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Abstract—
Errors in measurement can be categorized into two types:

systematic errors that are predictable, and random errors that
are inherently unpredictable and have null expected value.
Random error is always present in a measurement. More often
than not, readings in time series may contain inherent random
errors due to causes like dynamic error, drift, noise, hysteresis,
digitalization error and limited sampling frequency. Random
errors may affect the quality of time series analysis substantially.
Unfortunately, most of the existing time series analysis methods
do not address random errors, possibly because random error
in a time series, which can be modeled as a random variable of
unknown distribution, is hard to handle. In this paper, we tackle
this challenging problem. Taking similarity search as an example,
which is an essential task in time series analysis, we develop
MISQ, a statistical approach for random error reduction in time
series analysis. The major intuition in our method is to use only
the readings at different time instants in a time series to reduce
random errors. We achieve a highly desirable property in MISQ:
it can ensure that the recall is above a user-specified threshold.
An extensive empirical study on 20 benchmark real data sets
clearly shows that our method can lead to better performance
than the baseline method without random error reduction in
real applications such as classification. Moreover, MISQ achieves
good quality in similarity search.

I. INTRODUCTION

Time series analysis is widely used in many applications.
In general, a time series is a series of readings recorded at
a sequence of time instants. The quality of time series data
depends on the quality of the readings.

Due to limitation of data collection equipment and meth-
ods, readings in time series data are often prone to various
errors. In general, errors can be categorized into two types:
systematic errors that are predictable, and random errors that
are inherently unpredictable and have null expected value [1].
Often, systematic errors can be removed by calibration of
the measurement equipment. However, random error is always
present in a reading.

Since random errors have the property that the mean of
many separate measurements approaches 0, random errors can
be reduced by obtaining multiple independent measurements
and using the mean of them. In practice, it is however often
infeasible to obtain multiple independent measurements on one
target attribute at an instant. Consequently, we still need to
develop effective methods to reduce random errors in the data
processing and analysis phase.

Most of the existing time series analysis methods do not
address random errors, possibly because reducing random er-
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Fig. 1: Modeling time series with random errors.

rors in the data analysis phase is far from trivial. Conceptually,
random errors in a time series can be modeled as a random
variable of unknown distribution. It is very challenging to
systematically remove random errors.

In this paper, we tackle the problem of reducing random
errors in time series analysis. We take the similarity search on
time series as a concrete example, since it is essential for time
series analysis. To take random errors into account, we model a
time series S̃u, as illustrated in Fig. 1, as an ordered sequence
of continuous random variables. At timestamp t, the obser-
vation Su(t) recorded is a sample from an unknown random
variable S̃u(t) with an unknown probability density function
(pdf). The distance between two time series is consequently a
random variable with unknown distribution as well.

Technically, a time series can be further regarded as a series
of expected values (mean values), each being blurred with
a random variable of mean 0 and unknown variance. The
problem of measuring the similarity between two time series
becomes approaching the distance between the two time series
of mean values, as illustrated in Fig. 2. To make our discussion
concrete, we use Euclidean distance in this paper. In general,
any distance measure may be used, though some technical
details may need to be adjusted accordingly.

In this paper, we develop MISQ (for mean distance queries),
a similarity search method for time series. The major intuition
behind the feasibility of random error reduction is that, by
assuming that the readings in a time series are collected
through the same equipment under the proper working con-
dition, the random errors incurred in those readings follow
the same unknown distribution. By proper deliberation of
those readings, we can remove the effect of random errors
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Fig. 2: Measuring the similarity between two time series
using the mean values.
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Fig. 3: The 1NN classification error rates for MISQ and
using Euclidean distance without considering random errors.

in similarity search systematically.
One may doubt whether reducing random errors or not

would make any difference in real world applications. To
answer the concern, we use 1NN classification as a test,
where a time series is classified by its nearest neighbor in a
training set. On 20 real data sets in the UCR time series data
repository [2], we compare the 1NN classification using MISQ
to reduce random errors with that not considering random
errors. Fig. 3 reports the error rates of the two methods. For
each data set, we mark M and N to indicate if reducing
random errors using MISQ leads to lower error rates or not,
respectively, and t for a tie.Using MISQ to reduce random
errors leads tolower error rates on 9 data sets (45%), and has
higher error rates on 4 data sets (20%).1 On the other 7 data
sets (35%), reducing random errors or not does not lead to
observable difference. The experimental results clearly show
that reducing random errors is beneficial in many cases.

To the best of our knowledge, we are the first to tackle
random errors in similarity search on time series without

1Since the UCR data sets do not come with the ground truth about errors, we
cannot analyze the details why MISQ does not work well on those data sets.
We believe that using MISQ to reduce random error becomes less effective
when system errors are dramatically larger than random errors.

assuming any knowledge about the distribution of the errors.
We make several contributions. First, we empirically show that
reducing random errors can gain substantial performance on
real data sets, which justifies the need of random error reduc-
tion in time series analysis. Second, we formulate the problem
of similarity search on time series by considering random
errors, and develop MISQ, a statistical method. Last, by an
extensive empirical study, we evaluate MISQ systematically
and demonstrate its power in time series analysis. MISQ can
efficiently compute the high quality mean distance between
two time series without significantly more cost than any faster
moving average methods.

The rest of the paper is organized as follows. We formulate
the problem and discuss the related work in Section II, and
develop the techniques of mean distance estimation and query
processing with error controlled, respectively, in Sections III
and IV. We report the experiment results in Section V, and
conclude the paper in Section VI.

II. PROBLEM DEFINITION AND RELATED WORK

A. Problem Definition
Definition 1 (Time series): Denote by S̃u a time series

with index u, which is a sequence of random variables, as
illustrated in Fig. 1. At time t, where t = 1, 2, . . . , l, the
random variable S̃u(t) is

S̃u(t) = µu(t) + Vuε̃u(t), (1)

where µu(t) is the mean (the value without noise) of the time
series and Vuε̃u(t) describes the uncertain noise.

We make the following assumptions in this paper.
• µu(t) is an unobserved, smooth, and uniformly bounded

function (those cross signs linked by a grey dashed line
in Fig. 1.)

• Vu is an unknown positive constant invariant to time t.
In general, Vu can also be a smooth function of t, but the
case is more complicated and beyond the scope of this
paper.

• ε̃u(t) is an independent identically distributed (i.i.d.)
random variable with mean 0 and variance 1. As a result,
E
(
S̃u(t)

)
= µu(t) and V ar

(
S̃u(t)

)
= V 2

u .
• At each time instant t, there is only one known observa-

tion Su(t) (marked with a small circle in Fig. 1).
• The pdf of S̃u(t) has a width determined by the unknown

constant Vu and the same shape as the pdf of ε̃u(t).
• Since ε̃u(t) is assumed to be i.i.d., the correlation be-

tween S̃u(t) and S̃u(t − 1) only depends on the mean
function µu(t).

Definition 2 (Distance): The distance between two time
series S̃Q and S̃u of length l is

D(S̃Q, S̃u) =

l∑
t=1

(S̃Q(t)− S̃u(t))2, (2)

where D() is the square of the Euclidean distance.
Apparently, D(S̃Q, S̃u) is a random variable. Instead of

directly modeling the distribution of D(S̃Q, S̃u), we consider
the mean distance, which excludes the effect of random errors.



Definition 3 (Mean distance): The mean distance between
two uncertain time series S̃Q and S̃u of length l is.

MD(S̃Q, S̃u) = D(µQ, µu) =

l∑
t=1

(µQ(t)− µu(t))2. (3)

In this paper, we consider two types of query on time series.
Definition 4 (Queries): Given a reference time series S̃Q

and a set of time series T , an exact match query (also called
exact query) retrieves those time series S̃u ∈ T such that
D(µQ, µu) = 0; a threshold similarity query (also called
threshold query) retrieves those time series S̃u ∈ T such
that D(µQ, µu) ≤ r, where r > 0 is a user specified distance
threshold. For the sake of simplicity, we omit T hereafter if
it is clear from context.

Apparently, when the distance threshold r is set to 0, a
threshold similarity query becomes an exact match query. As
aforementioned, µQ and µu are unobserved values in practice.
Thus, we cannot compute D(µQ, µu) directly. Instead, we
can use only the observation values to estimate it, of which
the method will be introduced in later sections, and apply
statistical hypothesis testings to determine if a candidate time
series qualifies a query.

We design the hypothesis testing procedure for exact queries
and threshold queries as follows.

Definition 5 (Null hypotheses): An exact query retrieves
those S̃u ∈ T that do not reject the null hypothesis H0 :
D(µQ, µu) ≤ 0. Here, we use ≤ instead of = is for the
convenience of the testing. Since distance is always non-
negative, there is no difference between using = and ≤.

A threshold query retrieves those S̃u that do not reject the
null hypothesis H0 : D(µQ, µu) ≤ r.

We consider two types of error.
Definition 6 (Two types of error): A type I error happens

if a statistical test rejects a true null hypothesis (H0). In our
case, a type I error happens if an exact match query fails
to retrieve a time series exactly matching the reference time
series, or a threshold similarity query fails to retrieve a time
series whose distance to the reference time series is less than
or equal to the threshold. In other words, a low type I error
rate implies a high recall.

A type II error happens when a test fails to reject a false
null hypothesis (H0). In our case, a type II error happens if
an exact match query retrieves a time series that is in fact
not exactly matching the reference time series, or a threshold
similarity query retrieves a time series whose distance to the
reference time series is in fact larger than the threshold. A low
type II error rate implies a high precision.

One major challenge is how we can estimate the mean
distance with only one observation at each timestamp for each
time series. One may think about using some common de-
noising methods, such as moving average, to guess the mean
values at different instants first. However, those approaches
are usually heavily parameter-dependent. That is, one needs
to decide how many observations should be considered simul-
taneously to get the mean value. Such parameters are hard to

decide in practice. Different from those methods, in this paper
we develop a parameter-free, difference-based estimator for
mean distance using only observations in time series.

Another challenge is how we can ensure that the estimated
mean distance is controlled at a given confidence level. In this
regard, we devise another estimator to compute the variance of
the mean distance estimator, which is to decide if the estimated
mean distance is significantly above a given threshold r or not.
With the variance estimator and the user given confidence
threshold 1 − α, we can compute the lower bound of the
confidence level, LCI , of each estimated mean distance.
Benefitting from the LCI , we can control the type I error
rates. Specifically, we only report the time series whose LCI
of the mean distance to the query time series is not greater
than r.

For both exact queries and threshold queries, we can
interpret the hypothesis testings using a confidence interval
determined by a user given confidence level of the estimated
D(µu, µQ). Since the testing is one-tailed, we can com-
pare the lower bound of the confidence interval, denoted by
LCI(D(µQ, µu)), with the given distance threshold (0 for an
exact query and r for a threshold query). We will show that,
if the confidence level is set to 1 − α, where α ∈ [0, 1], the
type I error rate most of the time is not greater than α.

Based on the above discussion, let us formally restate the
two types of query using hypothesis testing with type I error
rate controlled according to α as follows.

Definition 7 (Queries, using hypothesis testings): Given a
reference time series S̃Q, a set of time series T , a user
specified confidence level 1 − α ∈ [0, 1], an exact match
query retrieves all time series S̃u ∈ T such that

LCI(D(µu, µQ)) ≤ 0. (4)

Moreover, a threshold similarity query retrieves all time
series S̃u ∈ T such that

LCI(D(µu, µQ)) ≤ r, (5)

where r > 0 is a given distance threshold.

B. Related Work
Similarity search in time series databases, as an important

function in many applications, has drawn wide attention in
the recent decades. Many studies investigate how to search
efficiently and accurately under the widely-used Euclidean
distance [3–5] and many other similarity measurements, such
as [5–9]. Those methods do not consider errors incurred in the
reading of each time instant yet.

Some recent studies tackle random errors in time series by
modeling time series as uncertain data. Specifically, in [10–
12], a type of probabilistic query is investigated that finds the
uncertain time series whose distances to a reference one are
not greater than a given distance threshold with a high enough
probability. Different from our study, those methods all assume
that both the mean and the variance of each uncertain variable
are either known in advance [11, 12], or can be estimated with
a set of observations at each timestamp [10]. Consequently,
the lower bound or the distribution of the Euclidean distance



between two series can be computed. In real applications,
however, the assumption is often hard to meet.

Aßfalg et al. [10] assume that multiple observations are
collected at each timestamp. They treat those observations as
a realization of the corresponding unknown random variable
of uncertainty, and approximate the density of the distance
with the combinations of the observations. For example, given
two observations of S̃u(t) as 1, 2 and two observations of
S̃Q(t) as 3, 4 at a specific timestamp t, the random variable
dist(S̃u(t), S̃Q(t)) is defined as drawing a sample from the
set {dist(1, 3), dist(1, 4), dist(2, 3), dist(2, 4)} with uniform
probability. In some applications, practically we can only
obtain a single record at each time instant. To respect such
practical constraints, in this paper, we only assume a single
observation at each time instant for a time series.

Lian et al. [11] and Yeh et al. [12] model time series
with random errors as we do in Fig. 1. They assume that
the probability distribution of the random variable at each
timestamp is unknown, and the mean and variance values are
known in advance. They approximate the density distribution
of D̃(S̃u(t), S̃Q(t)) by a normal distribution according to the
Central Limit Theorem [13], and apply different methods to
speed up searching for qualified candidates. Yeh et al. [12]
further extend the similarity queries to streaming uncertain
time series summarized with wavelet synopses. In both studies,
however, the authors do not consider estimating the mean and
the variance values by practical methods. In this paper, we
not only consider how to make the estimation, but also the
accuracy of the estimation.

Smruti and Karin [14] design a distance measurement that
depends only on the difference of two uncertain time series.
The measurement converges to the Euclidean or dynamic time
warping distance when the magnitude of errors (uncertainty)
is small. The computation involves the distribution of the
errors that should be known in advance. They do not describe
the variance of the distance measurement. In contrast, our
approach focuses on the mean distance and controls the type
I errors of the distance measurement. More importantly, our
method does not rely on any knowledge of the distribution of
the uncertainty.

We use the mean distance in this paper, which is important
in practice and also used in some other studies, such as [15].

III. MEAN DISTANCE ESTIMATION AND ITS RELIABILITY

In this section, we first discuss how to measure the mean
distance between two time series using a difference-based
estimator. Then, we demonstrate how to find the variance and
the asymptotic distribution of the mean distance estimator.
The statistics derived will be used to process queries with
hypothesis testing and control the type I error rate.

A. The Mean Distance Estimator

Assuming that µQ(t) and µu(t) are uniformly bounded, and
ε̃Q and ε̃u are i.i.d. distributed, we establish the following
approximation when the length of time series l is large:

D(SQ, Su)

l
≈ D(µQ, µu)

l
+ V 2

u + V 2
Q, (6)

where D(SQ, Su) is the distance between observations of S̃Q
and S̃u.

Proof: To show Eq. (6), we decompose

(S̃Q(t)− S̃u(t)) = (µQ(t) + VQε̃Q(t)− µu(t)− Vuε̃u(t))

into two parts: the certain part µ(t) = µQ(t)−µu(t), and the
random part ε̃(t) = VQε̃Q(t) − Vuε̃u(t). We assume that the
certain part is bounded, that is, ∀t, µ(t) ≤ M , where M is
a constant, and ε̃(t) is i.i.d. Then we evaluate the variance of
the distance between two uncertain time series as follows.

V ar

(
D(S̃Q, S̃u)

l

)

=
1

l2

l∑
t=1

V ar
[
(µ(t) + ε̃(t))

2
]

∵ ε̃(t) is i.i.d.

= O(
1

l
) ∵ µ(t) is bounded.

According to Chebyshev’s inequality,

Pr

(∥∥∥∥∥D(S̃Q, S̃u)

l
− E(

D(S̃Q, S̃u)

l
)

∥∥∥∥∥ ≥ δ
)

≤
V ar

(
D(S̃Q,S̃u)

l

)
δ2

= O(
1

lδ2
).

As l approaches infinity, the expression in the big O function
approaches 0. By the definition of convergence in probability
and the computational formula for the variance, we can obtain

D(S̃Q, S̃u)

l

p→E(
D(S̃Q, S̃u)

l
) =

D(µQ, µu)

l
+ V 2

Q + V 2
u .

This can be used to obtain Eq. (6):
D(SQ, Su)

l
≈ D(µQ, µu)

l
+ V 2

u + V 2
Q.

Since V 2
u and V 2

Q are unknown in practice, we estimate them
using a non-parametric difference-based estimator proposed by
von Neumann [16] and Rice [17] as follows.

We assume that µu varies smoothly, that is,

µu(t) ≈ µu(t− 1) and µQ(t) ≈ µQ(t− 1). (7)

This assumption holds on many applications, such as hourly
temperature readings from sensors. We then have the following
equation based on Definition 1.

Vu × (ε̃u(t)− ε̃u(t− 1)) = S̃u(t)− S̃u(t− 1). (8)

By squaring Eq. (8) and following the Law of Large Number,
where the average of samples drawn from a large number of
trials should be close to the expected value, V 2

u and V 2
Q can

then be estimated by

V̂ 2
u =

1

2l

l∑
t=1

(Su(t)− Su(t− 1))
2
,

V̂ 2
Q =

1

2l

l∑
t=1

(SQ(t)− SQ(t− 1))
2
. (9)



Based on Eq. (6) and Eq. (9), we can estimate the mean
distance D(µu, µQ) by the following estimator.

D̂ (µu, µQ)

=

l∑
t=1

(Su(t)− SQ(t))
2 − 1

2

l∑
t=1

(Su(t)− Su(t− 1))
2

−1

2

l∑
t=1

(SQ(t)− SQ(t− 1))
2
. (10)

From Eq. (10), we can see the main advantage of the mean
distance estimator D̂ (µu, µQ): it is parameter-free and simple,
and needs only the observation values. The reliability of this
estimator depends on Eq. (7) and the i.i.d. assumption of ε̃u(t)
and ε̃Q(t). Next we show how to measure the reliability by
computing the variance of the mean distance estimator.

B. Variance and Asymptotic Distribution of the Mean Distance
Estimator

In order to understand the reliability of the mean distance
estimator D̂ (µu, µQ), we compute its variance.

According to Eq. (10), the estimator is defined as a function
of Su(t) and SQ(t), the observation values of S̃u(t) and S̃Q(t),
respectively. To evaluate its variance, we replace the obser-
vations Su and SQ by their corresponding random variables
S̃u and S̃Q, respectively. As a result, we have a variable
˜̂
D (µu, µQ) that models all possible values of D̂ (µu, µQ).

Theorem 1: The variance of ˜̂
D (µu, µQ) can be evaluated

using the following estimator.

ˆV ar
(

˜̂
D (µu, µQ)

)
= 4

(
V̂ 2
u + V̂ 2

Q

)
D̂ (µu, µQ)

+l ·
(
V̂ 4
u + 4V̂ 2

u V̂
2
Q + V̂ 4

Q

)
, (11)

where V̂ 2
u and V̂ 2

Q are defined in Eq. (9), and D̂(µu, µQ) is
defined in Eq. (10).

Proof: According to Eq. (10), we rewrite the estimator
variable in a vector form as follows.

˜̂
D (µu, µQ)

=
(

1 −1 −1
)


te∑
t=ts

(S̃u(t)− S̃Q(t))2

1
2

te∑
t=ts

(S̃u(t)− S̃u(t− 1))2

1
2

te∑
t=ts

(S̃Q(t)− S̃Q(t− 1))2


=

(
1 −1 −1

)
X. (12)

Using Eq. (12) and following the basic property of covariance
matrix, the variance of ˜̂

D (µu, µQ) can be written as

V ar
(

˜̂
D (µu, µQ)

)
=
(

1 −1 −1
)
Cov(X)

 1
−1
−1

 .

(13)

Based on Eq. (7) and the assumption that ε̃u(t) and ε̃Q(t))
are i.i.d., we can derive the covariance matrix Cov(X) =
E
(
(X− EX)(X− EX)T

)
. As a result, Eq. (13) is

V ar
(

˜̂
D (µu, µQ)

)
= 4(V 2

u + V 2
Q)D(µu, µQ)

+l ·
(
V 4
u + 4V 2

u V
2
Q + V 4

Q

)
.(14)

By substituting Vu, VQ and D(µu, µQ) with their estimators
in Eqs. (9) and (10), respectively, we prove the theorem.

Apparently, the variance is easy to compute according to
Theorem 1.

To control the type I error rate, we need to investigate the
asymptotic distribution of ˜̂

D(µQ, µu) as well.
Theorem 2: Suppose 1) µQ(t) and µu(t) are uniformly

bounded, 2) ε̃Q(t) and ε̃u(t) are i.i.d. and uniformly bounded
random variables, and 3) µQ(t) ≈ µQ(t − 1) and µu(t) ≈
µu(t− 1). Let l be the length of the time series. Then,

lim
l→∞

˜̂
D(µQ, µu)−D(µQ, µu)√

l
= N(0,

V ar
(

˜̂
D(µQ, µu)

)
l

),

(15)
where N(·) is the normal distribution.

Proof: According to the assumption defined in Section II,
Eq. (7), and Eq. (10), D̂(µQ, µu) can be written as

D̂ (µu, µQ)

=

l∑
t=1

(
S̃u(t)− S̃Q(t)

)2
− 1

2

l∑
t=1

(
S̃u(t)− S̃u(t− 1)

)2
−1

2

l∑
t=1

(
S̃Q(t)− S̃Q(t− 1)

)2
≈

l∑
t=1

(µQ(t)− µu(t))
2

+2

l∑
t=1

(µQ(t)− µu(t)) (ε̃Q(t)− ε̃u(t))

+

l∑
t=1

(ε̃Q(t)− ε̃u(t))
2 − 1

2

l∑
t=1

(ε̃Q(t)− ε̃Q(t− 1))
2

−1

2

l∑
t=1

(ε̃u(t)− ε̃u(t− 1))
2

≈ D(µQ, µu) +

l∑
t=1

[2 (µQ(t)− µu(t)) (ε̃Q(t)− ε̃u(t))

−2ε̃Q(t)ε̃u(t)]

+

l∑
t=1

[ε̃Q(t)ε̃Q(t− 1) + ε̃u(t)ε̃u(t− 1)]. (16)

Let

Z(t) = 2 (µQ(t)− µu(t)) (ε̃Q(t)− ε̃u(t))− 2ε̃Q(t)ε̃u(t)

+ε̃Q(t)ε̃Q(t− 1) + ε̃u(t)ε̃u(t− 1). (17)

Then, Theorem 2 holds if 1√
l

l∑
t=1

Z(t) converges in distribution

to N(0,
V ar(D̂(µQ,µu))

l ). Although Z(t) is neither identical



nor independent distributed, the convergence can be proved as
follows.

Let

k =
⌊
l1/4
⌋
,

h =

⌊
l

k + 1

⌋
,

W (i) =

ik+i−1∑
t=(i−1)k+i

Z(t), i = 1, 2, ..., h,

W ′(i) = Z(hk + i), i = 1, 2, ..., h, and

R =

l∑
t=hk+h+1

Z(t). (18)

As (te − ts) approaches infinity and according to Cheb-

shev’s inequality, 1√
l
R and 1√

l

h∑
i=1

W ′(i) converge in prob-

ability to 0. Note that W (i) is an independent sequence
that satisfies Lindeberg’s Condition, since Z(t) is a uni-
formly bounded random variable. The key point is that

Pr(|W (i)| ≥ O(l1/4)) = 0 and V ar

(
h∑
i=1

W (i)

)
≥ O(l).

After applying the Central Limit Theorem and adjusting the

coefficient, we have that 1√
l

h∑
i=1

W (i) converges in distribution

to N(0,
V ar(D̂(µQ,µu))

l ). Finally,

1√
l

l∑
t=1

Z(t) =
1√
l

h∑
i=1

W (i) +
1√
l

h∑
i=1

W ′(i) +
R√
l
.

According to Slutsky’s Theorem, 1√
l

l∑
t=1

Z(t) converges in

distribution to N(0,
V ar(D̂(µQ,µu))

l ). The theorem is proved.

Please note that, on the one hand, the assumptions in
Theorem 2, such as ε̃Q(t) and ε̃u(t) being uniformly bounded,
are sufficient, but not necessary. We make such stronger
assumptions for the convenience in the proof. On the other
hand, the theorem is strong enough for our purpose, since
its conditions are satisfied in many applications. For example,
the readings of sensors should be uniformly bounded by the
storage format.

As D(µQ, µu) is an unknown but deterministic value, we
can conclude from Eq. (15) that

D̂(µQ, µu)→ N(0, V ar
(

˜̂
D(µQ, µu)

)
). (19)

One may wonder, in practice, how close the distribution of

D̂(µQ, µu)√
ˆV ar
(

˜̂
D(µQ, µu)

) (20)

is to a normal distribution under different distributions of
errors. To address this concern, we report the following simula-
tion. We generate 1000 samples of ε̃Q and ε̃u of the following
four types of distribution: standardized student t-distribution

query length
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Fig. 4: The D-stat between the empirical distribution of
Eq. (20) and Φ(·) when the length of the series varies.

with a degree of freedom 3, standard normal distribution,
standardized continuous uniform distribution, and standardized
Bernoulli distribution that is an example of discrete random
variable, respectively. We set µu(t) = 0, µQ(t) = 4 and
Vu = VQ = 1 for all types of distributions. In addition, we
vary the time series length (l) from 2 to 10000.

By applying the Kolmogorov-Smirnov test, we show the
distance

D-stat = sup
x
|F (x)− Φ(x)|

of the empirical cumulative distribution function of the 10000
samples of Eq. (20), denoted as F (x), and the cumulative
distribution function of standard normal distribution, denoted
as Φ(·). The results are shown in Fig. 4. For reference, in the
same figure we also show the distance between the empirical
cumulative distribution function of the 10000 samples drawn
from a standard normal distributed random variable and the
theoretical Φ(·) values.

As shown in Fig. 4, the distance decreases as the length
of time series increases, no matter which distribution of ε̃Q
and ε̃u is. In fact, there is no significant difference when
the length of time series is over 100. Note that although the
student t-distribution and normal distribution are not uniformly
bounded, which is an assumption in Theorem 2, Fig. 4 shows
that the asymptotic distribution of ˜̂

D(µQ, µu) can still be well
approximated by the standard normal distribution.

Based on Eq. (11) and the above theoretical and empirical
analysis, we can obtain the asymptotic distribution, which can
be modeled as a normal distribution, of the mean distance
estimator under different types of uncertainty errors. The
information is the key concept used to control the type I error
rate of the query, which we will show in the next section.

IV. QUERY PROCESSING

In many existing methods for distance-based queries on
certain time series, finding a lower bound on the distance
between two time series plays an important role, since the
lower bound can help to guarantee a zero type I error rate ,
that is, not missing any qualified time series in the answer set.
For queries on uncertain time series, missing some qualified



time series is inevitable due to the unknown uncertainty. To
solve the problem, we propose to control the type I error rate
to a given upper bound. Theorem 2 shows that the difference
between the estimated distance and the true distance tends to
be a normal distribution, which can be leveraged to find the
confidence interval of the estimated mean distance and the
lower bound of the confidence interval.

A. Exact Match Queries

As stated in Definition 7, we need to find the lower bound,
LCI(D(µu, µQ)), of the confidence interval of D(µu, µQ)
given a confidence level of 1 − α. According to Theorem 2,
we can compute the confidence interval with a 1−α confidence
level approximately as follows.

Suppose the time series length l is large enough. We have

Pr

D̂(µQ, µu)−D(µQ, µu)√
V ar

(
D̂(µQ, µu)

) ≥ Φ−1 (1− α)

 ≈ α, (21)

where Φ is the cumulative distribution function of the standard
normal distribution. After transposing the equation, we have

Pr(X) ≈ α, (22)
where X = D(µQ, µu) ≤ D̂(µQ, µu)

− Φ−1 (1− α)

√
V ar

(
D̂(µQ, µu)

)
In practice, we do not know the variance

V ar
(
D̂ (µu, µQ)

)
. Thus, we replace it by its estimators in

Eq. (11). That is, LCI(D(µQ, µu)) corresponding to the
1− α confidence level is defined as

LCI(D(µQ, µu))

= D̂(µQ, µu)− Φ−1 (1− α)

√
ˆV ar
(
D̂(µQ, µu)

)
.(23)

With Eq. (23), we process the exact match query by
retrieving all uncertain time series S̃u that satisfy the inequality
Eq. (4).

In the following theorem, we prove that the type I error rate
of the exact match is controlled to α.

Theorem 3: When the length of the time series is large
enough, the type I error rate of the exact match query is up
to α if we retrieve all uncertain time series S̃u that satisfy
LCI(D(µQ, µu)) ≤ 0.

Proof: According to Definition 4, an exact match query
wants S̃u having D(µQ, µu) = 0. As a result, the type I error
rate is

Pr (LCI(D(µQ, µu)) > 0)

≈ Pr

(
D̂(µQ, µu) − Φ−1 (1 − α)

√
V ar

(
D̂(µQ, µu)

)
> 0

)

= Pr

 D̂(µQ, µu)√
V ar

(
D̂(µQ, µu)

) > Φ−1 (1 − α)


≈ α. (24)
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Fig. 5: Two examples of the “no-effect” test.

Therefore, we can approximately control the type I error rate
of the exact match query.

B. Threshold Similarity Query

Similarly, we use the same lower bound defined in Eq. (23)
to process the threshold queries defined in Definition 7. We
prove its type I error rate control as well.

Theorem 4: When the length of the reference time series is
large enough, the type I error rate of the threshold query is
no more than α if we retrieve all time series S̃u that satisfy
LCI(D(µQ, µu)) ≤ r, where r is a user specified distance
threshold.

Proof: Under condition D(µQ, µu) ≤ r, the type I error
rate is

Pr (LCI(D(µQ, µu)) > r)

≈ Pr

 D̂(µQ, µu)− r√
V ar

(
D̂(µQ, µu)

) > Φ−1 (1− α)



≤ Pr

D̂(µQ, µu)−D(µQ, µu)√
V ar

(
D̂(µQ, µu)

) > Φ−1 (1− α)


≈ α.

(25)

Therefore, the type I error rate of the threshold query is also
under controlled.

V. EXPERIMENT RESULTS

We conducted extensive experiments on 20 real data sets in
the UCR time series data repository [2] to evaluate MISQ. All
experiments were run on a PC with an Intel(R) Core(TM) i7
3.07 GHz CPU and 12GB RAM using R 2.12.1 [18].

A. Settings

We compared MISQ with the confidence band method on
exact queries, and with the moving average method on both
exact and threshold queries.

The idea of the confidence band method works as follows.
Given two time series with their observations SQ and Su,



we test if µQ − µu is equal to 0 or not. That is, the null
hypothesis is set to µQ − µu = 0. We applied the testing for
no effect in nonparametric regression via kernel smoothing
techniques. No effect here refers to µQ − µu always being
0. The testing procedure first smooths the observations of
SQ(t)−Su(t), where t = 1, 2, . . . , l to estimate µQ−µu. Then,
it estimates the variance of the noise. Finally, it evaluates the
corresponding p-value.

Fig. 5 shows an example. The estimated µQ−µu is plotted
with a black solid line, while the light shade area is the
confidence band of the null hypothesis. In Fig. 5(a), the
confidence band contains the whole solid line, which indicates
that the test is significant and with a high p-value. If the
confidence band does not contain the solid line, as shown in
Fig. 5(b), the p-value tends to be small and the null hypothesis
can be rejected with a high confidence. For more details, please
refer to chapters 3-5 in [19]. We use the default settings and
implementation [20] (the built-in function sm.regression) in
language R to do the testing in our experiments. A time series
S̃u is retrieved if the p-value is greater than α.

We also compared MISQ with the moving average method
that is a widely used estimator for computing the mean and
removing noises on time series. It basically computes the
moving average of a set of consecutive observations within a
given bandwidth. Then, the mean distance between two time
series can be computed using the two series of mean values.
Since an appropriate bandwidth is critical for the performance
of the moving average method, we implemented two methods
selecting the bandwidth, one using cross validation and the
other using a fixed bandwidth. Given a set of time series and
a query series, the method of cross validation is to select the
bandwidth that minimizes the leave-one-out residual sum of
square (RSS) as suggested by [21]. In the other method, we
just picked 5 as the bandwidth, which is the default value
used in MATLAB [22]. We denote them as movavg cv and
movavg 5, respectively. It is noted that the original moving
average method cannot control the type I error rate, since it
computes the mean only. To be fair, we used the residual sum
of square between the mean value and the original observations
normalized by the time series length to estimate Vu for each
time series. Then, we used the same way in MISQ to control
the type I error rates for the moving average methods.

We did not compare MISQ with the methods in [10–
12, 14]. As discussed in Section II-B, those methods assume
more information than MISQ, and simply cannot work in our
problem setting.

Section I shows that reducing random errors makes a
difference in real applications (Fig. 3). Since we focus on the
quality and accuracy of similarity search in this paper, in the
following evaluation, we first compare the type I error rates
and the type II error rates of MISQ and the other two methods.
If the error rate is no more than the given α, we call it under-
control. In addition, the α value is set to 0.05 by default. Then,
in the last subsection, we compare the distance computation
time between a pair of time series of MISQ and the moving
average methods.
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Fig. 6: Impact of uncertainty ratio on the percentage of
under control considering the type I errors.
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Fig. 7: Impact of uncertainty ratio on the type II errors.

B. Exact Match Queries

We evaluated the performance on exact queries as follows.
Given a real time series, we treated its original value as
the mean value without noise, i.e., a sequence of µu. Then,
we generated 101 independent series based on this one with
additionally noise added each timestamp to blur the time series
as our observations. The noise is normally distributed with a
variance proportional to the variance of µu, ranging from 0.1
to 2. We call this uncertainty ratio hereafter. In this way, we
have 101 observations whose mean values are identical to each
other. From these 101 observations, we pick one as the query
series time series S̃Q and the rest are the candidates. Under
this settings, any tested methods should retrieve all the 100
candidates.

For each data set, we pick 5 time series and repeat the
procedure above. As there are 20 data sets, we have 100
queries in total. If a query is processed with the type I error
rate no more than the given α, we call it is under-control.
We counted the under control rate of type I errors, and the
results are shown in Fig. 6. MISQ controlled the type I error
rate better than the confidence band method. Movavg 5 and
movagv cv hardly controlled the type I error rates.
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(a) The percentage of type I errors under control on different datasets
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(b) The type II error rate on different datasets

Fig. 8: Normally distributed noise with uncertainty ratio=0.2.
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(a) The percentage of type I error under control on different datasets
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(b) The type II error rate on different datasets

Fig. 9: Normally distributed noise with uncertainty ratio=2.

For the type II errors, the settings were the same except for
one difference: we let µu(t) = µQ(t) + 0.5 ×

√
V ar(µQ).

Under this setting, the mean of the reference time series was
different from the mean of all the candidates series, so the
tested methods shall retrieve no candidate. In this way, every
returned results from a method was regarded as a type II error.
From Fig. 7, we see that MISQ outperformed the confidence
band method. As the uncertainty ratio increases, the type II
error rate of MISQ increases as well. The type II error rates
of movavg 5 and movagv cv were very small.

To understand the results, we note that MISQ directly
tested if D(µQ, µu) = 0 while the confidence band method

estimated the curve of µu − µQ instead. Since the procedure
of the confidence band method was indirect, its performance
was affected by parameters such as the bandwidth selector.
Consequently, it has poor type I and type II error rates.
Interestingly, we see the trade-offs between type I error rate
and type II error rate of MISQ and the moving average method.
The very low type II error rate of the moving average methods
was attributed to the poor performance in type I error rate
control, which failed to meet our goal. MISQ sacrificed the
type II error rate to control the type I error rate, since a low
type I error rate is more important in many applications.
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(a) The percentage of type I error under control on different datasets
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(b) The type II error rate on different datasets

Fig. 10: Uniformly distributed noise with uncertainty ratio=0.2.
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(a) The percentage of type I error under control on different datasets
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(b) The type II error rate on different datasets

Fig. 11: Uniformly distributed noise with uncertainty ratio=2.

C. Threshold Similarity Queries

For threshold queries, we only compared MISQ with
movavg 5 and movagv cv since the confidence band method
is not able to be applied in the case when r 6= 0.

We introduced the uncertainty to the time series data as
follows. For each time series at each timestamp, it was blurred
by an i.i.d. random noise with a variance proportional to the
variance of the original time series, which is the same as in the
exact query experiments. To show that the proposed method
is not limited by a specific distribution of the noise, we test
the normal distributed and uniformly distributed noise.

The parameters used were set as follows. For each data set,

we divided it into the training and the test sets as originally
defined in the UCR time series data. The reference time series,
i.e., the query series SQ, was chosen from the testing set and
the candidates are all members in the training dataset. The
distance bound r is chosen from the 0.1, 0.2, ..., 0.9-quantiles
of the Euclidean distances between the reference time series
and the candidates. For under control rate, the confidence level,
i.e., 1− α,is set to 0.95.

First, we compare the under-control rate of type I errors
of the three methods on 20 data sets. For a query time series
from the testing set, if the type I error rate is no more than
the given α, we counted is as an under-control. The under-



control rate is thus the percentage of queries from the testing
set that was under-control. Second, the type II error rates were
averaged from the query results of all the query time series in
the testing data set. Finally, since there is a trade off between
the type I error rate and the type II error rate, we additionally
interpolated for each method the Equal Error Rate (EER), the
error rate where type I error rate equals to the type II error
rate, of each method for comparison.

The under-control rate of type I errors and the corresponding
type II error rates for both uniform and normal errors under
two uncertain ratio values, 0.2 and 2, of each data set are
shown in Fig. 8, Fig. 9, Fig. 10 and Fig. 11, respectively.
From these figures, we can see that MISQ outperformed the
other methods in controlling the type I error rate significantly.
This supported the theoretical results derived in Section III
and Section IV. For the moving average method, sometimes
movavg cv worked better while the other times movavg 5 did.
This showed that the quality of moving average depended on
the bandwidth selection heavily. Moreover, as the uncertainty
ratio was large, e.g., when uncertainty ratio=2.0, the under-
control rate of type I errors of both two moving average
methods decreased significantly while MISQ still guaranteed a
100% control. On the other hand, MISQ sacrificed more type
II error rates only when the uncertain ratio was large, such as
2. Note that the uncertainty ratio = 2 was quite large since
it means that the variation of noise is twice that of the mean
values of a time series. At a small uncertain ratio, the type II
error rate of MISQ was even smaller than that of the moving
average method in some data sets.

In addition, MISQ achieved good under control rates
(100%) all the time in our experiments, no matter which noise
distribution was used. However, the moving average method
had high under-control rates of type I error for normally
distributed noise but worked poorly for the uniform noise (See
data sets Two Pattern and wafer in Fig. 9(a) and Fig. 11(b).)

As there was a trade-off between the type I error rate and
type II error rate, we further calculated the EER values of
all methods. At different uncertainty ratios, we counted the
best (smallest) EER among the 20 data sets of each method
and plotted the results in Fig. 12. We can see that MISQ
performed best even when the uncertainty ratio was getting
larger. The movavg 5 worked better than movavg cv when
the uncertainty ratio became larger, but still it did not surpass
MISQ. Therefore, we can conclude that the MISQ is the best
method out of the three on the threshold query with type I
error rate controlled.

D. Computation Time

Here we compared the computation cost of each method to
show their efficiency. We show the computation cost on each
data set of all methods for threshold queries. For each dataset,
we compute the averaged processing time for each method
to get the answers of a query. Using the longest processing
time as a denominator, we computed the percentage of the
processing time of the other two methods. The results were
shown in Fig. 13. Movavg 5 was the fastest method as it
just computed the average of constant number of points while
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Fig. 12: The distribution of the best EER among all data sets
at different uncertainty ratios.
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Fig. 13: The average query processing time.

movavg cv took more time to decide the bandwidth. MISQ
spent more time in computing the mean distance estimators
and its variance. However, MISQ is never substantially slower
than any faster methods. It shows that MISQ is efficient to
control type I error rate well.

VI. CONCLUSIONS

In this paper, we presented MISQ, a statistical approach to
processing similarity search on time series aiming at reducing
random errors. Without any prior knowledge about the error
distribution hidden in the time series, we estimated the mean
distance between time series with only one observation at
a timestamp. Through the statistical hypothesis testing, we
provided a solution to computing exact match queries and
threshold similarity queries with type I error rate effectively
controlled. The results of extensive experiment on real data
sets showed that, when comparing with the confidence band
method and the moving average method, MISQ outperformed
the two in controlling type I error rates at a cost of reasonable
type II error rates. The runtime cost is low.



For future work, first we can extend MISQ to process k
nearest neighbor (kNN) queries. Based on the same mean
distance estimator and its variance estimator, we can compare
which time series is closer/farther to the query time series in
a pairwise manner. The k nearest neighbors are then those
having less-than-k time series that are significantly closer to
the query time series after some multiple testing correction.
The main challenges are to reduce the significantly high type
II error rates and the retrieving efficiency. Another direction is
to apply the same ideas in MISQ to compute the dynamic time
warping distance on time series, which is another important
and widely used distance measurement in many applications,
such as speech recognition.
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