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ABSTRACT
Load curve data in power systems refers to users’ electrical energy
consumption data periodically collected with meters. It has become
one of the most important assets for modern power systems. Many
operational decisions are made based on the information discov-
ered in the data. Load curve data, however, usually suffers from
corruptions caused by various factors, such as data transmission er-
rors or malfunctioning meters. To solve the problem, tremendous
research efforts have been made on load curve data cleansing. Most
existing approaches apply outlier detection methods from the sup-
ply side (i.e., electricity service providers), which may only have
aggregated load data. In this paper, we propose to seek aid from
the demand side (i.e., electricity service users). With the help of
readily available knowledge on consumers’ appliances, we present
an appliance-driven approach to load curve data cleansing. This
approach utilizes data generation rules and a Sequential Local Op-
timization Algorithm (SLOA) to solve the Corrupted Data Identi-
fication Problem (CDIP). We evaluate the performance of SLOA
with real-world trace data and synthetic data. The results indicate
that, comparing to existing load data cleansing methods, such as B-
spline smoothing, our approach has an overall better performance
and can effectively identify consecutive corrupted data. Experi-
mental results also show that our method is robust in various tests.

Categories and Subject Descriptors
H.5.m [Information Systems]: Information interfaces and presen-
tation—Miscellaneous
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1. INTRODUCTION
Electricity usage data, on the one hand, plays an important role

in big data applications, and on the other hand, has been severely
under explored. A recent news article appeared in Forbes [23] said,
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“But for the most part, utilities have yet to realize the potential of
the flood of new data that has begun flowing to them from the power
grid, . . . , And in some cases, they may not welcome it.” Yet, exist-
ing power grid is facing challenges related to efficiency, reliability,
environmental impact, and sustainability. For instance, the low ef-
ficiency of current electric grid could lead to 8% of electric energy
loss along its transmission lines, and the maximum generation ca-
pacity is in use only 5% of the time [14].

The emerging smart grid technology aspires to revolutionize tra-
ditional power grid with state-of-the-art information technologies
in sensing, control, communications, data mining, and machine
learning [6, 14]. Worldwide, significant research and development
efforts and substantial investment are being committed to the nec-
essary infrastructure to enable intelligent control of power systems,
by installing advanced metering systems and establishing data com-
munication networks throughout the grid. Consequently, power
networks and data communication networks are envisioned to har-
monize together to achieve highly efficient, flexible, and reliable
power systems.

Among the various types of data transmitted over the smart grid,
load curve data, which refers to the electric energy consumption pe-
riodically recorded by meters at points of interest across the power
grid, has become the critical assets for utility companies to make
right decisions on energy generation, billing, and smart grid oper-
ations. Load curve data, which “is beginning to give us a view of
what the customer is actually experiencing, something that we’ve
never ever seen before” [23], is precious user behavior data, and is
an important type of big data.

Load curve data collected and reported from smart meters at
end-users’ premises is especially important for both energy supply
and energy demand sides. On the demand side, it has direct im-
pact on customers’ energy bills and their trust on the still nascent
smart grid technology. It can also provide important information
for domotics [17, 26]. On the energy supply side, inaccurate load
data may lead to large profit losses and wrong business decisions.
In 2012, 126.8 million residential customers in the US used over
1, 374 billion kWh, which counts to over 33% of the total elec-
tric energy in the US [12]. The importance of this huge amount of
energy and its financial implication cannot be over emphasized.

Nevertheless, it is unavoidable that load curves contain cor-
rupted data and missing data, caused by various factors, such as
malfunctioning meters, data packet losses in wireless networks, un-
expected interruption or shutdown in electricity use, and unsched-
uled maintenance [5]. Due to the huge volume of load curve data, it
is hard for utilities to manually identify corrupted load curve data.
Unfortunately, problems caused by corrupted data are usually re-



alized only after it is too late, such as after a customer receiving a
suspicious yet hard to rebut high energy bill.

As a concrete example, according to the news reports [20, 24],
some customers in the province of British Columbia, Canada, were
baffled by energy bills that are more than double what they were
charged before the smart meter installation. While the problem
could be identified by common sense and certain agreement might
be reached by good faith negotiations [20, 24], fixing the ques-
tionable bill is another head-scratching and embarrassing issue to
the utility. As a response to customer complaints, the utility nor-
mally took remedy actions, such as replacing the smart meters or
taking back the smart meters for lab testing [24]. Such a remedy,
however, can hardly be effective. According to CBC News [25],
“Government estimates indicate there are about 60,000 smart me-
ter holdouts (in the province).” Overall, the users and the utility
company have the well-aligned interest and should work together
to tackle this critical problem plaguing the electric power industry.

Techniques of load data cleansing have been proposed to deal
with load data corruption problem recently [5]. Most existing load
data cleansing methods are designed for the supply side (i.e., elec-
tricity service providers), to help the utility companies find the cor-
rupted data and protect their profits. From the supply side, the col-
lected load data is usually aggregated data, i.e., the energy con-
sumption of a billing unit such as a house or a commercial build-
ing. When performing data cleansing on the supply side, due to
the difficulty of obtaining extra knowledge behind the aggregated
load data, most existing approaches apply outlier detection meth-
ods, i.e., the data that deviates remarkably from the regular pat-
tern is identified as corrupted data. Various assumptions about the
data generation mechanism are required for outlier detection, but
due to limited information, those assumptions are usually based on
empirical knowledge or statistic features of the data. Such outlier
detection methods are oblivious of appliances’ various energy con-
sumption models and may not be accurate or fair to customers. We
call these methods appliance-oblivious. Such methods suffer from
a few important deficiencies.

For example, the regression-based outlier detection methods find
statistical patterns of load data and claim the data significantly de-
viating from the patterns as corrupted data. Nevertheless, such
resulted outliers are not necessarily corrupted data. In addition,
without the knowledge of appliances’ energy consumption models,
some “hidden" corrupted data is hard to detect. To be specific, the
energy consumption of a group of appliances in a house or a build-
ing is a stochastic process. The stochastic feature makes it hard
to establish a fixed pattern. Turning on/off any high-power appli-
ance may lead to a steep change in load curve. Using appliance-
oblivious data cleansing methods, the data generated under such a
condition is likely to be captured as outliers.

As another example, appliance-oblivious methods cannot deal
with “hidden” corrupted data. Fig. 1 shows an example of
three appliances, A1, A2, and A3, which have power ranges of
[2, 4], [10, 12] and [30, 32], respectively. The load data within some
ranges such as (4, 10), (16, 30), and (36, 40) cannot be generated
by any combination of the three appliances. Nevertheless, such data
may not be identified by existing outlier detection as corrupted data.

Recently, with the emergence of fine-grained in-house energy
monitoring systems, customers now have the capability to moni-
tor their own energy usage more closely and more accurately [30].
As such, users may possess more knowledge behind the data, e.g.,
the decomposition of total energy consumption according to main
appliances. Even if in-house energy monitoring system is not avail-
able, users should know the rated power of appliances’, which are
easily accessible from the appliances’ manual, technical specifica-
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Figure 1: An example showing hidden corrupted data gener-
ated with three appliances

tion or public websites, such as [13]. This knowledge presents new
opportunities to perform load data cleansing on the customer side
directly or on the supply side with auxiliary information from cus-
tomers. This new angle of tackling the corrupted load data problem
can greatly improve the quality of load data.

In this paper, we tackle the practical problem of corrupted load
curve data identification by developing an appliance-driven ap-
proach. Specifically, we make the following contributions:

• First, we define a new criterion in identification of corrupted
load data. The criterion is aware of domain knowledge, in-
cluding the power range of appliances and the physical laws
behind valid load data.

• Second, we formally formulate the Corrupted Data Identifi-
cation Problem (CDIP) and establish an optimization model
to solve the problem. Furthermore, we introduce a new con-
cept, called virtual appliance, in the objective function to
help record corrupted data. Our empirical study in a proof-
of-concept electricity usage test environment shows that a
solution to the optimization problem is capable of precisely
identifying the corrupted data, even without obtaining the ex-
act on/off states of appliances. This nice feature indicates
that our method is both effective and robust.

• We develop a sequential local optimization algorithm
(SLOA) to approach CDIP efficiently. SLOA focuses on
solving CDIP in a smaller time window, and considers the
correlation between consecutive small windows. Our SLOA
method offers an efficient heuristic solution and can achieve
a very high detection precision. As an extra benefit, by ap-
plying the sequential optimization algorithm, we can easily
handle consecutive corrupted data.

The rest of the paper is organized as follows. In Section 2, we
review the related work. In Section 3, the corrupted data identifica-
tion problem (CDIP) is formulated. To solve CDIP, an optimization
model is developed in Section 4, and SLOA is applied to find an
approximate solution in Section 5. We evaluate the performance of
our method in Section 6 and test its robustness in Section 7. The as-
sumptions is further discussed in Section 8. The paper is concluded
in Section 9.



2. RELATED WORK
Most related literature treats the corrupted data the same as out-

liers in load pattern and focuses on outlier detection. A broad spec-
trum of techniques for outlier detection in load data have been de-
veloped, which include regression-based time series analysis, uni-
variate statistical methods, and data mining techniques.

Regression-based time series analysis is the most widely used
approach for outlier detection in load data [1, 5, 21, 22]. Mateos
and Giannakis [22] developed a nonparametric regression method
that approximates the regression function via `0-norm regulariza-
tion. Chen et al. [5] proposed a nonparametric regression method
based on B-spline and kernel smoothing to identify corrupted data.
Abraham and Chuang [1] analyzed residual patterns from some re-
gression models of time series and used the patterns to construct
outlier indicators. They also proposed a four-step procedure for
modeling time series in the presence of outliers. Greta et al. [21]
considered the estimation and detection of outliers in time series
generated by a Gaussian auto-regression moving average (ARMA)
process, and showed that the estimation of additive outliers is re-
lated to the estimation of missing observations. ARMA is also uti-
lized in [2, 1] as a fundamental model to identify outliers.

Univariate statistical methods are another type of techniques for
outlier detection. Univariate statistical methods deal with outliers
in load data by processing load data as one-dimensional real val-
ues [9, 15, 10]. Most univariate methods for outlier detection as-
sume an underlying a prior distribution of data. The outlier detec-
tion problem is then translated to finding those observations that lie
in the so-called outlier region of the assumed distribution, which is
defined by a confidence coefficient value [10]. Since the statistical
methods are susceptible to the number of exemplars, a simple but
effective method named Boxplot or IQR is proposed in [31] to deal
with small-sized exemplars.

In addition to the above methods, data mining techniques are
also applied to identify outliers, such as k-nearest neighbor [29], k-
means, k-medoids [4], and DBSCAN [18]. As a type of clustering
methods, they group data with similar features, and identify data
items that do not strongly belong to any cluster or far from other
clusters as outliers. Recently, Aggarwal [3] provided a thorough
survey on outlier detection.

Nevertheless, all the above methods do not consider the special
physical laws behind the load data. Regression-based methods as-
sume that the data follows a certain pattern, which can be modeled
by a function governed by a set of parameters; univariate methods
assume that the data is sampled from a certain known distribution;
clustering methods assume that the data is well structured as clus-
ters and the corrupted data deviates significantly from the normal
structure. Obviously, the underlying assumptions in the existing
methods are quite general and do not capture the specific features
of load data well. Our paper fills the gap and differs from the ex-
isting literature by offering a completely new angle to address the
load data corruption problem.

3. PROBLEM DEFINITION
In this section, we present a formal problem definition. Before

that, we first describe an energy consumption model and discuss
the generation rules of load data.

3.1 Energy Consumption Model
Load data is time series data that records users’ energy consump-

tion. It is collected by smart meters periodically at a certain sam-
pling frequency. Without loss of generality, we assume that the time
is slotted, with each timeslot equal to the sampling interval time. In

the rest of the paper, we thus use the terms “time”, “timeslot” and
“sampling interval” interchangeably.

We denote the load data from timeslot t = 1 to timeslot t = n
in a column vector as

Y ≡ [y1, y2, · · · , yn]T , (1)

where each value yi in the vector represents the aggregated energy
consumption of all appliances in a property, say a house at timeslot
i. The energy consumption at a time instant depends on the appli-
ances’ on-off states and their individual power level.

We assume that a house includes m appliances in total, and the
power of the k-th appliance is pk (watts). At any time instant, if
we record the power level of each individual appliance, we can
define an m dimensional column power vector to capture energy
consumption of the house:

P ≡ [p1, p2, · · · , pm]T . (2)

Note that the power level of an appliance normally does not re-
main at a fixed value but changes in a certain range. For this reason,
we define two m dimensional column vectors, denoted as Pl and
Pu, respectively:

Pl = [l1, l2, · · · , lm]T (3)

Pu = [u1, u2, · · · , um]T , (4)

where li and ui represent the lower and upper bounds of the power
level of the i-th appliance, respectively. A power vector P is called
valid if, for each value pi in P , li ≤ pi ≤ ui.

At any instant, the state of an appliance may be either on or off.
We use an n × m 0-1 state matrix, S = [Sij ]n×m, to record
the states of the m appliances from time t = 1 to t = n, where
Si,k = 1 indicates that the k-th appliance is on at time i, and 0
otherwise. In addition, we call the i-th row of S a state vector at
time i, denoted by:

Si ≡ [Si,1, Si,2, · · · , Si,m]. (5)

3.2 Generation Rules of Load Data
We have the following observations. First, a valid load data ele-

ment yi (in watt-hours) should be equal to the inner product of the
state vector and the power vector at t = i, multiplied by the sam-
pling interval time. This is a basic physical law for load curve data
generation. Second, since the sampling interval is typically small,
we assume that the probability that an appliance has more than one
on-off switch events during a timeslot is negligible. In addition,
the total number of on-off state switches of all appliances during a
timeslot should be small. This feature is called the temporal spar-
sity of on-off switching events. Intuitively, this feature means that
in normal operation it is unlikely that the household turns on/off
many appliances in a short time. Based on the above observations,
we define the generation rules of load data.

DEFINITION 1 (GENERATION RULES). Assume that the ini-
tial state of appliances is S0. We claim that each valid load data,
yi, must satisfy the following rules:

{
Si · Pl/f ≤ yi ≤ Si · Pu/f
‖Si − Si−1‖1 ≤ δ, (6)

where f is data sampling frequency, 1 ≤ i ≤ n, and δ is the upper
bound on the total number of on-off state switches form appliances
during a sampling interval.

Note that the energy consumption value (watt-hours) is calcu-
lated with power value (watt) multiplied by time 1/f (hour). To



keep our discussion simple, we assume that a valid initial state vec-
tor S0 is given at this moment. We will relax this assumption later
and show that the impact of an inaccurate initial state vector quickly
becomes negligible as long as the system runs for just a little while
(Section 7).

Based on the above generation rules, corrupted data is the values
that break any of the rules.

DEFINITION 2 (CDIP). The corrupted data identification
problem (CDIP) is, given load data Y = {y1, y2, · · · , yn}, power
bound vectors Pl, Pu, and a sampling frequency f , find corrupted
data items that violate any of the generation rules, i.e., C ≡ {yi :
yi violates (Equation 6), for 1 ≤ i ≤ n}.

4. AN IMPORTANT STEP TOWARDS
SOLVING CDIP

To solve CDIP, a naïve idea is to find all the solutions satis-
fying the constraints in (Equation 6), by brute-force, exhaustive
search for all possible appliance states. This method is very time-
consuming. Even for a small data set it is very costly to find the
answer. Since the generation rules can be considered as constraints
in an optimization problem, we will show how the problem can be
transformed to an optimization problem, which sheds light on a fast
solution to an approximate problem.

DEFINITION 3 (VIRTUAL APPLIANCE). Besides the real ap-
pliances, we introduce a virtual appliance into the system. Its as-
sociated power is called virtual power, and we record the values of
virtual power from time t = 1 to t = n in a virtual power vector

V ≡ [v1, v2, · · · , vn]T , (7)

where vi ∈ (−∞,+∞) denotes the virtual power at time t = i.

By introducing the virtual appliance, we can develop the follow-
ing optimization model to solve CDIP:

minimize
Si,vi

‖V ‖1

subject to (Si · Pl + vi) /f ≤ yi ≤ (Si · Pu + vi) /f

‖Si − Si−1‖1 ≤ δ
Si,j ∈ {0, 1}
1 ≤ i ≤ n
1 ≤ j ≤ m

(8)

To understand the rationale behind the formulation of Equa-
tion (8), it is worthwhile to point out that vi ∈ V will come into
play whenever Si cannot satisfy the generation rules, i.e., the vir-
tual appliance is “turned on” when the load data yi is corrupted.
Thus, vi essentially makes a record to the corrupted data. After
obtaining the final solution to Equation (8), the vi variables with
non-zero values indicate the corrupted data, i.e.,

C = {yi : vi 6= 0 for 1 ≤ i ≤ n}. (9)

We try to minimize `1-norm, because it is proven that for most large
under-determined systems of linear equations the minimal `1-norm
solution is also the sparsest solution (i.e., resulting in the minimal
number of non-zero values of vi) [11]. In addition, a larger vi value
means that a corrupted yi is farther away from a valid range. In this
sense, vi can be also regarded as the corrupted degree of yi.

It can be proved that CDIP is NP-hard by reducing the Travel-
ing Salesperson Problem (TSP) to CDIP. We omit the proof due
to space limit. By investigating the special structure of the prob-
lem, however, we can develop an effective heuristic algorithm in-
troduced in the next section.

Algorithm 1 Sequential Local Optimization Algorithm
Input: Load data {y1, y2, · · · , yn}, power bounds Pl, Pu, initial

state S0, sampling frequency f , local time window size w.
Output: Corrupted data set C, corrupted degree vi, 1 ≤ i ≤ n
1: v0 = 0
2: C = ∅
3: for k = 1 : n do
4: Solve Problem (Equation 10), and obtain vi and Si where
k ≤ i ≤ k + w − 1

5: if vk 6= 0 then
6: C = C ∪ {yk}
7: Sk = Sk−1

8: end if
9: end for

10: return C, {v1, v2, · · · , vn}

5. SEQUENTIAL LOCAL OPTIMIZATION
In this section, we propose a Sequential Local Optimization Al-

gorithm (SLOA) and develop a quantitative strategy to estimate the
minimum local window size.

5.1 SLOA
The temporal sparsity of corrupted load data suggests that we

can perform optimization in a smaller, local time window. By con-
sidering the correlation between consecutive timeslots, we design
a Sequential Local Optimization Algorithm (SLOA). Without loss
of generality, we take a load data from time t = 1 to t = n as an
example to show the major steps of SLOA.

Step 1. Consider a small time window with size of w, 1 ≤ w <
n, which starts from time k to time k+w−1. Given the state vector
at time k − 1, i.e., Sk−1, we consider the following optimization
problem:

minimize
Si,vi

k+w−1∑
i=k

|vi|

subject to (Si · Pl + vi) /f ≤ yi ≤ (Si · Pu + vi) /f

‖Si − Si−1‖1 ≤ δ
Si,j ∈ {0, 1}
k ≤ i ≤ k + w − 1

1 ≤ j ≤ m

(10)

By setting w � n, we can significantly reduce the search space.
Actually, we can show that the computational complexity to solve
the above problem isO(Mw), whereM =

(
m
0

)
+
(
m
1

)
+· · ·+

(
m
δ

)
.

Sincem is the total number of appliances and δ � m, the problem
can be solved quickly using tools such as CVX 2.0 with a Gurobi
engine [8].

Step 2. For the k-th time window that starts from time k, we
use the following strategy to handle consecutive corrupted data: if
the data point at time k is identified to be corrupted, i.e., vk 6= 0,
recover the current state vector from the previous one, i.e., set Sk =
Sk−1.

Step 3. Repeat above two steps from k = 1 to k = n, and
solve problems in form of Equation (10) sequentially. After n iter-
ations, we can get a sequential solution v1, v2, · · · , vn. Thus, the
corrupted data set is C = {yi : vi 6= 0, 1 ≤ i ≤ n}, in which vi is
the corrupted degree of load data yi.

Algorithm 1 shows the pseudo code of SLOA.



5.2 Estimation of Local Window Size
Clearly, one key question in SLOA is to determine a suitable size

of the local window. In principle, we want the size to be as small
as possible to speed up the calculation, but a size too small may
result in a poor solution largely deviating from the global optimal
one. For example, in the extreme case of w = 1, SLOA becomes
a simple greedy search algorithm, where the final solution may not
be good. On the other hand, if w = n, the problem becomes the
same as Equation (8), which is hard to solve. What is the minimum
local window size that leads to a nearly global optimal solution?

Since it is hard to obtain a strict proof that the local optimal
solutions together lead to the global optimal solution, we use the
following heuristics to estimate the minimum local window size:
within the local window, it should be possible that one state vector
can be transited to any other state vectors in the vector space. In
other words, within the local window, we should cover all possible
state vectors in the search. This heuristics sheds light on finding the
minimum local window size, as formulated below.

DEFINITION 4 (OVERLAP INDEX). Consider m appliances
denoted by a set {R1, R2, · · · , Rm}, whereRi ≡ [li, ui] ⊂ < and
represents the i-th appliance’s power range. The overlap index of
m appliances is defined as:

O ≡
∑m
i=1

∫ pmax

pmin
I (Ri ∩ {x})dx∫ Pmax

Pmin
I((∪mi=1Ri) ∩ {x})dx

(11)

where pmax and pmin stand for the maximum and minimum power
of all appliances, respectively, and I(x) is an indicator function

I(x) =

{
1 , x 6= ∅
0 , x = ∅ (12)

Note that the denominator
∫ Pmax

Pmin
I((∪mi=1Ri) ∩ {x})dx in-

cludes all valid power values, i.e., the ones that can be covered by
at least one appliance’s power range. We can see that the overlap
index represents the number of appliances whose power range cov-
ers a valid power value, averaged over the whole power range of all
appliances. In particular,O = 1 indicates that no pair of appliances
have overlapped power, andO = mmeans that all appliances have
the same power range. Intuitively, when O is large, there is a good
chance of finding multiple local optimal solutions to Equation (10),
since there are multiple equivalent choices to turn on/off appliances
in each iteration.

With the heuristics in estimating the minimum local window
size, we have the following result.

LEMMA 1. Given the overlap index O of m appliances and
the upper bound δ on the total number of on-off state switches in
a timeslot, in order to get the nearly global optimal solution to
Equation (8) via Equation (10), the minimum local window size
w = max{

⌈
m
δ·O

⌉
, 1}.

PROOF. We prove the following condition holds: within the lo-
cal window, we can cover all possible state vectors in the search.

First, the value of w relates to upper bound δ(≤ m) on the total
number of on-off switches in one timeslot. It is obvious that from
time t = i to t = i + 1, the state vector Si can only change to
another state vector Si+1, with ‖Si+1 − Si‖1 ≤ δ. If δ = m, then
within one step, a state vector is allowed to change to any other
state vector. On the other hand, if δ = 1, within one step, a state
vector can only change one value in the vector. In other words,
from one state vector, it requires at least

⌈
m
δ

⌉
timeslots to reach

any other state vector in the state vector space, i.e., w ≥
⌈
m
δ

⌉
.

ID Name Regular Power(Watt)

1~4 Desktop (type 1) [80, 150]

5~7 Desktop (type 2) [40, 80]

8 Laptop [30, 60]

9 Printer [800, 1000]

10 Refrigerator [100, 300]

11 Drinking fountain [100, 500]

12 Microwave [800, 1200]

13 Coffee maker [500, 800]
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Figure 2: Energy monitoring platform and appliances’ power
ranges

Second, the overlap indexO can reduce the value ofw. Based on
the meaning of O, m appliances with overlap index O are equiv-
alent to [m/O] appliances without overlapped power. Replace m
with m/O, we can get w ≥

⌈
m
δ·O

⌉
. Considering w ≥ 1, we con-

clude:

w ≥ max{
⌈ m

δ ·O

⌉
, 1}. (13)

Since we want w to be as small as possible, w = max{
⌈
m
δ·O

⌉
, 1}.

2

Note that, although the minimum local window size obtained
above is an estimation, it works effectively in our experiments with
real-world data as well as with synthetic data.

5.3 Algorithm Analysis
Given n load values, m appliances, and the upper bound δ(≤

m) on the total number of on-off state switches in a timeslot, the
computational complexity of the original problem (Equation 8) is
O(Mn), where M =

(
m
0

)
+
(
m
1

)
+ · · · +

(
m
δ

)
. Using SLOA,

solving the optimization problem (Equation 10) for n times results
in the time complexity of O(n ·Mw), where w ∈ Z+ and w � n.
Please note that the appliance number m is a constant value and w
is also a small constant.

Obviously, the larger the value of w, the higher the computa-
tional complexity. Fortunately, the overlap index of appliances
in a house/building is usually high, as observed in our real-world
testbed. This fact allows us to select a small local window size fol-
lowing Lemma 1. Therefore, in the application scenarios, SLOA
can approach the NP-hard problem heuristically and efficiently. We
will show that this algorithm indeed can provide a good solution
with abundant experimental results in the following sections.

6. EXPERIMENTAL EVALUATIONS

6.1 Evaluation on Real Data

6.1.1 Case 1: Evaluation for Laboratory Facility
We evaluate our method with real-world trace data from a real-

world energy monitoring platform. We monitored the appliances’
energy consumption of a typical laboratory and a lounge room on
the fifth floor of the Engineering/Computer Science Building at
University of Victoria. The real-time power of laptops, desktops
and some household appliances was recorded. Each appliance’s
power level was measured every 10 seconds and the measurement
results were transmitted with ZigBee radio to a server that stores



Table 1: Results of corrupted data identification on university facility data: appliance-driven approach vs. B-spline smoothing
appliance-driven approach B-spline Smoothing

w = 1 w = 2 w = 3 w = 5 df = 128 df = 188 df = 258 df = 388
Precision 89.29% 95.83% 85.29% 84.38% 48.68% 50.00% 51.39% 47.44%
Recall 50.00% 46.00% 58.00% 54.00% 72.55% 74.51% 82.35% 72.55%

F −measure 64.10% 62.16% 69.05% 65.85% 58.27% 59.84% 60.16% 57.36%

the data. The monitored appliances and their regular power1 are
shown in Fig. 2.

We collect the data over a two-month period. Fig. 3 demon-
strates one-week and one-day load data collected by our platform.
For clear illustration, we only show one-day data as an example.
Note that even in a lab setting like ours, there indeed exists some
apparent corrupted data, indicated by the dashed red dots in Fig. 32.
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Figure 3: One-week and one-day load data collected via the
energy monitoring platform.

In order to introduce more corrupted data, we asked three stu-
dents to distort the load data with “falsification”, i.e., they were
asked to arbitrarily modify the aggregated load data within the
range of [0,∞). These changed data together with the original
corrupted ones were labeled and used as the ground-truth to verify
the performance of our method.

Since the existing appliance-oblivious load data cleansing meth-
ods, such as B-spline smoothing, detect outliers and consider out-
liers as corrupted data, we use the terms “outliers” and “corrupted
data” interchangeably hereafter. For outlier detection, four statis-
tical results can be obtained: (1) true positive (TP ), the number
of points that are identified correctly as outliers; (2) false positive
(FP ), the number of points that are normal but are identified as
outliers; (3) true negative (TN ), the number of points that are nor-
mal and are not identified as outliers; (4) false negative (FN ), the
number of points that are outliers but are not identified. Using
TP, FP, TN and FN , we evaluate the following three broadly-
used performance metrics: precision, recall, and F-measure. Pre-
cision is the ratio of the number of correctly detected corrupted
values over the total number of detected values; recall is the ratio
of the number of correctly detected values over the number of pre-
labeled corrupted values; and the F-measure is a harmonic mean of
precision and recall, i.e.,

F-measure =
2 · Precision ·Recall
Precision+Recall

. (14)

For comparison, we implement and test an appliance-oblivious
data cleansing method, B-spline smoothing, which is introduced
in [5] to identify corrupted load data. In the B-spline smoothing
1An appliance’s regular power is an approximate range around the
rated power where this appliance works.
2The corrupted data mainly comes from some incorrect power val-
ues from the laptop that occasionally reports impossible values
such as hundreds of Watts.

method, we set the confidence coefficient α = 0.05, which results
in a confidence interval of 95%. We treat the degree of freedom
(df ) as a variable, whose value is trained when smoothing the load
curve data. For our method, the overlap index is obtained asO ≈ 2,
and the upper bound of on-off switching events of appliances within
the sampling interval is set to 2, i.e., δ = 2. According to Equa-
tion (13), the local window size, i.e., the value of w in Algorithm 1,
is set to 3. Since the value of local window size is an estimation,
in order to obtain more comprehensive performance evaluation for
our method, we also vary the local window size in a range.

Table 1 summarizes some of the results from the two methods.
Furthermore, Fig. 4 and Fig. 5 illustrate one of the outcomes from
our appliance-driven method and the B-spline smoothing method,
respectively. From the results, we have the following interesting
observations.

• Comparing to B-spline smoothing, our method performs
much better in Precision, but worse in Recall. This shows
that our method can identify the corrupted data more accu-
rately, even though our output does not cover the completed
set of all corrupted data. In addition, our appliance-driven
method achieves a higher F-measure. F-measure reflects a
balanced mean between precision and recall, indicating that
our method has overall better performance.

• The performance of our method remains roughly the same
when the local window size is beyond the minimum value
estimated using Lemma 1. Further increase of local window
size does not bring clear performance gain but takes longer
running time. This suggests that our previous estimation on
the minimum local window size for SLOA is appropriate.

6.1.2 Case 2: Evaluation for Households
In addition to the data collected from university facilities, we

also evaluate our method with real-world trace data from some typ-
ical households. Load data of four houses (each house possesses
20 ∼ 40 appliances) were collected by Belkin Inc. and made on
Kaggle [16]. With the data from one of the four households, we
evaluate the performance of our appliance-driven method. The ex-
perimental process is similar to that in Case 1, and the results are
summarized in Table 2.

Table 2: Results of corrupted data identification on household
data (w = 1)

Appliance-driven B-spline Smoothing
δ = 2 δ = 3 df = 188 df = 258

Precision 67.86% 80.30% 36.84% 40.67%
Recall 73.79% 53.00% 70.00% 61.00%

F −measure 70.70% 63.86% 48.28% 48.80%

6.2 Evaluation on Large-Scale Synthetic Data
To thoroughly test our method, we evaluate its performance us-

ing large-scale synthetic data that simulates a large number of ap-
pliances and much diverse energy patterns. With different synthetic
datasets, we can also test the robustness of our method.
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Figure 4: Result of corrupted data identification on university facility data with our appliance-driven method (w = 1, δ = 2);
Estimated bounds denote the upper and lower power bounds based on current state vector; Corrupted degree indicates the value of
the virtual appliance (Section 4.)
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Figure 5: Result of corrupted data identification on university facility data with the B-spline smoothing method (df = 258)

6.2.1 Load Data Generation via Monte Carlo Simu-
lation

There is no standard model for the load curve data of a house,
since the data actually results from a complex process related to
human activities. We thus use the Monte Carlo simulation to gen-
erate the load data using the following method:

• Given the lowest appliance power (Pmin) and the highest ap-
pliance power (Pmax), the lower bound of an appliance (pl)
is a random variable uniformly distributed between Pmin
and Pmax. The upper bound of the appliance (pu) is deter-
mined by a parameter called power range ratio (r) and is cal-
culated by pu = min{pl+random([0, rpl]), Pmax},where
random([0, rpl]) returns a random number uniformly dis-
tributed in the range [0, rpl].

• At a given sampling frequency, each appliance reports its
current power value, which is a random number uniformly
distributed between the appliance’s lower power bound and
upper power bound. It reports 0 if its state is off.

• In a sampling interval, the number of total on-off switch
events follows a Poisson distribution3 with parameter λ.

3Poisson distribution is a good model for situations where the to-
tal number of items is large and the probability that each individ-
ual item changes its state is small. It has been broadly adopted to
simulate events related to human behavior, such as the number of
telephone calls in a telephone system.

• At the end of each sampling interval, the load data of the
house is recorded as the aggregated power value of all appli-
ances (i.e., the sum of all appliances’ load values).

To introduce some corrupted data and test the effectiveness of
our method, we “corrupt" some data values by replacing them with
random values uniformly distributed between [0,Max], where
Max is a given large constant. The time interval of introducing
corrupted data is assumed to follow an exponential distribution with
the mean value of µ.

6.2.2 Corrupted Data Identification on Large-Scale
Appliances

The parameters used to generate the synthetic data and the cor-
rupted data are listed in Table 3.

Table 3: Parameter settings for load data generation and cor-
ruption

Parameter Setting
Number of Appliances (m) 50

Sampling Frequency(f ) 1/6Hz
Total Time Span 3600s

Lowest Appliance Power(Pmin) 50w
Highest Appliance Power(Pmax) 2000w

Power Range Ratio(r) 15%

Initial State(S) [0, 0, · · · , 0]T
Poisson Parameter(λ) 5

Exponential Parameter(µ) 30
Corrupted Data Range [0, 50kW ]



Table 4: Results of corrupted data identification on synthetic data: appliance-driven method vs. B-spline smoothing
appliance-driven Method B-spline Smoothing
δ = 4 δ = 5 δ = 6 df = 140 df = 160 df = 180 df = 200

Precision 93.94% 93.94% 100% 78.57% 86.49% 84.61% 84.21%
Recall 81.58% 81.58% 63.16% 86.84% 84.21% 86.84% 84.21%

F −measure 87.32% 87.32% 77.42% 82.50% 85.33% 85.71% 84.21%
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Figure 6: Result of corrupted data identification on synthetic
data with our appliance-driven method (w = 1, δ = 5)
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Figure 7: Result of corrupted data identification on synthetic
data with B-spline smoothing method(df = 160)

We treat the bound on the total number of on-off switches in a
sampling interval δ as a variable. To speed up the processing, we
set the local window size to 1. The small local window size may
not lead to the best performance of SLOA. However, as shown in
our experimental results, even with this setting, our method already
performs better than B-spline smoothing. For the B-spline smooth-
ing method, the degree of freedom (df ) is set as a variable and is
trained when smoothing the synthetic data.

The performance results of our method and the B-spline smooth-
ing method are summarized in Table 4. Fig. 6 and Fig. 7 illustrate
one of the outcomes from our method and the B-spline smoothing
method, respectively.

From the results, we can see that the our method works effec-
tively on large-scale synthetic data. In particular, the precision of
our method increases with increase of δ, and can even reach 100%.
This result indicates that our method can provide exactly correct
identification when δ is large enough. Regarding the overall per-
formance in view of F-measure, our method works better with a
smaller δ value and outperforms B-spline smoothing clearly.

6.2.3 Identification of Consecutive Corrupted Data
In practice, we often meet the situation that all data within a

small time interval are corrupted or lost. Consecutive corrupted
data poses a big challenge to regression-based methods, as will be
illustrated in this subsection.
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Figure 8: Identification of consecutive corrupted data with our
appliance-driven method
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Figure 9: Identification of consecutive corrupted data with B-
spline smoothing method (df = 100)

To introduce consecutive corrupted data, we replace the load data
in a small time window as 0s, as shown in the upper part of Fig. 8.
We then use our method and the B-spline smoothing method to
test the data. Fig. 8 and Fig. 9 illustrate one outcome from our
appliance-driven approach and the B-spline smoothing method, re-
spectively.

From the results, we can see that our method does much bet-
ter than B-spline smoothing for consecutive corrupted data iden-
tification. With δ = 5, our method can correctly identify all the
corrupted data. On the other hand, even though we regulate the
parameters for B-spline smoothing, it almost failed every time to
identify even half of the corrupted data.

An interesting phenomenon can be found around the consecutive
corrupted data in Fig. 9. There is an apparent trend with B-spline
smoothing to fit the corrupted data. This is mainly because the B-
spline smoothing method tries to fit the curve pattern and reduce the
total bias error with global optimization, indicating that it cannot
deal with consecutive corrupted data well.

7. ROBUSTNESS TESTING
One may question whether the performance of SLOA relies on

a correct initial state vector, accurate information regarding appli-
ances power ranges, and an accurate estimation on appliances’ on-
off states. all of such information may be hard to obtain in practice.



Table 5: Robustness tests with incorrect power ranges of appliances
Widen (5%) Widen (10%) Shift& Widen (5%) Shift& Widen (10%)

δ = 3 δ = 4 δ = 3 δ = 4 δ = 3 δ = 4 δ = 3 δ = 4
Precision 93.55% 87.50% 91.30% 94.12% 67.39% 90.91% 71.11% 84.62%
Recall 76.32% 55.26% 55.26% 42.11% 81.58% 78.95% 84.21% 57.89%

F −measure 84.06% 67.74% 68.84% 58.18% 73.81% 84.51% 77.11% 68.75%

To answer this question, we test the robustness of SLOA. We use
the synthetic data created using the same parameters in Table 3. We
first disclose the test results and then explain the reasons.

7.1 Impact of the Initial State
For this test, we change the initial state of an appliance to a ran-

dom 0-1 value, and perform multiple tests. Fig. 10 shows one of
the outcomes. We find that, even with an incorrect initial state, our
method can always recover to correct load data after a few steps.
This result indicates that our SLOA method is robust against inac-
curate initial power state setting.
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Figure 10: Fast recovery of estimated load starting from a ran-
dom initial state

7.2 Impact of Power Ranges
In practice, we may not precisely know the power ranges of ap-

pliances. Based on this consideration, we run extra simulations to
test the robustness of our method when the power ranges of appli-
ances is inaccurate. We carry out two kinds of tests as follow.

• Widen power range: each appliance’s power range is
widened by 5% or 10%, respectively, with the center power
value, i.e., (upper bound− lower bound)/2, unchanged.

• Shift& widen power range: each appliance’s lower power
bound is increased by 5% or 10%, and upper bound is in-
creased by 5% or 10%, respectively. Note that the above
operations will shift the center power value as well as widen
the power range.

We do not consider the situation where appliances’ power ranges
are narrowed, since intuitively a user can always widen an appli-
ance’s power range if she/he is not sure about the right values. The
test results are summarized in Table 5. The results clearly indicate
that, with inaccurate or even wrong power ranges of appliances, our
method can still identify corrupted data with high precision.

7.3 Impact of State Vector
We have seen that our method can give correct bounds for energy

consumption most of the time. Accordingly, we might infer that the
estimated states of the appliances should be the same with the real
situation, or at least quite close.

In order to verify this conjecture, we calculate the difference
(one-norm distance) between the estimated state Se and real state
Sr at each time instance. Fig. 11 shows the result.

To our surprise, the estimated states are not close to the real
states, and actually deviate remarkably from the real states. We can
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Figure 11: Difference between estimated state Se and real state
Sr

see that in Fig. 11, the mean distance between Se and Sr is around
25, indicating that nearly half of the appliances are not estimated
with correct states. This shows that the solution to the CDIP prob-
lem is not unique but multiple, and our method can provide right
load data without need to always find the right states of appliances.

7.4 Why Is SLOA Robust?
In real life, a lot of appliances are with similar or overlapped

power range. In this sense, we indeed do not need to know the
exact state for similar appliances as long as we can give a good
approximation for their total consumption. In addition, due to the
temporal sparsity of on-off switch events in the short sampling in-
terval and the fact that only some appliances are on at any time
instant, the negative impact of inaccurate power range estimation
on one appliance can be offset by the negative impact of incorrect
state estimation of another appliance. The offsetting is enforced au-
tomatically by the optimization objective function that minimizes
the gap between the actual load data and the estimated value.

8. FURTHER DISCUSSION
Our approach is based on the assumption that customers are will-

ing to collaborate and provide their appliances’ information. This
naturally causes privacy concerns. Nevertheless, this assumption is
nothing special in real-world applications, since customers have to
put certain trust on service providers. Commercial energy moni-
toring platforms, such as PlotWatt [27] and PlugWise [28], indeed
require users’ appliance information.

Another concern of our solution is that users may not be able
to know the power model of each appliance. Nevertheless, the
information needed in our solution is simple and could be found
from users’ manual, technical specification or public websites such
as [13, 19]. In addition, cheap per-appliance monitoring devices [7]
can be used to obtain the required information. In our above test,
it can be seen that it is unnecessary to precisely know the power
ranges of appliances, and our solution can tolerate up to 20% of
estimation errors in appliances’ power ranges.

9. CONCLUSION AND FUTURE WORK
To answer the industrial call for improving quality of load data,

we developed a new appliance-driven approach for corrupted data
identification that particularly takes advantage of information avail-
able on the demand side. Our appliance-driven approach considers



the operating ranges of appliances that are readily available from
users’ manual, technical specification, or public websites [13]. It
identifies corrupted data by solving a carefully-designed optimiza-
tion problem. To solve the problem efficiently, we developed a se-
quential local optimization algorithm (SLOA) that practically ap-
proach the original NP-hard problem approximately by solving
an optimization problem in polynomial time. We evaluated our
method using real trace data from a university facility and four typ-
ical households, and large-scale synthetic data generated by Monte
Carlo simulation. Test results indicate that our method can pre-
cisely capture corrupted data. In addition, SLOA is robust under
various test scenarios, and its performance is resilient to inaccurate
power range information or inaccurate power state estimation.

Our method greatly augments the arsenal of existing load data
cleansing tools to minimize human effort in identifying corrupted
data. How to replace aberrant values and missing values is out of
our focus, because this issue is relevant to utilities’ internal rules
and thus requires human interaction. Considering various policies
and methods for load data imputation will be our future work.
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