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Abstract. Often, a data object described by many features can be nat-
urally decomposed into multiple “views”, where each view consists of a
subset of features. For example, a video clip may have a video view and
an audio view. Given a set of training data objects with multiple views,
where some objects are labeled and the others are not, semi-supervised
learning with graphs from multi-views tries to learn a classifier by treat-
ing each view as a similarity graph on all objects, where edges are de-
fined by the similarity on object pairs based on the view attributes.
Labels and label relevance ranking scores of labeled objects can be prop-
agated from labeled objects to unlabeled objects on the similarity graphs
so that similar objects receive similar labels. The state-of-the-art, one-
combo-fits-all methods linearly and independently combine either the
metrics or the label propagation results from multi-views and then build
a model based on the combined results. However, more often than not,
the similarities between various objects may be manifested differently by
different views. In such situations, the one-combo-fits-all methods may
not perform well. To tackle the problem, we develop an iterative Semi-
Supervised Metric Fusion (SSMF) approach in this paper. SSMF fuses
metrics and label propagation results from multi-views iteratively until
the fused metric and label propagation results converge simultaneously.
Views are weighted dynamically during the fusion process so that the
adversary effect of irrelevant views, identified at each iteration of fusion
process, can be reduced effectively. To evaluate the effectiveness of SSMF,
we apply it on multi-view based and content based image retrieval and
multi-view based multi-label image classification on real world data set,
which demonstrates that our method outperforms the state-of-the-art
methods.

1 Introduction

Semi-supervised learning with graphs [10] is an important and effective approach,
which propagates limited label information to unlabeled data objects on a sim-
ilarity graph. A similarity graph uses the set of objects as vertices, and links
edges based on the similarity between objects. Edges in a similarity graph may
take similarity scores as weights. After label propagation [10] or manifold rank-
ing [9] in a similarity graph, the more similar two objects, the more likely they
have similar labels or the similar label relevance ranking scores. This property
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is called local smoothness [8]. The labeled objects iteratively propagate the la-
bel information or label relevance ranking scores to unlabeled ones via graph
edges until convergence, and the final labeling result based on the label rele-
vance scores should be consistent to the initial label information, which is called
global consistency [8].

Often, a data object described by many features can be naturally decom-
posed into multiple “views”, where each view consists of a subset of features.
For example, an image may have a color view and a shape view. Given a set of
training data objects with multi-views, where some objects are labeled and the
others are not, semi-supervised learning with graphs from multi-views tries to
learn a classifier by incorporating the complementary information from multi-
views. The state-of-the-art methods conduct in a “one-combo-fits-all” manner.
That is, they linearly and independently combine either the metrics or the la-
bel propagation (manifold ranking) results from multi-views and then build a
model based on the combined results. Specifically, the metric fusion first strat-
egy [2] obtains a linear fusion of the metrics from multi-views, constructs a single
similarity graph based on the fused metric, and conducts label propagation or
manifold ranking on the similarity graph. Alternatively, the propagation fusion
strategy [3, 5, 6] conducts label propagation or manifold ranking on each view
first, and then obtains a linear fusion of label propagation results based on label
relevance ranking scores in multi-views as the overall label propagation results.

More often than not, the similarities between various objects may be man-
ifested differently by different views. For example, two video clips that are the
same advertisement video but in different languages have similar video content
but very different audio content. At the same time, two video clips that are
two advertisements from the same company for the same campaign on the same
product may have similar audio content but different video content. In such sit-
uations, the one-combo-fits-all methods may not perform well, since they use
the same linear fusion from multi-views for all objects. Moreover, different views
in such methods don’t collaborate with each other to achieve consistency when
performing fusion process.

To tackle the problem, in this paper, we develop an iterative fusion approach,
called SSMF (for semi-supervised metric fusion and cross-view label propaga-
tion). SSMF fuses metrics and label propagation results from multi-views iter-
atively until the fused metric and label propagation results converge simulta-
neously. Views are weighted dynamically during the fusion process so that the
adversary effect of irrelevant views can be reduced effectively. Here, the similar-
ity in an irrelevant view contributes adversarially to the similarity measurement
matching the ground truth. Specifically, in each iteration, there are two steps.
In the semi-supervised metric fusion step, for each view we form a fused metric
by combining the current metric of the view and the label propagation results
from other views. Unlike the methods in [2, 4] that obtain a fused metric from
multi-views without label information, the metric fusion step in our method
fully utilizes the label information from all views. In the label propagation step,
in each view we conduct label propagation using the fused metric. This step
incorporates the complementary information from other views rather than from
a single view only. Our SSMF method iteratively conducts the two steps until
convergence.
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The critical idea here is that the metric fusion and cross-view label propaga-
tion processes are complementary to each other. Moreover, we fuse the similarity
matrix from one view and label the relevance matrix from other views to yield
a cross-view based query (label) driven similarity matrix.

Contributions. Our major contributions can be summarized as follows.

1. We develop an iterative fusion approach SSMF in this paper. SSMF fuses
metrics and label propagation results from multi-views iteratively until the
fused metric and label propagation results converge simultaneously. We prove
the convergence in SSMF theoretically.

2. To further improve the performance of SSMF, we extend it to WSSMF, a
novel strategy that automatically generates different weight parameters to
views in the fusion process. WSSMF effectively addresses the problem of
irrelevant views that are undesirable to fuse in the fusion process for each
iteration.

3. Our comprehensive experiments on real image data sets show that our tech-
niques significantly outperform the state-of-the-art methods in terms of ac-
curacy evaluated by varied metrics.

2 Related Work

To our best knowledge, our proposed technique is the first co-training based
method for multi-view and graph-based semi-supervised learning problem. Ex-
isting one-combo-fits-all methods linearly and independently combine either the
metric (kernel) or the labeling propagation result from multiple views to yield a
better performance than single view paradigms, as introduced in section 1.

We remark that wang et al. [4] proposed a related Unsupervised based Metric
Fusion (UMF for short) method. One may adapt UMF for multi-view based
semi-supervised learning problem straightforwardly. However, There are several
fundamental differences between this straightforward adaption of UMF [4] and
SSMF. First, it fuses equal weight as suggested by UMF. Second and fore-
most, Unlike the adapted UMF that fuses the pair-wise similarity metric in-
formation, which cannot utilize the graph structure to evaluate the similarity
between pair-wise objects. SSMF fuses label propagation and similarity metric
information interactively for each view and at each iteration, the label prop-
agation can be regarded as a variant of graph random walk, which effectively
utilize the graph structure to produce better similarity values among objects
than simply fusing the initial pair-wise similarity suggested by UMF. Finally,
the existence of irrelevant views may significantly affect learning results. While
the UMF paradigm is unable to distinguish the different contributions of differ-
ent views in a fusion based learning process, we devise an effective process to
iteratively identify the weights of views by taking the advantage of availability
of label propagation result at each time stamp. Wang et al. [7] proposed another
metric fusion technique against multi-view data via a cross-view based graph
random walk approach, however, they studied the unsupervised case rather than
semi-supervised learning studied in this paper.

3 SSMF
In this section, we present SSMF and describe its two nice properties, namely
global consistency and local smoothness [8]. We first review the prelimi-
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naries. Then, we discuss SSMF using two views. Last, we present the general
iterative form of SSMF with multi-views.

3.1 Preliminaries

Let X = {x1, x2, · · ·, xn} be a set of data points from M views, we construct
M graphs each using a different feature. Gg denotes a k-NN graph constructed
on X using g-th feature. Specifically, Gg is constructed by connecting every two
vertices xi and xj if one is among the k nearest neighbors of the other. Here,
the nearest neighbors are computed using Euclidean distance between the g-th
feature vectors of the images. The Euclidean distance between the g-th feature
vectors of xi and xj is denoted as ||xi, xj ||g. Wg denotes the edge affinity matrix
of Gg. Each entry Wg(i, j) in Wg represents the similarity between xi and xj

according to the g-th feature vector. Wg(i, j) is defined by a Gaussian kernel
and is set to

Wg(i, j) = exp(−||xi, xj ||2g/2σ2) (1)

if there is an edge in Gg between xi and xj . Otherwise, Wg(i, j) is zero. Dg is
the diagonal matrix of Gg where each element Dg(i, i) is defined as Dg(i, i) =∑n

j=1 Wg(i, j).

Without loss of generality, assume the first m points xi (i = 1, 2, . . . ,m) are
labeled points and the remaining points are unlabeled. Let the number of labels
be c, and L ∈ Rn×c be the relevance labeling matrix with L(i, j) = 1, if xi is
labeled by label j, denoted by L(xi) = j (1 ≤ j ≤ c), and 0 otherwise. Here,
we assume each point is associated with a single class label from the label set.
Similarly, let Rg ∈ Rn×c be the relevance score of unlabeled point xu belonging
to label j regarding the g-th view. The closed form of optimal Rg is yielded by
minimizing the objective function

F(Rg) =
1

2
(

n∑
i,j=1

Wg(i, j)(
1√

Dg(i, i)
(Rg(i, ·) (2)

− 1√
Dg(j, j)

(Rg(j, ·))2 + αg

n∑
i=1

(Rg(i, ·)− L(i, ·))2)

whereRg(i, ·) and L(i, ·) are the i-th row ofRg and L, respectively. The first term
in the right hand side of Eq. (2) represents the local smoothness, which means
that Rg(i, ·) is similar to Rg(j, ·) if xi and xj are proximate to each other. The
second term in Eq. (2) represents the global consistency, which means that the
final labeling matrix Rg should be consistent to the initial labeling matrix L.

We minimize F(Rg) by setting
∂F(Rg)
∂Rg

= 0, and have

R⋆
g = (I − αgSg)

−1L (3)

where Sg = D
− 1

2
g WgD

− 1
2

g , Dg is the diagonal matrix with the i-th diagonal
element Dg(i, i) =

∑n
j=1 Wg(i, j), and αg is a real value such that 0 < αg < 1.

R⋆
g can also be regarded as the label propagation result on Gg.

3.2 SSMF for Two Views
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                              First view

Fig. 1. Semi-supervised
metric fusion step regarding
the first view formulated as
Eq. (4).

Instead of directly computing the similarity met-
ric between any pair-wise points under unsuper-
vised scenario [4], we achieve the similarity, un-
der semi-supervised scenario, by indirectly mea-
suring relevance between each point and all la-
bels, formulated as labeling relevance matrix. As
such, one can imagine that if both data points
have large relevance regarding all labels, their
similarity is large, otherwise, it is small. In or-
der to learn semi-supervised metric regarding
two views, we need to consider the following
two challenges. That is, (1) the learned similar-
ity metric should encode the relevance between
data points and all labels. (2) the learned met-
ric should well incorporate the complementary
information from two views to achieve the con-
sistency. Assume W

[t+1]
g (g = 1, 2) denote the

metric similarity matrix for g-th view in t + 1
iterations, then we define the following semi-supervised fusion strategy:

W
[t+1]
1 = Q

[t]
1 Rn

[t]
2 (Rn

[t]
2 )T (Q

[t]
1 )T + λI (4)

W
[t+1]
2 = Q

[t]
2 Rn

[t]
1 (Rn

[t]
1 )T (Q

[t]
2 )T + λI (5)

where Q
[t]
g (g = 1, 2) is the normalized affinity matrices such that Q

[t]
g (i, j) =

W[t]
g (i,j)∑n

j=1 W
[t]
g (i,j)

, Rn[t]
g (i, j) =

R[t]
g (i,j)∑c

j=1 R
[t]
g (i,j)

, the goal of using normalized form is

to avoid the huge difference in scale of the label relevance matrices in different
views. I is identity matrix, and λI is incorporated to make SSMF robust to the
noise. To better explain the above fusion strategy, we take Eq. (4) as an example
of refining the metric for the first view by applying SSMF, as illustrated in Fig. 1.

Intuition. We divide the right-hand-side of Eq. (4) into two parts, as Q
[t]
1 Rn

[t]
2 ,

and its transpose (Rn
[t]
2 )T (Q

[t]
1 )T , we study each entry of Q

[t]
1 Rn

[t]
2 for any iter-

ation t

(Q
[t]
1 Rn

[t]
2 )(i, y) =

n∑
m=1

Q
[t]
1 (i,m)Rn

[t]
2 (m, y) (6)

As illustrated in Fig. 1, (Q
[t]
1 Rn

[t]
2 )(i, y) represents the fused relevance scores be-

tween the y-th label and xi in the first view, which can be seen as the summation
of propagation of label relevance score between xm and y-th label formulated

as Rn
[t]
2 (m, y), through the edge weight equivalent to similarity between xi and

xm (m ̸= i), formulated as Q
[t]
1 (i,m) to xi. Such (Q

[t]
1 Rn

[t]
2 )(i, y) is obtained

by incorporating the metric, Q
[t]
1 (i,m), m ̸= i, from the first view, and label

relevance matrix, Rn
[t]
2 (m, y), m ̸= i, from the second view to make the in-

corporation of the complementary information from two views. Following this

principle, the refined W
[t+1]
1 (i, j) in next iteration t + 1, for the first view, is

yielded by considering relevance score between all labels and both two points
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(xi and xj , respectively), while effectively incorporates the complementary in-
formation from two views. Eq. (5) may be conducted similarly. �

One natural question is how to calculate R
[t]
g , and its normalized form Rn[t]

g

for each iteration t, we propose to adopt the general iterative form in the next
section. It has the following two nice features: (1) calculating R⋆

g via Eq. (3)
is costly due to inverse matrix computation. (2) iterative label propagation is
essentially relying on the graph random walk, which will improve the metric
similarity between points and points (and label-data relevance) by exploring the
graph structure.

3.3 The General Iterative Form of SSMF

We can get R
[t]
g (g = 1, 2, . . . ,M) iteratively by

R[t]
g = αgP

[t]
g R[t−1]

g + (1− αg)L (7)

where P
[t]
g (i, j) =

W[t]
g (i,j)

D
[t]
g (i,i)+D

[t]
g (j,j)

(g = 1, 2, . . . ,M), and 0 ≤ αg ≤ 1. P
[t]
g is a

symmetric matrix. L is the initial labeling matrix mentioned in Section 3.1.

Generalizing Eqs. (4) and (5) regarding two views, W
[t]
g may be calculated

as follows for multi-views.

W[t+1]
g = Q[t]

g (

∑
j ̸=g Rn

[t]
j

M − 1
)(

∑
j ̸=g(Rn

[t]
j )T

M − 1
)(Q[t]

g )T + λI (8)

The iterative form of SSMF with multi-view by iteratively applying Eqs. (7)
and (8) represents a novel label propagation process. Specifically, each weighted

graph G
[t]
g associated with the matrix W

[t]
g or P

[t]
g , incorporates the label prop-

agation results inherent in Rn
[t]
j (j ̸= g) from other views, as shown in Eq. (8),

and hence we call the label propagation formulated as Eq. (7) as cross view
label propagation.

Now, we are ready to prove the convergence of SSMF.

Theorem 1. The iterative form of SSMF formulated in Eq. (7) converges.

It suffices to prove the convergence on one view. Following Eq. (7), we have

R[t]
g = αt

gL

t∏
i=1

P[i]
g + (1− αg)L

t−1∑
i=1

αi
g

i∏
j=1

P[j]
g (9)

where R
[0]
g = L. Apparently, since 0 < αg < 1,

lim
t→∞

αt
gL[

t∏
i=1

P[i]
g ](i, j) = 0

Moreover, the largest eigenvalue of P
[i]
g (i = 1, 2, . . . , t) is no more than 1 accord-

ing to the Gershgorin circle theorem. For the second term in Eq. (9), (1− αg)L
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Algorithm 1: The algorithm of SSMF

Input: Initial affinity matrix W
[1]
g (g = 1, 2, ··, ·,M), R

[0]
g , αg, λ , initial label

relevance matrix L in Eq. (7), the convergence threshold ϵ.
Output: The final label relevance matrix R⋆

SSMF

1 for g = 1, · · ·,M do
2 t = 0.

3 Obtaining the label propagation R
[1]
g by Eq. (7)

4 t = 1.
5 repeat
6 for g = 1, · · ·,M do

7 Z
[t]
g = Q

[t]
g (

∑
j ̸=g Rn

[t]
j

M−1
)

8 W
[t+1]
g = Z

[t]
g (Z

[t]
g )T + λI

9 R
[t+1]
g = αgP

[t+1]
g R

[t]
g + (1− αg)L

10 t = t+ 1;

11 until change is smaller than ϵ;

12 R⋆
SSMF =

∑M
g=1

(Rg)
⋆
SSMF
M

;

13 // (Rg)
⋆
SSMF is the converged relevance label matrix in the g-th view.

is a constant matrix for all αi
g[

i∏
j=1

P
[j]
g ] at any step i, thus, we only need to con-

sider the series
∑t−1

i=1 α
i
1[

i∏
j=1

P
[j]
g ]. We denote the i-th term by Hg[i] and study

the convergence of entry Hg[i](l,m). We only need to prove the convergence

of series
∑t−1

i=1 Hg[i](l,m), where Hg[i](l,m) = αi
g[

i∏
j=1

P
[j]
g ](l,m) < αi

g, since

[
i∏

j=1

P
[j]
g ](l,m) < 1, which can be easily verified by simple arithmetic operations.

We construct the series
∑t−1

i=1 α
i
g (0 < αg < 1). Obviously, the series converges,

since [Hg[i]](l,m) ≤ αi
g and each item [Hg[i]](l,m) is positive. �

Let (Rg)
⋆
SSMF be the convergent label relevance matrix regarding the g-th

view by interactively applying Eq. (7) (cross-view label propagation) and Eq. (8)
(semi-supervised metric fusion). The final label relevance matrix regarding multi-

views is R⋆
SSMF =

∑M
g=1

(R⋆
g)SSMF

M . We summarize the algorithm of SSMF in
Algorithm 1.

One important issue that SSMF does not consider is that there may be some
irrelevant views, and simply fusing all views using the same weight in Eq. (8)
may not achieve the best overall performance if there are irrelevant views during
the fusion process. To address this issue, we devise an effective learning method
to assign a weight to each view in each fusion iteration. Consequently, we extend
SSMF to WSSMF, which will be described in next section.

4 WSSMF: Learning Weights for SSMF

The basic idea is to consider the labeling result of cross-view label propagation
for unlabeled points in the set U in each iteration. Two views are regarded
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consistent if their labeling results are similar. Specifically, we denote by V
[t]
i the

i-th view in iteration t. The more consistent V
[t]
i and V

[t]
j (1 ≤ j ̸= i ≤ M) are,

the larger the weight parameter θ
[t]
ij is for V

[t]
j . Note that the labeling result of

cross-view label propagation may be different at various iterations. Therefore,
we calculate the weight parameter in different iterations. We define a function

D(V
[t]
i ,V

[t]
j ) in Eq. (10) to measure the mismatch between i-th and j-th view

in terms of cross-view labeling propagation result.

D(V
[t]
i ,V

[t]
j ) =

∑
x
[0]
u ∈U,L(x

[t]
u )̸=0

B(L(x[t]
u [i]),L(x[t]

u [j])) (10)

where B(L(x
[t]
u [i]),L(x

[t]
u [j])) = ||L(x[t]

u [i])−L(x
[t]
u [j])||, || · || is the absolute value

operator, and L(x
[t]
u ) is the largest label relevance score of x

[t]
u regarding all labels.

We have L(x
[t]
u [i]) = max

l
{Rn

[t]
i (u, l)}.

Initially, we set the label relevance score of all unlabeled points to be 0,

and D(V
[t]
i ,V

[t]
j ) describes the inconsistency degree between V

[t]
i and V

[t]
j at

iteration t. The larger D(V
[t]
i ,V

[t]
j ) is, the more inconsistent V

[t]
i and V

[t]
j are.

For V
[t]
i , the weight parameter θ

[t]
ij (i ̸= j) for V

[t]
j is defined as

θ
[t]
ij = 1−

D(V
[t]
i ,V

[t]
j )∑

h ̸=i D(V
[t]
i ,V

[t]
h )

(11)

Immediately, we have θ
[t]
ij = θ

[t]
ji and 0 ≤ θ

[t]
ij ≤ 1. They are the entries in the

coefficient symmetric matrix in iteration t, denoted by Θ[t]. In iteration t, the
j-th view (1 ≤ j ̸= i ≤ M) is said to be irrelevant with respect to the i-th

view if θ
[t]
ij <

∑
g ̸=i θ

[t]
ig

M−1 , otherwise, the j-th view is said to be relevant . For the

i-th view, we denote the set of relevant views at iteration t by Re
[t]
i .

Instead of computing global irrelevant views explicitly, for the i-th view, we

only fuse the views from Re
[t]
i in iteration t, and set the correlation strength

weight to be 0 for irrelevant views. Combining Eq. 11 and Eq. 8, we have the
Weighted SSMF (WSSMF for short) for multi-views, which iteratively applies
Eq. 7 and Eq. 12 until convergence.

W[t+1]
g = Q[t]

g (

∑
j∈Re

[t]
g
θ
[t]
gjRn

[t]
j

|Re[t]g |
)×

(

∑
j∈Re

[t]
g
(θ

[t]
gjRn

[t]
j )T

|Re[t]g |
)(Q[t]

g )T + λI (12)

Like SSMF, WSSMF also converges, which can be immediately proved in the
same manner as Theorem 1. Therefore, the final optimal label relevance matrix

can be obtained as R⋆
WSSMF =

∑M
g=1

(Rg)
⋆
WSSMF

M , where M is the number of

views, (Rg)
⋆
WSSMF is the convergent label relevance matrix in the g-th view
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obtained using WSSMF. Based on Algorithm 1, we generate the algorithm of

WSSMF by replacing Z
[t]
g in line 7 with Z

[t]
g = Q

[t]
g (

∑
j∈Re

[t]
g

θ
[t]
gjRn

[t]
j

|Re
[t]
g |

), and W
[t+1]
g

in line 8 with Eq. 12.

4.1 Complexity Analysis

Now, we analyze the time complexity of each iteration in SSMF and WSSMF.
The cost of SSMF mainly comes from two parts: cross-view label propagation

and semi-supervised metric fusion. The iterative cross-view label propagation in
Line 9 of Algorithm 1 takes O(Mn2c) time, and the same time complexity holds
for semi-supervised metric fusion in Lines 7-8. We remark that all the above cost
is from the matrix multiplication rather than matrix inverse computation. It is
well known that matrix multiplication implementation without inverse compu-
tation is efficient. Similar to SSMF, WSSMF also needs O(Mn2c) time for both
metric fusion and cross-view label propagation. In addition, O(M2n) time is
needed to obtain the view correlation matrix Θ in each iteration regarding M
views. Therefore, the overall time complexity forWSSMF is O(Mn2c)+O(M2n).
As observed in our experiments(refer to Fig 3), both SSMF and WSSMF con-
verge within quite limited iterations for most cases (less than 65 times).

5 Experiments

We evaluate both SSMF and WSSMF using multi-view content based image
retrieval (CBIR) and multi-label image classification on real data sets. We set
the convergence threshold ϵ to 10−4 for all methods.

In our experiments, we compare with the following state-of-the-art multi-
view graph based methods for both multi-view CBIR and multi-label image
classification.

– The multi-modality graph (MMG) method [3], which uses multiple graph
models under different views. The final ranking score vector is obtained
by combining the independent label propagation (manifold ranking) results
carried by each image in each view with different weights.

– The averaged distance of multiple feature based metric (ADF) method [2],
which constructs a single relevance graph using the metric of average distance
from multiple views.

– The unsupervised metric fusion (UMF) method [4], which conducts metric
fusion without considering label propagation result. It is adapted to tackle
multi-view graph-based semi-supervised learning as follows. We first obtain
the convergent affinity matrix Wg (g = 1, 2, . . . ,M) for the g-th view by ap-
plying UMF, and then obtain the ranking score vector by optimizing Eq. (2),
where the affinity matrix Wg is the fused affinity matrix using UMF on
multi-views.

5.1 Multi-view Content Based Image Retrieval (CBIR)

Multi-view CBIR is a typical problem where graph based multi-view semi-
supervised learning is extensively applied. Specifically, a query image is a labeled
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data object in our model, and the label relevance matrix Rg ∈ Rn×c in Eq. (2)
is reduced to a ranking score vector rg ∈ Rn, and Rg(i, ·) ∈ Rn is reduced to
rg(i) ∈ R, which represents the relevance score between xi and the query image
(labeled image). L ∈ Rn×c in Eq. (2) is reduced to an n dimensional vector
Y ∈ Rn with the i-th entry to be 1 if xi is the query image, and 0 otherwise.

We set the number of nearest neighbors k to 20 to calculate the metric
distance in Eq. (1) for all views, which is consistent with the UMF method [4].
Similar to [9], we set αg to 0.99 in Eq. (7) for all views, set λ to 1 in both Eq. (8)
and Eq. (12). All methods are tested on the COREL5K data set [1], which
consists of 5000 images in 50 categories. Each category contains 100 images. Due
to the same number of images in each category, we use the precision-scope [3] as
the evaluation metric. We use HOG, color histogram, RGB-SIFT and Pyramid
wavelet texture feature to construct different views, most of them are utilized
by MMG. For each method, we select every sample of 5000 images as the query
image (labeled objects) each time, and obtain the average precision value and its
statistical distribution regarding all 5000 samples, shown using 3 points (mean,
+1 standard deviation, and -1 standard deviation) in Fig. 2(a).
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Fig. 2. (a) Top-s precision on COREL5K data set. (b) Classification accuracy with
respect to sample rate on Caltech-101 image data set.

Unsurprisingly, WSSMF outperforms the other methods in top-s average pre-
cision, since it can better achieve the consistency from multi-views than the other
methods. In addition, it can effectively address the problem of irrelevant views
at each iteration. SSMF is the next after WSSMF. SSMF does not handle the
problem of irrelevant views. To demonstrate the difference, we take one query
image from the “boat” category, and list the coefficient matrix at the seventh
iteration, denoted by Θ[7] obtained by WSSMF, as follows.

Θ[7] =

HOG Texture Color RGB-SIFT
HOG 1 0.462 0.246 0.292

Texture 0.462 1 0.292 0.246
Color 0.246 0.292 1 0.462

RGB-SIFT 0.292 0.246 0.462 1

The matrix Θ[7] indicates that Color histogram and RGB-SIFT are the ir-
relevant views for HOG. Unlike the other methods, WSSMF sets the weight of
irrelevant views to 0 for HOG at this iteration. Like SSMF, UMF (1) does not
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consider the irrelevant view detection, either. Moreover, (2) UMF does not fuse
label propagation results during the fusion process, (3) as such UMF fails to
further exploring the graph structure to improve the metric similarity like SSMF
and WSSMF as discussed in section 2. Consequently, UMF is inferior to SSMF.

Both MMG and ADF perform worse than the others. MMG outperforms ADF
in most cases, since MMG fully explores the graph structure for different views,
and it linearly combines the independent label propagation results with different
weights. ADF, however, is different from MMG. It assigns the same weight to
all views in combining the label propagation results, the single graph associated
with averaged metric obstructs the graph structure of original inherent individual
views. However, MMG is inferior to SSMF and WSSMF, since such one-combo-
fits-all late fusion method is undesirable to achieve the consistency among all
views by independently fusing all the label propagation result from all views.
Worse still, it cannot well handle the irrelevant views issue.
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Fig. 3. Comparison of num-
ber of iterations (top figure)
and running time (bottom
figure).

Fig. 3 shows the 5-point box-plots (maxi-
mum, minimum, mean, +1 standard deviation,
and -1 standard deviation) of number of iter-
ations and running time of all queries in all
methods. Both WSSMF and SSMF use more
iterations on average and sot longer running
time than ADF and UMF, because ADF and
UMF construct only one similarity graph. In-
stead, WSSMF, SSMF and MMG construct mul-
tiple graphs. WSSMF and SSMF need less it-
erations on average to reach convergence than
MMG, since the cross-view based fusion method
can speed up the process of achieving consis-
tency. However, the running time of WSSMF and
SSMf is similar to that of MMG, since more ma-
trix multiplication is performed during each it-
eration than MMG.

5.2 Multi-view based multi-label image
classification

Multi-view based multi-label image classifica-
tion can be regarded as multi-view based semi-
supervised learning with graphs. The Caltech-101 data set (http://www.
vision.caltech.edu/Image_Datasets/Caltech101/) is used to test multi-
label image classification. It contains 9146 images organized into 101 categories.
The number of images in different categories ranges from 40 to 800. We set
c = 101 and n = 9146 in the label relevance matrix Rg ∈ Rn×c and L ∈ Rn×c in
Eq. (2), along with k = 20 in Eq. (1) and λ = 1 in Eq. (12).

We use the same sample rate to draw a random sample of images from each
category as labeled images. The rest of images are treated as unlabeled. Each
experiment is repeated 5 times, and the average value is reported. The classifi-
cation accuracy on all unlabeled images is used to evaluate different methods.
HOG, color histogram, pyramid wavelet texture feature and SIFT are used to
construct different views. The results are shown in Fig. 2(b).



12 Yang Wang, Jian Pei, Xuemin Lin, Qing Zhang

WSSMF outperforms the other methods. SSMF is the second best method.
The results verify the advantages of our iterative fusion methods. We also ob-
serve that the difference among different methods decreases as the sample rate
increases, since a higher sample rate makes the problem less challenging.

6 Conclusion

In this paper, we propose a novel iterative fusion technique for graph based semi-
supervised learning from multi-views. The central idea is to fuse metrics and label
propagation results from multi-views iteratively and weight views dynamically.
The experimental results clearly show that our new methods outperform the
state-of-the-art methods on real data sets. As future work, we will investigate
how to fuse selective labeling results from multi-view based graphs rather than
tackling all the data points including both informative and noise data points.
We will also investigate active learning based methods for better effectiveness
and efficiency.

Acknowledgment. Jian Pei’s Research is supported in part by an NSERC
Discovery Grant and a BCFRST NRAS Endowment Research Team Program
Project. Xuemin Lin is supported by ARC DP0987557, ARC DP110102937,
ARC DP120104168 and NSFC61021004. All opinions, findings, conclusions and
recommendations in this paper are those of the authors and do not necessarily
reflect the views of the funding agencies.

References

1. P. Duygulu, K. Barnard, J. D. Freitas, and D. Forsyth. Object recognition as
machine translation: Learning a lexicon for a fixed image vocabulary. In ECCV,
2002.

2. Y. Huang, Q. Liu, S. Zhang, and D. N. Metaxas. Image retrieval via probabilistic
hypergraph ranking. In CVPR, 2010.

3. H. Tong, J. He, M. Li, C. Zhang, and W. Ma. Graph based multi-modality learning.
In ACM MM, 2005.

4. B. Wang, J. Jiang, W. Wang, Z. Zhou, and Z. Tu. Unsupervised metric fusion by
cross diffusion. In CVPR, 2012.

5. M. Wang, X. Hua, R. Hong, J. Tang, G. Qi, and Y. Song. Unified video annotation
via multigraph learning. IEEE Trans. Circuits Syst. Video Techn, 19(5):733–746,
2009.

6. Y. Wang, M. A. Cheema, X. Lin, and Q. Zhang. Multi-manifold ranking: Using
multiple features for better image retrieval. In PAKDD, 2013.

7. Y. Wang, X. Lin, and Q. Zhang. Towards metric fusion on multi-view data: a
cross-view based graph random walk approach. In ACM CIKM, 2013.

8. D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Schlkopf. Learning with local
and global consistency. In NIPS, 2003.

9. D. Zhou, J. Weston, A. Gretton, O. Bousquet, and B. Schlkopf. Ranking on data
manifolds. In NIPS, 2003.

10. X. Zhu. Semi-supervised learning with graphs. PhD thesis,Carnegie Mellon Uni-
versity, 2005.


