NeighborG(u))| <



|E(NeighborG(v))|, then v precedes u in the list. If
their neighborhoods have the same numbers of vertices and
edges, they can be ordered arbitrarily.

Iteratively, we pick the first vertex SeedVertex in the list
VertexList. The anonymization cost of SeedVertex and any
other vertices in VertexList is calculated using the anonymiza-
tion method for two vertices discussed in Section III-B.2.
If the number of unanonymized vertices in VertexList is at
least 2k − 1, we select a set CandidateSet of the top k − 1
vertices in VertexList with the smallest anonymization cost.
We can easily give a lower bound of the anonymization cost
based on the number of vertices and the number of edges
in two neighborhoods. Since all vertices in VertexList have a
neighborhood size smaller than or equal to that of SeedVertex,
we scan VertexList in the neighborhood size descending order,
and stop once the lower bound of the anonymization cost
exceeds the cost of the current (k− 1)-th most similar vertex.

The SeedVertex and the vertices in CandidateSet=
{u1, . . . , um} are anonymized in turn using the anonymization
method for two vertices discussed in Section III-B.2. The
anonymization of SeedVertex and u1 is straightforward. After
these two vertices are anonymized, their neighborhoods are
identical. When we anonymize them with respect to u2, any
change (e.g., adding an edge or a neighbor node) to the
neighborhood of SeedVertex will be applied to u1 as well,
so that the neighborhoods of SeedVertex, u1 and u2 are
anonymized to the same. The process continues until the
neighborhoods of SeedVertex and u1, . . . , um are anonymized.

During the anonymization of a group of vertices, some
changes may occur to some other vertices v that have been
marked as “anonymized” in another group (e.g., adding edges
between an anonymized vertex and a vertex being anonymized
based on vertex matching). In order to maintain the k-
anonymity for those vertices, we apply the same changes to
every other k−1 vertices having the isomorphic neighborhoods
as v. Once those k vertices are changed, they are marked as
“unanonymized” and inserted into the VertexList again.

When the number of unanonymized vertices in VertexList is
less than 2k, to satisfy the k-anonymity, the remaining vertices
in VertexList have to be considered together in anonymization.
They are added to CandidateSet in a batch.

The social network anonymization algorithm continues until
all the vertices in the graph are marked as “anonymized”.

Theorem 4 (Termination): The algorithm in Figure 5 termi-
nates for a finite social network of at least k vertices.
Proof sketch. Clearly, a clique of n vertices where each vertex
is labeled ∗ is k-anonymous provided n ≥ k. In each iteration
such that VertexList is not shortened, the algorithm either adds
some edges into the network, or generalizes the labels of some
vertices towards ∗. In the worst case, the network will be
anonymized to a clique.

Surprisingly, as shown in our experiments, the algorithm
can stop very quickly in practice, and the anonymization
cost is relatively small. This is due to the two important
properties of real social networks (vertex degree in power
law distribution and small world phenomenon). Using different
synthetic data sets, we find that most of the time we do not

k Removing labels Generalizing to affiliations
5 1.3% 12.7%
10 3.9% 16.1%
15 7.1% 19.4%
20 12.0% 23.2%

TABLE I
THE PERCENTAGES OF VERTICES VIOLATING k-ANONYMITY IN THE

CO-AUTHORSHIP DATA.

need to anonymize the remaining vertices that are less than
2k, since they have the same labels, very low degree (1 in
many sparse social networks), and isomorphic neighborhoods.

IV. EMPIRICAL EVALUATION

In this section, we report a systematic empirical study to
evaluate our anonymization method using both real data sets
and synthetic data sets. All the experiments were conducted
on a PC computer running the Microsoft Windows XP SP2
Professional Edition operating system, with a 3.0 GHz Pen-
tium 4 CPU, 1.0 GB main memory, and a 160 GB hard disk.
The program was implemented in C/C++ and was compiled
using Microsoft Visual Studio .NET 2005.

A. Neighborhood Attacks in Real Data

We used a real co-authorship data set from KDD Cup
2003 to examine whether neighborhood attacks may happen in
practice. The data set was from the e-print arXiv (arXiv.org),
and contains a subset of papers in the high-energy physics
section of the arXiv. The LATEX sources of all papers are
provided. We extracted author names from the data sources
and constructed a co-authorship graph. Each vertex in the
graph represents an author, and two vertices are linked by an
edge if the two corresponding authors co-authored at least one
paper in the data set. There are 57, 448 vertices and 120, 640
edges in the co-authorship graph and the average number of
vertex degrees is about 4.

We tested two ways to preserve the privacy of authors
by generalizing labels. In the first method, we removed all
labels, i.e., author names. In the second method, we use
the author’s affiliation as the label, i.e., all authors from the
same institution have the same label. After generalization, for
each vertex, we extracted its neighborhood and counted the
number of other vertices in the graph that have the isomorphic
neighborhoods. Table I shows the percentages of vertices
whose neighborhoods violate the k-anonymity.

Table I clearly shows that the neighborhood attacks are a
real issue for social network data publishing. When the value
of k increases, the number of vertices violating k-anonymity
increases. Moreover, the more specific are the vertex labels,
the more vertices fail the k-anonymity. Anonymizing labels
only cannot prevent neighborhood attacks effectively.

B. Anonymization Performance

We use the R-MAT graph model [23] to generate synthetic
data sets. R-MAT can generate graphs with power law vertex
degree distribution and small-world characteristic, which are
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Fig. 7. Anonymization cost on various synthetic data sets.
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the two most important properties for many real-world social
networks.

R-MAT takes 4 probability parameters, namely a, b, c and d.
Consider the adjacency matrix representation A of the graph.
Assume that each element aij in A is non-zero if there exists
an edge between vertices i and j. Given the number of vertices
n and the number of edges m, R-MAT starts with an empty
n×n adjacency matrix A. It recursively divides the adjacency
matrix into four equal-size partitions, and distributes edges
within these partitions with a set of unequal probabilities. Each
edge chooses one of the four partitions with probabilities a,
b, c and d, respectively, such that a + b + c + d = 1. The
parameters a, b, c and d can be determined based on the
required community structure and vertex degree distribution,
as detailed in [23]. The study [23] conjectures that the ratios
a/b and a/c are approximately 3/1 in many real world graphs,
and a ≥ d.

We used the default values of 0.45, 0.15, 0.15 and 0.25
for those four parameters, respectively. We generated a series
of synthetic data sets by varying the number of vertices from
5, 000 to 25, 000 and the average vertex degree from 3 to 7.
Hereafter, we refer to a synthetic data set as D(n, d), where n
and d are the number of vertices and the average vertex degree,
respectively. The edge weight was set in the range [0, 100] by
default. We assigned each vertex a label based on its average
edge weight. A simple two level hierarchy structure for those
labels was generated.

We first examined the effect of parameters α, β and γ in
the anonymization quality measure. β was set to 1 as the base.
We changed the values of α and γ, and measured the number
of edges added and the normalized certainty penalty incurred
in the anonymized graphs. The results for data set D(15K, 5)
and k = 10 are shown in Figure 6. The results show that we
can trade off between adding edges and generalizing labels by
tuning the three parameters. Often adding less edges is more
desirable in anonymizing a social network since the network
structures can be preserved better. We observed that, on the
synthetic data sets, when α = 100 and γ = 1.1, the number
of edges added is small and the normalized certainty penalty
is moderate. Hereafter, we use 100, 1, and 1.1 as the default
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values for α, β and γ.
Figure 7 reports the anonymization quality on various

synthetic data sets with respect to different k values, and
shows the anonymization cost in both the number of edges
added and the normalized certainty penalty. First, when the
number of vertices increases, the anonymization cost increases.
However, the increase of the number of edges added is sub-
linear, since in a larger network it is more likely to find similar
neighborhoods. Second, when k increases, the anonymization
cost also increases, because more neighborhoods need to be
anonymized in a group. Last, when the average number of
vertex degree increases, the anonymization cost increases, too.
In a denser network, the neighborhoods are more diverse and
more edges are needed to anonymize different neighborhoods.

Figure 8 shows the runtime on various synthetic data sets
with respect to different k values. The runtime increases
when the average vertex degree increases, since the network
becomes denser. Moreover, the larger the k, the longer the
runtime since more neighborhoods in a group need to be
anonymized.

C. Anonymizing the Co-authorship Data Set

We built a 3-level label hierarchy for the KDD cup 2003
co-authorship data set. The leaf vertices are those labels with
author affiliations. The middle level contains the countries
of the authors’ affiliations. The root is the most general
label ∗. We anonymized the co-authorship data set using
our anonymization method. The number of edges added, the
normalized certainty penalty and the runtime with different
values of k are shown in Figure 9. Comparing to the total
number of edges in the data set (120, 640), the number of
edges added is less than 6% even when k = 20. Moreover,
the runtime is scalable with respect to k.

D. Aggregate Query Answering

To test the utility of the anonymized social networks, we
conducted aggregate network queries on the KDD Cup 2003
co-authorship data set, and the anonymized networks. For two
labels l1 and l2 in the data set, we calculated the average
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distance from a vertex with label l1 to its nearest vertex with
label l2. Since labels are organized in a hierarchy structure,
when we calculated the average distance, we also considered
distance from vertices with labels l′1 to vertices with labels l′2
such that l1 ¹ l′1 and l2 ¹ l′2. The error rate is d−d′

d , where d
and d′ are the average distances in the original network and
in the anonymized network, respectively. We randomly picked
10 label pairs from the label hierarchy, and calculated the
average error rate of them. The results are shown in Figure 10.
After the anonymization, with some edges added, the average
distance decreases. Therefore, the error rate is always positive.
However, the error rate is small even when k is up to 20, since
the number of edges added is small, as shown in Figure 9.

V. DISCUSSION AND CONCLUSIONS

In this paper, we tackled the novel and important problem
of preserving privacy in social network data, and took an
initiative to combat neighborhood attacks. We modeled the
problem systematically and developed a practically feasible
approach. An extensive empirical study using both a real data
set and a series of synthetic data sets strongly indicated that
neighborhood attacks are real in practice, and our method is
highly feasible. Moreover, anonymized social networks can
still be used to answer aggregate queries accurately.

As social network data is much more complicated than
relational data, privacy preserving in social networks is much
more challenging and needs many serious efforts in the fu-
ture. Particularly, modeling adversarial attacks and developing
privacy preservation strategies are critical. For future work,
we believe that the following two types of attacks should be
addressed systematically.

We only handle 1-neighborhoods in this paper. It is very
interesting and could be desirable in some applications that
d-neighborhoods (d > 1) are protected. However, this will
introduce a serious challenge in computation. The neighbor-
hood size increases exponentially as d increases. Isomorphism
tests and anonymization of large neighborhoods are very
challenging.

A k-anonymous social network still may leak privacy. If
an adversary can identify a victim in a group of vertices
anonymized in a group, but all are associated with some
sensitive information, then the adversary still can know that
sensitive attribute of the victim. Some mechanism analogous
to l-diversity [6] should be introduced.
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