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ABSTRACT
Research issues and data mining techniques for product rec-
ommendation and viral marketing have been widely stud-
ied. Existing works on seed selection in social networks do
not take into account the effect of product recommenda-
tions in e-commerce stores. In this paper, we investigate
the seed selection problem for viral marketing that consid-
ers both effects of social influence and item inference (for
product recommendation). We develop a new model, So-
cial Item Graph (SIG), that captures both effects in form
of hyperedges. Accordingly, we formulate a seed selection
problem, called Social Item Maximization Problem (SIMP),
and prove the hardness of SIMP. We design an efficient algo-
rithm with performance guarantee, called Hyperedge-Aware
Greedy (HAG), for SIMP and develop a new index structure,
called SIG-index, to accelerate the computation of diffusion
process in HAG. Moreover, to construct realistic SIG models
for SIMP, we develop a statistical inference based framework
to learn the weights of hyperedges from data. Finally, we
perform a comprehensive evaluation on our proposals with
various baselines. Experimental result validates our ideas
and demonstrates the effectiveness and efficiency of the pro-
posed model and algorithms over baselines.

1. INTRODUCTION
The ripple effect of social influence [4] has been explored

for viral marketing via online social networks. Indeed, stud-
ies show that customers tend to receive product informa-
tion from friends better than advertisements on traditional
media [19]. To explore the potential impact of social influ-
ence, many research studies on seed selection, i.e., selecting
a given number of influential customers to maximize the
spread of social recommendation for a product, have been
reported [7, 17].1 However, these works do not take into
account the effect of product recommendations in online e-
commerce stores. We argue that when a customer buys an
item due to the social influence (e.g., via Facebook or Pin-
terest), there is a potential side effect due to the item in-

1All the top 5 online retailers, including Amazon, Staples,
Apple, Walmart, and Dell, are equipped with sophisticated
recommendation engines. They also support viral marketing
by allowing users to share favorite products in Facebook.
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Figure 1: A motivating example

ference recommendations from stores.2 For example, when
Alice buys a DVD of “Star War” due to the recommenda-
tion from friends, she may also pick up the original novel of
the movie due to an in-store recommendation, which may
in turn trigger additional purchases of the novel among her
friends. To the best of our knowledge, this additional spread
introduced by the item inference recommendations has not
been considered in existing research on viral marketing.

Figure 1 illustrates the above joint effects in a toy ex-
ample with two products and four customers, where a dash
arrow represents the association rule behind the item infer-
ence recommendation, and a solid arrow denotes the social
influence between two friends upon a product. In the two
separate planes corresponding to DVD and novel, social in-
fluence is expected to take effect on promoting interests in
(and potential purchases of) the DVD and novel, respec-
tively. Meanwhile, the item inference recommendation by
the e-commerce store is expected to trigger sales of addi-
tional items. Note that the association rules behind item
inference are derived without considering the ripple effect of
social influence. In the example, when Bob buys the DVD,
he may also buy the novel due to the item inference recom-
mendation. Moreover, he may influence Cindy to purchase
novel. However, the association rules behind item inference
are derived without considering the ripple effect of social in-
fluence. On the other hand, to promote the movie DVD,
Alice may be selected as a seed for a viral marketing cam-
paign, hoping to spread her influence to Bob and David to
trigger additional purchases of the DVD. Actually, due to
the effect of item inference recommendation, having Alice
as a seed may additionally trigger purchases of the novel by
Bob and Cindy. This is a factor that existing seed selection
algorithms for viral marketing do not account for.

We argue that to select seeds for maximizing the spread
of product information to a customer base (or maximizing
the sale revenue of products) in a viral marketing campaign,
both effects of item inference and social influence need to

2In this paper, we refer product/item recommendation
based on associations among items inferred from purchase
transactions as item inference recommendation.



be considered. To incorporate both effects, we propose a
new model, called Social Item Graph (SIG) in form of hy-
peredges, for capturing “purchase actions” of customers on
products and their potential influence to trigger other pur-
chase actions. Different from the conventional approaches
[7, 17] that use links between customers to model social
relationship (for viral marketing) and links between items
to capture the association (for item inference recommenda-
tion), SIG represents a purchase action as a node (denoted
by a tuple of a customer and an item), while using hyper-
edges among nodes to capture the influence spread process
used to predict customers’ future purchases. Unlike the pre-
vious influence propagation models [7, 17] consisting of only
one kind of edges connecting two customers (in social in-
fluence), the hyperedges in our model span across tuples of
different customers and items, capturing both effects of so-
cial influence and item inference.
Based on SIG, we formulate the Social Item Maximiza-

tion Problem (SIMP) to find a seed set, which consists of
selected products along with targeted customers, to maxi-
mize the total adoptions of products by customers. Note
that SIMP takes multiple products into consideration and
targets on maximizing the number of products purchased
by customers.3 SIMP is a very challenging problem, which
does not have the submodularity property. We prove that
SIMP cannot be approximated within nc with any c < 1,
where n is the number of nodes in SIMP, i.e., SIMP is ex-
tremely difficult to approximate with a small ratio because
the best approximation ratio is almost n.4

To tackle SIMP, two challenges arise: 1) numerous com-
binations of possible seed nodes, and 2) expensive on-line
computation of influence diffusion upon hyperedges. To ad-
dress the first issue, we first introduce the Hyperedge-Aware
Greedy (HAG) algorithm, based on a unique property of hy-
peredges, i.e., a hyperedge requires all its source nodes to
be activated in order to trigger the purchase action in its
destination node. HAG selects multiple seeds in each seed
selection iteration to further activate more nodes via hyper-
edges.5 To address the second issue, we exploit the structure
of Frequent Pattern Tree (FP-tree) to develop SIG-index as
an compact representation of SIG in order to accelerate the
computation of activation probabilities of nodes in online
diffusion.
Moreover, to construct realistic SIG models for SIMP,

we also develop a statistical inference based framework to
learn the weights of hyperedges from logs of purchase ac-
tions. Identifying the hyperedges and estimating the cor-
responding weights are major challenges for constructing of
a SIG due to data sparsity and unobservable activations.
To address these issues, we propose a novel framework that
employs smoothed expectation and maximization algorithm
(EMS) [21], to identify hyperedges and estimate their values
by kernel smoothing.
Our contributions of this paper are summarized as follows.
• We observe the deficiencies in existing techniques for

item inference recommendation and seed selection and
propose the Social Item Graph (SIG) that captures
both effects of social influence and item inference in
prediction of potential purchase actions.

3SIMP can be extended to a weighted version with differ-
ent profits from each product. In this paper, we focus on
maximizing the total sales.
4While there is no good solution quality guarantee for the
worst case scenario, we empirically show that the algorithm
we developed achieves total adoptions on average compara-
ble to optimal results.
5A hyperedge requires all its source nodes to be activated
to diffuse its influence to its destination node.

• Based on SIG, we formulate a new problem, called
Social Item Maximization Problem (SIMP), to select
the seed nodes for viral marketing that effectively fa-
cilitates the recommendations from both friends and
stores simultaneously. In addition, we analyze the
hardness of SIMP.

• We design an efficient algorithm with performance guar-
antee, called Hyperedge-Aware Greedy (HAG), and
develop a new index structure, called SIG-index, to ac-
celerate the computation of diffusion process in HAG.

• To construct realistic SIG models for SIMP, we develop
a statistical inference based framework to learn the
weights of hyperedges from data.

• We conduct a comprehensive evaluation on our pro-
posals with various baselines. Experimental result val-
idates our ideas and demonstrates the effectiveness and
efficiency of the proposed model and algorithms over
baselines.

The rest of this paper is organized as follows. Section 2 re-
views the related work. Section 3 details the SIG model and
its influence diffusion process. Section 4 formulates SIMP
and designs new algorithms to efficiently solve the problem.
Section 5 describes our approach to construct the SIG. Sec-
tion 6 reports our experiment results and Section 7 concludes
the paper.

2. RELATED WORK
To discover the associations among purchased items, fre-

quent pattern mining algorithms find items which frequently
appear together in transactions [3]. Some variants, such as
closed frequent patterns mining [20], maximal frequent pat-
tern mining [16], have been studied. However, those existing
works, focusing on unveiling the common shopping behav-
iors of individuals, disregard the social influence between
customers [26]. On the other hand, it has been pointed out
that items recommended by item inference may have been
introduced to users by social diffusion [25]. In this work, we
develop a new model and a learning framework that consider
both the social influence and item inference factors jointly to
derive the association among purchase actions of customers.
In addition, we focus on seed selection for prevalent viral
marketing by incorporating the effect of item inference.

With a great potential in business applications, social in-
fluence diffusion in social networks has attracted extensive
interests recently [7, 17]. Learning algorithms for estimat-
ing the social influence strength between social customers
have been developed [10, 18]. Based on models of social in-
fluence diffusion, identifying the most influential customers
(seed selection) is a widely studied problem [7, 17]. Pre-
cisely, those studies aim to find the best k initial seed cus-
tomers to target on in order to maximize the population of
potential customers who may adopt the new product. This
seed selection problem has been proved as NP-hard [17].
Based on two influence diffusion models, Independent Cas-
cade (IC) and Linear Threshold (LT), Kempe et al. propose
a 1− 1/e approximation greedy algorithm by exploring the
submodularity property under IC and LT [17]. Some follow-
up studies focus on improving the efficiency of the greedy
algorithm using various spread estimation methods, e.g.,
MIA[7] and TIM+[24]. However, without considering the
existence of item inference, those algorithms are not applica-
ble to SIMP. Besides the IC and LT model, Markov random
field has been used to model social influence and calculate
expected profits from viral marketing [9]. Recently, Tang et
al. proposed a Markov model based on “confluence”, which
estimates the total influence by combining different sources
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of conformity [23]. However, these studies only consider the
diffusion of a single item in business applications. Instead,
we incorporate item inference in spread maximization to es-
timate the influence more accurately.

3. SOCIAL ITEM GRAPH MODEL
Here we first present the social item graph model and then

introduce the diffusion process in the proposed model.

3.1 Social Item Graph
We aim to model user purchases and potential activations

of new purchase actions from some prior. We first define the
notions of the social network and purchase actions.

Definition 1. A social network is denoted by a directed
graph G = (V,E) where V contains all the nodes and E
contains all the directed edges in the graph. Accordingly, a
social network is also referred to as a social graph.

Definition 2. Given a list of commodity items I and
a set of customers V , a purchase action (or purchase for
short), denoted by (v, i) where v ∈ V is a customer, and
i ∈ I is an item, refers to the purchase of item i by cus-
tomer v.

Definition 3. An purchase log is a database consisting
of all the purchase actions in a given period of time.

Association-rule mining (called item inference in this pa-
per) has been widely exploited to discover correlations be-
tween purchases in transactions. For example, the rule
{hotdog, bread} → {pickle} obtained from the transactions
of a supermarket indicates that if a customer buys hot-
dogs and bread together, she is likely to buy pickles. To
model the above likelihood, the confidence [12] of a rule
{hotdog, bread} → {pickle} is the proportion of the trans-
actions that have hotdogs and bread also include pickles.
It has been regarded as the conditional probability that a
customer buying both hotdogs and bread would trigger the
additional purchase of pickles. To model the above rule in
a graph, a possible way is to use two separate edges (see
Figure 2; one from hotdog to pickle, and the other from
bread to pickle, respectively), while the probability associ-
ated with each of these edges is the confidence of the rule.
In the above graph model, however, either one of the hot-
dog or bread may trigger the purchase of pickle. This does
not accurately express the intended condition of purchasing
both the hotdog and bread. By contrast, the hyperedges in
Graph Theory, by spanning multiple source nodes and one
destination node, can model the above association rule (as
illustrated in Figure 2). The probability associated with the
hyperedge represents the likelihood of the purchase action
denoted by the destination node when all purchase actions
denoted by source nodes have happened.
On the other hand, in viral marketing, the traditional IC

model activates a new node by the social influence proba-
bilities associated with edges to the node. Aiming to cap-
ture both effects of item inference and social influence. We
propose a new Social Item Graph (SIG). SIG models the
likelihood for a purchase (or a set of purchases) to trigger
another purchase in form of hyperedges, which may have one
or multiple source nodes leading to one destination node.
We define a social item graph as follows.

Definition 4. Given a social graph of customers G =
(V,E) and a commodity item list I, a social item graph is
denoted by GSI = (VSI , EH), where VSI is a set of purchase
actions and EH is a set of hyperedges over VSI . A node
n ∈ VSI is denoted as (v, i), where v ∈ V and i ∈ I. A
hyperedge e ∈ EH is of the following form:

{(u1, i1), (u2, i2), · · · , (um, im)} → (v, i)

where ui is in the neighborhood of v in G, i.e., ui ∈ NG (v) =
{u|d(u, v) ≤ 1}.6

Note that the conventional social influence edge in a so-
cial graph with one source and one destination can still be
modeled in an SIG as a simple edge associated with a corre-
sponding influence probability. Nevertheless, the influence
probability from a person to another can vary for different
items (e.g., a person’s influence on another person for cos-
metics and smartphones may vary.). Moreover, although an
SIG may model the purchases more accurately with the help
of both social influence and item inference, the complexity of
processing an SIG with hyperedges is much higher than sim-
ple edges in the traditional social graph that denotes only
social influence.

For simplicity, let u and v (i.e., the symbols in Typewriter
style) represent the nodes (u, i) and (v, i) in SIG for the rest
of this paper. We also denote a hyperedge as e ≡ U → v,
where U is a set of source nodes and v is the destination node.
Let the associated edge weight be pe, which represents the
activation probability for v to be activated if all source nodes
in U are activated. Note that the activation probability is
for one single hyperedge U → v. Other hyperedges sharing
the same destination may have different activation probabil-
ities. For example, part of the source nodes in a hyperedge
{a, b, c, d} → x can still activate x, e.g., by {a, b, c} → x with
a different hyperedge with its own activation probability.

3.2 Diffusion Process in Social Item Graph
Next we introduce the diffusion process in SIG, which is

inspired by the probability-based approach behind Indepen-
dent Cascade (IC) to captures the word-of-mouth behavior
in the real world [7].7 This diffusion process fits the item
inferences captured in an SIG naturally, as we can derive
conditional probabilities on hyperedges to describe the trig-
ger (activation) of purchase actions on a potential purchase.

The diffusion process in SIG starts with all nodes inactive
initially. Let S denote a set of seeds (purchase actions). Let
a node s ∈ S be a seed. It immediately becomes active.
Given all the nodes in a source set U at iteration ι − 1, if
they are all active at iteration ι, a hyperedge e ≡ U → v has
a chance to activate the inactive v with probability pe. Each
node (v, i) can be activated once, but it can try to activate
other nodes multiple times, one for each incident hyperedges.
For the seed selection problem that we target on, the total
number of activated nodes represents the number of items
adopted by customers (called total adoptions for the rest of
this paper).

4. SOCIAL ITEM MAXIMIZATION
6Notice that when u1 = u2 = · · · = um = v, the hyperedge
represents the item inference of item i. On the other hand,
when i1 = i2 = · · · = im = i, it becomes the social influence
of user u on v.
7Several variants of IC model have been proposed [6, 5].
However, they focus on modeling the diffusion process be-
tween users, such as aspect awareness [6], which is not suit-
able for social item graph since the topic is embedded in
each SIG node.
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Upon the proposed Social Item Graph (SIG), we now for-
mulate a new seed selection problem, called Social Item Max-
imization Problem (SIMP), that selects a set of seed pur-
chase actions to maximize potential sales or revenue in a
marketing campaign. In Section 5, we will describe how to
construct the SIG from purchase logs by a machine learning
approach.

Definition 5. Given a seed number k, a list of targeted
items I, and a social item graph GSI(VSI , EH), SIMP se-
lects a set S of k seeds in VSI such that αGSI (S), the total
adoption function of S, is maximized.

Note that a seed in SIG represents the adoption/purchase
action of a specific item by a particular customer. The total
adoption function αGSI represents the total number of prod-
uct items (∈ I) purchased. By assigning prices to products
and costs to the selected seeds, an extension of SIMP is to
maximize the total revenue subtracted by the cost.
Here we first discuss the challenges in solving SIMP be-

fore introducing our algorithm. Note that, for the influence
maximization problem based on the IC model, Kempe et
al. propose a 1− 1/e approximation algorithm [17], thanks
to the submodularity in the problem. Unfortunately, the
submodularity does not hold for the total adoption function
αGSI (S) in SIMP. Specifically, if the function αGSI (S) satis-
fies the submodularity, for any node i and any two subsets of
nodes S1 and S2 where S1 ⊆ S2, αGSI (S1

∪
{i})−αGSI (S1) ≥

αGSI (S2
∪
{i})−αGSI (S2) should hold. However, a counter

example is illustrated below.

Example 1. Consider an SIMP instance with a cus-
tomer and five items in Figure 3. Consider the case where
S1 = {u4}, S2 = {u1, u4}, and i corresponds to node
u2. For seed sets {u4}, {u2, u4}, {u1, u4} and {u1, u2, u4},
αGSI ({u4}) = 1.9, αGSI ({u2, u4}) = 2.9, αGSI ({u1, u4}) =
2.9, and αGSI ({u1, u2, u4}) = 4.4. Thus, αGSI (S1

∪
{u2})−

αGSI (S1) = 1 < 1.5 = αGSI (S2
∪
{u2}) − αGSI (S2). Hence,

the submodularity does not hold.

Since the submodularity does not exist in SIMP, the 1 −
1/e approximation ratio of the greedy algorithm in [17] does
not hold. Now, an interesting question is how large the
ratio becomes. Example 2 shows an SIMP instance where
the greedy algorithm performs poorly.

Example 2. Consider an example in Figure 4, where
nodes v1, v2,...,vM all have a hyperedge with the probabil-
ity as 1 from the same k sources u1, u2,..., uk, and ϵ is
an arbitrarily small edge probability ϵ > 0. The greedy al-
gorithm selects one node in each iteration, i.e., it selects
u′1, u

′
2...u

′
k as the seeds with a total adoption k + kϵ. How-

ever, the optimal solution actually selects u1, u2,..., uk as
the seeds and results in the total adoption M + k. There-
fore, the approximation ratio of the greedy algorithm is at
least (M+k)/(k+kϵ), which is close to M/k for a large M ,
where M could approach |VSI | in the worst case.

One may argue that the above challenges in SIMP may be
alleviated by transforming GSI into a graph with only sim-
ple edges, as displayed in Figure 5, where the weight of every
ui → v) with ui ∈ U can be set independently. However, if
a source node um ∈ U of v is difficult to activate, the prob-
ability for v to be activated approaches zero in Figure 5 (a)

1u 2u |U|u
… 

v

pU,v 

(a) Original

1u 2u |U|u
…

v

(b) Transformed

Figure 5: An illustration of graph transformations

due to um. However, in Figure 5 (b), the destination v is
inclined to be activated by sources in U, especially when U
is sufficiently large. Thus, the idea of graph transformation
does not work.

4.1 Hyperedge-Aware Greedy (HAG)
Here, we propose an algorithm for SIMP, Hyperedge-

Aware Greedy (HAG), with performance guarantee. The
approximation ratio is proved in Section 4.3. A hyperedge
requires all its sources activated first in order to activate
the destination. Conventional single node greedy algorithms
perform poorly because hyperedges are not considered. To
address this important issue, we propose Hyperedge-Aware
Greedy (HAG) to select multiple seeds in each iteration.

A naive algorithm for SIMP would examine, C
|VSI |
k com-

binations are involved to choose k seeds. In this paper, as
multiple seeds tend to activate all source nodes of a hyper-
edge in order to activate its destination, an effective way is
to consider only the combinations which include the source
nodes of any hyperedge. We call the source nodes of a hy-
peredge as a source combination. Based on this idea, in each
iteration, HAG includes the source combination leading to
the largest increment on total adoption divided by the num-
ber of new seeds added in this iteration. Note that only the
source combinations with no more than k sources are con-
sidered. The iteration continues until k seeds are selected.
Note that HAG does not restrict the seeds to be the source
nodes of hyperedges. Instead, the source node u of any sim-
ple edge u → v in SIG is also examined.
Complexity of HAG. To select k seeds, HAG takes at
most k rounds. In each round, the source combinations of
|EH | hyperedges are tried one by one, and the diffusion cost
is cdif , which will be analyzed in Section 4.2. Thus, the time
complexity of HAG is O(k × |EH | × cdif ).

4.2 Acceleration of Diffusion Computation
To estimate the total adoption for a seed set, it is neces-

sary to perform Monte Carlo simulation based on the diffu-
sion process described in Section 3.2 for many times. Find-
ing the total adoption is very expensive, especially when a
node v can be activated by a hyperedge with a large source
set U, which indicates that there also exist many other hy-
peredges with an arbitrary subset of U as the source set to
activate v. In other words, enormous hyperedges need to be
examined for the diffusion on an SIG. It is essential to reduce
the computational overhead. To address this issue, we pro-
pose a new index structure, called SIG-index, by exploiting
FP-Tree [12] to pre-process source combinations in hyper-
edges in a compact form in order to facilitate efficient deriva-
tion of activation probabilities during the diffusion process.

The basic idea behind SIG-index is as follows. For each
node v with the set of activated in-neighborsNa

v,ι in iteration
ι, if v has not been activated before ι, the diffusion process
will try to activate v via every hyperedge U → v where the
last source in U has been activated in iteration ι−1. To derive
the activation probability of a node v from the weights of
hyperedges associated with v, we first define the activation
probability as follows.
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Figure 6: An illustration of SIG-index

Definition 6. The activation probability of v at ι is

apv,ι = 1−
∏

U→v∈EH ,U⊆Nv,ι−1,U*Nv,ι−2

(1− pU→v).

where Nv,ι−1 and Nv,ι−2 denote the set of active neighbors
of v in iteration ι− 1 and ι− 2, respectively.

The operations on an SIG-index occur two phases: Index
Creation Phase and Diffusion Processing Phase. As all hy-
peredges satisfying Definition 6 must be accessed, the SIG-
index stores the hyperedge probabilities in Index Creation
Phase. Later, the SIG-index is updated in Diffusion Pro-
cessing Phase to derive the activation probability efficiently.
Index Creation Phase. For each hyperedge U → v,

we first regard each source combination U = {v1, ...v|U|} as a
transaction to build an FP-tree [12] by setting the minimum
support as 1. As such, v1, ...v|U| forms a path r → v1 →
v2... → v|U| from the root r in the FP-tree to node v|U| in
U. Different from the FP-Tree, the SIG-index associates the
probability of each hyperedge U → v with the last source
node v|U| in U.8 Initially the probability associated with
the root r is 0. Later the the SIG-index is updated during
the diffusion process. Example 3 illustrates the SIG-index
created based on an SIG.

Example 3. Consider an SIG graph with five nodes,
v1-v5, and nine hyperedges with their associated probabil-
ities in parentheses: {v1} → v5 (0.5), {v1, v2} → v5
(0.4), {v1, v2, v3} → v5 (0.2), {v1, v2, v3, v4} → v5 (0.1),
{v1, v3} → v5 (0.3), {v1, v3, v4} → v5 (0.2), {v2} → v5
(0.2), {v2, v3, v4} → v5 (0.1), {v2, v4} → v5 (0.1). Figure 6
(a) shows the SIG-index initially created for node v5.

Diffusion Processing Phase. The activation probabil-
ity in an iteration is derived by traversing the initial SIG-
index, which takes O(|EH |) time. However, a simulation
may iterate a lot of times. To further accelerate the travers-
ing process, we adjust the SIG-index for the activated nodes
in each iteration. More specifically, after a node va is ac-
tivated, accessing an hyperedge U → v with va ∈ U be-
comes easier since the number remaining inactivated nodes
in U − {va} is reduced. Accordingly, SIG-index is modified
by traversing every vertex labeled as va on the SIG-index in
the following steps. 1) If va is associated with a probability
pa, it is crucial to aggregate the old activation probabilities
pa of va and pp of its parent vp, and update activation prob-
ability associated with vp as 1− (1− pa)(1− pp), since the
source combination needed for accessing the hyperedges as-
sociated with va and vp becomes the same. The aggregation
is also performed when vp is r. 2) If va has any children c,
the parent of c is changed to be vp, which removes the pro-
cessed va from the index. 3) After processing every node va

in the SIG-index, we obtain the activation probability of v
in the root r. After the probability is accessed for activating
v, the probability of r is reset to 0 for next iteration.

8For ease of explanation, we assume the order of nodes in
the SIG-index follows the ascending order of subscript.
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Example 4. Consider an example with v2 activated in
an iteration. To update the SIG-index, each vertex v2 in
Figure 6 (a) is examined by traversing the linked list of v2.
First, the left vertex with label v2 is examined. SIG-index
reassigns the parent of v2’s child (labeled as v3) to the vertex
labeled as v1, and aggregate the probability 0.4 on the v2 and
0.5 on vertex v1, since the hyperedge {v1, v2} → v5 can be
accessed if the node v1 is activated later. The probability of
v1 becomes 1−(1−pv1)(1−pv2) = 0.7. Then the right vertex
with label v2 is examined. The parent of its two children is
reassigned to the root r. Also, the probability of itself (0.2)
is aggregated with the root r, indicating that the activation
probability of node v5 in the next iteration is 0.2.

Complexity Analysis. For Index Creation Phase, the
initial SIG-index for v is built by examining the hyperedges
two times with O(|EH |) time. The number of vertices in
SIG-index is at most O(cd|EH |), where cd is the number
of source nodes in the largest hyperedge. During Diffusion
Processing Phase, each vertex in SIG-index is examined only
once through the node-links, and the parent of a vertex is
changed at most O(cd) times. Thus, the overall time to
complete a diffusion requires at most O(cd|EH |) time.

4.3 Hardness Results
From the discussion earlier, it becomes obvious that SIMP

is difficult. In the following, we will prove that SIMP is inap-
proximable with a non-constant ratio nc for all c < 1, with
a gap-introducing reduction from an NP-complete problem
3-SAT to SIMP, where n is the number of nodes in an SIG.
Note that the theoretical result only shows that for any algo-
rithm, there exists a problem instance of SIMP (i.e., a pair
of an SIG graph and a seed number k) that the algorithm
can not obtain a solution better than 1/n times the opti-
mal solution. It does not imply that an algorithm always
performs badly in every SIMP instance.

Lemma 1. For a positive integer q, there is a gap-
introducing reduction from 3-SAT to SIMP, which trans-
forms an nvar-variables expression ϕ to an SIMP instance
with the SIG as GSI(VSI , EH) and the k as nvar such that
• if ϕ is satisfiable, α∗

GSI
≥ (mcla + 3nvar)

q, and
• if ϕ is not satisfiable, α∗

GSI
< mcla + 3nvar,

where α∗
GSI

is the optimal solution of this instance, nvar is
the number of Boolean variables, and mcla is the number of
clauses. Hence there is no (mcla +3nvar)

q−1 approximation
algorithm for SIMP unless P = NP.

Proof. Given a positive integer q, for an instance ϕ of
3-SAT with nvar Boolean variables a1, . . . , anvar and mcla

clauses C1, . . . , Cmcla , we construct an SIG GSI with three
node sets X, Y and Z as follows. 1) Each Boolean variable
ai corresponds to two nodes xi, xi in X and one node yi in
Y. 2) Each clause Ck corresponds to one node ck in Y. 3)



Z has (|X| + |Y|)q nodes. (Thus, GSI has (mcla + 3nvar)
q +

mcla + 3nvar nodes.) 4) For each yj in Y, we add direct

edges xj → yj and xj → yj . 5) For each ck in Y, we add
direct edges α → ck, β → ck and γ → ck, where α, β, γ
are the nodes in X corresponding to the three literals in Ck.
6) We add a hyperedge Y → zv from all for every zv ∈ Z.
The probability of every edge is set to 1. An example is
illustrated in Figure 7.
We first prove that ϕ is satisfiable if and only if GSI has

a seed set S with nvar seeds and the total adoption of S
contains Y. If ϕ is satisfiable, there exists a truth assignment
T on Boolean variables a1, . . . , anvar satisfying all clauses of
ϕ. Let S = {xi|T (ai) = 1} ∪ {xj |T (aj) = 0}, and S then has
nvar nodes and the total adoption of S contains Y. On the
other hand, if ϕ is not satisfiable, apparently there exists
no seed set S with exactly one of xi or xi selected for every
i such that the total adoption of S contains Y. For other
cases, 1) all seeds are placed in X, but there exists at least
one i with both xi and xi selected. In this case, there must
exist some j such that none of xj or xj are selcted (since the
seed number is nvar), and thus Y is not covered by the total
adoption of S. 2) A seed is placed in Y. In this case, the seed
can be moved to an adjacent xi without reducing the total
adoption. Nevertheless, as explained above, there exists no
seed set S with all seeds placed in X such that the total
adoption of S contains Y, and thus the total adoption of any
seed set with a seed placed in Y cannot cover Y, either. With
above observations, if ϕ is not satisfiable, GSI does not have
a seed set S with nvar seeds such that the total adoption of
S contains Y. Since the nodes of Z can be activated if and
only if the total adoption of S contains Y if and only if ϕ is
satisfiable, we have
• if ϕ is satisfiable, α∗

GSI
≥ (mcla + 3nvar)

q, and
• if ϕ is not satisfiable, α∗

GSI
< mcla + 3nvar.

The lemma follows.

Theorem 1. For any ϵ > 0, there is no n1−ϵ approxima-
tion algorithm for SIMP, assuming P ̸= NP.

Proof. For any arbitrary ϵ > 0, we set q ≥ 2
ϵ
. Then, by

Lemma 1, there is no (mcla+3nvar)
q−1 approximation algo-

rithm for SIMP unless P = NP. Then (mcla + 3nvar)
q−1 ≥

2(mcla + 3nvar)
q−2 ≥ 2(mcla + 3nvar)

q(1−ϵ) ≥ (2(mcla +
3nvar)

q)1−ϵ ≥ n1−ϵ. Since ϵ is arbitrarily small, thus for
any ϵ > 0, there is no n1−ϵ approximation algorithm for
SIMP, assuming P ̸= NP. The theorem follows.

With Theorem 3, no algorithm can achieve an approxi-
mation ratio better than n. In Theorem 1, we prove that
SIG-index is correct, and HAG with SIG-index achieves the
best ratio, i.e., it is n-approximated to SIMP. Note that
the approximation ratio only guarantees the lower bound
of total adoption obtained by HAG theoretically. Later in
Section 6.3, we empirically show that the total adoption ob-
tained by HAG is comparable to the optimal solution.

Theorem 2. HAG with SIG-index is n-approximated,
where n is the number of nodes in SIG.

Proof. First, we prove that SIG-index obtains apv,ι cor-
rectly. Assume that there exists an incorrect apv,ι, i.e., there
exists an hyperedge U → v satisfying the conditions in Defi-
nition 6 (i.e., U * Nv,ι−2 and U ⊆ Nv,ι−1) but its probability
is not aggregated to r in ι. However, the probability can
not be aggregated before ι since U * Nv,ι−2 and it must
be aggregated no later than ι since U ⊆ Nv,ι−1. There is a
contradiction.
Proving that HAG with SIG-index is an n-approximation

algorithm is simple. The upper bound of total adoption for
the optimal algorithm is n, while the lower bound of the total

adoption for HAG is 1 because at least one seed is selected.
In other words, designing an approximation algorithm for
SIMP is simple, but it is much more difficult to have the
hardness result for SIMP, and we have proven that SIMP is
inapproximable within n1−ϵ for any arbitrarily small ϵ.

Theorem 3. For any ϵ > 0, there is no n1−ϵ approxima-
tion algorithm for SIMP, assuming P ̸= NP.

Proof. For any arbitrary ϵ > 0, we set q ≥ 2
ϵ
. Then, by

Lemma 1, there is no (mcla+3nvar)
q−1 approximation algo-

rithm for SIMP unless P = NP. Then (mcla + 3nvar)
q−1 ≥

2(mcla + 3nvar)
q−2 ≥ 2(mcla + 3nvar)

q(1−ϵ) ≥ (2(mcla +
3nvar)

q)1−ϵ ≥ n1−ϵ. Since ϵ is arbitrarily small, thus for
any ϵ > 0, there is no n1−ϵ approximation algorithm for
SIMP, assuming P ̸= NP. The theorem follows.

Corollary 1. HAG with SIG-index is n-approximated,
where n is the number of nodes in SIG, because SIG-index
only improves the efficiency.

5. CONSTRUCTION OF SIG
To select seeds for SIMP, we need to construct the SIG

from purchase logs and the social network. We first create
possible hyperedges by scanning the purchase logs. Let τ
be the timestamp of a given purchase v = (v, i). v’s friends
purchase and her own purchases that have happened within
a given period before τ are considered as candidate source
nodes to generate hyperedges to v. For each hyperedge e,
the main task is then the estimation of its their activation
probability pe. Since pe is unknown, it is estimated by max-
imizing the likelihood function based on observations in the
purchase logs. Note that learning the activation probability
pe for each hyperedge e faces three challenges.
C1. Unknown distribution of pe. How to properly
model pe is critical.
C2. Unobserved activations. When v is activated at
time τ , this event only implies that at least one hyperedge
successfully activates v before τ . It remains unknown which
or hyperedge(s) actually triggers v, i.e., it may be caused
by either the item inference or social influence or both.
Therefore, we cannot simply employ the confidence of an
association-rule as the corresponding hyperedge probability.
C3. Data Sparsity. The number of activations for a user
to buy an item is small, whereas the number of possible hy-
peredge combinations is large. Moreover, new items emerge
every day in e-commerce websites, which incurs the notori-
ous cold-start problem. Hence, a method to deal with the
data sparsity issue is necessary to properly model a SIG.

To address these challenges, we exploit a statistical infer-
ence approach to identify those hyperedges and learn their
weights. In the following, we first propose a model of the
edge function (to address the first challenge) and then ex-
ploit the smoothed expectation and maximization (EMS)
algorithm [21] to address the second and third challenges.

5.1 Modeling of Hyperedge Probability
To overcome the first challenge, one possible way is to

model the number of success activations and the number of
unsuccessful activations by the binomial distributions. As
such, pe is approximated by the ratio of the number of suc-
cess activations and the number of total activation trials.
However, the binomial distribution function is too complex
for computing the maximum likelihood of a vast number of
data. To handle big data, previous study reported [14] that
the binomial distribution (n, p) can be approximated by the
Poisson distribution λ = np when the time duration is suf-
ficiently large. According to the above study, it is assumed



that the number of activations of a hyperedge e follows the
Poisson distribution to handle the social influence and item
inference jointly. The expected number of events equals to
the intensity parameter λ. Moreover, we use an inhomoge-
neous Poisson process defined on the space of hyperedges to
ensure that pe varies with different e.
In the following, a hyperedge is of size n, if the cardinality

of its source set U is n. We denote the intensity of the number
of activation trials of the hyperedge e as λT (e). Then the
successful activations of hyperedge e follows another Poisson
process where the intensity is denoted by λA(e). Therefore,
the hyperedge probability pe can be derived by parameters

λA(e) and λT (e), i.e., pe = λA(e)
λT (e)

.

The maximum likelihood estimation can be employed to
derive λT (e). Nevertheless, λA(e) cannot be derived as ex-
plained in the second challenge. Therefore, we use the ex-
pectation maximization (EM) algorithm, which is an ex-
tension of maximum likelihood estimation containing latent
variables to λA(e) which is modeled as the latent variable.
Based on the observed purchase logs, the E-step first de-
rives the likelihood Q-function of parameter pe with λA(e)
as the latent variables. In this step, the purchase logs and
pe are given to find the probability function describing that
all events on e in the logs occur according to pe, whereas
the probability function (i.e., Q-function) explores different
possible values on latent variable λA(e). Afterward, The M-
step maximizes the Q-function and derives the new pe for
E-Step in the next iteration. These two steps are iterated
until convergence.
With the employed Poisson distribution and EM algo-

rithm, data sparsity remains an issue. Therefore, we further
exploit a variant of EM algorithm, called EMS algorithm
[21], to alleviate the sparsity problem by estimating the in-
tensity of Poisson process using similar hyperedges. The
parameter smoothing after each iteration is called S-Step,
which is incorporated in EMS algorithm, in addition to the
existing E-Step and M-Step.

5.2 Model Learning by EMS Algorithm
Let pe and p̂e denote the true probability and estimated

probabilities for hyperedge e in the EMS algorithm, respec-
tively, where e = U → v. Let NU and Ke denote the num-
ber of activations of source set U in the purchase logs and
the number of successful activations on hyperedge e, respec-
tively. The EM algorithm is exploited to find the maximum
likelihood of pe, while λA(e) is the latent variable becauseKe

cannot be observed (i.e., only NU can be observed). There-
fore, E-Step derives the likelihood function for {pe} (i.e., the
Q-function) as follows,

Q(pe, p̂
(i−1)
e ) = EKe [logP (Ke, NU |pe)|NU , p̂

(i−1)
e ], (1)

where p̂
(i−1)
e is the hyperedge probability derived in the

previous iteration, Note that NU and p
(i−1)
e are given pa-

rameters in iteration i, whereas pe is a variable in the Q-
function, and Ke is a random variable governed by the dis-

tribution P (Ke|NU , p
(i−1)
e ). Since pe is correlated to λT (U)

and λA(e), we derive the likelihood P (Ke, NU |pe) as follows.

P (Ke, NU |pe)
= P ({Ke}e∈EH , {NU}U⊆VSI |{pe}e∈EH , {λT (U)}U⊆VSI )

= P ({Ke}e∈EH |{pe}e∈EH , {NU , λT (U)}U⊆VSI )

×P ({NU}U⊆VSI |{λT (U)}U⊆VSI ) .

It is assumed that {Ke} is independent with {NU}, and

Q(pe, p̂
(i−1)
e ) can be derived as follows:∑

e∈EH

logP (Ke|NU , pe) + logP ({NU}U⊆VSI |{λT (e)}U⊆VSI ).

Since only the first term contains the hidden Ke, only this
term varies in different iterations of the EMS algorithm, be-
cause {NU}U⊆VSI in the second term always can be derived
by finding the maximum likelihood as follows. Let pU,k de-
note the probability that the source set U exactly tries to ac-
tivate the destination node k times, i.e., pU,k = P{NU = k}.
The log-likelihood of λT is∑

k

pU,k ln(
λk
T e

−λT

k!
) =

∑
k

pU,k(−λT + k lnλT − ln k!)

= −λT + (lnλT )
∑
k

kpU,k −
∑
k

pU,k ln k!.

We acquire the maximum likelihood by finding the derivative
with regard to λT :

−1 +
1

λT

∑
k

kpU,k = 0. (2)

Thus, the maximum log-likelihood estimation of λT =∑
k kpU,k, representing that the expected activation times

(i.e., λ̂T (e)) is NU . Let A = {(v, τ)} denote the action log
set, where each log (v, τ) represents that v is activated at
time τ . NU is calculated by scanning A and find the times
that all the nodes in U are activated.

Afterward, we focus on the first term of Q(pe, p̂
(i−1)
e ). Let

pe,k = P{Ke = k} denote the probability that the hyperedge
e exactly activates the destination node k times. In E-step,
we first find the expectation for Ke as follows.∑
e∈EH

∑
k=1,··· ,NU

pe,k log(k|NU , pe)

=
∑

k=1,··· ,NU

pe,k logP (k|NU , pe)

=
∑

k=1,··· ,NU

pe,k log(

(
NU

k

)
pe

k(1− pe)
NU−k)

=
∑

k=1,··· ,NU

pe,k

(
log

(
NU

k

)
+ k log pe + (NU − k) log(1− pe)

)
.

Since
∑

k=1,··· ,NU
pe,kk = E[Ke] and

∑
k=1,··· ,NU

pe,k =

1, the log-likelihood of the first term is further simplified as∑
k=1,··· ,NU

pe,k log

(
NU

k

)
+NU log(1−pe)+E[Ke)](log pe−log(1−pe)).

Afterward, M-step maximizes the Q-function by finding the
derivative with regard to pe:

−NU

1− pe
+ E[Ke)](

1

pe
+

1

1− pe
) = 0

pe = E[Ke]/NU

Therefore, the maximum likelihood estimator p̂e is E[Ke]
NU

,

λ̂T (U) is NU , and λ̂A(e) = E[Ke].
The problem remaining is to take expectation of the la-

tent variables {Ke} in E-step. Let {we,a}e∈EH ,a=(v,τ)∈A be
the conditional probability that v is activated by the source
set U of e at τ given v is activated at τ , and let Ea denote
the set of candidate hyperedges containing every possible
e with its source set activated at time τ − 1, i.e., Ea =
{(u1, u2, · · · , un) → v|∀i = 1, · · · , n, ui ∈ N(vi), (ui, τ − 1) ∈
A}. It’s easy to show that given the estimation of the

probability of hyperedges, we,a = p̂e
1−

∏
e′∈Ea

(1−p̂e′ )
, since

1 −
∏

e∈Ea
(1− p̂e′) is the probability for v to be acti-

vated by any hyperedge at time τ . The expectation of



Ke is
∑

a∈A,e∈Ea∩EH,n
we,a, i.e., the sum of expectation

of each successful activation of v from hyperedge e, and
EH,n = {(u1, u2, · · · , un; v) ∈ EH} contains all size n hy-
peredges.
To address the data sparsity problem, we leverage infor-

mation from similar hyperedges (described later). There-
fore, our framework includes an additional step to smooth
the results of M-Step. Kernel smoothing is employed in S-
Step. In summary, we have the following steps:
E-Step:

E[Ke] =
∑

a∈A,e∈Ea∩EH,n

we,a,

we,a =
p̂e

1−
∏

e′∈Ea
(1− p̂e′)

.

M-Step:

pe =

∑
a∈A,e∈Ea∩EH,n

we,a

NU
,

λA (e) =
∑

a∈A,e∈Ea∩EH,n

we,a,

λT (U) = NU .

S-Step: To address the data sparsity problem, we lever-
age information from similar hyperedges (described later).
Therefore, in addition to E-Step and M-Step, EMS in-
cludes S-Step, which smooths the results of M-Step. Kernel
smoothing is employed in S-Step as follows:

λ̂A (e) =
∑

a∈A,e′∈Ea∩EH,n

we′,aLh

(
F (e)− F (e′)

)
λ̂T (U) =

∑
U⊆VSI

NULh

(
F (U)− F (U ′)

)
where Lh is a kernel function with bandwidth h, and F is
the mapping function of hyperedges, i.e., F (e) maps a hy-
peredge e to a vector. The details of dimension reduction for
calculating F to efficiently map hyperedges into Euclidean
space are shown in [2] due to space constraint. If the hyper-
edges e and e′ are similar, the distance of the vectors F (e)
and F (e′) is small. Moreover, a kernel function Lh(x) is a
positive function symmetric at zero which decreases when
|x| increases, and the bandwidth h controls the extent of
auxiliary information taken from similar hyperedges.9 Intu-
itively, kernel smoothing can identify the correlation of p̂e1
with e1 = U1 → v1 and p̂e2 with e2 = U2 → v2 for nearby v1
and v2 and similar U1 and U2.

6. EVALUATION
We conduct comprehensive experiments to evaluate the

proposed SIG model, learning framework and seed selection
algorithms. In Section 6.1, we discuss the data preparation
for our evaluation. In Section 6.2, we compare the predictive
power of the SIG model against two baseline models: i) in-
dependent cascade model learned by implementing Variance
Regularized EM Algorithm (VAREM) [18] and ii) the gener-
alized threshold (GT) model learned by [11].10 In addition,
we evaluate the learning framework based on the proposed
EM and EMS algorithms. Next, in Section 6.3, we evalu-
ate the proposed HAG algorithm for SIMP in comparison
to a number of baseline strategies, including random, sin-
gle node selection, social, and item approaches. Finally, in

9A symmetric Gaussian kernel function is often used [13].
10http://people.cs.ubc.ca/˜welu/downloads.html

Section 6.4, we evaluate alternative approaches for diffusion
processing, which is essential and critical for HAG, based on
SIG-index, Monte Carlo simulations and sorting enhance-
ment.

6.1 Data Preparation
Here, we conduct comprehensive experiments using three

real datasets to evaluate the proposed ideas and algorithms.
The first dataset comes from Douban [1], a social networking
website allowing users to share music and books with friends.
Dataset Douban contains 5, 520, 243 users and 86, 343, 003
friendship links, together with 7, 545, 432 (user, music) and
14, 050, 265 (user, bookmark) pairs, representing the music
noted and the bookmarks noted by each user, respectively.
We treat those (user, music) and (user, bookmark) pairs as
purchase actions. In addition to Douban, we adopt two pub-
lic datasets, i.e., Gowalla and Epinions. Dataset Gowalla
contains 196, 591 users, 950, 327 links, and 6, 442, 890 check-
ins [8]. Dataset Epinions contains 22, 166 users, 335, 813
links, 27 categories of items, and 922, 267 ratings with times-
tamp [22]. Notice that we do not have data directly reflect-
ing item inferences in online stores, so we use the purchase
logs for learning and evaluations. The experiments are im-
plemented in an HP DL580 server with 4 Intel Xeon E7-4870
2.4 GHz CPUs and 1 TB RAM.

We split all three datasets into 5-fold, choose one subsam-
ple as training data, and test the models on the remaining
subsamples. Specifically, we ignore the cases when the user
and her friends did not buy anything. Finally, to evalu-
ate the effectiveness of the proposed SIG model (and the
learning approaches), we obtain the purchase actions in the
following cases as the ground truth: 1) item inference - a
user buys some items within a short period of time; and 2)
social influence - a user buys an item after at least one of
her friends bought the item. The considered periods of item
inference and social influence are set differently according to
[15] and [27], respectively. It is worth noting that only the
hyperedges with the probability larger than a threshold pa-
rameter θ are considered. We empirically tune θ to obtain
the default setting based on optimal F1-Score. Similarly,
the threshold parameter θ for the GT model is obtained
empirically. The reported precision, recall, and F1 are the
average of these tests. Since both SIGs and the independent
cascade model require successive data, we split the datasets
into continuous subsamples.

6.2 Model Evaluation
Tables 1 present the precision, recall, and F1 of SIG,

VAREM and GT on Douban, Gowalla, and Epinions. All
three models predict most accurately on Douban due to the
large sample size. The SIG model significantly outperforms
the other two models on all three datasets, because it takes
into account both effects of social influence and item in-
ference, while the baseline models only consider the social
influence. The difference of F1 score between SIG and base-
lines is more significant on Douban, because it contains more
items. Thus, item influence plays a more important role.
Also, when the user size increases, SIG is able to extract
more social influence information leading to better perfor-
mance than the baselines. The offline training time is 1.68,
1.28, and 4.05 hours on Epinions, Gowalla, Douban, respec-
tively.

To evaluate the approaches adopted to learn the activation
probabilities of hyperedges for construction of SIG, Fig. 8
compares the prevision and F1 of EMS and EM algorithms
on Epinions (results on other datasets are consistent and
thus not shown due to space limitation). Note that EM is a



Table 1: Comparison of precision, recall, and F1 for three models on Douban, Gowalla, Epinions
Dataset Douban Gowalla Epinions

Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score
GT 0.420916 0.683275 0.520927 0.124253 0.435963 0.171214 0.142565 0.403301 0.189999
VAREM 0.448542 0.838615 0.584473 0.217694 0.579401 0.323537 0.172924 0.799560 0.247951
SIG 0.869348 0.614971 0.761101 0.553444 0.746408 0.646652 0.510118 0.775194 0.594529
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Figure 8: Comparisons of precision and F1 in various
µ and h on Epinions

special case of EMS (with the smoothing parameter h = 0,
i.e., no similar hyperedge used for smoothing). EMS outper-
forms EM on both precision and F1-score in all settings of µ
(the maximum size of hyperedges) and h tested. Moreover,
the precision and F1-score both increases with h as a larger
h overcomes data sparsity significantly. As µ increases, more
combinations of social influence and item inference can be
captured. Therefore, the experiments show that a higher µ
improves F1-score without degrades the precision. It mani-
fests that the learned hyperedges are effective for predicting
triggered purchases.

6.3 Algorithm Effectiveness and Efficiency
We evaluate HAG proposed for SIMP, by selecting top 10

items as the marketing items to measure their total adop-
tion, in comparison with a number of baselines: 1) Random
approach (RAN). It randomly selects k nodes as seeds. Note
that the reported values are the average of 50 random seed
sets. 2) Single node selection approach (SNS). It selects a
node with the largest increment of the total adoption in
each iteration, until k seeds are selected, which is widely
employed in conventional seed selection problem [6, 7, 17].
3) Social approach (SOC). It only considers the social influ-
ence in selecting the k seeds. The hyperedges with nodes
from different products are eliminated in the seed selection
process, but they are restored for calculation of the final to-
tal adoption. 4) Item approach (IOC). The seed set is the
same as HAG, but the prediction is based on item inference
only. For each seed set selected by the above approaches,
the diffusion process is simulated 300 times. We report the
average in-degree of nodes learned from the three datasets in
the following: Douban is 39.56; Gowalla is 9.90; Epinions is
14.04. In this section, we evaluate HAG by varying the num-
ber of seeds (i.e., k) using two metrics: 1) total adoption,
and 2) running time.
To understand the effectiveness, we first compared all

those approaches with the optimal solution (denoted as
OPT) in a small subgraph sampled, Sample, from the SIG of
Douban with 50 nodes and 58 hyperedges. Figures 9 (a) dis-
plays the total adoption obtained by different approaches.
As shown, HAG performs much better than the baselines
and achieves comparable total adoption with OPT (the dif-
ference decreases with increased k). Note that OPT is not
scalable as shown in Figures 9 (b) since it needs to examine
all combination with k nodes. Also, OPT takes more than
1 day for selecting 6 seeds in Sample. Thus, for the rest of
experiments, we exclude OPT.
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Figure 9: Total adopting and running time of Sample
in various k
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Figure 10: Total adoption αGSI and running time in
various k

Figures 10 (a)-(c) compare the total adoptions of different
approaches in the SIG learnt from real networks. They all
grow as k increases, since a larger k increases the chance for
seeds to influence others to adopt items. Figure 10 (a)-(c)
manifest that HAG outperforms all the other baselines for
any k in SIG model. Among them, SOC fails to find good
solutions since item inference is not examined during seed
selection. IOC performs poorly without considering social
influence. SNS only includes one seed at a time without con-
sidering the combination of nodes that may activate many
other nodes via hyperedges.

Figure 10 (d) reports the running time of those ap-
proaches. Note that the trends upon Gowalla and Epin-
ions are similar with Douban. Thus we only report the run-
ning time of Douban due to the space constraint. Taking
the source combinations into account, HAG examines source
combinations of hyperedges in EH and obtains a better solu-
tion by spending more time since the number of hyperedges
is often much higher than the number of nodes.

6.4 Online Diffusion Processing
Diffusion processing is an essential operation in HAG. We

evaluate the efficiency of diffusion processing based on SIG-
index (denoted as SX), in terms of the running time, in
comparison with that based on the original Monte Carlo
simulation (denoted as MC) and the sorting enhancement
(denoted as SORTING), which accesses the hyperedges in
descending order of their weights. Figure 11 plots the run-
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Figure 11: Running time of different simulation
methods

ning time of SX, SORTING, and MC under various k using
the Douban, Gowalla, and Epinions. For each k, the av-
erage running times of 50 randomly selected seed sets for
SX, SORTING, and MC, are reported. The diffusion pro-
cess is simulated 300 times for each seed set. As Figure 11
depicts, the running time for all the three approaches grows
as k increases, because a larger number of seeds tends to
increas the chance for other nodes to be activated. Thus,
it needs more time to diffuse. Notice that SX takes much
less time than SORTING and MC, because SX avoids ac-
cessing hyperedges with no source nodes newly activated
while calculating the activation probability. Moreover, the
SIG-index is updated dynamically according to the activated
nodes in diffusion process. Also note that the improvement
by MC over SORTING in Douban is more significant than
that in Gowalla and Epinions, because the average in-degree
of nodes is much larger in Douban. Thus, activating a des-
tination at an early stage can effectively avoid processing
many hyperedges later.

7. CONCLUSION
In this paper, we argue that existing techniques for item

inference recommendation and seed selection need to jointly
take social influence and item inference into consideration.
We propose Social Item Graph (SIG) for capturing purchase
actions and predicting potential purchase actions. We pro-
pose an effective machine learning approach to construct a
SIG from purchase action logs and learn hyperedge weights.
We also develop efficient algorithms to solve the new and
challenging Social Item Maximization Problem (SIMP) that
effectively select seeds for marketing. Experimental results
demonstrate the superiority of the SIG model over existing
models and the effectiveness and efficiency of the proposed
algorithms for processing SIMP. We also plan to further ac-
celerate the diffusion process by indexing additional infor-
mation on SIG-index.
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