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Abstract Many applications see huge demands of finding important changing areas
in evolving graphs. In this paper, given a series of snapshots of an evolving graph, we
model and develop algorithms to capture the most frequently changing component
(MFCC). Motivated by the intuition that the MFCC should capture the densest area
of changes in an evolving graph, we propose a simple yet effective model. Using only
one parameter, users can control tradeoffs between the “density” of the changes and
the size of the detected area. We verify the effectiveness and the efficiency of our
approach on real data sets systematically.

Keywords Detecting graph changes ·Evolving graphs

1 Introduction

Graphs have been widely used to model complex relationships among various
entities in real applications, and often evolve over time. For example, in social
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network, the relationships between any two community or people always evolve over
time. Recently, there are many works that study how do the relationships evolve
among various entities in networks [6, 21, 22, 33, 34]. An evolving graph can be
modeled as a series of snapshots G = (G1,G2, · · · , G‖G‖), where each snapshot Gi

(1 ≤ i ≤ ‖G‖) is a graph. Discovering frequently changing areas in evolving graphs is
critical in many applications.

As a concrete example, consider a road traffic network, where each edge repre-
sents a road segment with smooth traffic. As traffic keeps changing over time, the
road traffic network is evolving. By analyzing and capturing the most frequently
changing areas in a series of snapshots of the traffic network, say a snapshot every
30 minutes, one can obtain meaningful insights into how traffic jams are formed.
Specifically, those road segments that are smooth or jammed most of the time, i.e.,
the infrequently changing edges and areas, either are not for concern or cannot be
improved easily. Instead, those frequently changing edges and areas, i.e., those road
segments that may have heavy traffic easily and also can be smoothened quickly,
are critical for traffic scheduling and route planning. Detecting the most frequently
changing areas in such an evolving traffic network is the core of the task.

As another interesting example, consider a financial relationship network among
business entities, where an edge between two parties indicates that the total amount
of the transactions between the corresponding parties in a period (e.g., a month) is
over some threshold. The government finance administration units often monitor
such financial relationship network for possible frauds and regulation violation.
Those frequently changing edges and areas in such a financial relationship net-
work are particularly interesting since they capture the potentially unusual bursting
financial relationship among a set of entities.

Modeling and finding the most frequently changing areas in evolving graphs is far
from trivial. On the one hand, it is easy to find the most frequently changing edge,
i.e., a pair of vertices that are connected and disconnected the largest number of
times in the snapshots. However, such an edge is not informative in analyzing the
whole evolving graph. On the other hand, changes may likely occur extensively in
many places in a large graph. Returning the whole graph or a large portion of it may
be neither interesting nor useful for analysis. In fact, an analyst often has to balance
between the change frequency and the size of the changing components detected.
Moreover, isolated changes are often less interesting. Instead, we want to find the
changes that are connected well in the graph topology.

In this paper, we tackle the problem of discovering the most frequently changing
components (MFCC) in evolving graphs, and make important progress. First, we
propose an elegantmodel of frequently changing components. Our model, motivated
by the intuition of density of changes in evolving snapshots, encompasses the impor-
tant factors discussed above. Specifically, our model captures the dense connected
components in evolving graphs, and takes only one parameter that allows a user to
control the tradeoff between the “density” and the size. Our model is built concretely
on the well adopted notions of connectivity and maximum flow analysis on large
graphs.

Discovering MFCC is computationally challenging. We develop an efficient al-
gorithm to find MFCC on evolving graphs. Our method has a time complexity of
O(|V|2 log |V|)), where V is the set of vertices in the evolving graph, which allows
the mining task to be conducted on many practical middle size graphs. We verify the
effectiveness and efficiency of our approach using real data sets systematically.
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The rest of the paper is organized as follows. Section 2 develops a new measure of
changes called cumulated connectivity change, and defines MFCC. It also presents
the properties of MFCC and the problem statement. Section 3 discusses how to
compute cumulated connectivity change. Section 4 shows how to find MFCC. We
report an empirical evaluation on real-life datasets in Section 5. Section 6 discusses
the related work. We conclude the paper in Section 7.

2 Modeling most frequently changing components

In this paper, we consider simple undirected graphs only. An evolving graph can be
modeled as a series of undirected graphs, denoted byG = (G1,G2, · · · ,G‖G‖), where
Gt = (Vt, Et) is a snapshot at time t with a set of vertices Vt and a set of edges of Et .
‖G‖ is the number of Gt in G and is called the length of G. Taking V = ∪‖G‖

t=1 Vt, we
can assume each graph Gt is on the vertex set V, and thus the vertex set is constant
in our analysis. Only the edge set is changing in different snapshots.

2.1 Measuring changes between vertex pairs

We measure the changes between snapshots using the maximum number of inde-
pendent paths (maximum flow). Given a snapshot Gt = (Vt, Et), a pair of vertices u
and v in Gt is said to be k-edge-connected (k ≥ 1), if removing any k− 1 edges in
Gt cannot disconnect u and v. Intuitively, if u and v are k-edge-connected, they must
be (k− 1)-edge-connected, but the other way does not hold. Denote by econt(u, v)
the maximum value of k such that u and v are k-edge-connected in graph Gt, that
is, econt(u, v) = max{k | u and v are k-edge-connected in Gt}. For simplicity, we use
k and econt(u, v) alternately to denote maximum value of k such that u and v are
k-edge-connected.

We can measure the connectivity change between u and v from Gt−1 to Gt as
follows.

δt(u, v) = |econt(u, v)− econt−1(u, v)| (1)

The k-edge-connectivity of u and v, though being a popularly used and informative
measure, does not capture all changes affecting both u and v in an evolving graph.
δt(u, v) may be 0, even if some edges are added in Gt and/or deleted from Gt−1. For
instance, in Figure 1, two edges (a,b ) and (e,d) inGt−1 (left) are deleted inGt (right).
In addition, two new edges (a,d) and (e,b ) are added into Gt. The connectivity
change between every pair of vertices is zero. Consequently, using connectivity
change we cannot detect the changes between the two snapshots.

In order to capture all possible changes, we have to consider the similarity between
two graphs. Graph edit distance can help here.

Figure 1 An example: Gt−1
(left) is changed to Gt (right).
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Given two graphs, Gt = (Vt, Et) and Gt−1 = (Vt−1, Et−1) where Vt = Vt−1. The
edit distance between Gt and Gt−1, denoted by |�Et|, is the minimum number
of edge edit operations, including edge-insertions and edge-deletions, to transform
Gt−1 into Gt. In our setting, under the assumption that the vertices are unique and
Vt−1 = Vt , �Et = (Et−1 \ Et) ∪ (Et \ Et−1). Let �Et = (edt1 , · · · , edtp , eatp+1, · · · , eatp+q)

be the set of edge-changes, where edti is an edge ei existing in Gt−1 deleted in Gt

(1 ≤ i ≤ p), and eatj is an edge e j inserted in Gt (p+ 1 ≤ j ≤ p+ q). Denote by gt =
(g1, · · · , gp, gp+1, · · · , gp+q) a sequence of edge-by-edge changing graphs from Gt−1

toGt, whereGt−1 = g0, gi is the graph deleting edge e
dt
i from gi−1 when 1 ≤ i ≤ p, and

g j is the graph adding a new edge eatj into g j when p+ 1 ≤ j ≤ p+ q, and gp+q = Gt.
Note |gt| = p+ q.

We define the cumulated connectivity change between two vertices u and v from
Gt−1 to Gt as

�t(u, v) =
|gt |∑

i=1

δi(u, v) (2)

Here, δi(u, v)measures the connectivity change between u and v when gi−1 is changed
to gi in gt.Please note that �t(u, v) is independent from the specific order of edge
deletions and insertions in g, respectively.We will prove it in Theorem 2. Consider an
intermediate graph Gb between Gt−1 and Gt, where Gb is constructed by removing
all deletion edges edti (1 ≤ i ≤ p) in �Et from Gt−1. In fact, �t(u, v) is only related
to the intermediate graph Gb . In the other words, �t(u, v) is not related to that how
Gt−1 is changed to Gb and how Gb is changed to Gt.

The cumulated connectivity change between u and v in the entire graph sequence
G is then

�(u, v) =
‖G‖∑

t=2

�t(u, v) (3)

For Gt−1 and Gt in Figure 1, gt is shown in Figure 2. The cumulated connectivity
change between a and b is �t(a,b ) = ∑4

i=1 δi(a,b ) = 1 + 1 + 1 + 1 = 4.

2.2 Modeling frequently changing components

For an evolving graph G, we define a universal graph G = (V,E), where V =⋃
1≤t≤‖G‖ Vt, E = ⋃

1≤t≤‖G‖ Et . A frequently changing component is a subgraph of G.

For a subgraph Gs of G, how can we measure the quality of Gs as a frequently
changing component? We first consider two straightforward objective functions

Figure 2 gt for Gt−1 and Gt in Figure 1.
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based on connectivity change. First, �(Gs) = ∑
u,v∈Gs,u �=v �(u, v). Based on �(Gs),

the MFCC of Ḡ is Ḡ itself. This does not provide any information about changes.
Second, f (Gs) = �(Gs)

N(Gs)
, where N(Gs) is the number of vertex pairs in Gs, i.e.,

N(Gs) = |{(u, v)|u, v ∈ Gs}|. Intuitively, f (Gs) reflects the density of connectivity
change for every vertex pair in Gs. Here, N(Gs) controls the size of Gs such that
f (Gs) is larger when N(Gs) is smaller. However, N(Gs) becomes larger very quickly
when Gs becomes larger. Hence, based on f (Gs), it is most likely that the MFCC is
a single edge that change times is the most in evolving graph. This result is obvious
meaningless.

We propose the following new objective function.

F(Gs) = �(Gs)− α(Gs)

β(Gs)γ
(4)

where 0 ≤ γ is parameter,

�(Gs) =
∑

u,v∈Gs,u �=v

�(u, v) (5)

α(Gs) =
∑

(u,v)∈Es,u �=v

α(u, v) (6)

β(Gs) = |Es| + βc(Gs) (7)

α(u, v) = ∑‖G‖
t=2 αt(u, v), that is, α(u, v) is the number of times that the edge (u, v)

remains unchanged in G. Here, αt(u, v) = 1 if edge (u, v) appears in both Gt−1 and
Gt; otherwise, αt(u, v) = 0. α(Gs) is the sum of α(u, v) for any two different vertices
u and v in Gs. Similar to N(Gs), we use β(Gs) to control the size of Gs. βc(Gs) is the
number of pairs of vertices in Gs that cannot be connected by a path consisting of
change edges. We use cpath(u, v) to denote a path in G between two vertices u and v

such that every edge on this path is changed at least once. Then, βc(Gs) is the number
of pairs of u and v in Gs such that there does not exist a cpath(u, v) between u and
v in G, or in other words, there are unchanged edges in every path between u and v.
The motivation of βc(Gs) is that the less unchanged edges are expected to appear in
Gs. Consider a subgraph Gs including two vertices u and v, if there is no cpath(u, v)
between u and v, then there must be an edge that never changes inGs. It is important
to note that βc(Gs) is designed to become smaller when there are more edge-changes
in Gs and become larger when there are less edge-changes in Gs. It assists to obtain
a reasonable largeMFCC when there are many edge-changes.

The ratio in (4) essentially measures the density of connectivity change in sub-
graph Gs. The nominator measures the changes in Gs. Specifically, �(Gs) captures
the changing edges and α(Gs) is the total number of edges unchanged in Gs. The
denominator measures the stable elements. Specifically, instead of using the total
number of vertex pairs inGs as the denominator, we only count the number of vertex
pairs that cannot be connected by a path consisting of change edges (βc(Gs)).

The parameter γ controls the importance of vertex pairs that cannot be connected
by a cpath in the frequently changing component found. If γ = 0, the whole graphG
will be returned. If γ = ∞, then the most frequently changed edge will be returned.

Example 1 Consider the evolving graph G = (G1,G2, · · ·G6) in Figure 3. G is also
shown. The number times an edge is changed is also labeled in G. Consider a
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Figure 3 An example, G = (G1,G2, · · · ,G6), G, and the max Gs.

subgraph Gs in the same figure. Assuming γ = 1, F(Gs) = (�(a,b ) − α(a,b ) +
�(b , c) − α(b , c) + �(a, c))/(|Es| + βc(Gs)) = (3 + 5 + 4)/(2 + 0) = 6. Here,
�(a, c) = 4, but the edge (a, c) does not change. Thus, the edge (a, c) does not
necessarily to be included in the subgraph Gs. In other words, if we insert the edge
(a, c) into Gs, the numerator decreases by α(a, c) = 5. On the other hand, if we insert
another vertex into Gs, the denominator increases. Thus, F(Gs) is the maximum
among all possible subgraphs in G. This Gs is the graph to be found.

Given an evolving graph G = (G1,G2, · · · ,G‖G‖), and parameter γ , the problem
of discovering the most frequently changing component (MFCC) is to find a con-
nected subgraph Gs (⊆ G) such that F(Gs) is maximized. Note that Gs is a subgraph
of G, but it does not necessarily need to be an induced subgraph of G.

2.3 Some properties of MFCC

We show that the vertices in Gs with the max F(Gs) to be found is a tree.
First, for any pair of vertices u and v inG, if there exists a cpath(u, v), we say u c= v.

Based on the definition, given vertices, u, u′, and v in G, if u c= v and u′ c= v, then
u c= u′. In other words, if there exists a cpath(u, v) and a cpath(v,u′), then there must
exist a cpath(u,u′). Thus, the relationship c= is reflexive, transitive and symmetry.
All vertices of graph G can be partitioned by c= into equivalence classes which we
call cpath-components. We denote by PC a subset of vertices in G in which every
pair of vertices, u and v, satisfies u c= v.

Second, given a subgraph Gs = (Vs, Es) of G, the value of β(Gs) consists of two
parts, |Es| and βc, where βc(Gs) is only related to the cpath-component of vertices
set Vs. That is,

β(Gs) = |Es| +
∑

i�= j

|PCi| × |PC j| (8)

Here, PCi and PC j are two distinct cpath-components in Gs. We explain (8) below.
By the definition, βc(Gs) is to compute the number of pairs of vertices u and v inGs if
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there does not exist cpath(u, v) or c=(u, v) is not true. Therefore, if u and v in Gs are
not in the same cpath-component, βc(Gs) will increase by 1 when computing u and
v, and (8) computes all such pairs. As an example, in Figure 3, (a,b , c, f ) is a cpath
componentPCa. For other 3 vertices, there are four cpath componentsPCd, PCe, and
PCg which consist of one vertex. Therefore, β(G) = |E| + ∑

i�= j |PCi| × |PC j| = 23.
Third, (4) can be computed using (9) below for a graph Gs(Vs, Es), based on (8).

F(Gs) =

∑
u,v∈Vs,u �=v

�(u, v)− ∑
(u,v)∈Es

α(u, v)

(
|Es| + ∑

i�= j
|PCi| × |PC j|

)γ (9)

Theorem 1 For a given subset of vertices Vs in G, Gs over Vs with the max F(Gs)

value is a connected tree.

Proof sketch We prove it by showing that Gs cannot be a non-tree graph. Assume
that, for a given subset of vertices Vs ⊆ G, Gs that has the max F(Gs) among all
connected subgraphs consisting of Vs is not a tree. Then, there must exist a cycle
in Gs. Let φ = F(Gs) using (9). Suppose (u, v) is one of the edges in the cycle. If
we delete it, Gs is still a connected subgraph. According to (9) and the definition
of α(u, v), the numerator increases by α(u, v) after deleting the edge (u, v), and
the denominator β(Gs) will decrease by 1 at least, because |Es| becomes |Es| − 1.
Therefore φ will increase, when the edge (u, v) is deleted from Gs. This is contradict
with the assumption. This leads to the conclusion that the MFCC in G that has the
max F(·) value is a tree. ��

By Theorem 1, we know Gs is in a tree shape. In fact, F(Gs) is a subset Vs of
connected vertices, among which the density of connectivity changes is the largest.
In the other words, these vertices are organized in a tree shape.

It is important to note that any valid objective function F(Gs) should satisfy the
following property.

Property 1 Given any two graphs Ga and Gc. Let G1 = (Ga,Gc) and G2 = (Gc,Ga).
The F(Gs) computed from both G1 and G2 are the same.

We verify this claim by Lemma 2 in Section 3.

3 Compute ccc

A key point of the problem is to compute cumulated connectivity change �(u, v)
(3). In order to compute �(u, v), we need to compute �t(u, v) for ‖G‖ − 1 times,
because �(u, v) is the sum of �t(u, v) (2), for every pair of vertices (u, v) in G, for
u �= v. Suppose that there are p edge-deletions and q edge-insertions from Gt−1

to Gt in G. This implies that there is a sequence of single-edge-change graphs,
gt = (g1, · · · , gp, gp+1, · · · , gp+q) and |gt| = p+ q, from Gt−1 to Gt. Consequently,
in order to compute �t(u, v), it needs to compute k-edge-connectivity for every two
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different vertices over each gi ∈ gt, and repeats it p+ q times. The cost of doing so is
extremely high. We call such a naive approach as a multi-way approach.

In this section, we propose a new approach called 2-way-ccc. As the name implies,
in order to compute �t(u, v), we only compute k-edge-connectivity for every two
different vertices twice. 2-way-ccc does not rely on the number of edge-deletions
and edge-insertions when Gt−1 is changed to Gt, when computing �t(u, v). Note:
2  p+ q in general.

3.1 A 2-way-ccc approach

We discuss some properties on k-edge-connectivity changes, and then give the
algorithm.

Lemma 1 Let gt be the sequence of single-edge-change graphs, gt = (g1, · · · , gp,

gp+1, · · · , gp+q) from Gt−1 to Gt. Let g0 = Gt−1, gi is a graph either (1) by inserting a
new edge e that does not appear in gi−1 or (2) by deleting an existing edge e from gi−1.
For any pair of vertices u and v in gi, δi(u, v) (refer to (2)) increases by 1 at most for
case (1) and decreases by 1 at most for case (2).

Proof sketch We prove the edge-deletion case by contradiction. If an edge e is
deleted from graph gi−1, for any pair of vertices u and v, it is obvious that the con-
nectivity cannot increase. Let econi−1(u, v) = k in gi−1. Assume that econi(u, v) =
k− 2 at most in gi after e deleted from gi−1. There exists an edge-cut set Ec =
{e1, · · · , ek−2}. If we delete all k− 2 edges in Ec from gi, u and v will be disconnected.
Otherwise, u and v are (k− 1)-edge-connected at least in gi. This is contradict with
the assumption. We add the deleted edge e into Ec and obtain another edge-cut set
E′

c of k− 1 edges. If we delete all edges in E′
c from gi−1, u and v will be disconnected.

This is contradict with the fact that u and v are k-edge-connected in gi−1. Similarly,
the edge-insertion case can be proved. ��

Lemma 1 ensures that the k-edge-connectivity for any pair of vertices u and v is
affected by 1 at most when there is an edge change. Next, we investigate whether the
order of edge-changes (deletions/insertions) will affect computing �t(u, v). Recon-
sider the sequence of single-edge-change graphs, gt = (g1, · · · , gp, gp+1, · · · , gp+q),
from Gt−1 to Gt. gt corresponds a sequence of edge changes, namely, �Et =
�Ed

t ⊕�Ea
t , where �Ed

t = (edt1 , · · · , edtp ) represents a sequence of edge-deletions,
and �Ea

t = (eat1 , · · · , eatq ) represents a sequence of edge-insertions. Note ⊕ indicates
an operator that concatenates two sequences. Based on �Ed

t and �Ea
t , we consider

three graphs in sequence, (Ga,Gb ,Gc), for two consecutive graphs, Gt−1 and Gt, in
G. Here,Ga = Gt−1, Gc = Gt, andGb is constructed by deleting all the edges in�Ed

t
from Ga. As a sequence, Gc is a graph by inserting all edges in �Ea

t into Gb . We
show that the order of edge-deletions among those in �Ed

t will not affect cumulated
connectivity change between Ga and Gb , and the order of edge-insertions among
those in �Ea

t will not affect cumulated connectivity change computing between Gb

and Gc.

Theorem 2 Consider �Ed
t as a set of edge-deletions that transfers Ga to Gb . Assume

S1 and S2 be two dif ferent sequences of�Ed
t to transfer Ga to Gb . Let�1

a,b (u, v) be the
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cumulated connectivity change�a,b (u, v) when Gb is obtained from Ga using S1, and
let �2

a,b (u, v) be the cumulated connectivity change �a,b (u, v) when Gb is obtained
from Ga using S2. �1

a,b (u, v) = �2
a,b (u, v). In a similar fashion, consider �Ea

t as a
set of edge-insertions that transfers Gb to Gc. Assume S3 and S4 be two dif ferent
sequences of �Ea

t to transfer Gb to Gc. Let �3
b ,c(u, v) be the cumulated connectivity

change �b ,c(u, v) when Gc is obtained from Gb using S3, and let �4
b ,c(u, v) be the

cumulated connectivity change �b ,c(u, v) when Gc is obtained from Gb using S4.
�3

b ,c(u, v) = �4
b ,c(u, v).

Proof sketch It can be shown based on Lemma 1 that the value of connectivity for
any two vertices, u and v, decreases (increases) monotonously for a set of edge-
deletions (edge-insertions). ��

Given Theorem 2, we know both �a,b (u, v) and�b ,c(u, v) are independent of the
order of edge-deletions and edge-insertions, and are only related to the intermediate
graph Gb . We can compute �t(u, v) between Gt−1 and Gt as �a,b (u, v)+�b ,c(u, v)
between Ga and Gb and between Gb and Gc. It is worth noting that �a,b (u, v)
and �b ,c(u, v) are order insensitive among all edge-deletions and edge-insertions,
respectively.

Next, we prove our objective function (4) (or (9)) satisfies Property 1.

Lemma 2 Our objective function (4) (or (9)) satisf ies Property 1.

Proof sketch According to (4), F(Gs) consists of three parts: �(Gs), α(Gs) and
β(Gs). Given any two graphs Ga and Gc. Let G1 = (Ga,Gc) and G2 = (Gc,Ga).
Furthermore, let �1(Gs), α1(Gs), and β1(Gs) be the values computed for G1, and
�2(Gs), α2(Gs), and β2(Gs) be the values computed for G2. Because αi(Gs) and
βi(Gs) are only affected by the edge-changes betweenGa andGc, for i = 1, 2, we have
α1(Gs) = α2(Gs) and β1(Gs) = β2(Gs). We only need to prove �1(Gs) = �2(Gs).
Following Theorem 2, we can construct Gb 1 as an intermediate graph for G1 and
construct Gb 2 as an intermediate graph for G2. Obviously, Gb 1 = Gb 2 . Because
�i(Gs) is only related to the intermediate graph Gbi , for i = 1, 2, we have �1(Gs) =
�2(Gs) and Lemma 2 is proved. ��

The 2-way-ccc algorithm for computing �(u, v) for every pair of vertices in G is
shown in Algorithm 1.

The complexity analysis is given below. For 2-way-ccc, we need to compute edge-
connectivity for every pair of vertices in graph G(V, E) using max-flow algorithm
twice at each time step. The Push-Relabel method with time complexity O(|V|2 · |E|)
[5] is the asymptotic fastest in all max-flow algorithms. In fact, by Edmonds–Karp
Algorithm, the time complexity is O(|E| · | f ∗|) [5], where | f ∗| is the max-flow
between two vertices. In our problem, we consider the capacity of each edge as 1.
The max-flow between u and v must be less than min(d(u),d(v)), where d(u) is the
degree of vertex u. Thus, the max-flow is less than |V|. Thus, the time complexity
of computing edge-connectivity is less than O(|V| · |E|). Gomory and Hu state that
edge-connectivity of all pairs of vertices in an undirected graph can be computed
using |V| − 1 max-flow computations [13]. At each time step, the time complexity of
2-way-ccc is O(|V|2 · |E|). We need two matrices to maintain the edge-connectivity
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Algorithm 1 2-way-ccc (G)

Input: G = (G1,G2, · · · ,G‖G‖).
Output: compute �(u, v) for every pair of vertices in G.

1: �(u, v) ← 0 for every u and v in G;
2: for t = 2 to ‖G‖ do
3: let Ga ← Gt−1, Gc ← Gt ;
4: let Gb be the graph by deleting all edges in �Ed

t from Ga;
5: for each pair of vertices u, v ∈ G do
6: compute �a,b (u, v);
7: compute �b ,c(u, v);
8: �t(u, v) ← �a,b (u, v)+�b ,c(u, v);
9: �(u, v) ← �(u, v)+�t(u, v);

and the cumulated connectivity change for every pair. The space complexity is
O(|V|2).

4 Find MFCC

In this section, we give our algorithm to find MFCC. It is important to note that
Gs (⊆ G) with the max F(Gs) is a connected tree by Theorem 1.

For a given Gs, to compute F(Gs) (4), there are three main components, �(Gs)

(5), α(Gs) (6) and β(Gs) (7). Most of the components are already computed when
computing ccc. In Section 3, we discussed how to compute �(u, v) (3), with which
�(Gs) can be easily computed. β(Gs) consists of Es and βc(Gs), where βc(Gs) is only
related to the cpath-components in G. We can compute β(Gs) using (8). Also, it is
straightforward to compute α(u, v)which can be done while computing�(u, v). Note
that the value of α(u, v) for any edge in Gs is only related to the times of the edge no
change.

A Gs(Vs, Es) is constructed as a tree for a given subset of vertices Vs (Theorem
1). Given a subset of vertices Vs in G, �(Gs), βc(Gs) and |Es| are determined.
Maximizing F(Gs) ((4) or (9)) on Vs, for a subgraph Gs(Vs, Es), is equivalent to
minimizing α(Gs) = ∑

(u,v)∈Es
α(u, v). Therefore, we treat G as an edge-weighted

graph. Every edge (u, v) ∈ G is associated with a weight α(u, v). Our problem
becomes to find a minimum spanning tree on Vs in terms of α(u, v).

We give two properties regarding minimum spanning tree which will be used later
in our algorithm. Below, for a given graph G, we use G− {v} to denote an induced
subgraph of G after deleting the vertex v from G, and use G+ {v} to denote a min
induced subgraph of G containing G and an additional vertex v.

Lemma 3 Given an edge-weighted graph G, let its minimum spanning tree be T. If v
is any a leaf vertex of T, the minimum spanning tree for G− {v} is T − {v}.

Proof sketch Note that there may exist more than one minimum spanning tree, say
T1 and T2 for G. The two trees can be different but both trees must have the same
total minimum value,

∑
u,v∈T1

w(u, v) = ∑
u,v∈T2

w(u, v). Lemma 3 suggests that any
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of theminimum spanning trees can be T. We prove it by contradiction. Suppose there
exists another minimum spanning tree T ′ forG− {v}. We insert the edge (u, v)whose
weight is the minimum among all the edges connecting to vertex v into T ′. Then,∑

(u′,v′)∈T ′+{v} w(u′, v′) becomes less than
∑

(u′,v′)∈T w(u′, v′), T is not the minimum
spanning tree of G. This leads to the contradiction. ��

Lemma 4 Given a graph G, let its minimum spanning tree be T. Suppose that deleting
a vertex v from G divides G into l connected components Gi = (Vi, Ei), for 1 ≤ i ≤ l,
where every two Gi and Gj for i �= j are disconnected. Then, the minimum spanning
tree of Gi + {v} is Ti + {v}. Here, Gi + {v} represents the induced subgraph of G on
the set of vertices Vi + {v}, and Ti + {v} represents the induced subtree of T on the set
of vertices Vi + {v}.

Lemma 4 can be proved in a similar way as to prove Lemma 3.

The algorithm Our new algorithm, called Find-Max, is given in Algorithm 2. There
are two main phases.

In the first phase, we collect information to compute �(u, v), α(u, v), β(Gs), and
construct G, for a given evolving graph G (lines 1 and 2). we use L� to denote the
set of {�(u, v)} for every pair of different u and v in G. It can be computed using
2-way-ccc(G) as discussed in the previous section. We use Lα to denote the set of
{α(u, v)} for every edge (u, v) in G. Note that 2-way-ccc(G) needs to scan the entire
G once. While doing that, we can compute α(u, v) for every edge (u, v) in G. Also,
we use LPC to denote the set of {PCi(V)} for all cpath-components in G. We show
how to do it below. For a pair of graphs, Gt−1(V, Et−1) and Gt(V, Et), in G(V,E), we
construct a delta graph �Gt(V,�Et) where �Et = (Et−1 \ Et) ∪ (Et \ Et−1). Then,
we construct �G = ⋃‖G‖

t=2 �Gt. Every edge in �G changes at least once in G. And
every connected component in�Gmust be a cpath-component for the vertices inG.
We compute all PCs forG(V,E). Every two vertices, u and v, in the same PCi(V), are
u c= v. Note that we use PCi(V) to indicate PCi is found over V. By LPC and (8), we
can compute β(Gs) easily.

Algorithm 2 Find-Max (G)

Input: G.
Output: the subgraph Gs with the max F(Gs).

1: Let L�, LPC, and Lα be the sets of �(u, v), β(u, v), α(u, v) for every pairs of u and v

in G;
2: compute L�, LPC, Lα using 2-way-ccc (G) and obtain G at the same time;
3: let Gs be a spanning tree with the min α(Gs) of G;
4: let T ← ∅;
5: Gs ← Find-Tree (Gs, L�, LPC, Lα , T (∅));
6: if Gs = ∅ and T �= ∅ then
7: Gs ← Tree-Traverse (T , L�, LPC, Lα);
8: return Gs ;
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In a summary, we construct the universal graphG(V,E) for G, and we treat it as a
weighted graph where each edge, (u, v), is associated with a weightw(u, v) = α(u, v).
In addition, we have L� and LPC.

In the second phase, we find the connected subtree Gs of G with the max F(Gs)

(lines 3–7). We start by finding the minimum spanning tree with the min α(G) for
all the vertices in G (line 3). Then we find the minimum spanning tree (in terms of
α) over the selected subset of vertices, Vs, of α(Gs). Such a subset Vs is formed by
removing a vertex from G in an one-by-one fashion. While removing a vertex from
a subset of vertices Vs one-by-one, we pay attention to two things: (1) the vertex
removal will not miss the subtree Gs with the max F(Gs), and (2) such a subtree Gs

must be connected. This is done using a data structure called a partition-tree in two
steps: partition-tree construction and partition-tree traversal. In the partition-tree
construction, we remove vertices that cannot be included in the finalGs with the max
F(Gs), and maintain some Gs that can possibly be the final answer. In the partition-
tree traversal, we explore combinations of those maintained in the partition-tree, and
compute the final Gs with the max F(Gs).

As shown in Algorithm 2, we call Find-Tree with Gs (a min spanning tree of G
in terms of α(Gs)) to start the vertex removal process (line 5). Find-Tree will return
either a non-empty Gs, which is the answer with the max F(Gs), or an empty Gs.
When Find-Tree returns an empty Gs, Find-Tree will return a non-empty partition-
tree T constructed by Find-Tree. With the partition-tree T , we find the subtree Gs

with the max F(Gs) by calling Tree-Traverse (line 7).

4.1 Find-Tree

The Find-Tree algorithm is given in Algorithm 3. We compute the value of φs =
F(Gs), where Gs, an input to Find-Tree, is a minimum spanning tree (in terms of
α). We use X to maintain the set of vertices such that we cannot obtain a minimum
spanning tree (connected) overGs − {x} if x ∈ X . Such a vertex is called a cut-vertex.
Next, we remove a vertex from Gs one-by-one in a loop (lines 3–15). In the loop,
for each vertex u �∈ X (which means that removing u may construct a connected
subtree), we remove u from Gs. Let the tree after removing u from Gs be Gu. There
are two cases when removing u from Gs.

Case 1 (u is a leaf node of Gs): We do not need to compute the minimum spanning
tree on Vs − {u}, because we know the minimum spanning Gu is Gs − {u} based on
Lemma 3. We compute �(Gu) and β(Gu) = β(Gs)− ∑

u/∈PCi(V) PCi(V)− 1, respec-
tively, and then compute F(Gu).

Case 2 (u is not a leaf node of Gs): We try to find the minimum spanning tree Gu

over Vu = Vs − {u}, and compute α(Gu). If Gu is connected, we compute F(Gu) as
we do in Case 1. IfGu is not connected, we let φu be−∞ and record this information
by inserting u into X (line 9).

After attempting to remove every vertex u ∈ Gs (lines 4–9), we find the subtree
with the max F(·) among all possibleGu, and denote it asGmax with φmax (= F(Gmax))
(line 10). We compare φmax (after removal of a vertex) with φs of Gs. Let φδ = φmax −
φs. If φδ ≥ 0, it implies that F(·) increases by removing a vertex from Gs, and we
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Algorithm 3 Find-Tree (Gs, L�, LPC, Lα , T (•))
Input: Gs ⊆ G, L� (a set of�(u, v) for every pair of u and v in G),

LPC (a set of β(u, v) for every pair of u and v in G),
Lα (a set of α(u, v) for every pair of u and v in G), and
T (•) (a partition tree with a node •marked)).

Output: the subgraph Gs with the max F(Gs).

1: φs ← F(Gs);
2: X ← ∅;
3: repeat
4: for every vertex u ∈ Gs and u �∈ X do
5: let Gu be a tree by removing u from Gs;
6: if Gs is connected then
7: φu ← F(Gs);
8: else
9: φu ← −∞; X ← X ∪ {u};
10: let φmax be the φu that has the max value and Gmax be the corresponding Gu;
11: φδ ← φmax − φs;
12: if φδ ≥ 0 then
13: Gs ← Gmax; φs ← φmax;
14: X ← ∅;
15: until φδ ≤ 0
16: if X = ∅ and T = ∅ then
17: return Gs ;
18: if X �= ∅ then
19: (x,Gs1 ,Gs2 ) ← Cut-Node (Gs, L�, LPC);
20: create a new node � labeled with a triple (x,Gs, φs);
21: if T = ∅ then
22: let � be the root of T ;
23: else
24: add � as a child of the marked node • in T ;
25: Find-Tree (Gs1 , L�, LPC, Lα , T (�));
26: Find-Tree (Gs2 , L�, LPC, Lα , T (�));
27: if X = ∅ and T �= ∅ then
28: create a new node � labeled with a triple (∅,Gs, φs);
29: add � as a leaf node of the marked node • in T ;
30: return ∅;

replace Gs and φs with Gmax and φmax, respectively (line 13). In addition, we reset X
to be empty, because in the next iteration in the loop, removing those vertices in X
may possibly result in a connected subtree (line 14).

We repeat the vertex removal process until we cannot remove any vertices
(lines 3–15). It is worth noting that after this loop, we cannot remove any vertex u
further to make φu ≥ φs. At this stage, X = ∅ means the current Gs have no cut-
vertex, and T = ∅ means that the vertex removal process will always result in a
connected subtree in the removal process until now. Note that T is passed by an
input to Find-Tree, and Find-Tree is a recursive procedure. If both X and T are
empty, then the current Gs is the answer, and we return it (lines 16 and 17).
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WhenX �= ∅, letX = (x1, · · · , xm) be a set ofm cut-vertices. We select one vertex
x in X to partition Gs(Vs, Es) into two subtrees Gs1 and Gs2 using a procedure Cut-
Node, which we explain below.

Note on Cut-Node For any vertex xi in X , removing xi cuts the current subgraph
Gs into ci connected components G′

i,1, · · · ,G′
i,ci
, where G′

i, j for 1 ≤ j ≤ ci does not
contain xi. Then we construct ci connected components Gi,1, · · · ,Gi,ci , where Gi, j =
G′

i, j + {xi} for 1 ≤ j ≤ ci is a connected subtree that contains xi. For each component
Gi, j, we find its minimum spanning tree, and compute F(·). Based on Lemma 4, we
know the minimum spanning tree of Gi, j can be found from the minimum spanning
tree of Gs. We denote Gi,max as Gi, j with the max φi,max among φi, j = F(Gi, j) for 1 ≤
j ≤ ci. We do the same for every cut-vertex xi for 1 ≤ i ≤ m inX . We select the vertex
xi whose φi,max is the max among all {φ j,max} for every x j ∈ X , as the cut-vertex. We
denote the cut-vertex as x (= xi). Then, we create a new node in the partition tree,
denoted as �, labeled with a triple (xi,Gs, φs), and insert it as a child of the marked
node • in the partition tree T (passed as an input to Find-Tree). If T is empty, we
treat � as the root of T . In addition, we create two subtrees, Gs1 and Gs2 , where
Gs1 = Gi,max if x is xi and Gs2 =

⋃
Gi, j for 1 ≤ j ≤ ci and j �= i.

With the result of Cut-Node, we call Find-Tree recursively twice using Gs1 and
Gs2 (lines 25 and 26). The partition-tree T is a binary tree to be constructed by Find-
Tree recursively. The leaf node of T is added when X = ∅ and T �= ∅ (lines 27–29).

4.2 Tree-Traverse

In Find-Max, Tree-Traverse computes Gs with the max F(Gs) using the partition-
tree T , where each node is associated with a triple initially. We traverse T in a
bottom-up fashion, and process the non-leaf node with two leaf nodes first at a time.
A non-leaf node with two leaf nodes will become a leaf node in the next step. During
the traversal, a leaf node may have a set of triples: {(∅,Gq1 , φq1), (∅,Gq2, φq2), · · · },
if all φqi are the max and are the same. In general, a non-leaf node, ts, in T has a
triple associated with (s,Gs, φs), and has two child nodes, tq and tr , where tq and
tr are associated with two sets of triples Q = {(∅,Gq1, φq1), (∅,Gq2 , φq2), · · · } and
R = {(∅,Gr1 , φr1), (∅, Gr2 , φr2 ), · · · }. We update (s,Gs, φs) to be a set S of triples,
S = {(∅,Gs1, φs1), (∅,Gs2, φs2), · · · }. Initially, S = {(s,Gs, φs)} ∪Q ∪ R.

We update S as follows. First, for anyGqi andGrj , if one vertex inGqi is contained
in neighbor set of Grj over G (i.e., Gqi ∪ Grj is connected in G), we consider a
new triple (∅,G′

s, φ
′
s) in S among three subtrees: (a) Gnew = Gqi ∪Grj , (b) Gqi , and

(c) Grj . For (a), we compute φnew = F(Gnew). By Lemma 4, φnew can be computed
directly, and there is no need to find minimum spanning tree again. We select Gnew

with φnew as G′
s with φ′

s and add it into S if φnew is max{φnew, φqi , φr j} among (a), (b),
and (c). Second, we remove all the triples (,Gsi , φsi) from S if φsi is less than any
other φs j for a triple (,Gsj, φs j) in S.

The final resulting Gs in this process is any Gsi from the set of triples
{(∅,Gs1, φs1), (∅,Gs2, φs2), · · · } that are associated with the root of the partition-tree
T at the end of the process.



World Wide Web (2014) 17:351–376 365

4.3 An example

We explain it using an example (Figure 4). Here, γ = 1. Figure 4a shows G. The
edges marked by “‖” mean that they change twice (the edges are deleted and
then inserted). Figure 4b shows the minimum spanning tree Gs of G. Then, we
want to know if there is any subtree of Gs with a larger F(·). Let G′

s be a subtree
of Gs by removing one vertex from {3, 4,6, 7, 9, 10}. Because F(G′

s) < F(Gs), we
cannot remove any of such vertices. Next, we consider removing vertices from X =
{1, 2, 5, 8}. If we remove any one vertex from X , the resulting G′

s is not connected.
A vertex in X can be a cut-vertex. Figure 4c shows the partition-tree T to be
constructed by Find-Tree. For T construction, here the vertex 2 is the cut-vertex
to cut Gs into two subtrees Gs1 and Gs2 . It is because the subtree Gs1 over {2, 3, 4}
is with the max F(·) among all subtrees if we remove any vertex from X to cut Gs.
Gs2 is the subtree of Gs over the vertices {1, 2, 5, 6, 7, 8, 9, 10}. Here, the root of the
partition-tree is a triple (2,Gs, F(Gs)), where 2 is the cut-vertex to cut Gs. The root
has two children. One points to Gs1 and the other points to Gs2 . Next, consider Gs2

which is over the vertices {1, 2, 5,6, 7, 8, 9, 10}. We can remove the vertex 2 from Gs2 ,
because the resulting subtree without the vertex 2 is connected and is with a larger
F(·). Let Gs be a subtree over {1, 5, 6, 7, 8, 9, 10}. In a similar fashion, the cut vertex
8 is selected, which results in two subtrees. The completed partition-tree T is shown
in Figure 4c.

In Tree-Traverse, with T traversal, we find the subtree with max F(·) in a
bottom-up manner. Reconsider Figure 4c. The node in T labeled ⑧ is associated
with a triple (8,Gs, φs), where Gs is the subtree over the vertices {1, 5, 6, 7, 8, 9, 10}
and φs = F(Gs). The node ⑧ has two child nodes. The left is for a subtree Gq1

over {8, 9, 10} with φq1 = F(Gq1). The right is for a subtree Gr1 over {5, 6, 7} with
φr1 = F(Gr1). We also consider if merging Gq1 and Gr1 can result in a connected
subtree with a larger F(·) value. Since Gq1 and Gr1 do not contain 8 (the cut vertex)
together, they cannot be merged as a connected subtree. We update the information
associated with ⑧ to include Gq1 with φq1 and Gr1 with φr1 and exclude Gs with φs,
because φq1 = φr1 > φs. This implies that Gq1 or Gr1 can be the final answer or be
involved in the final answer. We repeat the same process for the root node ②. At the
end, any of the three subtrees (indicated by three colors in Figure 4b) can be the final
answer.

Figure 4 An example.
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4.4 Time/space complexity

The dominating factor of Find-Max is Find-Tree. We give the complexity for Find-
Tree. In the vertex removal process, for every vertex u, we compute φu using the
minimum spanning tree Gu. The cost of maintaining minimum spanning tree is
O(log |V|) [9]. Then one removal process take O(|V| log |V|) times. In the worst case,
we need execute |V| times for the vertex removal process. For T traversal, we only
need scan every node in T once. Thus, the time complexity of Find-Tree algorithm
is O(|V|2 log |V|). The space required for T is O(|V|2). It is because there are |V|
nodes in T at most and we need keep Gs for a node s. Thus, the space complexity is
O(|V|2).

5 Performance studies

In this section, we evaluate the effectiveness and efficiency of our algorithms on three
real-life graph datasets including CAIDA Anonymized Internet Traces Datasets,
Amazon, and Slashdot. To investigate the effectiveness, we propose five distinct
measurements.We also test efficiency and scalability of our method. All experiments
were done on a 2.2 GHz Intel Pentium Dual core PC with 2 GB main memory,
running Windows XP. All algorithms are implemented by Visual C++ 6.0.

We tested the following three real datasets.

CAIDA anonymized internet traces datasets We use 2 datasets: Chicago and San-
jose. These datasets contain anonymized passive traffic trace from CAIDA’s passive
monitors on Chicago and Sanjose (2008-7-17 to 2009-10-15). In these datasets, there
are more than 400K IP-addresses. We generate an evolving graph as follows. We
treat a set of IP-addresses as a subnet if they have the same first p bits. Each subnet
is considered as a vertex and there is an edge between two subnets if any two IP-
addresses in the two distinct subnets are connected. We generate evolving graphs,
G = (G1,G2, · · · ), by generating graph Gt at different time. The size of vertices
ranges from 5K to 20K. The length of an evolving graph ranges from 10 to 30. The
details are shown in Table 1 for the 8 different evolving graphs. Each dataset is with
a name, say Chi-1 (Chicago Number 1) or San-1 (Sanjose, Number 1).

Slahdot dataset (http://slashdot.org/) Slashdot is a technology related news website
known for its specific user community. The website features user-submitted and
editor-evaluated current primarily technology oriented news. The network was
obtained in 2009. The users are nodes, and an edge between u and v represents user u
agrees with user v’s comment. This dataset contains 82,140 nodes and 349,202 edges.
We generate three different snapshots for an evolving graph and the size of vertices
ranges from 20K to 80K. Some evolving graphs are shown in Table 1.

Amazon dataset (http://snap.stanford.edu/data/) This network is collected by crawl-
ing Amazon website. It is based on Customers Who Bought This Item Also Bought
feature of the Amazon website. The nodes in this network represent products. If a
product is frequently co-purchased with another product, the graph contains an edge
between them. This dataset is collected fromMarch to June in 2003. The whole graph
includes 262,111 nodes and 1,234,877 edges. We generate five snapshots and the size

http://slashdot.org/
http://snap.stanford.edu/data/
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Table 1 Dataset
characteristics.

Name |V| Max |Et | Min |Et | Avg |Et | Avg |�Et| ‖G‖
Chi-1 5K 21K 20K 20K 421 10
Chi-2 10K 32K 32K 32K 545 10
Chi-3 10K 32K 31K 31K 526 15
Chi-4 10K 32K 31K 32K 577 20
Chi-5 10K 32K 31K 32K 553 25
Chi-6 10K 32K 31K 31K 532 30
Chi-7 15K 39K 37K 38K 663 10
Chi-8 20K 51K 49K 51K 688 10
San-1 5K 20K 19K 19K 398 10
San-2 5K 20K 19K 20K 402 15
San-3 5K 21K 19K 20K 417 20
San-4 5K 21K 19K 20K 385 25
San-5 5K 21K 19K 20K 396 30
San-6 10K 31K 30K 30K 511 10
San-7 15K 38K 36K 38K 597 10
San-8 20K 51K 48K 50K 624 10
Slashdot 20K 87K 86K 87K 627 3
Slashdot 80K 267K 263K 266K 1626 3
Amazon 20K 61K 59K 61K 749 5
Amazon 80K 251K 245K 249K 1892 5

of vertices also ranges from 20K to 80K. The description of some evolving graphs are
shown in Table 1.

Let Gs = (Vs, Es) be the resulting MFCC (a subtree with the max F(Gs) in G).
We test the effectiveness of our approach using five measures as follows:

– P(Gs): The percentage of the number of change edges over the total number of
edges in Gs, and is defined as P(Gs) = Number of change edges in Gs

Total number of edges in Gs
. The larger P(Gs)

the better resulting Gs found.
– A(Gs): The average number of edge changes in Gs and is defined as A(Gs) =∑

ei∈Es ai
|Es| where ai is the number of the edge ei change times inG. The larger A(Gs)

the better resulting Gs found.
– Percentage τ : LetGs be the induced subgraph of Vs inG. τ measures the number

of edge changes in Gs over that inG, and is defined as τ =
∑

ei∈Gs ai∑
ei∈G ai

. This measure

is essentially the fraction of edge change times among the vertices captured by
our algorithm.

– Ratio λ: Consider f (Gs) = �(Gs)

N(Gs)
that reflects the density of cumulated connec-

tivity change, where �(Gs) is the cumulative connectivity change of all pairs of
vertices in Gs and N(Gs) is the number of pairs of vertices in Gs. λmeasures the
density of connectivity change of Gs compared with that of the universal graph
G, and is defined as λ = f (Gs)

f (G)
.

– H(u) order: H(u) = ∑
v �(u, v) is the affected connectivity count of vertex u.

We sort all the vertices inG in the descending order byH(u). We call it theH(u)
order. The ratio of vertices with H(u) order measures the percentage of vertices
in Gs that are in the top x % ofH(u) order. This measure measures whether the
edge-connectivity of vertices in Gs are affected most frequently.
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It is worth noting that these measures are used to evaluate the MFCC we found,
but cannot be used as an objective function to find such MFCC. It is because we will
find only one edge or vertex from G by these measures and this result is obvious
meaningless.

Exp-1 P(Gs) and A(Gs): We test P(Gs) and A(Gs) using 12 datasets (refer to
Table 2). The size of Gs found by our algorithm is also shown in Table 2.
When the size of universal graphG is 20K, for Chicago and Sanjose datasets,
the size ofGs are 422 and 388 respectively. It is a small fraction of G. We see
P(Gs) ≥ 97 % and A(Gs) are always higher than other regions, A(G−Gs).
Take Chi-2 as an example. The subgraphGs found is with 289 vertices among
the total number of 10K vertices in the evolving graph G. The length of
the evolving graph for Chi-2 is ‖G‖ = 30. Therefore, the max number of
changes per edge is 30. In the subgraph found for Chi-2, the average number
of edge changes per edge is 25.8, and the average number of edge changes
per edge for the remaining part of the evolving graph is 0.21. For other
datasets, we also find the value of A(Gs) is far more than A(G− Gs). In
addition, we study the size |V ′

s| of the MFCC when the objective function is
f (Gs) = �(Gs)

N(Gs)
. In Table 2, we find that V ′

s are always two vertices. It means
Gs is always a single edge that change times is the most in G. This result is
obvious meaningless.

Exp-2 H(u) order: We study H(u) order of vertices in Gs using 12 datasets. The
ratio of vertices with H(u) order is shown in Table 3. From Table 3, we see
that at least 85% vertices inGs appears in the top 10% ofH(u) order, and at
least 93 % vertices in Gs appears in the top 20 % of H(u) order. For almost
all the vertices in Gs, they are in the top 30 % of H(u) order. These results
show that the edge-connectivity among vertices in subgraph Gs are affected
most in whole graphG.
We also study the relationship between betweenness and cumulated connec-
tivity change. Betweenness is an important centrality measure of a vertex in
a way that vertices that occur on many shortest paths between other vertices

Table 2 Effectiveness: P(Gs)

and A(Gs).
Dataset |Vs| P(Gs) A(Gs) A(G−Gs) F(Gs) |V′

s|
Chi-1 153 0.99 8.4 0.71 237.15 2
Chi-2 228 0.96 8.7 0.27 329.07 2
Chi-4 217 0.97 16.3 0.37 161.81 2
Chi-6 289 0.99 25.8 0.21 165.94 3
Chi-7 397 0.97 8.5 0.18 324.68 2
Chi-8 422 0.98 8.3 0.15 91.28 4
San-1 137 0.98 8.2 0.21 425.38 2
San-3 142 0.96 17.1 0.65 502.55 2
San-5 151 0.99 26.6 0.97 176.41 2
San-6 196 0.98 7.7 0.33 362.67 2
San-7 307 0.97 8.6 0.15 606.33 2
San-8 388 0.99 8.3 0.18 124.13 3
Slashdot 412 0.99 1.8 0.02 273.19 2
Slashdot 886 1 1.6 0.01 176.54 3
Amazon 537 0.99 3.7 0.06 338.98 2
Amazon 934 1 3.3 0.04 185.04 2
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Table 3 Effectiveness: H(u). Top % of H(u) order

Dataset 10 % 20 % 30 % 40 % 50 %

Chi-1-5K 0.85 0.93 0.99 1 1
Chi-2-10K 0.89 0.96 1 1 1
Chi-4-10K 0.88 0.96 1 1 1
Chi-6-10K 0.91 0.95 1 1 1
Chi-7-15K 0.95 0.99 1 1 1
Chi-8-20K 0.97 1 1 1 1
San-1-5K 0.82 0.94 0.98 1 1
San-3-5K 0.86 0.97 1 1 1
San-5-5K 0.87 0.95 1 1 1
San-6-10K 0.93 0.99 1 1 1
San-7-15K 0.94 0.97 1 1 1
San-8-20K 0.92 0.96 0.99 1 1
Slashdot-20K 0.96 1 1 1 1
Slashdot-80K 0.98 1 1 1 1
Amazon-20K 0.94 1 1 1 1
Amazon-80K 1 1 1 1 1

have higher betweenness. Given a graph G = (V, E), for any vertex v, the
betweenness of v is defined as follows. CB(v) = ∑

s �=v �=t∈V
σst(v)

σst
, where σst is

the number of shortest paths from s to t, and σst(v) is the number of shortest
paths from s to t that pass through vertex v. We define the betweenness
change of v for a graph sequence G as �B(v) = ∑‖G‖

2 |Ct
B(v)− Ct−1

B (v)|,
where Ct

B(v) is the betweenness of v in snapshot Gt. Like H(u) order, B(u)
order can be defined. We sort all vertices in descending order of �B(v). We
study how many vertices occur in the top x % of H(u) and B(u) order at
the same time. Formally, we measure T(x) = |H(u)∩B(u)|

|H(u)∪B(u)| . For Slashdot and
Amazon datasets, in Figure 5a, the value of T(x) are always less than 10 %
when x % = 10 % and x % = 20 %. This fact shows the vertices affected
most by cumulated connectivity change are different from that affected
most by betweenness change. Therefore, the MFCC found by cumulated
connectivity change cannot be obtained by betweenness change.

Exp-3 Ratio λ of Gs to G: In Figure 6, we investigate the ratio λ by varying the
number of vertices on datasets of Chicago, Sanjose, Slashdot, and Amazon.
From Figure 6, we see all curves satisfy a common property: the ratio λ

increases while the vertex size increases. In Figure 6a, the size of vertices
ranges from 5K to 20K. When the number of vertices is 5K, the density
of cumulated connectivity change of Gs is 100 times as much as G for
Chicago and Sanjose datasets respectively. When the size increases to 20K,
the density of Gs is nearly 800 times as much as G for Chicago and Sanjose
datasets respectively. For Slashdot and Amazon datasets, in Figure 6b, λ is
500 when the number of vertices is 20K. We also find λ increases while the
size increases. When the vertex size is 80K, λ is nearly 1,000. These results
confirm the effectiveness of our approach for larger networks.

Exp-4 Ratio λ′ of Gs to random graph Gr: Like λ, we define λ′ = f (Gs)

f (Gr)
. We test λ′

of Gs using a random subgraph Gr of G with r vertices. If r < |V(Gs)|, only
vertices in Gs are randomly selected. If r > |V(Gs)|, in addition to Gs, Gr
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Figure 5 Find-max testing.

contains extra vertices randomly selected in G that are reachable from Gs.
The random subgraphGr is generatedwith distinct size: 50, 100, 200, 500, 1K,
and 2K, respectively.We fix the size of the whole graph 20K for Chicago and
Sanjose datasets, and fix the size 80K for Slashdot and Amazon. The results
of this experiment are shown in Figure 7. For Chicago and Sanjose datasets,
in Figure 7a, λ′ is high when r ≥ 1,000 and λ′ is low when r = 500. This is
because the size ofGs is nearly 500 andGr is close toGs when 200 ≤ r ≤ 500.
For Slashdot and Amazon, in Figure 7b, λ′ is minimum at r = 1,000. This is
also becauseGr is close toGs. For these four datasets, we observe λ′ is always
larger than 10. It means the density of cumulated connectivity change of Gs

is always 10 times larger than random graphGr. This fact indicates shrinking
or expanding Gs will decrease the effectiveness of Gs.

Exp-5 Percentage τ of Gs to G: As shown in Figure 8a, for Chicago and Sanjose
Datasets, the curves of τ increase marginally while the size of vertices
increases from 5K to 20K. When the number of vertices is 20K, τ is larger
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than 80 %. It states that 80 % of edge change times in G is captured by
a small fraction of vertices found by our approach. Similarly, in Figure 8b,
for Slashdot and Amazon, τ also increases while the graph size increases
from 20K to 80K. The edge change times among the vertices found by our
approach is nearly 90 % of the edge change times among all vertices in G.
These results confirm that our approach captures the important component
where the edges change most frequently.

Exp-6 The impact of parameter γ : In Figure 9, we investigate the impact of para-
meter γ on Sanjose, Chicago, Amazon and Slashdot datasets. The number
of vertices of these four datasets are 5K, 10K, 20K and 80K respectively. We
fix the length of evolving graphs 30 for Sanjose and Chicago datasets and
fix the length of evolving graphs 3 and 5 for Slashdot and Amazon datasets
respectively.We vary the value of γ from 0 to 2.5. As shown in Figure 9a and
c, we find that the size of Gs decreases with γ increasing. When γ = 0, the
whole graph G is found. When γ = 2.5, the most frequently changed edge
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Figure 9 Impact of parameter γ .

is found. The more γ , the less number of vertex pairs in Gs that cannot be
connected by a path consisting of change edges. These results state the size
of Gs can be controlled by parameter γ . In addition, as shown in Figure 9b
and d, we find the value of F(Gs) is also decreases with γ increasing. When
γ = 0, F(Gs) essentially is �(Gs)− α(Gs). Because the whole graph G is
found at this time, then F(Gs) is �(G)− α(G), which is the largest for the
curves in Figure 9c and d. Note that, for a fixed γ , the F(Gs) for Gs found by
our algorithm is maximum among all possible subgraphs in G, even though
F(Gs) decreases with γ increasing.

5.1 Efficiency results

Exp-7 �(u, v) computing: We first study the performance of computing ccc by
comparing naive-ccc and 2-way-ccc. We use the max-flow algorithm to
compute k-edge-connectivity for every two different vertices for a given
graph. In Figure 10, we vary the size of the vertices from 5K to 80K with
the fixed length of the evolving graph 10.
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Figure 10a and b show the results using Chicago and Sanjose datasets
respectively. When the number of vertices is about 5K, the computing time
for naive-ccc is in the order of 105 already. 2-way-ccc is nearly 100 times
faster than naive-ccc. Note that 2-way-ccc only needs to compute edge-
connectivity twice for every Gt−1 and Gt. To evaluate the scalability, as
shown in Figure 10c and d, we test the computing time of our algorithm
by varying the size of vertices from 20K to 80K on Slashdot and Amazon
datasets. When the number of vertices is larger than 40K, the naive method
cannot perform but 2-way-ccc perform well.

Exp-8 The Efficiency of Find-Max: In Figure 10, Find-Max indicates the time to
compute lines 3–7 in Algorithm 2, the total time to compute Algorithm 2
is the time to compute 2-way-ccc plus Find-Tree. For Chicago and Sanjose
datasets, We test the computing time by varying the number of vertices with
the fixed length 10 of the evolving graphs. As shown in Figure 10a and b, the
computing time for Find-Max is in the order of 102 s, and can be done very
efficiently. To evaluate scalability, in Figure 10c and d, we test the computing
time of Find-Max on Slashdot and Amazon datasets. We vary the graph size
from 20K to 80K.When the number of vertices is 80K, the computing time is
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still in order of 103 s and it states excellent scalability of algorithm Find-Max.
We also test computing time by varying the length of evolving graphs from
10 to 30 in Figure 5b. We use two datasets: Chi-2 and San-1. The number of
vertices are fixed at 10K and 5K respectively. The computing time increases
marginally, and is not sensitive to the length of evolving graphs.

6 Related work

In recent years, there are many works on evolving graph problem. Sun et al. in
[28] present dynamic tensor analysis, which incrementally summarizes tensor streams
(high-order graph streams) as smaller core tensor streams and projection matrices.
Sun et al. in [27] propose GraphScope which discovers communities in large and
dynamic graphs, as well as detects the changing time of communities. Tong et al. in
[31] propose a family of Colibri methods to track low rank approximation efficiently
over time. The authors in [15, 25, 26] propose distinct measure functions such as
maximum common subgraph to detect when the graph changes. However, because
utilizing these measure functions to compute all subgraphs in an evolving graph
is infeasible, these works cannot answer where the changes occur frequently in an
evolving graph.

There is an increasing interest in mining dynamic graphs. Borgwardt et al. in
[3] apply frequent-subgraph mining algorithms to time series of graphs, and extract
subgraphs that are frequent within the set of graphs. Bifet and Gavaldà in [2] present
three closed treemining algorithms to mining frequent closed tree in evolving graphs.
The extraction of periodic or near periodic subgraphs is considered in [18] where the
problem is shown to be polynomial. Inokuchi and Washio in [16] and Robardet in
[24] discuss finding frequent evolving patterns in dynamic networks. Chan et al. in
[4] introduce a new pattern to be discovered from evolving graphs, namely regions of
the graph that are evolving in a correlated manner. All of these works are to finding
a subgraph sequence pattern, such that (a) its embedding in a graph sequence is
frequent and (b) the behavior of these embedding are identical over time. Liu et al.
in [20] proposes a random walk model with restart to discover subgraphs that exhibit
significant changes in evolving networks. However, this method is only concerned
with changes between two graphs, and cannot quantify changes of subgraph in a time
interval. A subgraph which changes significantly in two successive time steps may not
change frequently in the whole time interval.

Ren et al. in [23] propose the FVF framework to answer shortest path query for
all snapshots in evolving graphs. Aggarwal et al. in [1] use a structural connectivity
model to detect outliers which act abnormally in some snapshots of graph streams.
Feigenbaumet al. in [11] explore the problem related to compute graph distances in a
data-streammodel, whose goal is to design algorithms to process the edges of a graph
in an arbitrary order given only a limited amount of memory. Tantipathananandh
et al. in [29, 30] propose frameworks and algorithms for identifying communities
in social networks that change over time. Diehl and Görg in [7] present a generic
algorithm for drawing sequences of graphs, and address the problem of computing
layouts of graphs which evolve over time. There are many works that focus on some
properties such as k-connectivity andminimal spanning tree in dynamic graphs. Even
and Shiloach in [10] study the connected component problem (k = 1) in the early
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1980s. Frederickson in [12] study the minimum spanning tree problem by giving a
fully dynamic algorithm. Westbrook and Tarjan in [32] present the first partially
dynamic algorithm for the maintenance of both 2-edge connected components and
biconnected (2-vertex connected) components. Liang et al. in [19] deal with the
fully dynamic maintenance of 2, 3-connected components of a graph in the parallel.
Jarry et al. in [17] study the strongly connected components in evolving graphs with
geometric properties. Dinitz and Nossenson in [8] propose an abstract model that
describes the graph connectivity structure. By this model, they can check whether
two vertices belong to the same 5-edge-connectivity class under edge insertion.
Henzinger in [14] present an insertion-only algorithm for maintaining the exact and
approximate size of minimum edge cut and minimum vertex cut of a graph. The
objectives of above works are not to find the subgraph that changes frequently in an
evolving graph.

7 Conclusion

In this paper, we studied finding a subgraph which change most in an evolving graph.
We proposed an objective function F(·) to find a connected subgraph Gs in G, with
the max F(Gs) value. Our function F(·) is based on the cumulated connectivity
change, and is effectively used to identify the most changed subgraph with a small
number of unchanged edges included. We gave two new algorithms to compute
cumulated connectivity change and a novel algorithm to identify the subgraph Gs

with the max F(Gs). We confirmed the effectiveness and efficiency of our algorithms
using real-life datasets.
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