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Currently, most popular Web search engines adopt some link-based ranking methods such as
PageRank. Driven by the huge potential benefit of improving rankings of Web pages, many tricks
have been attempted to boost page rankings. The most common way, which is known as link spam,
is to make up some artificially designed link structures. Detecting link spam effectively is a big
challenge. In this article, we develop novel and effective detection methods for link spam target
pages using page farms. The essential idea is intuitive: whether a page is the beneficiary of link
spam is reflected by how it collects its PageRank score. Technically, how a target page collects its
PageRank score is modeled by a page farm, which consists of pages contributing a major portion of
the PageRank score of the target page. We propose two spamicity measures based on page farms.
They can be used as an effective measure to check whether the pages are link spam target pages. An
empirical study using a newly available real dataset strongly suggests that our method is effective.
It outperforms the state-of-the-art methods like SpamRank and SpamMass in both precision and
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1. INTRODUCTION

Ranking Web pages is an essential task in Web search and mining. Many
studies have been dedicated to effective ranking methods such as HITS
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[Kleinberg 1999] and PageRank [Page et al. 1998]. Most popular Web search
engines currently adopt some link-based ranking methods such as PageRank.
Driven by the huge potential benefit of promoting rankings of Web pages, many
tricks have been attempted to boost page rankings. The most common way,
which is known as link spam [Bianchini et al. 2005; Gyöngyi and Garcia-Molina
2005b; Henzinger et al. 2003; Langville and Meyer 2004], is to make up some
artificially designed link structures. Generally, a Web page may benefit from
link spam activities, or it may support link spam activities. In this paper, we are
focusing on finding those pages which are benefiting from link spam, that is, the
targets of link spam campaigns. We call such a page a link spam target page. We
use the term link spam to refer to the activity/phenomena such that spammers
try to mislead search engines to boost the rankings of the target pages.

Detecting link spam effectively is a big challenge. Several link spam detection
methods were developed in some previous studies. Please see Section 6 for a
brief review. However, two important and interesting questions largely remain
open.

First, owners of Web pages often want to promote their Web pages and boost
the rankings by attracting links from other Web sites. The difference between
a popular page and a link spam target page depends on whether the links from
other pages are justifiable. Thus, it is often relative and subtle whether a Web
page is a link spam target page. To this extent, link spam detection is differ-
ent from the traditional classification/supervised learning problem. Instead of
simply classifying a page as a link spam target page or not, alternatively, can
we measure the “degree” that a page is a link spam target page? What features
can be used to measure the degree well?

Moreover, although some methods have been proposed to detect link spam,
there exists no method to detect how link spam is attempted by a link spam
target page, that is, how hyperlinks are used to connect the supporting pages
and the target page so that the PageRank score of the target page is boosted.
How link spam is attempted is important for understanding link spam better
and improving ranking methods in Web search engines.

To fully understand link-based ranking, one essential question largely re-
mains open. For a Web page p, what other pages are the major contributors to
the ranking score of p, and how is the contribution made? Understanding the
general relations of Web pages and their environments is important, with quite
a few interesting applications such as link spam detection.

In this article, we study the problem of link spam target page detection and
propose novel and effective link spam detection methods using page farms. The
essential idea is intuitive: whether a page is a link spam target page is reflected
by how it collects its PageRank score. Technically, for a target page p, we model
how p collects its PageRank score by the page farm of p which consists of pages
contributing to a major portion of the PageRank score of p. By analyzing the
utility and characteristics of the page farm of p in boosting the PageRank score
of p, we derive the spamicity measure of p, which reflects the “degree” of link
spam and can be used as an effective measure of link spam.

Gyöngyi and Garcia-Molina [2005a] modeled the Web pages and the hyper-
links supporting a spam target page as the link spam farm of the spam target
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page. The ideas of page farms and link spam farms share some similarity. How-
ever, there are some critical differences between link spam farms and page
farms. The link spam farm model in Gyöngyi and Garcia-Molina [2005a] is a
conceptual notion. To the best of our knowledge, there are no previous studies
on what exactly a link spam farm looks like in practice and how to extract those
link spam farms. In our page farm model, every page has its own page farm
which is well defined and contains those most important pages that contribute
to a major part of the PageRank score of the target page. To this extent, our
page farm notion is more general than the link spam farm notion in scope, and
more detailed in technical definition.

An important application of page farms is detecting link spam target pages.
The page farm model and the related methods presented in this article have
some advantages. First, page farms not only can capture link spam, but also
can tell how link spam is attempted. Second, our methods using page farms to
detect link spam can capture disguised link spam. Some existing methods, as
briefly reviewed in Section 6, can identify optimal link spam farms. However,
such perfect link spam farms may not be commonly used in practice since they
can be detected easily by a search engine. To disguise, a spammer may modify
the optimal link spam farm but still keep the target pages of high PageRank
scores. By analyzing page farms, we can still capture disguised link spam since
the disguised link spam still has a page farm efficiently boosting the PageRank
score of the target page. Third, as will be shown in the article, extracting the
page farm of a Web page is efficient using a simple yet effective local greedy
search method. We do not need the whole Web graph or a costly training pro-
cedure. Thus, page farm based detection methods can be applied on the fly on
any target pages of interest.

We make the following contributions.

—We propose page farm analysis for link spam detection, as discussed in
Section 2 and Section 3. A page farm is a (minimal) set of pages contributing
to (a major portion of) the PageRank score of a target page. We propose the
notions of θ -page farms and (θ , k)-page farms, where θ in [0, 1] is a contri-
bution threshold and k is a distance threshold. We study the computational
complexity of finding page farms, and show that it is NP-hard. Then we de-
velop a feasible greedy method in practice to extract approximate page farms
for a set of pages. The method potentially can be extended to extracting page
farms for all pages in the whole Web graph.

—We investigate link spam detection using page farms, as shown in Section 4.
In the utility-based method, we measure the utility of a page farm, that is, the
“perfectness” of a page farm in obtaining the maximum PageRank. Among
those pages that try to achieve PageRank scores as much as possible, the
majority of them can be classified into link spam pages. Thus, the utility can
be used as a measure of the likelihood of link spam. In the characteristics-
based method, we analyze the characteristics of a page farm, that is, the
statistics of a page farm such as how pages and hyperlinks are organized
in the farm, and use the statistics as the indicator of the likelihood of link
spam. Using those measures we can detect link spam target pages. Different
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from many previous methods, our methods are not based on classification or
supervised training.

—We evaluate our link spam detection methods using a newly available large
real dataset, as shown in Section 5. The dataset [Castillo et al. 2006] was
released by Yahoo! Research Barcelona, which is the result of the effort of
an international team of volunteers. As far as we know, this dataset is the
first publicly available benchmark for Web spam detection. The experimental
results show that our methods are effective in detecting spam pages and out-
perform SpamRank and SpamMass which are the state-of-the-art methods
that assign to pages spamicity scores and do not need supervised training.

The rest of the article is organized as follows. In Section 2, we present the
page farm model. In Section 3, we discuss page farm extraction. Section 4 inves-
tigates link spam detection using page farms. We report an empirical evaluation
in Section 5, and review the related work in Section 6. The article is concluded
in Section 7.

2. PAGE FARMS

Web pages and hyperlinks can be modeled as a directed Web graph G = (V , E),
where V is the set of Web pages, and E is the set of hyperlinks. A link from
page p to page q is denoted by the edge p → q. An edge p → q can also be
written as a tuple (p, q). A page p may have multiple hyperlinks pointing to
page q, however, in the Web graph, only one edge p → q is formed. Hereafter,
by default our discussion is about a directed Web graph G = (V , E).

PageRank [Page et al. 1998] measures the importance of a page p by consid-
ering how collectively other Web pages point to p directly or indirectly. Formally,
for a Web page p, the PageRank score is defined as

PR(p, G) = d
∑

pi∈M (p)

PR(pi, G)
OutDeg(pi)

+ 1 − d
N

, (1)

where M (p) = {q|q → p ∈ E} is the set of pages having a hyperlink pointing
to p, OutDeg(pi) is the outdegree of pi (that is, the number of hyperlinks from
pi pointing to some pages other than pi), d is a damping factor which models
a decay in relevance/trust over distance on the Web, and N = |V | is the total
number of pages in the Web graph. 1 − d is traditionally referred to as the
random jump probability. The second additive term on the right hand side of
the equation, 1−d

N , corresponds to a minimal amount of PageRank score that
every page gets by default.

To calculate the PageRank scores for all Web pages in a graph, one can assign
a random PageRank score value to each node in the graph, and then apply
Equation (1) iteratively until the PageRank scores in the graph converge.

For a Web page p, can we analyze which other pages contribute to the
PageRank score of p? A straightforward way to answer the above question
is to extract all Web pages that contribute to the PageRank score of the target
page p. This idea leads to the notion of page farms.
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Fig. 1. Voiding pages and induced subgraphs. G(V −{u}) and G(V −{v}) are the induced subgraphs
of G on V − {u} and V − {v}, respectively, as specified in Definition 2.2.

Definition 2.1 (Page Farm). For a page p, the page farm of p is the set of
pages on which the PageRank score of p depends. Page p is called the target
page.

Note that when loops are present such that p contributes to its PageRank,
p itself can also be in the page farm of p.

According to Equation (1), the PageRank score of p directly depends on the
PageRank scores of pages having hyperlinks pointing to p. The dependency is
transitive. Therefore, a page q is in the page farm of p if and only if there exists
a directed path from q to p in the Web graph.

As indicated in some previous studies [Albert et al. 1999; Broder et al. 2000],
the major part of the Web is strongly connected. Albert et al. [1999] indicated
that the average distance of the Web is 19. Moreover, Adamic et al. [1999]
claimed that the Web also has a small world topology. In other words, it is
highly possible to get from any page to another in a small number of clicks.
A strongly connected component of over 56 million pages (within a crawl of
203 million pages in total) is reported in Broder et al. [2000]. Therefore, the
page farm of a Web page can be very large. It is difficult to analyze page farms
of a large number of pages. On the other hand, in many cases one may be
interested in only the major contributors to the PageRank score of the target
page.

Can we capture the set of major contributors to a large portion of the
PageRank score of a target page?

According to Equation (1), PageRank contributions are only made by the out-
links. Thus, a vertex in the Web graph is voided for PageRank score calculation
if all edges leaving the vertex are removed. Please note that we cannot simply
remove the vertex. Consider Graph G in Figure 1. Suppose we want to void
page v in the graph for PageRank calculation. Removing v from the graph also
reduces the outdegree of u, and thus changes the PageRank contribution from
u to p. Moreover, simply removing v alters the random jump probability of each
page in Figure 1. The effect is undesirable. Instead, we should retain v but
remove the out-link v → p.

Definition 2.2 (Induced Subgraph). For a set of vertices U , the induced
subgraph1 of U (with respect to PageRank score calculation) is given by
G(U ) = (V , E ′), where E ′ = {p → q|(p → q ∈ E) ∧ (p ∈ U )}. In other words, in
G(U ), we void all vertices that are not in U . Figure 1 shows two examples.

1Please note that the definition of the induced subgraph here is different from the conventional
definitions of edge/vertex-induced subgraphs in graph theory.
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To evaluate the contribution of a set of pages U to the PageRank score of a
page p, we can calculate the PageRank score of p in the induced subgraph of
U . Then, the PageRank contribution is

Cont(U, p) = PR(p, G(U ))
PR(p, G)

× 100%,

where PR(p, G(U )) and PR(p, G) represent the PageRank scores of p in G(U )
and G, respectively.

It is crucial to handle the dangling nodes properly in PageRank calcula-
tion. The pages of the Web can be classified as either dangling nodes or non-
dangling nodes. A dangling node is a Web page that contains no outlinks. All
other pages, having at least one outlink, are called nondangling nodes. Dan-
gling nodes affect the PageRank calculation because “it is not clear where their
weight should be distributed” [Page et al. 1998]. There are several ways to treat
the dangling nodes. The goal of the fixes for dangling nodes is to ensure that the
sum of PageRank scores of all nodes in a graph is equal to 1. Two well-known
and equivalent approaches are as follows [Langville and Meyer 2004]. We can
link every dangling node to all other nodes in a graph. Alternatively, we can
link every dangling node to a virtual node that links to all other nodes in a
graph.

Here, our goal is to examine the contribution of a (small) subset of vertices to
the PageRank of a target vertex. This is essentially different from the goal of fix-
ing dangling nodes in the traditional PageRank model. Technically, when some
vertices are voided, they become dangling nodes in the induced subgraphs. Con-
ceptually, the PageRank potential going to those vertices should be distributed
evenly to all vertices in the graph. When the graph is very large and the page
farm is comparatively very small, only a very small part of the PageRank po-
tential going to those dangling vertices can go back to the target vertex, which
thus can be ignored in the analysis. Therefore, in our model, we do not link
those dangling vertices to any other vertices.

If we adopt the traditional PageRank model to fix the dangling vertices in
an induced subgraph, by linking those dangling vertices to the other vertices in
the induced subgraph in one way or another, there still exist some link pathes
from the dangling vertices to the target vertex, thus the contribution of those
dangling vertices as well as their close neighbors to the target vertex is over
counted. Therefore, we do not adopt the fixes of dangling vertices in the tradi-
tional PageRank model.

PageRank contribution has the following property, which follows from Corol-
lary 3.3, as discussed later in Section 3.

COROLLARY 2.3 (MONOTONIC CONTRIBUTIONS). Let p be a page and U, W be two
sets of pages such that U ⊂ W. Then, 0 ≤ Cont(U, p) ≤ Cont(W, p) ≤ 1.

We can use the smallest subset of Web pages that contribute to at least a θ

portion of the PageRank score of a target page p as its θ -(page) farm.

Definition 2.4 (θ -farm). Let θ be a parameter such that 0 ≤ θ ≤ 1. A set of
pages U is a θ -farm of page p if Cont(U, p) ≥ θ and |U | is minimized.
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Fig. 2. Reducing the knapsack problem to a θ -farm extraction problem.

However, finding a θ -farm of a page is computationally costly on large net-
works, as indicated by the following result.

THEOREM 2.5 (θ -FARM COMPLEXITY). The following decision problem is NP-
hard: for a Web page p, a parameter θ , and a positive integer n, determine
whether there exists a θ -farm of p which has no more than n pages.

PROOF. The theorem can be proved by reducing the knapsack problem,
which is NP-complete [Karp 1972], to the θ -farm extraction problem.

We are given a set U of n items ui (1 ≤ i ≤ n) with value val (ui) and weight
w(ui), where the values and the weights are positive integers. We are asking
whether there exists a subset of items S ⊆ U such that the total value of
the subset is at least K , that is,

∑
u∈S val (u) ≥ K , and the total weight of the

subset is at most W , that is,
∑

u∈S w(u) ≤ W , where K and W are given positive
integers.

To reduce the problem, we construct a directed graph H = (V , E). The ver-
tices and the edges are created in three steps.

(1) First, vertex v0 ∈ V is created as a “knapsack.”
(2) Second, for each item ui, we create a vertex vi.
(3) Last, for each vertex vi ∈ V (1 ≤ i ≤ n) created in the second step, we

construct a directed path from vi to v0 of length w(ui): (w(ui)−1) new vertices,
denoted by vi,1, . . . , vi,w(ui )−1, are inserted as a path vi → vi,1 → vi,w(vi )−1 →
v0.

Figure 2 illustrates the construction of the graph H. As the result, in H, the
set of vertices |V | = 1 + n + ∑n

j=1(w(ui) − 1) and |E| = ∑n
j=1 w(ui).

We compute the PageRank scores of the vertices by assigning the initial score
values to the vertices in graph H as follows: for each vertex vi, where 1 ≤ i ≤ n,
PR(vi) = val (ui). All the other vertices (that is, v0 and vi, j ’s) are assigned an
initial score 0. We set d = 1 in Equation (1) and compute the PageRank scores
of the nodes in the graph.

Under such an initial score assignment, the PageRank score of v0 has the
following properties. First, vertices vi,1, . . . , vi,w(ui )−1 contribute to v0’s PageRank
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score if and only if the complete path vi → vi,1 → vi,w(vi )−1 → v0 is retained in
the induced subgraph. In other words, v0 can obtain some positive contribution
from any subset of the nodes in this path only if the whole path is included in
the farm. If only some nodes in the path are included in the farm, the farm is
not minimal since removing those nodes reduces the size of the farm but the
PageRank score of v0 remains.

Second, for a graph H ′ ⊆ H which contains only a path vi → vi,1 →
vi,w(vi )−1 → v0, the converged PageRank score of v0 in H ′ is val (ui).

Last, in graph H ′ ⊆ H which contains directed paths from vj1 , . . . , vjl to
v0 (1 ≤ j1, . . . , jl ≤ n), the converged PageRank score of v0 is

∑l
i=1 val (u ji ).

Moreover, PR(v0, G) = ∑n
i=1 val (ui).

Therefore, we obtain an affirmative answer to the knapsack problem (that
is, there is a set of items whose sum of values is at least K and whose sum
of weights is at most W ) if and only if, in the transformed graph G, there is a

K
PR(v0,G) -farm of v0 of size at most W .

Please note that we do not need to explicitly unfold those paths from vi to v0
in the real graph for PageRank score calculation and page farm computation.
Vertices vi ’s are the representatives of the paths. Therefore, the transformation
is of polynomial complexity.

Searching many pages on the Web can be costly. Heuristically, the near neigh-
bors of a Web page often have strong contributions to the importance of the
page, since the contribution from one page to another decays dramatically as
the distance from the contributor to the beneficiary increases. The decay can
be captured by the concepts of page contribution (Definition 3.1) and path con-
tribution (Definition 3.2). Therefore, we propose the notion of (θ , k)-farm.

In a directed graph G, let p, q be two nodes. The distance from p to q, denoted
by dist(p, q), is the length (in number of edges) of the shortest directed path
from p to q. If there is no directed path from p to q, then dist(p, q) = ∞.

Definition 2.6 ((θ , k)-Farm). Let G = (V , E) be a directed graph. Let θ and
k be two parameters such that 0 ≤ θ ≤ 1 and k > 0. k is called the distance
threshold. A subset of vertices U ⊆ V is a (θ , k)-farm of a page p if Cont(U, p) ≥
θ , dist(u, p) ≤ k for each vertex u ∈ U , and |U | is minimized.

Unfortunately, we notice that finding the exact (θ , k)-farms is also computa-
tionally expensive on large networks, as shown in Corollary 2.7.

COROLLARY 2.7 ((θ , k)-FARM COMPLEXITY). The following decision problem is
NP-hard: for a Web page p, a parameter θ , a distance threshold k, and a positive
integer n, determine whether there exists a (θ , k)-farm of page p having no more
than n pages.

PROOF. (θ , k)-farm is a special case of θ -farm, since we can set k to the
eccentricity of the graph. Thus, finding (θ , k)-farm is also NP-hard.

Thus, we have to develop efficient heuristic methods, which is the task of the
next section. In the rest of the paper, for the sake of brevity, when a page farm
is mentioned we refer to its (θ , k)-farm.
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Since PageRank is the most popular link based ranking algorithm, in this
paper, we focus on PageRank-based page farms and their extraction.

3. PAGE FARM EXTRACTION

In this section, we first give a simple greedy method to extract page farms,
and analyze why the simple greedy method is inefficient. Then, we propose a
method feasible in practice to extract approximate page farms.

3.1 A Simple Greedy Method

Clearly, if we can measure the contribution from any single page v towards the
PageRank score of the target page p, then we can greedily search for pages of
big contributions and add them into the page farm of p.

Definition 3.1 (Page Contribution). For a target page p ∈ V , the page con-
tribution of page v ∈ V to the PageRank score of p is

PCont(v, p) =
⎧⎨
⎩

PR(p, G) − PR(p, G(V − {v})) (v �= p)
1 − d

N
(v = p)

where d is the damping factor, and N is the total number of pages in the Web
graph.

Definition 3.1 is based on an intuitive observation, and is reasonable and
easy to understand. If v = p, according to the original PageRank formula in
Equation (1), 1−d

N corresponds to a minimal amount of PageRank score that
every page gets by default. Thus, we define PCont(v, p) = 1−d

N . If v �= p, intu-
itively, the PageRank contribution from v to p is the decrease of the PageRank
score of page p after we void page v. Thus, we define PCont(v, p) = PR(p, G)−
PR(p, G(V − {v}).

While PageRank contribution defined in Section 2 is used to measure the
ratio of contributions from a set of pages to a target page, page contribution
is used to measure the contribution from a specific page to a target page. To
quantified the contributions from a single page, we define page contribution
using differences rather than fractions.

Example 1 (Page Contribution). Consider the simple Web graph G in
Figure 1. The induced subgraphs G(V − {u}) and G(V − {v}) are also shown
in the figure. Please note that when a node is voided from the graph, the out-
degrees of its neighbors remain intact in the PageRank formula.

Let us consider page p as the target page, and calculate the page contribu-
tions of the other pages to the PageRank of p. In this example, N = 3. According
to Equation (1), the PageRank score of p in G is given by

PR(p, G) = −1
6

d3 − 1
3

d2 + 1
6

d + 1
3

.

Moreover, the PageRank score of p in G(V − {u}) is

PR(p, G(V − {u})) = −1
3

d2 + 1
3

,
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and the PageRank score of p in G(V − {v}) is

PR(p, G(V − {v})) = −1
6

d2 − 1
6

d + 1
3

.

Thus, the page contributions PCont(u, p) and PCont(v, p) are calculated as

PCont(u, p) = PR(p, G) − PR(p, G(V − {u})) = −1
6

d3 + 1
6

d ,

and

PCont(v, p) = PR(p, G) − PR(p, G(V − {v})) = −1
6

d3 − 1
6

d2 + 1
3

d .

Using the page contributions, we can greedily search a set of pages that
contribute to a θ portion of the PageRank score of a target page p. That is,
we calculate the page contribution of every page with distance to p at most k
to the PageRank score of p, and sort the pages in the contribution descending
order. Suppose the list is u1, u2, . . . . Then, we select the top-l pages u1, . . . , ul
as an approximation of the θ -farm of p such that PR(p,G(V −{u1,...,ul }))

PR(p,G) ≥ θ and l is
minimized.

This naı̈ve greedy search method is unfortunately inefficient for large Web
graphs. First, it assumes that the whole Web graph is available, which may
not be true for many situations for search engines. For example, the Web is
dynamic. It is not easy to maintain a Web graph which is up to date. Second,
in order to extract the page farm for a target page p, we have to compute the
PageRank of p in the induced subgraph G(V − {q}) for every page q other than
p. In the worst case, to extract the (θ , k)-farm of page p, if there are m pages q
such that the distance from q to p is no more than k, then we need to compute
the PageRank of p in m induced graphs. The computation is very costly since
the PageRank calculation is an iterative procedure and often involves a huge
number of Web pages and hyperlinks.

3.2 Path Contributions

Computing the contribution page by page is costly. Can we reduce this cost
effectively? Our idea is to compute the contribution path by path.

Definition 3.2 (Path Contribution). Consider Web graph G = (V , E) and
target page p ∈ V . Let P = v0 → v1 → . . . → vn → p be a (directed) path
from v0 to p in the graph. The path contribution to the PageRank of p from P
is defined as

LCont(P, p) = 1
N

dn+1(1 − d )
n∏

i=0

1
OutDeg(vi)

,

where OutDeg(vi) is the outdegree of page vi (the one from the original graph,
since voiding a node in the graph does not change the out-degrees of its neigh-
bors), and N is the total number of pages in the Web graph.
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The PageRank score of p can be calculated using the path contribu-
tions [Brinkmeier 2006].

PR(p, G) = 1 − d
N

+
∑

v∈W (p)

( ∑
P∈DP (v, p)

LCont(P, p)

)
, (2)

where W (p) = {v|there is a directed path from v to p}, DP(v, p) = {directed
path P from v to p}, and N is the total number of Web pages in the Web graph.

Moreover, page contributions can also be calculated using path contributions.
Applying Equation (2) to Definition 3.1, we have the following result.

COROLLARY 3.3 (PAGE AND PATH CONTRIBUTIONS). For vertices p and q in Web
graph G = (V , E), if the indegree of q is 0, that is, InDeg(q) = 0, then

PCont(q, p) =
∑

path P from q to p
LCont(P, p).

If InDeg(q) > 0, then

PCont(q, p) =
∑

path P1 from q to p
LCont(P1, p) +

∑
v∈Wq (p)

∑
path P2 from v to p through q

LCont(P2, p),

where Wq(p) = {v|there is a directed path from v to p through q}.

PROOF. According to Definition 3.1, for vertices p and q (q �= p) in Web graph
G = (V , E),

PCont(q, p) = PR(p, G) − PR(p, G(V − {q})). (3)

For simplicity, in the later analysis, we use P ∈ G(V ) to represent an arbi-
trary link path in G(V ). We apply Equation (2) to Equation (3), and have the
following:

PCont(q, p)

=
(

1 − d
N

+
∑

P∈G(V )

LCont(P, p)

)
−

(
1 − d

N
+

∑
P ′∈G(V −{q})

LCont(P ′, p)

)

=
∑

P∈G(V )

LCont(P, p) −
∑

P ′∈G(V −{q})
LCont(P ′, p)

(4)

Since the induced graph G(V − {q}) is generated by removing the out-links
of q, if InDeg(q) = 0, the differences between the two sets of link paths P and
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P ′ are those link paths from q to p. If InDeg(q) > 0, the differences between P
and P ′ are those link paths from q to p, and those link paths to p through q.
Thus, based on Equation (4), we have Corollary 3.3.

Please note that some paths in Corollary 3.3 can be circular. All the paths,
including those generated by loops, have to be considered in the calculation.

The monotonic contribution property of PageRank contributions
(Corollary 2.3) can be derived from Corollary 3.3.

PROOF OF COROLLARY 2.3. In order to void a vertex in the graph, we need to
remove all of its outlinks but keep the vertex in the graph. Note that those
voided vertices become dangling vertices in PageRank terminology. However,
in our PageRank contribution model, we do not need to make any specific mod-
ifications to remove dangling node.

According to Definition 3.2, a path contribution is non-negative. When some
vertices are voided for PageRank calculation, some paths (pointing to the target
vertex) are destroyed. Thus, the PageRank score of p in the induced subgraph
cannot be larger than that in the original graph, and the PageRank contribution
is a number between 0 and 1.

Example 2 (Path Contribution). Consider the Web graph in Figure 1 again.
There are three paths to target page p: P1 : u → p, P2 : u → v → p, and
P3 : v → p. The path contributions can be calculated as

LCont(P1, p) = −1
6

d2 + 1
6

d ,

LCont(P2, p) = −1
6

d3 + 1
6

d2,

and

LCont(P3, p) = −1
3

d2 + 1
3

d .

Using Corollary 3.3, we have

PCont(u, p) = LCont(P1, p) + Lcont(P2, p) = −1
6

d3 + 1
6

d

and

PCont(v, p) = LCont(P3, p) + LCont(P2, p) = −1
6

d3 − 1
6

d2 + d .

Moreover, by Equation (2), we have

PR(p, G) = 1 − d
3

+ LCont(P1, p) + LCont(P2, p) + LCont(P3, p)

= −1
6

d3 − 1
3

d2 + 1
6

d + 1
3

.

The results are consistent with those in Example 1.

Compared to page contributions, path contributions are cheaper to com-
pute and approximate. We can derive them directly from the graph structure
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Fig. 3. An example showing the different results using two measures of PageRank contribution.

using the outdegrees of pages. We do not even need the PageRank scores of
pages. Moreover, path contributions can be calculated in an incremental way.
There may be an infinite number of paths due to loops. However, according
to Definition 3.2, when the length of the path increases, the path contribution
decreases dramatically. In practice, we don’t need to consider all the paths.
Furthermore, recall that computing a page contribution directly using Defini-
tion 3.1 has to iteratively compute the PageRank score of the target page in an
induced subgraph until the scores in the subgraph converge.

Interestingly, simultaneous to our study on page contribution and path con-
tribution, Gyöngyi et al. [2006] proposed a measure on PageRank contribution
from Web pages and link paths. In their definition, the contribution from page q
to page p is given by

∑
P∈DP (q, p) LCont(P, p). The critical difference is that their

definition does not consider the transitive contribution from links pointing to q
(that is, the second item in Corollary 3.3).

To illustrate the difference, consider the directed graph in Figure 3. Suppose
there are many links pointing to p3, which in turn makes page p1 contribute
much more than p2 to the PageRank of p. As a result, using our PageRank
contribution model, pages p1 and p3 will be included in the farm. However,
in the model in Gyöngyi et al. [2006], p1 and p2 have the same PageRank
contribution, and p2’s contribution is much larger than p3. This is due to the
reason that the path from p3 to p is larger than that from either p1 or p2 to p.
Consequently, the page farm may include either p1 and p2 into the farm but not
p3. The purposes of their model and ours are different. Their model measures
individual impact exclusively. Ours captures the most important PageRank
contributors in the graph.

We also notice that, simultaneous to our study on path contribution, a simi-
lar idea called branching contribution is presented in Baeza-Yates et al. [2006].
The difference is that Baeza-Yates et al. [2006] only consider PageRank contri-
butions over link paths, but does not model the PageRank contributions from
pages explicitly.

3.3 Extracting (θ , k)-farms

Using path contributions, we propose a local greedy search algorithm in
Figure 4. It takes the immediate neighbors of p (that is, those pages having
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Fig. 4. A local greedy search algorithm to extract (θ , k)-farms.

links pointing to p) as the candidates of page farm members. It greedily picks
the page with the highest contribution among those in the candidate set, and
adds the page into the page farm. Once a new page q is added into the farm,
all those immediate neighbors of q (that is, those pages having links pointing
to q) are added into the candidate set if their distances to p are no more than
k. The selection continues iteratively until a farm contributing to a portion of
at least θ of the PageRank of p is found, or the candidate set is empty. In the
latter case, all the k-neighbors of p contribute to less than a θ portion of the
PageRank of p.

In this algorithm, we do not require that the complete Web graph is available.
Most search engines can return an approximate value of pages satisfying a
specific keyword query. The number of pages in the Web graph, that is, N in the
PageRank formula, can be estimated by submitting some simple queries (e.g., a
search for the term a). Moreover, we can use services of search engines to extract
(θ , k)-farms. For example, the Google “Search Links” operator returns some
pages pointing to a target page p directly. Although the current inlink search
services provided by those major search engines cannot return all inlinks, our
method still can capture the spamicity of a page without a whole Web graph.
With better inlink search results (as those major search engine companies claim
to provide in the future), our detection results can be improved further.

In the local greedy search algorithm, only those pages whose distance to
p is no more than k may be searched. Moreover, each of such pages can be
included into the candidate set at most once. It never computes PageRank
scores by an iterative converging method. Equation (2) and Corollary 3.3 help
to speed up the computation of the PageRank contribution. First, the compu-
tation of contributions can be decomposed into computing the contributions
from paths. Thus, when a new page is added to the page farm, we do not need
to compute the contribution again completely. Instead, we can compute the

ACM Transactions on Knowledge Discovery from Data, Vol. 3, No. 3, Article 13, Publication date: July 2009.



Link Spam Target Detection Using Page Farms • 13:15

incremental part using Corollary 3.3. Second, once a page is added into the
page farm, the contributions of the pages in the candidate set can be updated
accordingly. Therefore, it is much more efficient than the naı̈ve greedy search
algorithm.

We also consider another naı̈ve method. In order to calculate the page con-
tribution from page q to page p, instead of using path contributions to calculate
more accurate page contribution, we use PR(q,G)

OutDeg(q) as a rough estimation. Though
the algorithm is simpler and more efficient, the results turn out to be unsat-
isfactory. There are several reasons. First, the heuristic that a page of larger
value of PR(q,G)

OutDeg(q) may have larger page contribution does not necessarily hold.
Second, when we expand the farm, we consider the pages with a distance to the
target page up to k. The fraction PR(q,G)

OutDeg(q) can only reveal the direct connections
between the two pages, but not the longer link paths between the two pages.
As a conclusion, our local greedy search algorithm can balance efficiency and
accuracy well.

Figure 4 shows the algorithm to extract the (θ , k)-farm for a specific target
page. The algorithm can be extended to extract the (θ , k)-farms for a set of pages
easily. A straightforward way is as follows. We run the algorithm for pages one
by one. Once the farm for a target page is extracted, we can consider the next
target page which is pointed to by the current target page. Thus, some path
contributions calculated for the current target page can be reused or updated
for the next page. For example, consider the graph shown in Figure 3. Suppose
the farm of page p1 has been extracted. We can consider p as the next target
page, since p is directly pointed by p1. When calculating the page contribution
and path contribution, the previous results can be reused. Specifically, the path
contributions from other pages through p1 to p can be easily obtained from the
path contribution from those pages to p1 in the previous step, since the lengths
of all the paths are increased by 1 only.

Our greedy method extracts page farms one by one. As will be shown in
Figure 7, our method has a linear scalability empirically. However, extracting
page farms for all pages on the Web is still time-consuming.

In many cases, a user may be interested in whether some specific Web pages
are spam target pages. Our method can be applied to such individual pages on
the fly. Only the page farms of those pages need to be extracted and analyzed.
We only need to search the neighbors of those pages, which is highly feasible.

4. LINK SPAM DETECTION

Driven by the huge potential benefit of promoting rankings of Web pages, many
attempts have been made to boost page rankings by making up some artificially
designed link structures, which are known as link spam [Bianchini et al. 2005;
Gyöngyi and Garcia-Molina 2005b; Henzinger et al. 2003; Langville and Meyer
2004].

Definition 4.1 (Link Spam Target Page). A link spam target page refers to
a target page that benefits from any deliberate human action that is meant to
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trigger an unjustifiably favorable link-based relevance (that is, how the page
is related to the search query) or importance (that is, how the page is ranked
relative to the other pages on the Web) for some Web page comparing to the
true value of the page.

So far, the techniques of Web spam can be classified into two categories, term
spam and link spam [Gyöngyi and Garcia-Molina 2005b]. Term spam is to inject
into a Web page many (irrelevant) keywords, which are often visually hidden, so
that the page can be retrieved by many search queries that may be semantically
irrelevant to the page. Link spam is to deliberately build auxiliary pages and
links to boost the PageRank or other link-based ranking score of the target Web
page. Due to the extensive adoptions of the link-based ranking metrics such as
PageRank [Page et al. 1998] and HITS [Kleinberg 1999] in the popular Web
search engines, link spam has been used deliberately by many spam pages on
the Web.

Some previous studies [Fetterly et al. 2004; Ntoulas et al. 2006; Castillo et al.
2007] treat spam detection as a traditional classification problem. Each page
is assigned a label, either spam or not. However, the judgement on whether a
page is spam or not, to some extent, is subjective. As improving the significance
and the impact of a Web page is quite often a natural intent of the Web page
builder, it is critical to measure whether the page is intended to be built with
an unjustifiable high ranking score and the degree of such deliberations. The
modeling of the degree of deliberation, which refers to “spamicity,” becomes an
essential role to spam detection.

In this section, we develop link spam detection methods using page farms.
The experimental results to be shown in Section 5.1 will show that page farms
have some potentials for link spam detection. First, the size of a page farm is
relatively small comparing to the whole Web. Thus, extracting page farms for
a large set of pages is potentially feasible in practice. As will be shown in our
experiments, on average the page farm of a Web page contains a small number of
Web pages, which can be extracted without too much effort using the algorithm
in Figure 4. Second, different Web pages have their own page farms. Those page
farms may be quite different with respect to the link structures, thus it may
be possible to use page farms to detect link spam target pages, since their page
farms may be quite different from others.

The general idea is that we can calculate a spamicity score from the page
farm of a Web page to measure the likelihood of the page being a link spam
target page. We explore two alternatives of defining spamicity.

In order to judge whether a page benefits from link spam, we only need
to extract the page farm of the target page. As shown in our experiments,
on average the page farm of a Web page contains a small number of Web
pages, which can be extracted without too much effort using the algorithm in
Figure 4.

The induced subgraphs of page farms are directed graphs consisting of Web
pages and links. For the sake of brevity, we use Farm(p) = (V , E) to refer to
the induced subgraph of the page farm of p, and do not distinguish a page farm
and its induced subgraph.
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Fig. 5. Achieving the maximum PageRank scores.

4.1 Utility-based Spamicity

If p is the target of link spam, then Farm(p) should try to achieve the PageRank
of p as high as possible. We can calculate the maximum PageRank using the
same number of pages and the same number of hyperlinks as Farm(p) has.
The utility of the page farm of p is the ratio of the PageRank of p against the
maximum PageRank that can be achieved. The utility can be used as a measure
on the likelihood that p benefts from link spam. Intuitively, if the utility is closer
to 1, the page is more likely to be a link spam target page.

Then, what is the largest PageRank score that a farm of n pages and l links
can achieve?

THEOREM 4.2 (MAXIMUM PAGERANK SCORES). Let p be the target page, and
Farm(p) contain pages p1, . . . , pn (p �= pi, i = 1, . . . , n) and hyperlinks e1, . . . , el ,
l ≥ n. The following structure maximizes the PageRank score of p.

e j =
⎧⎨
⎩

pj → p (1 ≤ j ≤ n)
p → pj−n (n + 1 ≤ j ≤ 2n)
p j−2n

n−1 � → ph( j ) (2n + 1 ≤ j ≤ l )

where h( j ) = 1 + ( j − 2n − ⌈ j − 2n
n − 1

⌉
(n − 2) + 1) mod n.

PROOF. In order to connect every page in the farm to the target page, at least
n links are needed. Thus, l ≥ n. The structure can be divided into four cases.

First, when l = n, then e j = pj → p, as shown in Figure 5(a).
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Second, when n + 1 ≤ l ≤ 2n, then, as shown in Figure 5(b),

e j =
{

pj → p (1 ≤ j ≤ n)
p → pj−n (n + 1 ≤ j ≤ l )

Third, as shown in Figure 5(c), when 2n + 1 ≤ l ≤ 3n − 1,

e j =
⎧⎨
⎩

pj → p (1 ≤ j ≤ n)
p → pj−n (n + 1 ≤ j ≤ 2n)
p1 → pj−2n+1 (2n + 1 ≤ j ≤ l )

Last, When 3n ≤ l ≤ n(n + 1), then the structure is as shown in Figure 5(d).
Recall the path contribution in Definition 3.2; given a link path P from v1 to

p: v1 → v2 → . . . → vn → p,

LCont(P, p) = 1
N

d |P |(1 − d )
n∏

i=1

1
OutDeg(vi)

.

Thus, LCont(P, p) is based on two factors: the length of the link path
|P | and the contribution propagation π (P ) = ∏n

i=1
1

OutDeg(vi )
. When d = 1,

LCont(P, p) = 0, and it is a trivial case. In the following analysis, let us as-
sume d < 1. Intuitively, the smaller the length of the link path, the larger the
path contribution. Moreover, the larger the contribution propagation on the
link path, the larger the path contribution.

Based on the above analysis, we next prove the optimum of each case one by
one.

We first show the optimum of case (a) by an induction on l , that is, the
number of links in the farm. As the basis step, when l = 1 (thus n = 1), page p1
should have a link pointing to p. It is the optimal structure. As an inductive
step, suppose when l = j , the optimal structure is shown in Figure 5(a). We
want to construct the optimal structure when l = j + 1. Since only one new
edge is available, it is obvious that each page pj (1 ≤ j ≤ n) should point
to p directly. That is, for any page pj , there is a link pj → p. In this case,
the link path P from pj to p has the smallest length |P | = 1 and the largest
contribution propagation π (P ) = 1, thus the largest path contribution. As a
result, the optimal structure when l = j + 1 is shown in Figure 5(a). From
the basis step and the inductive step, we can conclude that the structure in
Figure 5(a) is the optimal structure when l = n.

We next show the optimum of case (b) by an induction on l as well. (1) As
the basis step, we consider when l = n+ 1. When the number of edges is larger
than the number of pages, each page pj (1 ≤ j ≤ n) can contribute most to p if
there is a circle between pj and p. That is, for any page pj , there are two links
pj → p and p → pj . In this way, there are infinite link paths from pj to p,
thus p obtains the maximum contribution from pj . Please note that creating
a loop between pj and pj−1 does not make pj contribute most to p. According
to the formula of path contribution, by creating a loop between pj and pj−1,
the PageRank contribution from pj largely goes into pj−1. Our main goal is
to increase the PageRank score of p as much as possible. Thus creating loops
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between pages pj and p is with the highest priority. As a result, the optimal
structure when l = n + 1 is shown in Figure 5(b). (2) As an inductive step,
suppose when l = j (n < j < 2n), the optimal structure is shown in Figure 5(b).
We want to construct the optimal structure when l = j + 1. This construction
problem has the “greedy choice property” and “optimal substructure” [Cormen
et al. 2001], that is, the optimal farm when l = j + 1 can be obtained by
adding one more link to the optimal farm when l = j , such that the increase
of the sum of the PageRank scores of pj (1 ≤ j ≤ n) is smallest. Otherwise,
we can simply use the “cut and paste” method [Cormen et al. 2001] to obtain
a better structure. Based on Corollary 3.3, by adding the new link from p to
pj , we can create the maximum number of link paths to p, thus p’s PageRank
score is increased most. As a result, the optimal structure when l = j + 1
is shown in Figure 5(b). From the basis step and the inductive step, we can
conclude that the structure in Figure 5(a) is the optimal structure when n+
1 ≤ l ≤ 2n.

We next show the optimum of case (c). Similarly, we follow an induction on l .
(1) As the basis step, when l = 2n+1, there is one link from pj to pk . Obviously,
any link from pj to pk has the same effect, thus we simply select p1 → p2. So
the structure in Figure 5(c) is the optimal structure when l = 2n + 1. (2) As
an inductive step, suppose when l = j (2n + 1 ≤ j ≤ 3n − 2), the optimal
structure is shown in Figure 5(c). We want to construct the optimal structure
when l = j +1. As proved in Page et al. [1998] and Langville and Meyer [2004],
given a Web graph with n nodes, if each node has the out-degree at least 1, the
sum of the PageRank scores of these n nodes in the Web graph is equal to n
(unnormalized by the number of pages in the graph). So in case (c), the sum
of the PageRank scores of p and pj (1 ≤ j ≤ n) is equal to n + 1. In order
to maximize the PageRank score of p, we have to minimize the sum of the
PageRank scores of pj (1 ≤ j ≤ n). Since the new link only can be added from
pj to pk where 1 ≤ j , k ≤ n, we want to increase the PageRank scores of pk
as little as possible, thus the decrease of the PageRank score of p is minimal.
This objective can be achieved by adding the link from p1 to pj−2n+1, since
the new link to pj−2n+1 has the length |P | = 1 and the smallest contribution
propagation π (P ) = 1

j−2n+1 . So the optimal structure when l = j +1 is as shown
in Figure 5(c). From the basis step and the inductive step, we can conclude
that the structure in Figure 5(c) is the optimal structure when 2n + 1 ≤ l
≤ 3n − 1.

We observe that case (c) in Figure 5 is a special case for case (d). Thus, the
optimum of Case (d) can be proved in the same way. Theorem 4.2 is proved.

Please note that our Web graph model follows the traditional configuration.
Self-loops are removed from the graph. Moreover, in our PageRank contribu-
tion model, we assume that the dangling nodes (which are generated by ver-
tex voiding) can be kept unchanged in the induced graph, as mentioned in
Section 2.

Based on Theorem 4.2, we denote by PRmax(n, l ) the maximum PageRank
score that a page farm of n pages and l intra-links can achieve.
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Moreover, we have the following corollary.

COROLLARY 4.3 (MAXIMUM PAGERANK SCORES (n ≤ l ≤ 2n)). In Figure 5, the
maximum PageRank score PRmax(n, l ) in cases (a) and (b) is given by

PRmax(n, l ) =
{

(dn+1)(1−d )
N (l = n)

nd+1
N (1+d ) (n < l ≤ 2n)

PROOF. The proof can be constructed by solving the sytem of PageRank equa-
tions for all the pages. Here, we give a proof using path contributions to elabo-
rate the use of path contribution in PageRank calculation.

We first show the case when l = n. The optimal structure is shown in
Figure 5(a). The way to calculate the maximum PageRank score in Case (a)
is as follows: there are totally n link paths to the target page p. Based on
Equation (2), we have

PR(p) = 1 − d
N

+
n∑

k=1

LCont(ek , p).

For each path contribution LCont(ek , p), according to Definition 3.2, we have

LCont(ek , p) = d (1 − d )
N

1
1

= d (1 − d )
N

.

So

PRmax(n, l ) = 1 − d
N

+ n
d (1 − d )

N

= (dn + 1)(1 − d )
N

.

We next show the case when n < l ≤ 2n. The optimal structure is shown in
Figure 5(b). The way to calculate the maximum PageRank score in Case (b) is
as follows.

In Figure 5(b), the value k is equal to l − n. So there are totally k pages
having a link pointed by p, and n − k pages having no links pointed by p.
According to Equation (2), we have to find all the different link paths pointing
to the target page p, calculate the path contributions, and then sum them up.
We can classify all the link paths by their lengths into the following categories:
paths with length i, where i = 1, 2, . . . .

We define some notations first. A link path can be denoted as p1 → p2 →
. . . → pn, where p1, p2, . . . , pn are the pages on this path. We use {p1, p2, . . . , pn}
to denote a set of pages. For simplicity, we use p1 → . . . → {pj , . . . , pk} → . . . →
pn to denote any path p1 . . . → pm → . . . → pn where pm ∈ {pj , . . . , pk}. We
use PAT Hi to denote the set of link paths pointing to p with length i, where
i = 1, 2, . . .. We use LCont(PAT Hi) to denote the total path contributions where
the paths are in the set of PAT Hi. For a path P ∈ PAT Hi, we use LCont(P ) to
denote the path contribution of P . Now we prove

LCont(PAT Hi+2) = d2 × LCont(PAT Hi).
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Considering the optimal structure shown in Figure 5(b), for any path P ∈
PAT Hi, we can easily obtain a path P ∈ PAT Hi+2, which can be constructed
by adding two new links p → pm → p to the end of P ∈ PAT Hi, where
pm ∈ {p1, p2, . . . , pk}. Thus, given a path P ∈ PAT Hi, we can get k paths
P ∈ PAT Hi+2. According to Definition 3.2, we have

LCont(PAT Hi+2) =
∑

P∈PAT Hi+2

LCont(P )

=
∑

P∈PAT Hi

k × LCont(P ) × d2

k

=
∑

P∈PAT Hi

d2 × LCont(P )

= d2 × LCont(PAT Hi).

Thus, we have

PRmax(n, l ) = 1 − d
N

+
∞∑

i=1

LCont(PAT Hi)

= 1 − d
N

+
∞∑

i=0

LCont(PAT H2i+2) + +
∞∑

i=0

LCont(PAT H2i+1)

= 1 − d
N

+
∞∑

i=0

d2iLCont(PAT H2) + +
∞∑

i=0

d2iLCont(PAT H1)

= 1 − d
N

+ (LCont(PAT H1) + LCont(PAT H2)) ×
∞∑

i=0

d2i

= 1 − d
N

+ 1
1 − d2

× (LCont(PAT H1) + LCont(PAT H2)). (5)

LCont(PAT H1) and LCont(PAT H2) can be calculated as the following two
cases. In the first case, for paths of length 1, we have two types of paths.

—For paths pi → p (1 ≤ i ≤ k), the sum of path contribution is∑
LCont = d (1 − d )

N
× k.

—For paths pi → p (k < i ≤ n), the sum of path contribution is∑
LCont = d (1 − d )

N
× (n − k).

In the second case, for the path of length 2, that is p → pi → p (1 ≤ i ≤ k),
the sum of path contribution is∑

LCont = d2(1 − d )
1

Nk
× k.

Thus, we have

LCont(PAT H1) = kd(1 − d )
N

+ d (1 − d )(n − k)
N

= nd (1 − d )
N

(6)
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and

LCont(PAT H2) = d2(1 − d )
N

. (7)

We apply Equation (6) and Equation (7) to Equation (5), then we have

PRmax(n, l ) = 1 − d
N

+ 1
1 − d2

× (
nd (1 − d )

N
+ d2(1 − d )

N
) = nd + 1

N (1 + d )
. (8)

Corollary 4.3 gives the maximum PageRank scores for Cases (a) and Case
(b) in Figure 5 directly. However, for the other cases, there are no simple and
direct ways to calculate the exact maximum PageRank scores. In our imple-
mentation, we construct the optimal structure graphs first, and then compute
the maximum PageRank scores.

A page farm of n pages and l hyperlinks is called an optimal spam farm if
the target page achieves the maximum PageRank score.

Definition 4.4 (Utility-Based Spamicity). For a target page p, let
Farm(p) = (V , E) be the page farm of p. We define the utility-based
spamicity of p as

USpam(p) = PR(p)
PRmax(|V |, |E|) ,

where PR(p) and PRmax(|V |, |E|) represent the PageRank score of p based on
Farm(p).

The utility-based spamicity of a Web page is between 0 and 1. The higher the
utility-based spamicity, the more the page farm is utilized to boost the PageRank
of the target page. The spammers (that is, the builders of spam Web pages) build
up the “link spam farms” with the only purpose to boost the rankings of the
target pages as much as possible. The optimal link spam farms do not commonly
happen on the Web, because they are quite different from those normal page
farms.

Moreover, since optimal link spam farms are highly regular as indicated by
Theorem 4.2, a search engine may easily detect the optimal link spam farms.
To disguise, a spammer may modify the optimal link spam farm but still keep
the target pages of high PageRank scores. Using the utility-based spamicity
to detect link spam, we can still capture the disguised link spam since the
disguised link spam still has a page farm efficiently boosting the PageRank
score of the target page.

There are several critical differences between the results in this section and
those in Bianchini et al. [2005].

First, the general goals of our work and that of Bianchini et al. [2005] are
different. Bianchini et al. [2005] focus on analyzing the influence of dangling
nodes to achieve the optimal PageRank score of a target page. Our work focuses
on finding how to construct the link structures among several pages in the farm
to achieve the optimal PageRank scores.

Second, the general problem settings of our work and that in Bianchini et al.
[2005] are different. Bianchini et al. [2005] consider only the number of pages
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as the optimization parameter. In our work, we consider not only the number
of pages in the farm, but also the number of hyperlinks among them.

Third, the technical results of our work and that in Bianchini et al. [2005]
are different. Bianchini et al. [2005] only show that the link structure of Case
(b) in Theorem 5.2 is the optimal structure for the target page to achieve the
highest PageRank score. Moreover, in Bianchini et al. [2005], the optimality of
Case (b) was proved using a different method. Our work is more comprehensive
in the sense that we consider different cases and show the optimal structure
for each case. We give the complete proof for all the cases, including case (b),
for the sake of completeness.

4.2 Characteristics-Based Spamicity

Since a page farm captures the most significant contributors to the PageRank
score of the target page and the link structures, we can examine the charac-
teristics of the page farm to evaluate the likelihood of link spam for the target
page. In this section, we identify three heuristics to measure the likelihood of
link spam for a Web page.

4.2.1 Contributor PageRank Heuristic. As indicated by the studies on au-
thoritative pages and hub pages [Kleinberg 1999], a Web page is semantically
important if it is pointed to by some authoritative pages or hub pages, which
often have high PageRank scores. Intuitively, a link spam farm tend to have a
“flatter” distribution than naturally emerging structures, which are closer to a
power law distribution. Heuristically, if a page has a high PageRank score but
its page farm does not have any page of high PageRank score, then it is likely
the page is a link spam target page.

Based on this idea, we can measure the difference of the PageRank score of
the target page and the average score of its page farm. Technically, we define
the PageRank boosting ratio to measure the difference.

Definition 4.5 (PageRank Boosting Ratio). The PageRank boosting ratio is
the ratio of the PageRank of p against the average PageRank of pages in
Farm(p) = (V , E). That is,

β(p) = PR(p)
1

|V |
∑

p′∈V PR(p′)
.

HEURISTIC 1 (CONTRIBUTOR PAGERANK). The larger the PageRank boosting ra-
tio, the more likely a page is a link spam target page.

Benczur et al. [2005], suggested examining the PageRank distributions
among some other pages linking to the target page. However, their idea is
different from ours. First, they suggested to extract the supporter pages to a
target page using Monte Carlo simulation, which may not be those important
pages contributing most to the target page. Second, they suggested to penalize
the PageRank score of the target page according to the PageRank distributions
of those support pages. Our method does not explicitly examine the PageRank
distribution of pages in the farm, but examines whether the PageRank score of
the target page is well boosted.
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4.2.2 Link Efficiency Heuristic. From Theorem 4.2, we have the follow-
ing result, which is a more general result than the optimal structure given
in Gyöngyi and Garcia-Molina [2005a]. In Gyöngyi and Garcia-Molina [2005a],
the number of links is confined to range [n + 1, 2n], where n is the number of
pages.

COROLLARY 4.6. For a target page p whose page farm has n pages, PR(p) ≤
nd+1

N (1+d ) . The maximum PageRank score is achieved when there are l (n + 1 ≤ l ≤
2n) hyperlinks in the farm as configured in Theorem 4.2.

PROOF. As shown in Corollary 4.3, for l = n, PRmax(n, l ) = (dn+1)(1−d )
N ; for

n < l ≤ 2n, PRmax(n, l ) = nd+1
N (1+d ) . When l increases, more links need to be

added into the graph. However, those links will distract some contributions to
the other pages in the farm, thus the maximum PageRank scores in Cases (c)
and (d) shown in Figure 5 are less than that in Case (b). As a result, given n
pages in the farm, Case (b) is the optimal structure.

A page farm of n Web pages must have at least n hyperlinks to connect each
page in the farm to the target page. Based on Corollary 4.6, the more hyperlinks
in the page farm, the less efficiently those links are used to boost the PageRank
of the target page. We define the link efficiency of a page farm to capture this
feature.

Definition 4.7 (Link Efficiency). The link efficiency of the farm is the ratio
of the number of pages in Farm(p) = (V , E) against the total number of links
between the pages in V . That is,

ι(p) = |V |
|{p1 → p2 ∈ E|p1 �= p, p2 �= p}| .

It is worth noting that there may not exist edges among pages in the farm
(e.g., Cases (a) and (b) in Figure 5). In this case, ι(p) is +∞. The farms are
optimal link spam farms. In general, ι(p) is not bounded in range [0, 1].

In an average page farm that is not for link spam, a few arbitrary hyperlinks
may exist between pages in the farm. On the other hand, in order to fully boost
the target page, pages in a link spam farm often do not point to each other.
Based on this observation, we have the following link efficiency heuristic.

HEURISTIC 2 (LINK EFFICIENCY). The larger the link efficiency, the more likely
a page is a link spam target page.

4.2.3 Centralization Heuristic. In an ideal link spam farm, the target page
has a large indegree, since hyperlinks point to the target page from the pages
in the farm. The pages in such a farm often have low indegree since otherwise
the efficiency of the pages and the links in the page farm is reduced. In other
words, the links and the pages in a link spam farm are highly centralized such
that the target page is at the center of the farm. We measure the centralization
degree using this hint.

Definition 4.8 (Centralization Degree). The centralization degree of the
farm is the ratio of the indegree of p against the average indegree of the pages
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in Farm(p) = (V , E). That is,

κ(p) = InDeg(p)
1

|V |
∑

p′∈V InDeg(p′)
,

where InDeg(p) and InDeg(p′) represent the indegrees of page p and p′ in
Farm(p).

HEURISTIC 3 (CENTRALIZATION DEGREE). The larger the centralization degree,
the more likely a page is a link spam target page.

4.2.4 Characteristics-Based Spamicity. Consider a virtually non-spam
page p and its page farm Farm(p) = (V , E). We have the following heuristics.

—Ideally, a virtually nonlink spam target page is not boosted by a large collec-
tion of pages of very low page rank. Thus, the PageRank boosting ratio β(p)
should be a small number, virtually approaching 1 when the PageRank of p
is not boosted.

—Since page p is not boosted by any authoritative or hub pages, in order to
achieve some nontrivial PageRank score, the page farm Farm(p) has to con-
tain many pages. At the same time, a random hyperlink pi → pj has the
constant probability 1 − d (the random jump probability) for pi, pj ∈ V .
Therefore,

ι(p) = lim
n→∞

n

pn(n−1)
2

= 0.

—The centralization degree κ(p) of the page farm should approach 1, since the
probability that a page p′ �= p links to p directly is the same as the probability
that p′ links to any other pages in the farm.

The three different heuristics proposed above capture three different aspects:
PageRank scores, hyperlinks and degrees in the farm. Based on the previous
observations, we define the characteristics-based spamicity as follows.

Definition 4.9 (Characteristics-Based Spamicity). For page p, the chara-
cteristics-based spamicity is

CSpam(p) = γ
√

|β(p) − 1|γ + |ι(p)|γ + |κ(p) − 1|γ ,

where γ > 0 is the Minkowski distance parameter [Thompson 1996].

Please note that each of these three heuristics may not work for all Web
pages. However, combining the three heuristics may work well for many Web
pages, as verified by our experimental results in Section 5.

5. EXPERIMENTAL RESULTS

In this section, we report a series of experimental results on link spam detection
using page farms. All the experiments were conducted on a PC computer with
a 3.0 GHz Pentium 4 CPU, 1.0 GB main memory, and a 160 GB hard disk,
running the Microsoft Windows XP SP2 Professional Edition operating system.
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The programs were implemented in C/C++ using Microsoft Visual Studio .NET
2003.

We used the recently released webspam-uk2006 dataset by Yahoo! Re-
search Barcelona2. The dataset [Castillo et al. 2006] is the result of the ef-
fort of an international team of volunteers. As far as we know, the webspam-
uk2006 dataset is the first publicly available benchmark for Web spam
detection.

The base dataset contains 77, 862, 535 pages in the domain of .UK down-
loaded in May 2006 by the Laboratory of Web Algorithmics, Universitá degli
Studi di Milano. The spam test collection dataset consists of 8, 415 different
hosts chosen from the base dataset. A team of volunteers was asked to classify
this set of hosts as “normal,” “spam,” or “borderline.” Moreover, the project orga-
nizers added two kinds of special votes: all the UK hosts that were mentioned
in the Open Directory Project3 in May 2006 are voted “normal,” and all the UK
hosts ending in .ac.uk, .sch.uk, .gov.uk, .mod.uk, .nhs.uk or .police.uk are voted
“normal,” too.

Whether a page is spam is labeled by assigning 1 point to each vote of “spam,”
0.5 point to each vote of “borderline,” and 0 point to each vote of “normal.” The
final label for a host is determined by the average of points from all votes on this
host: an average of over 0.5 point is “spam,” an average of less than 0.5 point is
“normal,” and an average of 0.5 point is “undecided.” As a result, among 8, 415
different hosts, 7, 472 hosts are labeled as “normal,” 767 hosts are labeled as
“spam,” and the remaining 176 hosts are labeled as “undecided.” Since those
“undecided” pages are borderline pages, it is hard to dogmatically give a label
either “spam” or “normal.” For simplicity, we removed those borderline hosts in
the experiments.

Some Web pages in the dataset are labeled by the human experts and identi-
fied by our methods as spam pages, but are still indexed by some major search
engines, such as http://we-sell-it.co.uk/, http://www.uk-shop-uk.co.uk/,
http://www.courses-on-line.co.uk, and http://www.findone.co.uk.

We constructed the Web graph using the pages in the base dataset and com-
puted the PageRank scores of the pages at the page level.

5.1 Extracting Page Farms

For the pages in the spam test collection, we extracted the (θ , k)-farms. To under-
stand the effects of the two parameters θ and k on the page farms extracted, we
used different values of θ and k, and measured the average size of the extracted
farms. Figure 6 shows the results.

When k is very small (1 or 2), even selecting all pages of distance up to k
may not be able to achieve the contribution threshold θ . Therefore, when k
increases, the average page farm size increases. However, when k is 3 or larger,
the page farm size does not increase much when θ increases. This verifies our
observation that the near neighbor pages contribute more than the remote ones,
and the PageRank of a page is mainly determined by its near neighbors.

2http://aeserver.dis.uniroma1.it/webspam
3http://www.dmoz.org
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Fig. 6. The effects of parameters θ and k on page farm extraction.

Fig. 7. The scalability of page farm extraction.

When θ increases, more pages are needed to make up the contribution ratio.
However, the increase of the average page farm size is sublinear. The reason
is that when a new page is added to the farm, the contributions of some pages
already in the farm may increase due to the new paths from those pages to
the target page through the new page. Therefore, a new page often boosts the
contributions from multiple pages in the farm. Intuitively, the larger and the
denser the farm, the more pages whose contributions can increase by adding a
new page. On average, when θ ≥ 0.8, page farms are quite stable and capture
the major contribution to PageRank scores of target pages.

We compared the page farms extracted using different settings of the two
parameters. The farms are quite robust. That is, for the same target page, the
page farms extracted using different parameters largely overlap. In the rest of
this section, by default we report results on (0.8, 3)-farms of Web pages.

We tested the page farm extraction efficiency using the naı̈ve greedy search
algorithm and the local greedy search algorithm discussed in Section 3. We
first computed the PageRank scores for the pages in the spam test collection
using a simple power method, and then we used the Web graph to extract page
farms for pages in the spam test collection. Each page is associated with a page
farm. We show in Figure 7 the runtime of the local greedy search method with
respect to the number of farms extracted. The runtime only includes the time
for extracting page farms, and does not include the time for computing the
PageRank scores in the whole graph. The local greedy search method scales
linearly. The naı̈ve greedy search method is much slower. Extracting one page
using the naı̈ve greedy search method on average needs 1, 742 seconds. Thus,
the curve for the naı̈ve greedy method is not plotted in the figure. As analyzed
before, path contributions are much cheaper to compute. The average cost of
extracting page farms using path contributions is much lower.
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Fig. 8. Farm extraction cost in local greedy search.

Fig. 9. The effectiveness of spamicity in spam detection.

To understand the cost of the local greedy search method in such a situation,
in Figure 8, we tested the cost in the local greedy search method in two as-
pects. The number of in-link searches is the number of pages whose in-links are
searched (for example, using the “Search Links” operator in Google). The num-
ber of out-link searches is the number of pages whose out-links are searched
(for example, by parsing the page only for out-links). We counted the numbers
of the in-link searches and out-link searches for each farm. The average num-
bers are comparable to the average number of pages in the page farms. This
strongly suggests that the local greedy search method is efficient and scalable.

5.2 Spam Detection

To examine the effectiveness of the utility-based and characteristics-based
spamicity measures, we compute the spamicity scores for the pages in the
spam test collection. We group pages by their spamicity scores. Figure 9 shows
the distribution of normal, borderline, and spam pages in groups with various
ranges of spamicity scores. In the characteristics-based spamicity computation,
we set the Minkowski distance parameter γ = 2 by default. When the spamicity
is low, most pages are normal pages. When the spamicity is high, most pages
are spam pages. Particularly, in this dataset, when the utility-based spamic-
ity is over 0.7 and the characteristics-based spamicity is over 45, most pages
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Fig. 10. The precision and the recall of utility-based and characteristics-based spamicity measures.

Fig. 11. The effectiveness of spam detection using a percentage threshold.

are spam. This set of experiments shows that the two spamicity measures can
discriminate spam pages from normal ones.

We can simply set a spamicity threshold. The pages over the threshold are
classified as spam, while the pages lower than the threshold are classified as
normal. Figure 10 shows the precision and the recall of the two spamicity mea-
sures with respect to various spamicity threshold values. Generally, when the
spamicity threshold goes up, fewer pages are detected as spam. The precision
increases and the recall decreases. When the threshold is in the range of 0.7
to 0.74, the utility-based spamicity achieves the precision of more than 90% in
detecting spam pages, and can catch more than 85% of the spam pages. When
the threshold is in the range of 40 to 50, the characteristics-based spamicity
has the precision and recall of more than 75%. The utility-based spamicity is
more effective than the characteristics-based spamicity.

Alternatively, we can set a percentage threshold s and classify the top-s%
pages having the highest spamicity scores as the suspect of spam pages, and
the other pages as normal. Figure 11 shows the precision and the recall with
respect to various percentage threshold values. Generally, as s increases, more
pages are selected as spam pages. The precision decreases but the recall in-
creases. When s is in the range of 8% to 9%, the precision and the recall of spam
detection using utility-based spamicity is more than 90%. The detection using
characteristics-based spamicity also achieves the best result in this range. This
matches the ground truth (9.1% of the pages in this dataset are spam) well. In
Figure 12, we compare the two spamicity methods using the F-measure. The
utility-based spamicity is clearly more effective than the characteristics-based
spamicity in detection quality.
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Fig. 12. The F-measure of the two spamicity methods.

Fig. 13. The effectiveness of each heuristic in characteristics-based spamicity using a percentage
threshold.

The F-measure results in Figure 12 are comparable to the results of the spam
labeling challenge from the 2007 AIRWeb [Benczúr et al. 2007; Chien et al. 2007;
Cormack 2007; Abou-Assaleh and Das 2007]. The winner method [Benczúr et al.
2007] is reported to achieve an F-measure score of 0.91 on average. This indi-
cates that our methods are comparable in performance with the state-of-the-art
spam detection methods such as Benczúr et al. [2007] and Chien et al. [2007].
The methods from AIRWeb 2007 do not use the spamicity-like approach. They
need much more background information than our spamicity-based methods.
For example, the winner method [Benczúr et al. 2007] used features including
Microsoft OCI and Yahoo! Mindset, Google AdWords, and AdSense, as well as
the graph similarity. Our method only needs the graph structure.

Since the characteristics based spamicity is based on three different heuris-
tics, it is necessary to evaluate the effectiveness of each heuristic individually.
Accordingly, we set a percentage threshold s and classify the top-s% pages hav-
ing the highest scores as the suspect of spam pages. The spam detection preci-
sion and recall for each heuristic individually are shown in Figure 13. Clearly,
individual heuristics do not work well in detecting spam pages. Comparing the
results in Figure 11, the combination of three heuristics work much better.

We compared the utility-based spamicity method with SpamRank [Benczur
et al. 2005], which is an existing method that detects link spam target pages
by assigning a spamicity-like score and does not need supervised training. It
assumes that spam pages have a biased distribution of pages that contribute
to the undeserved high PageRank value. SpamRank penalizes pages that origi-
nate a suspicious PageRank share and personalizes PageRank on the penalties.
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Fig. 14. The utility-based spamicity method and SpamRank.

We also compared our utility-based spamicity method with SpamMass
[Gyöngyi et al. 2006]. SpamMass also uses a spamicity-like score to measure
the degree of a page being a link spam target page. It is a well-known link spam
detection method on the Web. The SpamMass approach is built on the idea of es-
timating the spam mass of nodes, which is a measure of the relative PageRank
contribution of connected spam pages. Spam mass estimates are easy to com-
pute using two sets of PageRank scores—a regular one and the other one with
the random jump biased to some known good nodes.

A carefully chosen set of good nodes (the good core) is important for the suc-
cess of SpamMass in link spam detection. We followed the core selection process
described in Gyöngyi et al. [2006]. Three sets of hosts are selected to constitute
the good core, in particular, the URLs that appear in Open Directory Project4,
the Web databases of educational institutions worldwide (http://univ.cc/),
and those hosts ending with .ac.uk, .sch.uk, .gov.uk, .mod.uk, .nhs.uk or .police.
uk.

We implemented the SpamRank and SpamMass methods as described
in Benczur et al. [2005] and Gyöngyi et al. [2006], respectively. The results on
the effectiveness are shown in Figure 14. The utility-based spamicity method
clearly outperforms both SpamRank and SpamMass in terms of both precision
and recall.

We also examined the efficiency of the different link spam target detection
methods. In our utility-based spamicity method, the runtime includes the time
for computing the PageRank scores in the whole graph, extracting page farms
of target pages, and calculating the utility-based spamicity scores for target
pages. In the SpamMass method, the runtime includes the time for two rounds
of PageRank calculations in the whole graph, and calculating the SpamMass
scores for target pages. In the SpamRank method, the runtime includes the
time for one round of the Monte Carlo personalized PageRank calculations in
the whole graph, and one round of PageRank calculations in the whole graph.
The comparison is shown in Figure 15. To address the issue of extremely large
Web graphs, we adopted the technique of file mapping which assigns a virtual
address space to the Web graph file on the hard disk. In our experiments, the
PageRank computation in the whole graph becomes a bottleneck. Among the

4Please note that some pages in Open Directory Project may be spam target pages. However, so far
there are no efforts on cleaning the data completely, thus the good core may not be perfect.
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Fig. 15. The runtime of different link spam target detection methods.

Fig. 16. The effect of θ on spam detection accuracy.

three methods, since our utility-based spamicity method needs only one round
of PageRank calculation, it outperforms the other two methods.

We further examined the effects of page farms on the accuracy of spam detec-
tion. Since the utility-based spamicity is better than the characteristics-based
spamicity, we only show the results on utility-based spamicity in Figure 16. We
vary parameters θ and k, and classify the top 9% of the pages of the highest
utility-based spamicity as the spam pages. We measure the precision and the
recall of spam detection using different (θ , k)-farms. As discussed before, when
θ and k increase, the page farms are more accurate. Thus the spam detection
quality improves. Using (θ , 3)- and (θ , 4)-farms is much better than using (θ , 2)-
farms. The advantage of using (θ , 4)-farms against using (θ , 3)-farms is very
small. Also, the quality is not very sensitive to θ when θ ≥ 0.7. This shows
that whether a page is spam can be confidently determined using some near
neighbors of the page.

5.3 Summary

The experiments clearly show that spam detection using page farms is feasi-
ble and effective. Our method outperforms SpamRank and SpamMass in both
precision and recall. The utility-based spamicity is effective. Spam detection
using utility-based spamicity can achieve high precision and high recall at the
same time. Interestingly, when the spam test collection is formed, though some
features come with the labels of neighborhood pages, the human volunteers
made judgements mostly based on the content of the pages. In other words,
those spam pages labeled in the dataset are typically adopted some term-based
spam tricks as well. However, using the link analysis we can detect more than
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90% of those spam pages. Since our method is focusing on detecting link spam
tricks on the Web, this strongly indicates that most spam pages on the real Web
use both link spam and term spam tricks.

Please note that, in Section 5.2, we try to find a threshold fitting the domain
experts’ judgement on spamicity and show the effectiveness of spam detection
using our spamicity based methods. However, in practice, the spamicity thresh-
old may be different for various users. A user can tune the threshold flexibly to
reflect her/his tolerance of link spam. In the first place, the spamicity score of
a Web page reflects the “degree” of the page being link spam. Such a score can
be obtained by our methods without any training.

6. RELATED WORK

Our study is highly related to previous work in link-based ranking and Web
spam detection. It is also related to social network analysis that has been stud-
ied extensively and deeply (see Wasserman and Faust [1994] and Scott [2000]
as two textbooks). In this section, we only focus on some representative studies
on link-based ranking and Web spam detection.

A few link-based ranking methods such as HITS [Kleinberg 1999] and
PageRank [Page et al. 1998] were proposed to assign scores to Web pages to
reflect their importance.

So far, Web page spam tricks can be divided into two categories, term spam
and link spam. Gyöngyi et al. [2005b] referred link spam to the cases where
spammers set up link structures of interconnected pages, called link spam
farms, in order to boost the link-based ranking.

A single-target link spam farm model consists of three parts: a single target
page to be boosted by the spammer, a (reasonable) number of boosting pages
that deliberately improve the link-based ranking of the target page, and some
external links accumulated from pages outside the link spam farm. Based on
this model, given a fixed number of boosting pages, the optimal link structure
which the target page can achieve the highest PageRank score is addressed
in [Gyöngyi and Garcia-Molina 2005a]. However, their model does not consider
the number of links between pages and thus it was unable to capture those
disguised link spam. Gyöngyi et al. [2005a] also showed the link spam alliance
which refers to the collaboration among spammers.

Some methods have been proposed to detect link spam. Fetterly et al. [2004]
adopted statistical analysis to detect link spam. Several distribution graphs,
such as the distribution of indegrees and outdegrees, were modeled well by
some form of power law. A majority of the outliers were found to be spam by
manually checking. Wu and Davison [2005] proposed an algorithm for link spam
detection. It first generates a seed set of possible link spam farm pages based on
the common link set between incoming and outgoing links of Web pages. Then,
link spam pages are identified by expanding the seed set. Gyöngyi et al. [2006]
introduced the concept of spam mass, a measure of the impact of link spam
on a page’s ranking. They discussed how to estimate spam mass and how the
estimations can help to identify pages that benefit significantly from link spam.
In Becchetti et al. [2006], studied the topology of the Web graph and computed
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Web page attributes applying rank propagation and probabilistic counting over
the Web graph. These attributes were then used to build a classifier.

Some other link spam detection methods resemble PageRank computation.
For example, Benczur et al. [2005] proposed a method called SpamRank, which
is based on the concept of personalized PageRank that detects pages with an
undeserved high PageRank score. Gyöngyi et al. [2004] described an algorithm,
called TrustRank, to combat Web spam. The basic assumption of TrustRank is
that good pages usually point to good pages and seldom have links to spam
pages. They first selected a bunch of known good seed pages and assigned high
trust scores to them. Then, similar to PageRank, the trust scores were prop-
agated via out-links to other Web pages. Finally, after convergence, the pages
with high trust scores are believed to be good pages. However, TrustRank was
vulnerable if the seed set used by TrustRank may not be sufficiently represen-
tative to cover well the different topics on the Web. In addition, for a given seed
set, TrustRank has a bias towards larger communities. Wu et al. [2006] pro-
posed the use of topical information to partition the seed set and calculate the
trust scores for each topic separately to address the above issues. A combination
of these trust scores for a page is used to determine its ranking.

In addition to link spam, term spam is another trick which is the practice of
“engineering” the content of Web pages so that they appear relevant to popu-
lar searches. Most of the term spam detection methods use statistical analysis.
For example, Fetterly et al. [2004], studied the prevalence of spam based on
certain content-based properties of Web sites. They found that some features
such as long host names, host names containing many dashes, dots and dig-
its, as well as little variation in the number of words in each page within a
site were good indicators of spam Web pages. Later, Fetterly et al. [2005] in-
vestigated the special case of “cut-and-paste” content spam, where Web pages
were mosaics of textual chunks copied from legitimate pages on the Web.
They also presented methods for detecting such pages by identifying popu-
lar shingles. Recently, Ntoulas et al. [2006] presented a number of heuristic
methods for detecting content-based spam that essentially extend the previ-
ous work [Fetterly et al. 2004, 2005]. Some of those methods are more effec-
tive than the others; however, when used in isolation the methods may not
identify all of the spam pages. Thus, Ntoulas et al. [2006] combines the spam-
detection methods to create a highly accurate C4.5 classifier to detect term
spam.

As described already, most of the previous studies focus on some graph struc-
tural properties which are highly associated with spam. At a very high level,
our page farm based methods follow a similar philosophy. The utility based and
characteristics based spamicity scores summarize the statistics of spam farms.
However, our methods are essentially different from the previous work in the
following aspects.

First, the link-based ranking methods and their applications do not analyze
the environment of Web pages. In some link spam detection methods [Becchetti
et al. 2006; Gyöngyi et al. 2006; Gyöngyi et al. 2004; Wu et al. 2006; Zhang et al.
2004], the concept of link spam farm is used to conceptually capture the set of
Web pages that achieve the link spam. However, as far as we know, neither
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previous method nor empirical study have been proposed to extract link spam
farms from the Web. Although in our page farm model, the page farm of a link
spam target page is generally a superset of its link spam farm, the two farms
are close to each other.

Second, our page farm model is different from the link spam farm model
proposed in the previous studies. The previous work on link spam farms only
addressed the concept and only considered some known link spam target pages.
However, analyzing link spam farms in general is difficult because we may not
know whether a target page is a link spam target page. Moreover, link spam
farm extraction is a challenging problem. In our page farm model, each page
has its own page farm. We can extract page farms for any page on the Web. We
can distinguish link spam target pages from normal pages by examining their
page farms. The page farm of a link spam target page can be used to obtain
better understanding of its exact link spam farm.

Third, our proposed page farm consists of those most important contributor
pages to the target page. We take into account the page contribution as the
weight of the relativeness. Becchetti et al. [2006] proposed the concept of “sup-
porter.” They called page q a supporter of page p at distance k if the shortest
path from q to p formed by links has length k. However, in this definition,
each page has the same contribution to the target page which is not precise.
Moreover, it may introduce some noisy information.

Fourth, we use the page farms, particularly the utility and the characteristics
of the page farms, to detect link spam target pages. By doing so, we not only can
detect the link spam, but also can capture how the link spam is attempted using
the link spam farms. Some previous work [Becchetti et al. 2006; Du et al. 2007;
Gyöngyi and Garcia-Molina 2005a] discussed the optimal structure for those
link spam farms. However, they constrain the number of links with respect to
the number of pages. In our model, we consider the general case. Our optimal
link structure captures more information and it also can detect disguised link
spam.

Last, social network analysis is often concerned with the global properties
of a social network and the communities. To the best of our knowledge, there is
no previous work from social network aspect analyzing the distribution of local
structures, which can be captured using our page farm model proposed in the
article.

7. CONCLUSIONS

Ranking pages is an essential task in Web search. Interesting problems, for a
Web page p, include: which other pages are the major contributors to the rank-
ing score of p are, and how the contribution is made. In this article, we studied
the page farm mining problem and its application in link spam detection. We
summarize our major contributions as follows.

—First, we studied the page farm mining problem. A page farm is a (minimal)
set of pages contributing to (a major portion of) the PageRank score of a
target page. We proposed the notions of θ -farm and (θ , k)-farm, where θ in
[0, 1] is a contribution threshold and k is a distance threshold. We studied
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the computational complexity of finding page farms, and show that it is NP-
hard. Then we developed a greedy method feasible in practice to extract
approximate page farms.

—Second, we investigated the application of page farms in link spam detection.
We proposed two methods. First, we measured the utility of a page farm,
that is, the “perfectness” of a page farm in obtaining the maximum PageRank
score, and used the utility as an indicator of the likeliness of being a link spam
target page. Second, we used the statistics of page farms as the indicator of
the likeliness of being a link spam target page. Using the measures we can
detect link spam target pages.

—Last, we evaluated our link spam detection methods using a newly available
real dataset. The pages were labeled by human experts. The experimental
results showed that our methods are effective in detecting spam pages.

The page farm-based link spam detection methods proposed in the article
is comparable to some other methods such as SpamRank and SpamMass with
respect to accuracy, however, the philosophy of our method is quite different
from those. In particular, the purpose of our method is computing spamicity
measures for single pages, possibly at browsing time. On the other hand, the
PageRank derived methods such as SpamRank and SpamMass derive spam-
scores for all pages in a large graph at the same time. As future work, we plan
to develop more efficient algorithms for page farm extraction and analysis.
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