# Mining most frequently changing component in evolving graphs

Yajun Yang · Jeffrey Xu Yu · Hong Gao · Jian Pei · Jianzhong Li

Received: 20 October 2012 / Revised: 4 January 2013 / Accepted: 17 January 2013 / Published online: 23 February 2013 © Springer Science+Business Media New York 2013

**Abstract** Many applications see huge demands of finding important changing areas in evolving graphs. In this paper, given a series of snapshots of an evolving graph, we model and develop algorithms to capture the most frequently changing component (MFCC). Motivated by the intuition that the MFCC should capture the densest area of changes in an evolving graph, we propose a simple yet effective model. Using only one parameter, users can control tradeoffs between the "density" of the changes and the size of the detected area. We verify the effectiveness and the efficiency of our approach on real data sets systematically.

**Keywords** Detecting graph changes • Evolving graphs

# **1** Introduction

Graphs have been widely used to model complex relationships among various entities in real applications, and often evolve over time. For example, in social

Y. Yang · H. Gao · J. Li Harbin Institute of Technology, Harbin, People's Republic of China

Y. Yang e-mail: yjyang@hit.edu.cn

H. Gao e-mail: honggao@hit.edu.cn

J. Li e-mail: lijzh@hit.edu.cn

J. X. Yu (⊠) Chinese University of Hong Kong, Hong Kong, Hong Kong e-mail: yu@se.cuhk.edu.hk

J. Pei Simon Fraser University, Burnaby, Canada e-mail: jpei@cs.sfu.ca network, the relationships between any two community or people always evolve over time. Recently, there are many works that study how do the relationships evolve among various entities in networks [6, 21, 22, 33, 34]. An evolving graph can be modeled as a series of snapshots  $\mathbf{G} = (G_1, G_2, \dots, G_{\|\mathbf{G}\|})$ , where each snapshot  $G_i$   $(1 \le i \le \|\mathbf{G}\|)$  is a graph. Discovering frequently changing areas in evolving graphs is critical in many applications.

As a concrete example, consider a road traffic network, where each edge represents a road segment with smooth traffic. As traffic keeps changing over time, the road traffic network is evolving. By analyzing and capturing the most frequently changing areas in a series of snapshots of the traffic network, say a snapshot every 30 minutes, one can obtain meaningful insights into how traffic jams are formed. Specifically, those road segments that are smooth or jammed most of the time, i.e., the infrequently changing edges and areas, either are not for concern or cannot be improved easily. Instead, those frequently changing edges and areas, i.e., those road segments that may have heavy traffic easily and also can be smoothened quickly, are critical for traffic scheduling and route planning. Detecting the most frequently changing areas in such an evolving traffic network is the core of the task.

As another interesting example, consider a financial relationship network among business entities, where an edge between two parties indicates that the total amount of the transactions between the corresponding parties in a period (e.g., a month) is over some threshold. The government finance administration units often monitor such financial relationship network for possible frauds and regulation violation. Those frequently changing edges and areas in such a financial relationship network are particularly interesting since they capture the potentially unusual bursting financial relationship among a set of entities.

Modeling and finding the most frequently changing areas in evolving graphs is far from trivial. On the one hand, it is easy to find the most frequently changing edge, i.e., a pair of vertices that are connected and disconnected the largest number of times in the snapshots. However, such an edge is not informative in analyzing the whole evolving graph. On the other hand, changes may likely occur extensively in many places in a large graph. Returning the whole graph or a large portion of it may be neither interesting nor useful for analysis. In fact, an analyst often has to balance between the change frequency and the size of the changing components detected. Moreover, isolated changes are often less interesting. Instead, we want to find the changes that are connected well in the graph topology.

In this paper, we tackle the problem of discovering the most frequently changing components (MFCC) in evolving graphs, and make important progress. First, we propose an elegant model of frequently changing components. Our model, motivated by the intuition of density of changes in evolving snapshots, encompasses the important factors discussed above. Specifically, our model captures the dense connected components in evolving graphs, and takes only one parameter that allows a user to control the tradeoff between the "density" and the size. Our model is built concretely on the well adopted notions of connectivity and maximum flow analysis on large graphs.

Discovering MFCC is computationally challenging. We develop an efficient algorithm to find MFCC on evolving graphs. Our method has a time complexity of  $O(|V|^2 \log |V|))$ , where V is the set of vertices in the evolving graph, which allows the mining task to be conducted on many practical middle size graphs. We verify the effectiveness and efficiency of our approach using real data sets systematically.

## 2 Modeling most frequently changing components

the related work. We conclude the paper in Section 7.

In this paper, we consider simple undirected graphs only. An evolving graph can be modeled as a series of undirected graphs, denoted by  $\mathbf{G} = (G_1, G_2, \dots, G_{||\mathbf{G}||})$ , where  $G_t = (V_t, E_t)$  is a snapshot at time t with a set of vertices  $V_t$  and a set of edges of  $E_t$ .  $||\mathbf{G}||$  is the number of  $G_t$  in  $\mathbf{G}$  and is called the length of  $\mathbf{G}$ . Taking  $\overline{\mathbf{V}} = \bigcup_{t=1}^{||\mathbf{G}||} V_t$ , we can assume each graph  $G_t$  is on the vertex set  $\overline{\mathbf{V}}$ , and thus the vertex set is constant in our analysis. Only the edge set is changing in different snapshots.

report an empirical evaluation on real-life datasets in Section 5. Section 6 discusses

## 2.1 Measuring changes between vertex pairs

We measure the changes between snapshots using the maximum number of independent paths (maximum flow). Given a snapshot  $G_t = (V_t, E_t)$ , a pair of vertices u and v in  $G_t$  is said to be k-edge-connected ( $k \ge 1$ ), if removing any k - 1 edges in  $G_t$  cannot disconnect u and v. Intuitively, if u and v are k-edge-connected, they must be (k - 1)-edge-connected, but the other way does not hold. Denote by  $econ_t(u, v)$  the maximum value of k such that u and v are k-edge-connected in graph  $G_t$ , that is,  $econ_t(u, v) = \max\{k \mid u \text{ and } v \text{ are } k$ -edge-connected in  $G_t\}$ . For simplicity, we use k and  $econ_t(u, v)$  alternately to denote maximum value of k such that u and v are k-edge-connected.

We can measure the connectivity change between u and v from  $G_{t-1}$  to  $G_t$  as follows.

$$\delta_t(u, v) = |\mathsf{econ}_t(u, v) - \mathsf{econ}_{t-1}(u, v)| \tag{1}$$

The *k*-edge-connectivity of *u* and *v*, though being a popularly used and informative measure, does not capture all changes affecting both *u* and *v* in an evolving graph.  $\delta_t(u, v)$  may be 0, even if some edges are added in  $G_t$  and/or deleted from  $G_{t-1}$ . For instance, in Figure 1, two edges (a, b) and (e, d) in  $G_{t-1}$  (left) are deleted in  $G_t$  (right). In addition, two new edges (a, d) and (e, b) are added into  $G_t$ . The connectivity change between every pair of vertices is zero. Consequently, using connectivity change we cannot detect the changes between the two snapshots.

In order to capture all possible changes, we have to consider the similarity between two graphs. Graph edit distance can help here.

**Figure 1** An example:  $G_{t-1}$  (*left*) is changed to  $G_t$  (*right*).



Given two graphs,  $G_t = (V_t, E_t)$  and  $G_{t-1} = (V_{t-1}, E_{t-1})$  where  $V_t = V_{t-1}$ . The edit distance between  $G_t$  and  $G_{t-1}$ , denoted by  $|\Delta E_t|$ , is the minimum number of edge edit operations, including edge-insertions and edge-deletions, to transform  $G_{t-1}$  into  $G_t$ . In our setting, under the assumption that the vertices are unique and  $V_{t-1} = V_t$ ,  $\Delta E_t = (E_{t-1} \setminus E_t) \cup (E_t \setminus E_{t-1})$ . Let  $\Delta E_t = (e_1^{d_t}, \dots, e_p^{d_t}, e_{p+1}^{a_t}, \dots, e_{p+q}^{a_t})$  be the set of edge-changes, where  $e_i^{d_t}$  is an edge  $e_i$  existing in  $G_{t-1}$  deleted in  $G_t$   $(1 \le i \le p)$ , and  $e_j^{a_t}$  is an edge  $e_j$  inserted in  $G_t$   $(p+1 \le j \le p+q)$ . Denote by  $\overline{g}_t = (g_1, \dots, g_p, g_{p+1}, \dots, g_{p+q})$  a sequence of edge-by-edge changing graphs from  $G_{t-1}$  to  $G_t$ , where  $G_{t-1} = g_0, g_i$  is the graph deleting edge  $e_i^{d_t}$  from  $g_{i-1}$  when  $1 \le i \le p$ , and  $g_j$  is the graph adding a new edge  $e_j^{a_t}$  into  $g_j$  when  $p+1 \le j \le p+q$ , and  $g_{p+q} = G_t$ . Note  $|\overline{g}_t| = p+q$ .

We define the **cumulated connectivity change** between two vertices u and v from  $G_{t-1}$  to  $G_t$  as

$$\Delta_t(u,v) = \sum_{i=1}^{|\overline{g}_i|} \delta_i(u,v)$$
(2)

Here,  $\delta_i(u, v)$  measures the connectivity change between u and v when  $g_{i-1}$  is changed to  $g_i$  in  $\overline{\mathbf{g}}_t$ . Please note that  $\Delta_t(u, v)$  is independent from the specific order of edge deletions and insertions in  $\overline{\mathbf{g}}$ , respectively. We will prove it in Theorem 2. Consider an intermediate graph  $G_b$  between  $G_{t-1}$  and  $G_t$ , where  $G_b$  is constructed by removing all deletion edges  $e_i^{d_t}$   $(1 \le i \le p)$  in  $\Delta E_t$  from  $G_{t-1}$ . In fact,  $\Delta_t(u, v)$  is only related to the intermediate graph  $G_b$ . In the other words,  $\Delta_t(u, v)$  is not related to that how  $G_{t-1}$  is changed to  $G_b$  and how  $G_b$  is changed to  $G_t$ .

The cumulated connectivity change between u and v in the entire graph sequence G is then

$$\Delta(u, v) = \sum_{t=2}^{\|\mathsf{G}\|} \Delta_t(u, v) \tag{3}$$

For  $G_{t-1}$  and  $G_t$  in Figure 1,  $\overline{g}_t$  is shown in Figure 2. The cumulated connectivity change between *a* and *b* is  $\Delta_t(a, b) = \sum_{i=1}^4 \delta_i(a, b) = 1 + 1 + 1 + 1 = 4$ .

## 2.2 Modeling frequently changing components

For an evolving graph G, we define a universal graph  $\overline{G} = (\overline{V}, \overline{E})$ , where  $\overline{V} = \bigcup_{1 \le t \le ||G||} V_t, \overline{E} = \bigcup_{1 \le t \le ||G||} E_t$ . A frequently changing component is a subgraph of  $\overline{G}$ .

For a subgraph  $G_s$  of  $\overline{\mathbf{G}}$ , how can we measure the quality of  $G_s$  as a frequently changing component? We first consider two straightforward objective functions



**Figure 2**  $\overline{g}_t$  for  $G_{t-1}$  and  $G_t$  in Figure 1.

based on connectivity change. First,  $\Delta(G_s) = \sum_{u,v \in G_s, u \neq v} \Delta(u, v)$ . Based on  $\Delta(G_s)$ , the MFCC of  $\overline{G}$  is  $\overline{G}$  itself. This does not provide any information about changes. Second,  $f(G_s) = \frac{\Delta(G_s)}{N(G_s)}$ , where  $N(G_s)$  is the number of vertex pairs in  $G_s$ , i.e.,  $N(G_s) = |\{(u, v)|u, v \in G_s\}|$ . Intuitively,  $f(G_s)$  reflects the density of connectivity change for every vertex pair in  $G_s$ . Here,  $N(G_s)$  controls the size of  $G_s$  such that  $f(G_s)$  is larger when  $N(G_s)$  is smaller. However,  $N(G_s)$  becomes larger very quickly when  $G_s$  becomes larger. Hence, based on  $f(G_s)$ , it is most likely that the MFCC is a single edge that change times is the most in evolving graph. This result is obvious meaningless.

We propose the following new objective function.

$$F(G_s) = \frac{\Delta(G_s) - \alpha(G_s)}{\beta(G_s)^{\gamma}}$$
(4)

where  $0 \le \gamma$  is parameter,

$$\Delta(G_s) = \sum_{u,v \in G_s, u \neq v} \Delta(u, v)$$
(5)

$$\alpha(G_s) = \sum_{(u,v) \in E_s, u \neq v} \alpha(u,v) \tag{6}$$

$$\beta(G_s) = |E_s| + \beta_c(G_s) \tag{7}$$

 $\alpha(u, v) = \sum_{t=2}^{\|G\|} \alpha_t(u, v)$ , that is,  $\alpha(u, v)$  is the number of times that the edge (u, v) remains unchanged in G. Here,  $\alpha_t(u, v) = 1$  if edge (u, v) appears in both  $G_{t-1}$  and  $G_t$ ; otherwise,  $\alpha_t(u, v) = 0$ .  $\alpha(G_s)$  is the sum of  $\alpha(u, v)$  for any two different vertices u and v in  $G_s$ . Similar to  $N(G_s)$ , we use  $\beta(G_s)$  to control the size of  $G_s$ .  $\beta_c(G_s)$  is the number of pairs of vertices in  $G_s$  that cannot be connected by a path consisting of change edges. We use cpath(u, v) to denote a path in  $\overline{G}$  between two vertices u and v such that every edge on this path is changed at least once. Then,  $\beta_c(G_s)$  is the number of pairs of u and v in  $G_s$  such that there does not exist a cpath(u, v) between u and v in  $\overline{G}$ , or in other words, there are unchanged edges in every path between u and v. The motivation of  $\beta_c(G_s)$  is that the less unchanged edges are expected to appear in  $G_s$ . Consider a subgraph  $G_s$  including two vertices u and v, if there is no cpath(u, v) between u and v, then there must be an edge that never changes in  $G_s$ . It is important to note that  $\beta_c(G_s)$  is designed to become smaller when there are more edge-changes in  $G_s$ . It assists to obtain a reasonable large MFCC when there are many edge-changes.

The ratio in (4) essentially measures the density of connectivity change in subgraph  $G_s$ . The nominator measures the changes in  $G_s$ . Specifically,  $\Delta(G_s)$  captures the changing edges and  $\alpha(G_s)$  is the total number of edges unchanged in  $G_s$ . The denominator measures the stable elements. Specifically, instead of using the total number of vertex pairs in  $G_s$  as the denominator, we only count the number of vertex pairs that cannot be connected by a path consisting of change edges ( $\beta_c(G_s)$ ).

The parameter  $\gamma$  controls the importance of vertex pairs that cannot be connected by a cpath in the frequently changing component found. If  $\gamma = 0$ , the whole graph  $\overline{G}$ will be returned. If  $\gamma = \infty$ , then the most frequently changed edge will be returned.

*Example 1* Consider the evolving graph  $G = (G_1, G_2, \dots, G_6)$  in Figure 3.  $\overline{G}$  is also shown. The number times an edge is changed is also labeled in  $\overline{G}$ . Consider a



**Figure 3** An example,  $\mathbf{G} = (G_1, G_2, \dots, G_6), \overline{\mathbf{G}}$ , and the max  $G_s$ .

subgraph  $G_s$  in the same figure. Assuming  $\gamma = 1$ ,  $F(G_s) = (\Delta(a, b) - \alpha(a, b) + \Delta(b, c) - \alpha(b, c) + \Delta(a, c))/(|E_s| + \beta_c(G_s)) = (3 + 5 + 4)/(2 + 0) = 6$ . Here,  $\Delta(a, c) = 4$ , but the edge (a, c) does not change. Thus, the edge (a, c) does not necessarily to be included in the subgraph  $G_s$ . In other words, if we insert the edge (a, c) into  $G_s$ , the numerator decreases by  $\alpha(a, c) = 5$ . On the other hand, if we insert another vertex into  $G_s$ , the denominator increases. Thus,  $F(G_s)$  is the maximum among all possible subgraphs in  $\overline{G}$ . This  $G_s$  is the graph to be found.

Given an evolving graph  $G = (G_1, G_2, \dots, G_{||G||})$ , and parameter  $\gamma$ , the **problem** of discovering the most frequently changing component (MFCC) is to find a connected subgraph  $G_s$  ( $\subseteq \overline{G}$ ) such that  $F(G_s)$  is maximized. Note that  $G_s$  is a subgraph of  $\overline{G}$ , but it does not necessarily need to be an induced subgraph of  $\overline{G}$ .

## 2.3 Some properties of MFCC

We show that the vertices in  $G_s$  with the max  $F(G_s)$  to be found is a tree.

First, for any pair of vertices u and v in  $\overline{G}$ , if there exists a cpath(u, v), we say  $u \stackrel{c}{=} v$ . Based on the definition, given vertices, u, u', and v in  $\overline{G}$ , if  $u \stackrel{c}{=} v$  and  $u' \stackrel{c}{=} v$ , then  $u \stackrel{c}{=} u'$ . In other words, if there exists a cpath(u, v) and a cpath(v, u'), then there must exist a cpath(u, u'). Thus, the relationship  $\stackrel{c}{=}$  is reflexive, transitive and symmetry. All vertices of graph  $\overline{G}$  can be partitioned by  $\stackrel{c}{=}$  into equivalence classes which we call cpath-components. We denote by PC a subset of vertices in  $\overline{G}$  in which every pair of vertices, u and v, satisfies  $u \stackrel{c}{=} v$ .

Second, given a subgraph  $G_s = (V_s, E_s)$  of  $\overline{\mathbf{G}}$ , the value of  $\beta(G_s)$  consists of two parts,  $|E_s|$  and  $\beta_c$ , where  $\beta_c(G_s)$  is only related to the cpath-component of vertices set  $V_s$ . That is,

$$\beta(G_s) = |E_s| + \sum_{i \neq j} |\mathsf{PC}_i| \times |\mathsf{PC}_j| \tag{8}$$

Here,  $PC_i$  and  $PC_j$  are two distinct **cpath**-components in  $G_s$ . We explain (8) below. By the definition,  $\beta_c(G_s)$  is to compute the number of pairs of vertices u and v in  $G_s$  if there does not exist  $\operatorname{cpath}(u, v)$  or  $\stackrel{c}{=}(u, v)$  is not true. Therefore, if u and v in  $G_s$  are not in the same  $\operatorname{cpath}$ -component,  $\beta_c(G_s)$  will increase by 1 when computing u and v, and (8) computes all such pairs. As an example, in Figure 3, (a, b, c, f) is a cpath component  $\operatorname{PC}_a$ . For other 3 vertices, there are four cpath components  $\operatorname{PC}_d$ ,  $\operatorname{PC}_e$ , and  $\operatorname{PC}_g$  which consist of one vertex. Therefore,  $\beta(\overline{G}) = |\overline{E}| + \sum_{i \neq j} |\operatorname{PC}_i| \times |\operatorname{PC}_j| = 23$ .

Third, (4) can be computed using (9) below for a graph  $G_s(V_s, E_s)$ , based on (8).

$$F(G_s) = \frac{\sum\limits_{u,v \in V_s, u \neq v} \Delta(u, v) - \sum\limits_{(u,v) \in E_s} \alpha(u, v)}{\left( |E_s| + \sum\limits_{i \neq j} |\mathsf{PC}_i| \times |\mathsf{PC}_j| \right)^{\gamma}}$$
(9)

**Theorem 1** For a given subset of vertices  $V_s$  in  $\overline{G}$ ,  $G_s$  over  $V_s$  with the max  $F(G_s)$  value is a connected tree.

*Proof sketch* We prove it by showing that  $G_s$  cannot be a non-tree graph. Assume that, for a given subset of vertices  $V_s \subseteq \overline{G}$ ,  $G_s$  that has the max  $F(G_s)$  among all connected subgraphs consisting of  $V_s$  is not a tree. Then, there must exist a cycle in  $G_s$ . Let  $\phi = F(G_s)$  using (9). Suppose (u, v) is one of the edges in the cycle. If we delete it,  $G_s$  is still a connected subgraph. According to (9) and the definition of  $\alpha(u, v)$ , the numerator increases by  $\alpha(u, v)$  after deleting the edge (u, v), and the denominator  $\beta(G_s)$  will decrease by 1 at least, because  $|E_s|$  becomes  $|E_s| - 1$ . Therefore  $\phi$  will increase, when the edge (u, v) is deleted from  $G_s$ . This is contradict with the assumption. This leads to the conclusion that the MFCC in  $\overline{G}$  that has the max  $F(\cdot)$  value is a tree.

By Theorem 1, we know  $G_s$  is in a tree shape. In fact,  $F(G_s)$  is a subset  $V_s$  of connected vertices, among which the density of connectivity changes is the largest. In the other words, these vertices are organized in a tree shape.

It is important to note that any valid objective function  $F(G_s)$  should satisfy the following property.

*Property* 1 Given any two graphs  $G_a$  and  $G_c$ . Let  $G_1 = (G_a, G_c)$  and  $G_2 = (G_c, G_a)$ . The  $F(G_s)$  computed from both  $G_1$  and  $G_2$  are the same.

We verify this claim by Lemma 2 in Section 3.

#### 3 Compute ccc

A key point of the problem is to compute cumulated connectivity change  $\Delta(u, v)$ (3). In order to compute  $\Delta(u, v)$ , we need to compute  $\Delta_t(u, v)$  for  $||\mathbf{G}|| - 1$  times, because  $\Delta(u, v)$  is the sum of  $\Delta_t(u, v)$  (2), for every pair of vertices (u, v) in **G**, for  $u \neq v$ . Suppose that there are p edge-deletions and q edge-insertions from  $G_{t-1}$ to  $G_t$  in **G**. This implies that there is a sequence of single-edge-change graphs,  $\overline{\mathbf{g}}_t = (g_1, \dots, g_p, g_{p+1}, \dots, g_{p+q})$  and  $||\overline{\mathbf{g}}_t| = p + q$ , from  $G_{t-1}$  to  $G_t$ . Consequently, in order to compute  $\Delta_t(u, v)$ , it needs to compute k-edge-connectivity for every two different vertices over each  $g_i \in \overline{g}_i$ , and repeats it p + q times. The cost of doing so is extremely high. We call such a naive approach as a multi-way approach.

In this section, we propose a new approach called 2-way-ccc. As the name implies, in order to compute  $\Delta_t(u, v)$ , we only compute k-edge-connectivity for every two different vertices twice. 2-way-ccc does not rely on the number of edge-deletions and edge-insertions when  $G_{t-1}$  is changed to  $G_t$ , when computing  $\Delta_t(u, v)$ . Note:  $2 \ll p + q$  in general.

## 3.1 A 2-way-ccc approach

We discuss some properties on k-edge-connectivity changes, and then give the algorithm.

**Lemma 1** Let  $\overline{g}_t$  be the sequence of single-edge-change graphs,  $\overline{g}_t = (g_1, \dots, g_p, g_{p+1}, \dots, g_{p+q})$  from  $G_{t-1}$  to  $G_t$ . Let  $g_0 = G_{t-1}$ ,  $g_i$  is a graph either (1) by inserting a new edge e that does not appear in  $g_{i-1}$  or (2) by deleting an existing edge e from  $g_{i-1}$ . For any pair of vertices u and v in  $g_i$ ,  $\delta_i(u, v)$  (refer to (2)) increases by 1 at most for case (1) and decreases by 1 at most for case (2).

*Proof sketch* We prove the edge-deletion case by contradiction. If an edge *e* is deleted from graph  $g_{i-1}$ , for any pair of vertices *u* and *v*, it is obvious that the connectivity cannot increase. Let  $econ_{i-1}(u, v) = k$  in  $g_{i-1}$ . Assume that  $econ_i(u, v) = k - 2$  at most in  $g_i$  after *e* deleted from  $g_{i-1}$ . There exists an edge-cut set  $E_c = \{e_1, \dots, e_{k-2}\}$ . If we delete all k - 2 edges in  $E_c$  from  $g_i$ , *u* and *v* will be disconnected. Otherwise, *u* and *v* are (k - 1)-edge-connected at least in  $g_i$ . This is contradict with the assumption. We add the deleted edge *e* into  $E_c$  and obtain another edge-cut set  $E'_c$  of k - 1 edges. If we delete all edges in  $E'_c$  from  $g_{i-1}$ , *u* and *v* will be disconnected. This is contradict with the fact that *u* and *v* are *k*-edge-connected in  $g_{i-1}$ . Similarly, the edge-insertion case can be proved.

Lemma 1 ensures that the k-edge-connectivity for any pair of vertices u and v is affected by 1 at most when there is an edge change. Next, we investigate whether the order of edge-changes (deletions/insertions) will affect computing  $\Delta_t(u, v)$ . Reconsider the sequence of single-edge-change graphs,  $\overline{g}_t = (g_1, \dots, g_p, g_{p+1}, \dots, g_{p+q})$ , from  $G_{t-1}$  to  $G_t$ .  $\overline{g}_t$  corresponds a sequence of edge changes, namely,  $\Delta E_t =$  $\Delta E_t^d \oplus \Delta E_t^a$ , where  $\Delta E_t^d = (e_1^{d_t}, \dots, e_p^{d_t})$  represents a sequence of edge-deletions, and  $\Delta E_t^a = (e_1^{a_t}, \dots, e_q^{a_t})$  represents a sequence of edge-insertions. Note  $\oplus$  indicates an operator that concatenates two sequences. Based on  $\Delta E_t^d$  and  $\Delta E_t^a$ , we consider three graphs in sequence,  $(G_a, G_b, G_c)$ , for two consecutive graphs,  $G_{t-1}$  and  $G_t$ , in G. Here,  $G_a = G_{t-1}, G_c = G_t$ , and  $G_b$  is constructed by deleting all the edges in  $\Delta E_t^d$ from  $G_a$ . As a sequence,  $G_c$  is a graph by inserting all edges in  $\Delta E_t^a$  into  $G_b$ . We show that the order of edge-deletions among those in  $\Delta E_t^d$  will not affect cumulated connectivity change between  $G_a$  and  $G_b$ , and the order of edge-insertions among those in  $\Delta E_t^a$  will not affect cumulated connectivity change computing between  $G_b$ and  $G_c$ .

**Theorem 2** Consider  $\Delta E_t^d$  as a set of edge-deletions that transfers  $G_a$  to  $G_b$ . Assume  $S_1$  and  $S_2$  be two different sequences of  $\Delta E_t^d$  to transfer  $G_a$  to  $G_b$ . Let  $\Delta_{a,b}^1(u, v)$  be the

cumulated connectivity change  $\Delta_{a,b}(u, v)$  when  $G_b$  is obtained from  $G_a$  using  $S_1$ , and let  $\Delta^2_{a,b}(u, v)$  be the cumulated connectivity change  $\Delta_{a,b}(u, v)$  when  $G_b$  is obtained from  $G_a$  using  $S_2$ .  $\Delta^1_{a,b}(u, v) = \Delta^2_{a,b}(u, v)$ . In a similar fashion, consider  $\Delta E_t^a$  as a set of edge-insertions that transfers  $G_b$  to  $G_c$ . Assume  $S_3$  and  $S_4$  be two different sequences of  $\Delta E_t^a$  to transfer  $G_b$  to  $G_c$ . Let  $\Delta^3_{b,c}(u, v)$  be the cumulated connectivity change  $\Delta_{b,c}(u, v)$  when  $G_c$  is obtained from  $G_b$  using  $S_3$ , and let  $\Delta^4_{b,c}(u, v)$  be the cumulated connectivity change  $\Delta_{b,c}(u, v)$  when  $G_c$  is obtained from  $G_b$  using  $S_4$ .  $\Delta^3_{b,c}(u, v) = \Delta^4_{b,c}(u, v)$ .

*Proof sketch* It can be shown based on Lemma 1 that the value of connectivity for any two vertices, u and v, decreases (increases) monotonously for a set of edge-deletions (edge-insertions).

Given Theorem 2, we know both  $\Delta_{a,b}(u, v)$  and  $\Delta_{b,c}(u, v)$  are independent of the order of edge-deletions and edge-insertions, and are only related to the intermediate graph  $G_b$ . We can compute  $\Delta_t(u, v)$  between  $G_{t-1}$  and  $G_t$  as  $\Delta_{a,b}(u, v) + \Delta_{b,c}(u, v)$  between  $G_a$  and  $G_b$  and between  $G_b$  and  $G_c$ . It is worth noting that  $\Delta_{a,b}(u, v)$  and  $\Delta_{b,c}(u, v)$  are order insensitive among all edge-deletions and edge-insertions, respectively.

Next, we prove our objective function (4) (or (9)) satisfies Property 1.

## **Lemma 2** Our objective function (4) (or (9)) satisfies Property 1.

Proof sketch According to (4),  $F(G_s)$  consists of three parts:  $\Delta(G_s)$ ,  $\alpha(G_s)$  and  $\beta(G_s)$ . Given any two graphs  $G_a$  and  $G_c$ . Let  $G_1 = (G_a, G_c)$  and  $G_2 = (G_c, G_a)$ . Furthermore, let  $\Delta_1(G_s)$ ,  $\alpha_1(G_s)$ , and  $\beta_1(G_s)$  be the values computed for  $G_1$ , and  $\Delta_2(G_s)$ ,  $\alpha_2(G_s)$ , and  $\beta_2(G_s)$  be the values computed for  $G_2$ . Because  $\alpha_i(G_s)$  and  $\beta_i(G_s)$  are only affected by the edge-changes between  $G_a$  and  $G_c$ , for i = 1, 2, we have  $\alpha_1(G_s) = \alpha_2(G_s)$  and  $\beta_1(G_s) = \beta_2(G_s)$ . We only need to prove  $\Delta_1(G_s) = \Delta_2(G_s)$ . Following Theorem 2, we can construct  $G_{b_1}$  as an intermediate graph for  $G_1$  and construct  $G_{b_2}$  as an intermediate graph for  $G_2$ . Deviously,  $G_{b_1} = G_{b_2}$ . Because  $\Delta_i(G_s)$  is only related to the intermediate graph  $G_{b_i}$ , for i = 1, 2, we have  $\Delta_1(G_s) = \Delta_2(G_s)$  and Lemma 2 is proved.

The 2-way-ccc algorithm for computing  $\Delta(u, v)$  for every pair of vertices in **G** is shown in Algorithm 1.

The complexity analysis is given below. For 2-wAY-CCC, we need to compute edgeconnectivity for every pair of vertices in graph G(V, E) using max-flow algorithm twice at each time step. The Push-Relabel method with time complexity  $O(|V|^2 \cdot |E|)$ [5] is the asymptotic fastest in all max-flow algorithms. In fact, by Edmonds–Karp Algorithm, the time complexity is  $O(|E| \cdot |f^*|)$  [5], where  $|f^*|$  is the max-flow between two vertices. In our problem, we consider the capacity of each edge as 1. The max-flow between u and v must be less than  $\min(d(u), d(v))$ , where d(u) is the degree of vertex u. Thus, the max-flow is less than |V|. Thus, the time complexity of computing edge-connectivity is less than  $O(|V| \cdot |E|)$ . Gomory and Hu state that edge-connectivity of all pairs of vertices in an undirected graph can be computed using |V| - 1 max-flow computations [13]. At each time step, the time complexity of 2-wAY-CCC is  $O(|V|^2 \cdot |E|)$ . We need two matrices to maintain the edge-connectivity

| Algorithm 1 2-WAY-CCC (G)                                                      |
|--------------------------------------------------------------------------------|
| <b>Input:</b> $G = (G_1, G_2, \dots, G_{  G  }).$                              |
| <b>Output:</b> compute $\Delta(u, v)$ for every pair of vertices in G.         |
| 1: $\Delta(u, v) \leftarrow 0$ for every u and v in G;                         |
| 2: <b>for</b> $t = 2$ to $  \mathbf{G}  $ <b>do</b>                            |
| 3: let $G_a \leftarrow G_{t-1}, G_c \leftarrow G_t;$                           |
| 4: let $G_b$ be the graph by deleting all edges in $\Delta E_t^d$ from $G_a$ ; |
| 5: <b>for</b> each pair of vertices $u, v \in \mathbf{G}$ <b>do</b>            |
| 6: compute $\Delta_{a,b}(u, v)$ ;                                              |
| 7: compute $\Delta_{b,c}(u, v)$ ;                                              |
| 8: $\Delta_t(u, v) \leftarrow \Delta_{a,b}(u, v) + \Delta_{b,c}(u, v);$        |
|                                                                                |

9:  $\Delta(u, v) \leftarrow \Delta(u, v) + \Delta_t(u, v);$ 

and the cumulated connectivity change for every pair. The space complexity is  $O(|V|^2)$ .

## 4 Find MFCC

In this section, we give our algorithm to find MFCC. It is important to note that  $G_s \subseteq \overline{G}$  with the max  $F(G_s)$  is a connected tree by Theorem 1.

For a given  $G_s$ , to compute  $F(G_s)$  (4), there are three main components,  $\Delta(G_s)$  (5),  $\alpha(G_s)$  (6) and  $\beta(G_s)$  (7). Most of the components are already computed when computing ccc. In Section 3, we discussed how to compute  $\Delta(u, v)$  (3), with which  $\Delta(G_s)$  can be easily computed.  $\beta(G_s)$  consists of  $E_s$  and  $\beta_c(G_s)$ , where  $\beta_c(G_s)$  is only related to the cpath-components in  $\overline{G}$ . We can compute  $\beta(G_s)$  using (8). Also, it is straightforward to compute  $\alpha(u, v)$  which can be done while computing  $\Delta(u, v)$ . Note that the value of  $\alpha(u, v)$  for any edge in  $G_s$  is only related to the times of the edge no change.

A  $G_s(V_s, E_s)$  is constructed as a tree for a given subset of vertices  $V_s$  (Theorem 1). Given a subset of vertices  $V_s$  in  $\overline{\mathbf{G}}$ ,  $\Delta(G_s)$ ,  $\beta_c(G_s)$  and  $|E_s|$  are determined. Maximizing  $F(G_s)$  ((4) or (9)) on  $V_s$ , for a subgraph  $G_s(V_s, E_s)$ , is equivalent to minimizing  $\alpha(G_s) = \sum_{(u,v) \in E_s} \alpha(u, v)$ . Therefore, we treat  $\overline{\mathbf{G}}$  as an edge-weighted graph. Every edge  $(u, v) \in \overline{\mathbf{G}}$  is associated with a weight  $\alpha(u, v)$ . Our problem becomes to find a minimum spanning tree on  $V_s$  in terms of  $\alpha(u, v)$ .

We give two properties regarding minimum spanning tree which will be used later in our algorithm. Below, for a given graph G, we use  $G - \{v\}$  to denote an induced subgraph of G after deleting the vertex v from G, and use  $G + \{v\}$  to denote a min induced subgraph of  $\overline{G}$  containing G and an additional vertex v.

**Lemma 3** Given an edge-weighted graph G, let its minimum spanning tree be T. If v is any a leaf vertex of T, the minimum spanning tree for  $G - \{v\}$  is  $T - \{v\}$ .

*Proof sketch* Note that there may exist more than one minimum spanning tree, say  $T_1$  and  $T_2$  for G. The two trees can be different but both trees must have the same total minimum value,  $\sum_{u,v\in T_1} w(u,v) = \sum_{u,v\in T_2} w(u,v)$ . Lemma 3 suggests that any

of the minimum spanning trees can be *T*. We prove it by contradiction. Suppose there exists another minimum spanning tree *T'* for  $G - \{v\}$ . We insert the edge (u, v) whose weight is the minimum among all the edges connecting to vertex *v* into *T'*. Then,  $\sum_{(u',v')\in T'+\{v\}} w(u',v')$  becomes less than  $\sum_{(u',v')\in T} w(u',v')$ , *T* is not the minimum spanning tree of *G*. This leads to the contradiction.

**Lemma 4** Given a graph G, let its minimum spanning tree be T. Suppose that deleting a vertex v from G divides G into l connected components  $G_i = (V_i, E_i)$ , for  $1 \le i \le l$ , where every two  $G_i$  and  $G_j$  for  $i \ne j$  are disconnected. Then, the minimum spanning tree of  $G_i + \{v\}$  is  $T_i + \{v\}$ . Here,  $G_i + \{v\}$  represents the induced subgraph of G on the set of vertices  $V_i + \{v\}$ , and  $T_i + \{v\}$  represents the induced subtree of T on the set of vertices  $V_i + \{v\}$ .

Lemma 4 can be proved in a similar way as to prove Lemma 3.

*The algorithm* Our new algorithm, called FIND-MAX, is given in Algorithm 2. There are two main phases.

In the first phase, we collect information to compute  $\Delta(u, v)$ ,  $\alpha(u, v)$ ,  $\beta(G_s)$ , and construct  $\overline{G}$ , for a given evolving graph G (lines 1 and 2). we use  $L_{\Delta}$  to denote the set of { $\Delta(u, v)$ } for every pair of different u and v in G. It can be computed using 2-way-ccc(G) as discussed in the previous section. We use  $L_{\alpha}$  to denote the set of { $\alpha(u, v)$ } for every edge (u, v) in G. Note that 2-way-ccc(G) needs to scan the entire G once. While doing that, we can compute  $\alpha(u, v)$  for every edge (u, v) in G. Also, we use  $L_{PC}$  to denote the set of { $PC_i(\overline{V})$ } for all cpath-components in  $\overline{G}$ . We show how to do it below. For a pair of graphs,  $G_{t-1}(V, E_{t-1})$  and  $G_t(V, E_t)$ , in G(V, E), we construct a delta graph  $\Delta G_t(V, \Delta E_t)$  where  $\Delta E_t = (E_{t-1} \setminus E_t) \cup (E_t \setminus E_{t-1})$ . Then, we construct  $\Delta G = \bigcup_{t=2}^{\|G\|} \Delta G_t$ . Every edge in  $\Delta G$  changes at least once in  $\overline{G}$ . And every connected component in  $\Delta G$  must be a cpath-component for the vertices in  $\overline{G}$ . We compute all PCs for  $\overline{G}(\overline{V}, \overline{E})$ . Every two vertices, u and v, in the same  $PC_i(\overline{V})$ , are  $u \stackrel{c}{=} v$ . Note that we use  $PC_i(\overline{V})$  to indicate  $PC_i$  is found over  $\overline{V}$ . By  $L_{PC}$  and (8), we can compute  $\beta(G_s)$  easily.

## Algorithm 2 FIND-MAX (G)

# Input: G.

**Output:** the subgraph  $G_s$  with the max  $F(G_s)$ .

- 1: Let  $L_{\Delta}$ ,  $L_{PC}$ , and  $L_{\alpha}$  be the sets of  $\Delta(u, v)$ ,  $\beta(u, v)$ ,  $\alpha(u, v)$  for every pairs of u and v in G;
- 2: compute  $L_{\Delta}$ ,  $L_{PC}$ ,  $L_{\alpha}$  using 2-way-ccc (G) and obtain  $\overline{G}$  at the same time;
- 3: let  $G_s$  be a spanning tree with the min  $\alpha(G_s)$  of  $\overline{G}$ ;

```
4: let \mathcal{T} \leftarrow \emptyset;
```

- 5:  $G_s \leftarrow \text{Find-Tree}(\mathsf{G}_s, L_\Delta, L_{\mathsf{PC}}, L_\alpha, \mathcal{T}(\emptyset));$
- 6: **if**  $G_s = \emptyset$  and  $\mathcal{T} \neq \emptyset$  **then**
- 7:  $G_s \leftarrow \text{Tree-Traverse} (\mathcal{T}, L_{\Delta}, L_{\mathsf{PC}}, L_{\alpha});$
- 8: return  $G_s$ ;

In a summary, we construct the universal graph  $\overline{\mathsf{G}}(\overline{\mathsf{V}}, \overline{\mathsf{E}})$  for  $\mathsf{G}$ , and we treat it as a weighted graph where each edge, (u, v), is associated with a weight  $w(u, v) = \alpha(u, v)$ . In addition, we have  $L_{\Delta}$  and  $L_{\mathsf{PC}}$ .

In the second phase, we find the connected subtree  $G_s$  of  $\overline{\mathbf{G}}$  with the max  $F(G_s)$ (lines 3–7). We start by finding the minimum spanning tree with the min  $\alpha(\overline{\mathbf{G}})$  for all the vertices in  $\overline{\mathbf{G}}$  (line 3). Then we find the minimum spanning tree (in terms of  $\alpha$ ) over the selected subset of vertices,  $V_s$ , of  $\alpha(G_s)$ . Such a subset  $V_s$  is formed by removing a vertex from  $\overline{\mathbf{G}}$  in an one-by-one fashion. While removing a vertex from a subset of vertices  $V_s$  one-by-one, we pay attention to two things: (1) the vertex removal will not miss the subtree  $G_s$  with the max  $F(G_s)$ , and (2) such a subtree  $G_s$ must be connected. This is done using a data structure called a partition-tree in two steps: partition-tree construction and partition-tree traversal. In the partition-tree construction, we remove vertices that cannot be included in the final  $G_s$  with the max  $F(G_s)$ , and maintain some  $G_s$  that can possibly be the final answer. In the partitiontree, and compute the final  $G_s$  with the max  $F(G_s)$ .

As shown in Algorithm 2, we call FIND-TREE with  $G_s$  (a min spanning tree of  $\overline{G}$  in terms of  $\alpha(G_s)$ ) to start the vertex removal process (line 5). FIND-TREE will return either a non-empty  $G_s$ , which is the answer with the max  $F(G_s)$ , or an empty  $G_s$ . When FIND-TREE returns an empty  $G_s$ , FIND-TREE will return a non-empty partition-tree  $\mathcal{T}$  constructed by FIND-TREE. With the partition-tree  $\mathcal{T}$ , we find the subtree  $G_s$  with the max  $F(G_s)$  by calling TREE-TRAVERSE (line 7).

## 4.1 FIND-TREE

The FIND-TREE algorithm is given in Algorithm 3. We compute the value of  $\phi_s = F(G_s)$ , where  $G_s$ , an input to FIND-TREE, is a minimum spanning tree (in terms of  $\alpha$ ). We use  $\mathcal{X}$  to maintain the set of vertices such that we cannot obtain a minimum spanning tree (connected) over  $G_s - \{x\}$  if  $x \in \mathcal{X}$ . Such a vertex is called a cut-vertex. Next, we remove a vertex from  $G_s$  one-by-one in a loop (lines 3–15). In the loop, for each vertex  $u \notin \mathcal{X}$  (which means that removing u may construct a connected subtree), we remove u from  $G_s$ . Let the tree after removing u from  $G_s$  be  $G_u$ . There are two cases when removing u from  $G_s$ .

**Case 1** (*u* is a leaf node of  $G_s$ ): We do not need to compute the minimum spanning tree on  $V_s - \{u\}$ , because we know the minimum spanning  $G_u$  is  $G_s - \{u\}$  based on Lemma 3. We compute  $\Delta(G_u)$  and  $\beta(G_u) = \beta(G_s) - \sum_{u \notin \mathsf{PC}_i(\overline{\mathsf{V}})} \mathsf{PC}_i(\overline{\mathsf{V}}) - 1$ , respectively, and then compute  $F(G_u)$ .

**Case 2** (*u* is not a leaf node of  $G_s$ ): We try to find the minimum spanning tree  $G_u$  over  $V_u = V_s - \{u\}$ , and compute  $\alpha(G_u)$ . If  $G_u$  is connected, we compute  $F(G_u)$  as we do in Case 1. If  $G_u$  is not connected, we let  $\phi_u$  be  $-\infty$  and record this information by inserting *u* into  $\mathcal{X}$  (line 9).

After attempting to remove every vertex  $u \in G_s$  (lines 4–9), we find the subtree with the max  $F(\cdot)$  among all possible  $G_u$ , and denote it as  $G_{\max}$  with  $\phi_{\max}$  (=  $F(G_{\max})$ ) (line 10). We compare  $\phi_{\max}$  (after removal of a vertex) with  $\phi_s$  of  $G_s$ . Let  $\phi_\delta = \phi_{\max} - \phi_s$ . If  $\phi_\delta \ge 0$ , it implies that  $F(\cdot)$  increases by removing a vertex from  $G_s$ , and we **Algorithm 3** FIND-TREE  $(G_s, L_{\Lambda}, L_{PC}, L_{\alpha}, \mathcal{T}(\bullet))$ **Input:**  $G_s \subseteq \overline{\mathbf{G}}$ ,  $L_{\Delta}$  (a set of  $\Delta(u, v)$  for every pair of u and v in  $\overline{\mathbf{G}}$ ),  $L_{\mathsf{PC}}$  (a set of  $\beta(u, v)$  for every pair of u and v in  $\overline{\mathsf{G}}$ ),  $L_{\alpha}$  (a set of  $\alpha(u, v)$  for every pair of u and v in  $\overline{\mathbf{G}}$ ), and  $\mathcal{T}(\bullet)$  (a partition tree with a node  $\bullet$  marked)). **Output:** the subgraph  $G_s$  with the max  $F(G_s)$ . 1:  $\phi_s \leftarrow F(G_s)$ ; 2:  $\mathcal{X} \leftarrow \emptyset$ ; 3: repeat for every vertex  $u \in G_s$  and  $u \notin \mathcal{X}$  do 4: 5: let  $G_u$  be a tree by removing u from  $G_s$ ; if  $G_s$  is connected then 6: 7:  $\phi_u \leftarrow F(G_s);$ else 8: 9:  $\phi_u \leftarrow -\infty; \mathcal{X} \leftarrow \mathcal{X} \cup \{u\};$ 10: let  $\phi_{\text{max}}$  be the  $\phi_u$  that has the max value and  $G_{\text{max}}$  be the corresponding  $G_u$ ; 11:  $\phi_{\delta} \leftarrow \phi_{\max} - \phi_s;$ 12. if  $\phi_{\delta} \geq 0$  then 13:  $G_s \leftarrow G_{\max}; \phi_s \leftarrow \phi_{\max};$  $\mathcal{X} \leftarrow \emptyset$ : 14: 15: **until**  $\phi_{\delta} \leq 0$ 16: if  $\mathcal{X} = \emptyset$  and  $\mathcal{T} = \emptyset$  then return G<sub>s</sub>: 17: 18: if  $\mathcal{X} \neq \emptyset$  then 19:  $(x, G_{s_1}, G_{s_2}) \leftarrow \text{Cut-Node} (G_s, L_\Delta, L_{\mathsf{PC}});$ create a new node  $\odot$  labeled with a triple  $(x, G_s, \phi_s)$ ; 20: 21: if  $\mathcal{T} = \emptyset$  then let  $\odot$  be the root of  $\mathcal{T}$ ; 22: 23: else add  $\odot$  as a child of the marked node • in  $\mathcal{T}$ ; 24: FIND-TREE  $(G_{s_1}, L_{\Delta}, L_{\mathsf{PC}}, L_{\alpha}, \mathcal{T}(\odot));$ 25: 26: FIND-TREE  $(G_{s_2}, L_{\Delta}, L_{\mathsf{PC}}, L_{\alpha}, \mathcal{T}(\odot));$ 27: if  $\mathcal{X} = \emptyset$  and  $\mathcal{T} \neq \emptyset$  then create a new node  $\odot$  labeled with a triple ( $\emptyset$ ,  $G_s$ ,  $\phi_s$ ); 28: add  $\odot$  as a leaf node of the marked node • in  $\mathcal{T}$ ; 29: 30: return  $\emptyset$ ;

replace  $G_s$  and  $\phi_s$  with  $G_{\text{max}}$  and  $\phi_{\text{max}}$ , respectively (line 13). In addition, we reset  $\mathcal{X}$  to be empty, because in the next iteration in the loop, removing those vertices in  $\mathcal{X}$  may possibly result in a connected subtree (line 14).

We repeat the vertex removal process until we cannot remove any vertices (lines 3–15). It is worth noting that after this loop, we cannot remove any vertex u further to make  $\phi_u \ge \phi_s$ . At this stage,  $\mathcal{X} = \emptyset$  means the current  $G_s$  have no cutvertex, and  $\mathcal{T} = \emptyset$  means that the vertex removal process will always result in a connected subtree in the removal process until now. Note that  $\mathcal{T}$  is passed by an input to FIND-TREE, and FIND-TREE is a recursive procedure. If both  $\mathcal{X}$  and  $\mathcal{T}$  are empty, then the current  $G_s$  is the answer, and we return it (lines 16 and 17).

When  $\mathcal{X} \neq \emptyset$ , let  $\mathcal{X} = (x_1, \dots, x_m)$  be a set of *m* cut-vertices. We select one vertex *x* in  $\mathcal{X}$  to partition  $G_s(V_s, E_s)$  into two subtrees  $G_{s_1}$  and  $G_{s_2}$  using a procedure Cut-NODE, which we explain below.

Note on CUT-NODE For any vertex  $x_i$  in  $\mathcal{X}$ , removing  $x_i$  cuts the current subgraph  $G_s$  into  $c_i$  connected components  $G'_{i,1}, \dots, G'_{i,c_i}$ , where  $G'_{i,j}$  for  $1 \le j \le c_i$  does not contain  $x_i$ . Then we construct  $c_i$  connected components  $G_{i,1}, \dots, G_{i,c_i}$ , where  $G_{i,j} = G'_{i,j} + \{x_i\}$  for  $1 \le j \le c_i$  is a connected subtree that contains  $x_i$ . For each component  $G_{i,j}$ , we find its minimum spanning tree, and compute  $F(\cdot)$ . Based on Lemma 4, we know the minimum spanning tree of  $G_{i,j}$  can be found from the minimum spanning tree of  $G_s$ . We denote  $G_{i,\max}$  as  $G_{i,j}$  with the max  $\phi_{i,\max}$  among  $\phi_{i,j} = F(G_{i,j})$  for  $1 \le j \le c_i$ . We do the same for every cut-vertex  $x_i$  for  $1 \le i \le m$  in  $\mathcal{X}$ . We select the vertex  $x_i$  whose  $\phi_{i,\max}$  is the max among all  $\{\phi_{j,\max}\}$  for every  $x_j \in \mathcal{X}$ , as the cut-vertex. We denote the cut-vertex as  $x (= x_i)$ . Then, we create a new node in the partition tree, denoted as  $\odot$ , labeled with a triple  $(x_i, G_s, \phi_s)$ , and insert it as a child of the marked node  $\bullet$  in the partition tree  $\mathcal{T}$  (passed as an input to FIND-TREE). If  $\mathcal{T}$  is empty, we treat  $\odot$  as the root of  $\mathcal{T}$ . In addition, we create two subtrees,  $G_{s_1}$  and  $G_{s_2}$ , where  $G_{s_1} = G_{i,\max}$  if x is  $x_i$  and  $G_{s_2} = \bigcup G_{i,j}$  for  $1 \le j \le c_i$  and  $j \ne i$ .

With the result of CUT-NODE, we call FIND-TREE recursively twice using  $G_{s_1}$  and  $G_{s_2}$  (lines 25 and 26). The partition-tree  $\mathcal{T}$  is a binary tree to be constructed by FIND-TREE recursively. The leaf node of  $\mathcal{T}$  is added when  $\mathcal{X} = \emptyset$  and  $\mathcal{T} \neq \emptyset$  (lines 27–29).

## 4.2 Tree-Traverse

In FIND-MAX, TREE-TRAVERSE computes  $G_s$  with the max  $F(G_s)$  using the partitiontree  $\mathcal{T}$ , where each node is associated with a triple initially. We traverse  $\mathcal{T}$  in a bottom-up fashion, and process the non-leaf node with two leaf nodes first at a time. A non-leaf node with two leaf nodes will become a leaf node in the next step. During the traversal, a leaf node may have a set of triples:  $\{(\emptyset, G_{q_1}, \phi_{q_1}), (\emptyset, G_{q_2}, \phi_{q_2}), \cdots\}$ , if all  $\phi_{q_i}$  are the max and are the same. In general, a non-leaf node,  $t_s$ , in  $\mathcal{T}$  has a triple associated with  $(s, G_s, \phi_s)$ , and has two child nodes,  $t_q$  and  $t_r$ , where  $t_q$  and  $t_r$  are associated with two sets of triples  $\mathcal{Q} = \{(\emptyset, G_{q_1}, \phi_{q_1}), (\emptyset, G_{q_2}, \phi_{q_2}), \cdots\}$  and  $\mathcal{R} = \{(\emptyset, G_{r_1}, \phi_{r_1}), (\emptyset, G_{r_2}, \phi_{r_2}), \cdots\}$ . We update  $(s, G_s, \phi_s)$  to be a set  $\mathcal{S}$  of triples,  $\mathcal{S} = \{(\emptyset, G_{s_1}, \phi_{s_1}), (\emptyset, G_{s_2}, \phi_{s_2}), \cdots\}$ . Initially,  $\mathcal{S} = \{(s, G_s, \phi_s)\} \cup \mathcal{Q} \cup \mathcal{R}$ .

We update S as follows. First, for any  $G_{q_i}$  and  $G_{r_j}$ , if one vertex in  $G_{q_i}$  is contained in neighbor set of  $G_{r_j}$  over  $\overline{\mathbf{G}}$  (i.e.,  $G_{q_i} \cup G_{r_j}$  is connected in  $\overline{\mathbf{G}}$ ), we consider a new triple  $(\emptyset, G'_s, \phi'_s)$  in S among three subtrees: (a)  $G_{\text{new}} = G_{q_i} \cup G_{r_j}$ , (b)  $G_{q_i}$ , and (c)  $G_{r_j}$ . For (a), we compute  $\phi_{\text{new}} = F(G_{\text{new}})$ . By Lemma 4,  $\phi_{\text{new}}$  can be computed directly, and there is no need to find minimum spanning tree again. We select  $G_{\text{new}}$ with  $\phi_{\text{new}}$  as  $G'_s$  with  $\phi'_s$  and add it into S if  $\phi_{\text{new}}$  is max{ $\phi_{\text{new}}, \phi_{q_i}, \phi_{r_j}$ } among (a), (b), and (c). Second, we remove all the triples (,  $G_{s_i}, \phi_{s_i}$ ) from S if  $\phi_{s_i}$  is less than any other  $\phi_{s_i}$  for a triple (,  $G_{s_i}, \phi_{s_i}$ ) in S.

The final resulting  $G_s$  in this process is any  $G_{s_i}$  from the set of triples  $\{(\emptyset, G_{s_1}, \phi_{s_1}), (\emptyset, G_{s_2}, \phi_{s_2}), \cdots\}$  that are associated with the root of the partition-tree  $\mathcal{T}$  at the end of the process.

#### 4.3 An example

We explain it using an example (Figure 4). Here,  $\gamma = 1$ . Figure 4a shows  $\overline{G}$ . The edges marked by "||" mean that they change twice (the edges are deleted and then inserted). Figure 4b shows the minimum spanning tree  $G_s$  of G. Then, we want to know if there is any subtree of  $G_s$  with a larger  $F(\cdot)$ . Let  $G'_s$  be a subtree of  $G_s$  by removing one vertex from  $\{3, 4, 6, 7, 9, 10\}$ . Because  $F(G'_s) < F(G_s)$ , we cannot remove any of such vertices. Next, we consider removing vertices from  $\mathcal{X} =$  $\{1, 2, 5, 8\}$ . If we remove any one vertex from  $\mathcal{X}$ , the resulting  $G'_{s}$  is not connected. A vertex in  $\mathcal{X}$  can be a cut-vertex. Figure 4c shows the partition-tree  $\mathcal{T}$  to be constructed by FIND-TREE. For  $\mathcal{T}$  construction, here the vertex 2 is the cut-vertex to cut  $G_s$  into two subtrees  $G_{s_1}$  and  $G_{s_2}$ . It is because the subtree  $G_{s_1}$  over  $\{2, 3, 4\}$ is with the max  $F(\cdot)$  among all subtrees if we remove any vertex from  $\mathcal{X}$  to cut  $G_s$ .  $G_{s_2}$  is the subtree of  $G_s$  over the vertices {1, 2, 5, 6, 7, 8, 9, 10}. Here, the root of the partition-tree is a triple  $(2, G_s, F(G_s))$ , where 2 is the cut-vertex to cut  $G_s$ . The root has two children. One points to  $G_{s_1}$  and the other points to  $G_{s_2}$ . Next, consider  $G_{s_2}$ which is over the vertices  $\{1, 2, 5, 6, 7, 8, 9, 10\}$ . We can remove the vertex 2 from  $G_{s_2}$ , because the resulting subtree without the vertex 2 is connected and is with a larger  $F(\cdot)$ . Let  $G_s$  be a subtree over  $\{1, 5, 6, 7, 8, 9, 10\}$ . In a similar fashion, the cut vertex 8 is selected, which results in two subtrees. The completed partition-tree  $\mathcal{T}$  is shown in Figure 4c.

In TREE-TRAVERSE, with  $\mathcal{T}$  traversal, we find the subtree with max  $F(\cdot)$  in a bottom-up manner. Reconsider Figure 4c. The node in  $\mathcal{T}$  labeled  $\circledast$  is associated with a triple (8,  $G_s$ ,  $\phi_s$ ), where  $G_s$  is the subtree over the vertices {1, 5, 6, 7, 8, 9, 10} and  $\phi_s = F(G_s)$ . The node  $\circledast$  has two child nodes. The left is for a subtree  $G_{q_1}$  over {8, 9, 10} with  $\phi_{q_1} = F(G_{q_1})$ . The right is for a subtree  $G_{r_1}$  over {5, 6, 7} with  $\phi_{r_1} = F(G_{r_1})$ . We also consider if merging  $G_{q_1}$  and  $G_{r_1}$  can result in a connected subtree with a larger  $F(\cdot)$  value. Since  $G_{q_1}$  and  $G_{r_1}$  do not contain 8 (the cut vertex) together, they cannot be merged as a connected subtree. We update the information associated with  $\circledast$  to include  $G_{q_1}$  with  $\phi_{q_1}$  and  $G_{r_1}$  can be the final answer or be involved in the final answer. We repeat the same process for the root node  $\circledast$ . At the end, any of the three subtrees (indicated by three colors in Figure 4b) can be the final answer.



Figure 4 An example.

# 4.4 Time/space complexity

The dominating factor of FIND-MAX is FIND-TREE. We give the complexity for FIND-TREE. In the vertex removal process, for every vertex u, we compute  $\phi_u$  using the minimum spanning tree  $G_u$ . The cost of maintaining minimum spanning tree is  $O(\log |V|)$  [9]. Then one removal process take  $O(|V| \log |V|)$  times. In the worst case, we need execute |V| times for the vertex removal process. For  $\mathcal{T}$  traversal, we only need scan every node in  $\mathcal{T}$  once. Thus, the time complexity of FIND-TREE algorithm is  $O(|V|^2 \log |V|)$ . The space required for  $\mathcal{T}$  is  $O(|V|^2)$ . It is because there are |V| nodes in  $\mathcal{T}$  at most and we need keep  $G_s$  for a node s. Thus, the space complexity is  $O(|V|^2)$ .

# **5** Performance studies

In this section, we evaluate the effectiveness and efficiency of our algorithms on three real-life graph datasets including CAIDA Anonymized Internet Traces Datasets, Amazon, and Slashdot. To investigate the effectiveness, we propose five distinct measurements. We also test efficiency and scalability of our method. All experiments were done on a 2.2 GHz Intel Pentium Dual core PC with 2 GB main memory, running Windows XP. All algorithms are implemented by Visual C++ 6.0.

We tested the following three real datasets.

*CAIDA anonymized internet traces datasets* We use 2 datasets: Chicago and Sanjose. These datasets contain anonymized passive traffic trace from CAIDA's passive monitors on Chicago and Sanjose (2008-7-17 to 2009-10-15). In these datasets, there are more than 400K IP-addresses. We generate an evolving graph as follows. We treat a set of IP-addresses as a subnet if they have the same first *p* bits. Each subnet is considered as a vertex and there is an edge between two subnets if any two IP-addresses in the two distinct subnets are connected. We generate evolving graphs,  $G = (G_1, G_2, \cdots)$ , by generating graph  $G_t$  at different time. The size of vertices ranges from 5K to 20K. The length of an evolving graph ranges from 10 to 30. The details are shown in Table 1 for the 8 different evolving graphs. Each dataset is with a name, say Chi-1 (Chicago Number 1) or San-1 (Sanjose, Number 1).

Slahdot dataset (http://slashdot.org/) Slashdot is a technology related news website known for its specific user community. The website features user-submitted and editor-evaluated current primarily technology oriented news. The network was obtained in 2009. The users are nodes, and an edge between u and v represents user u agrees with user v's comment. This dataset contains 82,140 nodes and 349,202 edges. We generate three different snapshots for an evolving graph and the size of vertices ranges from 20K to 80K. Some evolving graphs are shown in Table 1.

*Amazon dataset* (http://snap.stanford.edu/data/) This network is collected by crawling Amazon website. It is based on *Customers Who Bought This Item Also Bought* feature of the Amazon website. The nodes in this network represent products. If a product is frequently co-purchased with another product, the graph contains an edge between them. This dataset is collected from March to June in 2003. The whole graph includes 262,111 nodes and 1,234,877 edges. We generate five snapshots and the size

| Table 1         Dataset           abaracteristics         Image: Constraint of the second | Name     | V   | $Max  E_t $ | $\operatorname{Min}  E_t $ | Avg $ E_t $ | Avg $ \Delta E_t $ | ∥G∥ |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----|-------------|----------------------------|-------------|--------------------|-----|
| characteristics.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Chi-1    | 5K  | 21K         | 20K                        | 20K         | 421                | 10  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Chi-2    | 10K | 32K         | 32K                        | 32K         | 545                | 10  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Chi-3    | 10K | 32K         | 31K                        | 31K         | 526                | 15  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Chi-4    | 10K | 32K         | 31K                        | 32K         | 577                | 20  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Chi-5    | 10K | 32K         | 31K                        | 32K         | 553                | 25  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Chi-6    | 10K | 32K         | 31K                        | 31K         | 532                | 30  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Chi-7    | 15K | 39K         | 37K                        | 38K         | 663                | 10  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Chi-8    | 20K | 51K         | 49K                        | 51K         | 688                | 10  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | San-1    | 5K  | 20K         | 19K                        | 19K         | 398                | 10  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | San-2    | 5K  | 20K         | 19K                        | 20K         | 402                | 15  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | San-3    | 5K  | 21K         | 19K                        | 20K         | 417                | 20  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | San-4    | 5K  | 21K         | 19K                        | 20K         | 385                | 25  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | San-5    | 5K  | 21K         | 19K                        | 20K         | 396                | 30  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | San-6    | 10K | 31K         | 30K                        | 30K         | 511                | 10  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | San-7    | 15K | 38K         | 36K                        | 38K         | 597                | 10  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | San-8    | 20K | 51K         | 48K                        | 50K         | 624                | 10  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Slashdot | 20K | 87K         | 86K                        | 87K         | 627                | 3   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Slashdot | 80K | 267K        | 263K                       | 266K        | 1626               | 3   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Amazon   | 20K | 61K         | 59K                        | 61K         | 749                | 5   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Amazon   | 80K | 251K        | 245K                       | 249K        | 1892               | 5   |

of vertices also ranges from 20K to 80K. The description of some evolving graphs are shown in Table 1.

Let  $G_s = (V_s, E_s)$  be the resulting MFCC (a subtree with the max  $F(G_s)$  in  $\overline{G}$ ). We test the effectiveness of our approach using five measures as follows:

- $\mathcal{P}(G_s)$ : The percentage of the number of change edges over the total number of edges in  $G_s$ , and is defined as  $\mathcal{P}(G_s) = \frac{\text{Number of change edges in } G_s}{\text{Total number of edges in } G_s}$ . The larger  $\mathcal{P}(G_s)$  the better resulting  $G_s$  found.
- $A(G_s)$ : The average number of edge changes in  $G_s$  and is defined as  $A(G_s) = \frac{\sum_{e_i \in E_s} a_i}{|E_s|}$  where  $a_i$  is the number of the edge  $e_i$  change times in G. The larger  $A(G_s)$  the better resulting  $G_s$  found.
- Percentage  $\tau$ : Let  $\overline{G}_s$  be the induced subgraph of  $V_s$  in  $\overline{G}$ .  $\tau$  measures the number of edge changes in  $\overline{G}_s$  over that in  $\overline{G}$ , and is defined as  $\tau = \frac{\sum_{e_i \in \overline{G}_s} a_i}{\sum_{e_i \in \overline{G}} a_i}$ . This measure is essentially the fraction of edge change times among the vertices captured by our algorithm.
- Ratio λ: Consider f(G<sub>s</sub>) = Δ(G<sub>s</sub>)/N(G<sub>s</sub>) that reflects the density of cumulated connectivity change, where Δ(G<sub>s</sub>) is the cumulative connectivity change of all pairs of vertices in G<sub>s</sub> and N(G<sub>s</sub>) is the number of pairs of vertices in G<sub>s</sub>. λ measures the density of connectivity change of G<sub>s</sub> compared with that of the universal graph G
  , and is defined as λ = f(G<sub>s</sub>)/f(G).
   H(u) order: H(u) = Σ<sub>v</sub> Δ(u, v) is the affected connectivity count of vertex u.
- $\mathcal{H}(u)$  order:  $\mathcal{H}(u) = \sum_{v} \Delta(u, v)$  is the affected connectivity count of vertex u. We sort all the vertices in  $\overline{\mathbf{G}}$  in the descending order by  $\mathcal{H}(u)$ . We call it the  $\mathcal{H}(u)$  order. The ratio of vertices with  $\mathcal{H}(u)$  order measures the percentage of vertices in  $G_s$  that are in the top x % of  $\mathcal{H}(u)$  order. This measure measures whether the edge-connectivity of vertices in  $G_s$  are affected most frequently.

It is worth noting that these measures are used to evaluate the MFCC we found, but cannot be used as an objective function to find such MFCC. It is because we will find only one edge or vertex from  $\overline{G}$  by these measures and this result is obvious meaningless.

- Exp-1  $\mathcal{P}(G_s)$  and  $A(G_s)$ : We test  $\mathcal{P}(G_s)$  and  $A(G_s)$  using 12 datasets (refer to Table 2). The size of  $G_s$  found by our algorithm is also shown in Table 2. When the size of universal graph  $\overline{\mathbf{G}}$  is 20K, for Chicago and Sanjose datasets, the size of  $G_s$  are 422 and 388 respectively. It is a small fraction of G. We see  $\mathcal{P}(G_s) > 97$  % and  $A(G_s)$  are always higher than other regions,  $A(\overline{\mathsf{G}} - G_s)$ . Take Chi-2 as an example. The subgraph  $G_s$  found is with 289 vertices among the total number of 10K vertices in the evolving graph G. The length of the evolving graph for Chi-2 is  $\|\mathbf{G}\| = 30$ . Therefore, the max number of changes per edge is 30. In the subgraph found for Chi-2, the average number of edge changes per edge is 25.8, and the average number of edge changes per edge for the remaining part of the evolving graph is 0.21. For other datasets, we also find the value of  $A(G_s)$  is far more than  $A(\mathbf{G} - G_s)$ . In addition, we study the size  $|V'_s|$  of the MFCC when the objective function is  $f(G_s) = \frac{\Delta(G_s)}{N(G_s)}$ . In Table 2, we find that  $V'_s$  are always two vertices. It means  $G_s$  is always a single edge that change times is the most in G. This result is obvious meaningless.
- Exp-2  $\mathcal{H}(u)$  order: We study  $\mathcal{H}(u)$  order of vertices in  $G_s$  using 12 datasets. The ratio of vertices with  $\mathcal{H}(u)$  order is shown in Table 3. From Table 3, we see that at least 85 % vertices in  $G_s$  appears in the top 10 % of  $\mathcal{H}(u)$  order, and at least 93 % vertices in  $G_s$  appears in the top 20 % of  $\mathcal{H}(u)$  order. For almost all the vertices in  $G_s$ , they are in the top 30 % of  $\mathcal{H}(u)$  order. These results show that the edge-connectivity among vertices in subgraph  $G_s$  are affected most in whole graph G.

We also study the relationship between betweenness and cumulated connectivity change. Betweenness is an important centrality measure of a vertex in a way that vertices that occur on many shortest paths between other vertices

| <b>Table 2</b> Effectiveness: $\mathcal{P}(G_s)$ and $A(G_s)$ . | -        |         |                    |          |                     | 7.00     |          |
|-----------------------------------------------------------------|----------|---------|--------------------|----------|---------------------|----------|----------|
|                                                                 | Dataset  | $ V_s $ | $\mathcal{P}(G_s)$ | $A(G_s)$ | $A(\mathbf{G}-G_s)$ | $F(G_s)$ | $ V'_s $ |
|                                                                 | Chi-1    | 153     | 0.99               | 8.4      | 0.71                | 237.15   | 2        |
|                                                                 | Chi-2    | 228     | 0.96               | 8.7      | 0.27                | 329.07   | 2        |
|                                                                 | Chi-4    | 217     | 0.97               | 16.3     | 0.37                | 161.81   | 2        |
|                                                                 | Chi-6    | 289     | 0.99               | 25.8     | 0.21                | 165.94   | 3        |
|                                                                 | Chi-7    | 397     | 0.97               | 8.5      | 0.18                | 324.68   | 2        |
|                                                                 | Chi-8    | 422     | 0.98               | 8.3      | 0.15                | 91.28    | 4        |
|                                                                 | San-1    | 137     | 0.98               | 8.2      | 0.21                | 425.38   | 2        |
|                                                                 | San-3    | 142     | 0.96               | 17.1     | 0.65                | 502.55   | 2        |
|                                                                 | San-5    | 151     | 0.99               | 26.6     | 0.97                | 176.41   | 2        |
|                                                                 | San-6    | 196     | 0.98               | 7.7      | 0.33                | 362.67   | 2        |
|                                                                 | San-7    | 307     | 0.97               | 8.6      | 0.15                | 606.33   | 2        |
|                                                                 | San-8    | 388     | 0.99               | 8.3      | 0.18                | 124.13   | 3        |
|                                                                 | Slashdot | 412     | 0.99               | 1.8      | 0.02                | 273.19   | 2        |
|                                                                 | Slashdot | 886     | 1                  | 1.6      | 0.01                | 176.54   | 3        |
|                                                                 | Amazon   | 537     | 0.99               | 3.7      | 0.06                | 338.98   | 2        |
|                                                                 | Amazon   | 934     | 1                  | 3.3      | 0.04                | 185.04   | 2        |

|              | Top % of $\mathcal{H}(u)$ order |      |      |      |      |  |  |  |
|--------------|---------------------------------|------|------|------|------|--|--|--|
| Dataset      | 10 %                            | 20 % | 30 % | 40 % | 50 % |  |  |  |
| Chi-1-5K     | 0.85                            | 0.93 | 0.99 | 1    | 1    |  |  |  |
| Chi-2-10K    | 0.89                            | 0.96 | 1    | 1    | 1    |  |  |  |
| Chi-4-10K    | 0.88                            | 0.96 | 1    | 1    | 1    |  |  |  |
| Chi-6-10K    | 0.91                            | 0.95 | 1    | 1    | 1    |  |  |  |
| Chi-7-15K    | 0.95                            | 0.99 | 1    | 1    | 1    |  |  |  |
| Chi-8-20K    | 0.97                            | 1    | 1    | 1    | 1    |  |  |  |
| San-1-5K     | 0.82                            | 0.94 | 0.98 | 1    | 1    |  |  |  |
| San-3-5K     | 0.86                            | 0.97 | 1    | 1    | 1    |  |  |  |
| San-5-5K     | 0.87                            | 0.95 | 1    | 1    | 1    |  |  |  |
| San-6-10K    | 0.93                            | 0.99 | 1    | 1    | 1    |  |  |  |
| San-7-15K    | 0.94                            | 0.97 | 1    | 1    | 1    |  |  |  |
| San-8-20K    | 0.92                            | 0.96 | 0.99 | 1    | 1    |  |  |  |
| Slashdot-20K | 0.96                            | 1    | 1    | 1    | 1    |  |  |  |
| Slashdot-80K | 0.98                            | 1    | 1    | 1    | 1    |  |  |  |
| Amazon-20K   | 0.94                            | 1    | 1    | 1    | 1    |  |  |  |
| Amazon-80K   | 1                               | 1    | 1    | 1    | 1    |  |  |  |

**Table 3** Effectiveness:  $\mathcal{H}(u)$ .

have higher betweenness. Given a graph G = (V, E), for any vertex v, the betweenness of v is defined as follows.  $C_B(v) = \sum_{s \neq v \neq t \in V} \frac{\sigma_{st}(v)}{\sigma_{st}}$ , where  $\sigma_{st}$  is the number of shortest paths from s to t, and  $\sigma_{st}(v)$  is the number of shortest paths from s to t that pass through vertex v. We define the betweenness change of v for a graph sequence **G** as  $\Delta_B(v) = \sum_{2}^{\|\mathbf{G}\|} |C_B^t(v) - C_B^{t-1}(v)|$ , where  $C_B^t(v)$  is the betweenness of v in snapshot  $G_t$ . Like  $\mathcal{H}(u)$  order,  $\mathcal{B}(u)$  order can be defined. We sort all vertices in descending order of  $\Delta_B(v)$ . We study how many vertices occur in the top x % of  $\mathcal{H}(u)$  and  $\mathcal{B}(u)$  order at the same time. Formally, we measure  $T(x) = \frac{|\mathcal{H}(u) \cap \mathcal{B}(u)|}{|\mathcal{H}(u) \cup \mathcal{B}(u)|}$ . For Slashdot and Amazon datasets, in Figure 5a, the value of T(x) are always less than 10 % when x % = 10 % and x % = 20 %. This fact shows the vertices affected most by cumulated connectivity change are different from that affected most by betweenness change. Therefore, the MFCC found by cumulated connectivity change are different from that affected most by betweenness change.

- Exp-3 Ratio  $\lambda$  of  $G_s$  to  $\overline{G}$ : In Figure 6, we investigate the ratio  $\lambda$  by varying the number of vertices on datasets of Chicago, Sanjose, Slashdot, and Amazon. From Figure 6, we see all curves satisfy a common property: the ratio  $\lambda$  increases while the vertex size increases. In Figure 6a, the size of vertices ranges from 5K to 20K. When the number of vertices is 5K, the density of cumulated connectivity change of  $G_s$  is 100 times as much as  $\overline{G}$  for Chicago and Sanjose datasets respectively. When the size increases to 20K, the density of  $G_s$  is nearly 800 times as much as  $\overline{G}$  for Chicago and Sanjose datasets respectively. When the size increases to 20K, the density of  $G_s$  is nearly 800 times as much as  $\overline{G}$  for Chicago and Sanjose datasets respectively. We also find  $\lambda$  increases while the size increases. When the vertex size is 80K,  $\lambda$  is nearly 1,000. These results confirm the effectiveness of our approach for larger networks.
- Exp-4 Ratio  $\lambda'$  of  $G_s$  to random graph  $G_r$ : Like  $\lambda$ , we define  $\lambda' = \frac{f(G_s)}{f(G_r)}$ . We test  $\lambda'$  of  $G_s$  using a random subgraph  $G_r$  of  $\overline{\mathbf{G}}$  with r vertices. If  $r < |V(G_s)|$ , only vertices in  $G_s$  are randomly selected. If  $r > |V(G_s)|$ , in addition to  $G_s$ ,  $G_r$



Figure 5 Find-max testing.

contains extra vertices randomly selected in  $\overline{G}$  that are reachable from  $G_s$ . The random subgraph  $G_r$  is generated with distinct size: 50, 100, 200, 500, 1K, and 2K, respectively. We fix the size of the whole graph 20K for Chicago and Sanjose datasets, and fix the size 80K for Slashdot and Amazon. The results of this experiment are shown in Figure 7. For Chicago and Sanjose datasets, in Figure 7a,  $\lambda'$  is high when  $r \ge 1,000$  and  $\lambda'$  is low when r = 500. This is because the size of  $G_s$  is nearly 500 and  $G_r$  is close to  $G_s$  when  $200 \le r \le 500$ . For Slashdot and Amazon, in Figure 7b,  $\lambda'$  is minimum at r = 1,000. This is also because  $G_r$  is close to  $G_s$ . For these four datasets, we observe  $\lambda'$  is always larger than 10. It means the density of cumulated connectivity change of  $G_s$  is always 10 times larger than random graph  $G_r$ . This fact indicates shrinking or expanding  $G_s$  will decrease the effectiveness of  $G_s$ .

Exp-5 Percentage  $\tau$  of  $G_s$  to  $\overline{G}$ : As shown in Figure 8a, for Chicago and Sanjose Datasets, the curves of  $\tau$  increase marginally while the size of vertices increases from 5K to 20K. When the number of vertices is 20K,  $\tau$  is larger



**Figure 6** Effectiveness: ratio  $\lambda$  of  $G_s$  to  $\overline{G}$ .



**Figure 7** Ratio  $\lambda'$  of  $G_s$  to random graph  $G_r$ .

than 80 %. It states that 80 % of edge change times in  $\overline{G}$  is captured by a small fraction of vertices found by our approach. Similarly, in Figure 8b, for Slashdot and Amazon,  $\tau$  also increases while the graph size increases from 20K to 80K. The edge change times among the vertices found by our approach is nearly 90 % of the edge change times among all vertices in  $\overline{G}$ . These results confirm that our approach captures the important component where the edges change most frequently.

Exp-6 The impact of parameter  $\gamma$ : In Figure 9, we investigate the impact of parameter  $\gamma$  on Sanjose, Chicago, Amazon and Slashdot datasets. The number of vertices of these four datasets are 5K, 10K, 20K and 80K respectively. We fix the length of evolving graphs 30 for Sanjose and Chicago datasets and fix the length of evolving graphs 3 and 5 for Slashdot and Amazon datasets respectively. We vary the value of  $\gamma$  from 0 to 2.5. As shown in Figure 9a and c, we find that the size of  $G_s$  decreases with  $\gamma$  increasing. When  $\gamma = 0$ , the whole graph  $\overline{G}$  is found. When  $\gamma = 2.5$ , the most frequently changed edge



Figure 8 Effectiveness:  $\tau$ .



Figure 9 Impact of parameter  $\gamma$ .

is found. The more  $\gamma$ , the less number of vertex pairs in  $G_s$  that cannot be connected by a path consisting of change edges. These results state the size of  $G_s$  can be controlled by parameter  $\gamma$ . In addition, as shown in Figure 9b and d, we find the value of  $F(G_s)$  is also decreases with  $\gamma$  increasing. When  $\gamma = 0$ ,  $F(G_s)$  essentially is  $\Delta(G_s) - \alpha(G_s)$ . Because the whole graph  $\overline{G}$  is found at this time, then  $F(G_s)$  is  $\Delta(\overline{G}) - \alpha(\overline{G})$ , which is the largest for the curves in Figure 9c and d. Note that, for a fixed  $\gamma$ , the  $F(G_s)$  for  $G_s$  found by our algorithm is maximum among all possible subgraphs in  $\overline{G}$ , even though  $F(G_s)$  decreases with  $\gamma$  increasing.

## 5.1 Efficiency results

Exp-7  $\Delta(u, v)$  computing: We first study the performance of computing ccc by comparing NAIVE-CCC and 2-WAY-CCC. We use the max-flow algorithm to compute *k*-edge-connectivity for every two different vertices for a given graph. In Figure 10, we vary the size of the vertices from 5K to 80K with the fixed length of the evolving graph 10.



Figure 10 Varying the sizes of the vertices.

Figure 10a and b show the results using Chicago and Sanjose datasets respectively. When the number of vertices is about 5K, the computing time for NAIVE-CCC is in the order of  $10^5$  already. 2-wAY-CCC is nearly 100 times faster than NAIVE-CCC. Note that 2-wAY-CCC only needs to compute edgeconnectivity twice for every  $G_{t-1}$  and  $G_t$ . To evaluate the scalability, as shown in Figure 10c and d, we test the computing time of our algorithm by varying the size of vertices from 20K to 80K on Slashdot and Amazon datasets. When the number of vertices is larger than 40K, the naive method cannot perform but 2-wAY-CCC perform well.

Exp-8 The Efficiency of FIND-MAX: In Figure 10, FIND-MAX indicates the time to compute lines 3–7 in Algorithm 2, the total time to compute Algorithm 2 is the time to compute 2-wAY-CCC plus FIND-TREE. For Chicago and Sanjose datasets, We test the computing time by varying the number of vertices with the fixed length 10 of the evolving graphs. As shown in Figure 10a and b, the computing time for FIND-MAX is in the order of 10<sup>2</sup> s, and can be done very efficiently. To evaluate scalability, in Figure 10c and d, we test the computing time of FIND-MAX on Slashdot and Amazon datasets. We vary the graph size from 20K to 80K. When the number of vertices is 80K, the computing time is

still in order of 10<sup>3</sup> s and it states excellent scalability of algorithm FIND-MAX. We also test computing time by varying the length of evolving graphs from 10 to 30 in Figure 5b. We use two datasets: Chi-2 and San-1. The number of vertices are fixed at 10K and 5K respectively. The computing time increases marginally, and is not sensitive to the length of evolving graphs.

## 6 Related work

In recent years, there are many works on evolving graph problem. Sun et al. in [28] present dynamic tensor analysis, which incrementally summarizes tensor streams (high-order graph streams) as smaller core tensor streams and projection matrices. Sun et al. in [27] propose GraphScope which discovers communities in large and dynamic graphs, as well as detects the changing time of communities. Tong et al. in [31] propose a family of Colibri methods to track low rank approximation efficiently over time. The authors in [15, 25, 26] propose distinct measure functions such as maximum common subgraph to detect when the graph changes. However, because utilizing these measure functions to compute all subgraphs in an evolving graph is infeasible, these works cannot answer where the changes occur frequently in an evolving graph.

There is an increasing interest in mining dynamic graphs. Borgwardt et al. in [3] apply frequent-subgraph mining algorithms to time series of graphs, and extract subgraphs that are frequent within the set of graphs. Bifet and Gavaldà in [2] present three closed tree mining algorithms to mining frequent closed tree in evolving graphs. The extraction of periodic or near periodic subgraphs is considered in [18] where the problem is shown to be polynomial. Inokuchi and Washio in [16] and Robardet in [24] discuss finding frequent evolving patterns in dynamic networks. Chan et al. in [4] introduce a new pattern to be discovered from evolving graphs, namely regions of the graph that are evolving in a correlated manner. All of these works are to finding a subgraph sequence pattern, such that (a) its embedding in a graph sequence is frequent and (b) the behavior of these embedding are identical over time. Liu et al. in [20] proposes a random walk model with restart to discover subgraphs that exhibit significant changes in evolving networks. However, this method is only concerned with changes between two graphs, and cannot quantify changes of subgraph in a time interval. A subgraph which changes significantly in two successive time steps may not change frequently in the whole time interval.

Ren et al. in [23] propose the FVF framework to answer shortest path query for all snapshots in evolving graphs. Aggarwal et al. in [1] use a structural connectivity model to detect outliers which act abnormally in some snapshots of graph streams. Feigenbaum et al. in [11] explore the problem related to compute graph distances in a data-stream model, whose goal is to design algorithms to process the edges of a graph in an arbitrary order given only a limited amount of memory. Tantipathananandh et al. in [29, 30] propose frameworks and algorithms for identifying communities in social networks that change over time. Diehl and Görg in [7] present a generic algorithm for drawing sequences of graphs, and address the problem of computing layouts of graphs which evolve over time. There are many works that focus on some properties such as *k*-connectivity and minimal spanning tree in dynamic graphs. Even and Shiloach in [10] study the connected component problem (k = 1) in the early 1980s. Frederickson in [12] study the minimum spanning tree problem by giving a fully dynamic algorithm. Westbrook and Tarjan in [32] present the first partially dynamic algorithm for the maintenance of both 2-edge connected components and biconnected (2-vertex connected) components. Liang et al. in [19] deal with the fully dynamic maintenance of 2, 3-connected components of a graph in the parallel. Jarry et al. in [17] study the strongly connected components in evolving graphs with geometric properties. Dinitz and Nossenson in [8] propose an abstract model that describes the graph connectivity structure. By this model, they can check whether two vertices belong to the same 5-edge-connectivity class under edge insertion. Henzinger in [14] present an insertion-only algorithm for maintaining the exact and approximate size of minimum edge cut and minimum vertex cut of a graph. The objectives of above works are not to find the subgraph that changes frequently in an evolving graph.

## 7 Conclusion

In this paper, we studied finding a subgraph which change most in an evolving graph. We proposed an objective function  $F(\cdot)$  to find a connected subgraph  $G_s$  in G, with the max  $F(G_s)$  value. Our function  $F(\cdot)$  is based on the cumulated connectivity change, and is effectively used to identify the most changed subgraph with a small number of unchanged edges included. We gave two new algorithms to compute cumulated connectivity change and a novel algorithm to identify the subgraph  $G_s$  with the max  $F(G_s)$ . We confirmed the effectiveness and efficiency of our algorithms using real-life datasets.

**Acknowledgements** This work is supported by the National Grand Fundamental Research 973 Program of China under grant 2012CB316200, the National Natural Science Foundation of China under grants 61173022, 61173023, and grants of the Research Grants Council of the Hong Kong SAR, China No. 419109, 418512.

## References

- 1. Aggarwal, C.C., Zhao, Y., Yu, P.S.: Outlier detection in graph streams. In: ICDE (2011)
- Bifet, A., Gavaldà, R.: Mining frequent closed trees in evolving data streams. Intell. Data Anal. 15(1), 29–48 (2011)
- Borgwardt, K.M., Kriegel, H.-P., Wackersreuther, P.: Pattern mining in frequent dynamic subgraphs. In: ICDM (2006)
- 4. Chan, J., Bailey, J., Leckie, C.: Discovering and summarising regions of correlated spatiotemporal change in evolving graphs. In: ICDM Workshops (2006)
- Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. MIT Press and McGraw-Hill (2001)
- Cui, Y., Pei, J., Tang, G., Luk, W.-S., Jiang, D., Hua, M.: Finding email correspondents in online social networks. World Wide Web 1–24. doi:10.1007/s11280-012-0168-2
- 7. Diehl, S., Görg, C.: Graphs, they are changing. In: Graph Drawing (2002)
- Dinitz, Y., Nossenson, R.: Incremental maintenance of the 5-edge-connectivity classes of a graph. In: SWAT, pp. 272–285 (2000)
- 9. Eppstein, D., Galil, Z., Italiano, G.F.: Dynamic graph algorithms. In: Algorithms and Theory of Computation Handbook (1999)
- 10. Even, S, Shiloach, Y.: An on-line edge-deletion problem. J. ACM 28(1), 1-4 (1981)

- Feigenbaum, J., Kannan, S., McGregor, A., Suri, S., Zhang, J.: Graph distances in the data-stream model. SIAM J. Comput. 38(5), 1709–1727 (2008)
- Frederickson, G.N.: Data structures for on-line updating of minimum spanning trees, with applications. SIAM J. Comput. 14(4), 252–257 (1985)
- Gomory, R.E., Hu, T.C.: Multi-terminal network flows. J. Soc. Ind. Appl. Math. 9(4), 551–570 (1961)
- Henzinger, M.R.: A static 2-approximation algorithm for vertex connectivity and incremental approximation algorithms for edge and vertex connectivity. J. Algorithms 24(1), 194–220 (1997)
- Horst Bunke, M.K., Dickinson, P.J., Wallis, W.D.: A Graph-Theoretic Approach to Enterprise Network Dynamics. Birkhauser (2007)
- Inokuchi, A., Washio, T.: A fast method to mine frequent subsequences from graph sequence data. In: ICDM (2008)
- Jarry, A., Lotker, Z.: Connectivity in evolving graph with geometric properties. In: DIALM-POMC (2004)
- Lahiri, M., Berger-Wolf, T.Y.: Mining periodic behavior in dynamic social networks. In: ICDM (2008)
- Liang, W., Brent, R.P., Shen, H.: Fully dynamic maintenance of k-connectivity in parallel. IEEE Trans. Parallel Distrib. Syst. 12(8), 846–864 (2001)
- Liu, Z., Yu, J.X., Ke, Y., Lin, X., Chen, L.: Spotting significant changing subgraphs in evolving graphs. In: ICDM (2008)
- Musial, K., Budka, M., Juszczyszyn, K.: Creation and growth of online social network. World Wide Web 1–27. doi:10.1007/s11280-012-0177-1
- Musial, K., Kazienko, P.: Social networks on the internet. World Wide Web 1–42. doi:10.1007/s11280-011-0155-z
- Ren, C., Lo, E., Kao, B., Zhu, X., Cheng, R.: On querying historical evolving graph sequences. In: VLDB (2011)
- 24. Robardet, C.: Constraint-based pattern mining in dynamic graphs. In: ICDM (2009)
- 25. Schweller, R.T., Gupta, A., Parsons, E., Chen, Y.: Reversible sketches for efficient and accurate change detection over network data streams. In: Internet Measurement Conference (2004)
- Shoubridge, P., Kraetzl, M., Wallis, W.D., Bunke, H.: Detection of abnormal change in a time series of graphs. J. Interconnect. Netw. 3(1–2), 85–101 (2002)
- Sun, J., Faloutsos, C., Papadimitriou, S., Yu, P.S.: Graphscope: parameter-free mining of large time-evolving graphs. In: KDD (2007)
- Sun, J., Tao, D., Faloutsos, C.: Beyond streams and graphs: dynamic tensor analysis. In: KDD (2006)
- Tantipathananandh, C., Berger-Wolf, T.Y.: Constant-factor approximation algorithms for identifying dynamic communities. In: KDD (2009)
- Tantipathananandh, C., Berger-Wolf, T.Y., Kempe, D.: A framework for community identification in dynamic social networks. In: KDD (2007)
- Tong, H., Papadimitriou, S., Sun, J., Yu, P.S., Faloutsos, C.: Colibri: fast mining of large static and dynamic graphs. In: KDD (2008)
- 32. Westbrook, J., Tarjan, R.E.: Maintaining bridge-connected and biconnected components on-line. Algorithmica **7**(5&6), 433–464 (1992)
- Wu, D., Ke, Y., Yu, J., Yu, P., Chen, L.: Leadership discovery when data correlatively evolve. World Wide Web 14, 1–25 (2011). doi:10.1007/s11280-010-0095-z
- 34. Yu, Z., Zhou, X., Zhang, D., Schiele, G., Becker, C.: Understanding social relationship evolution by using real-world sensing data. World Wide Web 1–14. doi:10.1007/s11280-012-0189-x