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Abstract

Wireless sensor networks promise an unprecedented op-
portunity to monitor physical environments via inexpen-
sive wireless embedded devices. Given the sheer amount
of sensed data, efficient classification of them becomes a
critical task in many sensor network applications. The large
scale and the stringent energy constraints of such networks
however challenge the conventional classification techniques
that demand enormous storage space and centralized com-
putation. In this paper, we propose a novel hierarchical
distributed classification approach, in which local classifiers
are built by individual sensors and merged along the routing
path. The classifiers are iteratively enhanced by combining
strategically generated pseudo data and new local data,
eventually converging to a global classifier for the whole
network. We demonstrate that our approach maintains high
classification accuracy with very low storage and com-
munication overhead. It also addresses a critical issue of
heterogeneous data distribution among the sensors.

1. Introduction

The recent advances in transceiver and embedded hard-
ware designs have made massive production of inexpensive
wireless sensors possible. These devices can form a network
with each node storing, processing and relaying the sensed
data, usually to a base station for further computation. Such
wireless sensor networks have been widely used in a broad
spectrum of applications like wildlife monitoring, battlefield
surveillance, and disaster relief [1], [2], [3]. Given the huge
amount of the sensed data, classifying them becomes a
critical task in many of these applications.

As an example, for wildlife monitoring, the sensor nodes
continuously sense the physical phenomena such as temper-
ature, humidity and sunlight, and meanwhile may also count
the number of animals. The number reflects the suitability
of the current environment for the animals. For example, if
it is greater than a threshold, the environment is classified
as suitable, and otherwise not. After learning the relation
between the physical phenomena and the classes from such
training data, we may later determine the suitability of
the inquired environment from the external source. These
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inquiries are the unseen data which only have the physical
phenomena but do not have the class label. The sensor data
collection and object count have been extensively studied in
the literature, e.g., the Great Duck Island Project [4], yet
efficient classification for wireless sensor networks has not
been well addressed.

Classification is typically done in two steps: first, a
classifier is constructed to summarize a set of predetermined
classes, by learning from a set of training data; then, the
classifier is used to determine the classes of newly arrived
data. Within this framework, there have been significant
efforts in improving its speed and accuracy, most of which
assume centralized storage and computation. The wireless
sensor networks however pose a series of new challenges,
particularly for the first step. First, the number of sensor
nodes is huge, but each of them has only limited storage that
can hardly accommodate all the training data of the whole
network. Second, the sensor nodes are generally powered
by non-rechargeable batteries, and energy efficiency is thus
of paramount importance, which makes the straightforward
solution of sending all the training data to the powerful
base station quite inefficient [5], [6]. In short, conventional
centralized solution is not directly applicable in this new
type of network environment.

To address the above challenges, in this paper, we present
a novel distributed solution for classification in energy-
constrained sensor networks. Our approach hierarchically
organizes the sensor nodes and performs classification in
a localized and iterative manner, utilizing a decision tree
method. Starting from each leaf node, a classifier is built
based on its local training data. An upstream node, upon
receiving the classifiers from its children, will use them
with its own data to build a new classifier. These local
classifiers will be iteratively enhanced from bottom to top
and finally reach the base station, making a global classifier
for all the data distributed across the sensor nodes. Since
only the classifiers will be forwarded upstream, the energy
consumption for transmission can be significantly reduced.

The key difficulty here however lies in training a new
classifier from a mix of downstream classifiers and the local
training dataset, which cannot be directly accomplished by
the existing learning algorithms that work on dataset only.
We address this problem by generating a pseudo training
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dataset from each downstream classifier. We develop a
smart generation algorithm, which ensures that the pseudo
data closely reflect the characteristics of the original local
data. We also introduce a control parameter that adaptively
balances the recovery quality and the amount of the data.
Through extensive simulations, we demonstrate that our
approach maintains high classification accuracy, with very
low storage and communication overhead.

We also notice that, in practice, the data distribution across
different sensor nodes is not necessarily homogeneous. For
example, depending on the location, the data sensed by one
node may always have low temperature and low humidity,
and the data sensed by another node at a different location
may always have high temperature and high humidity. We
show strong evidence that such heterogeneity can easily
lead to misclassification, and we propose an enhanced ID3
algorithm to mitigate its impact. To our knowledge, it is the
first solution addressing this issue.

The remaining part of the paper is organized as follows.
Section 2 gives a brief introduction of classification. Sec-
tion 3 describes our approach. We evaluate our approach
and present the results in Section 4. Section 5 reviews the
related works in the literature. Finally, Section 6 concludes
the paper.

2. Decision Tree Basics

Decision tree is one of the most important models for
classification, and also serves as the foundation for our
hierarchical distributed classification. A decision tree is a
mapping from observations about an item to conclusions
about its target value. A node in the tree is a test of some
attribute, and a branch is a possible value of the attribute.
To perform classification, we can start from the root, test
the attribute, and move down to the tree branches. Figure 1
shows a decision tree example. For instance, it indicates that
if the temperature is medium and the sunlight is weak, the
environment is classified as suitable (Yes) for animals.

The most famous approach to build a decision tree is ID3
(Iterative Dichotomiser 3), proposed by Quinlan [7]. The
ID3 algorithm recursively constructs a tree in a top-down
divide-and-conquer manner. To choose the best attribute at
the current node, it calculates the information gain using

entropy,
c

Entropy(S) = Y _ —pilog; pi,

i=1
where S is the dataset and p; is the proportion of each class.
The information gain is then calculated as
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where V' (A) is the set of all possible values for attribute A,
and S, is the subset of S for which attribute A has value v.

Gain(S, A) = Entropy(S) - S
vEV (A)

Entropy(Sy),
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Figure 1. An example of a decision tree

The algorithm then creates a node for each possible attribute
value, and partitions the training data into descendant nodes.
There are three conditions to stop the recursion:

1) all samples at a given node belong to the same class;
2) no attribute remains for further partitioning;
3) there is no sample at the node.

The original ID3 algorithm, however, cannot be used to
directly combine the local classifiers, nor does it preserve the
data attribute distribution to support pseudo data recovery. In
this paper, we will present a substantially enhanced version
to address these challenges.

3. Hierarchical Distributed Classification

In this section, we first present the system overview, and
then introduce our classification approach in detail, showing
how to build the decision tree, how to generate the pseudo
data, and how to build the classifier hierarchically. We
discuss the accuracy and the energy consumption afterwards.

3.1. System Overview

We consider N sensor nodes ni,ns,...,ny distributed
in a field. Each node covers an area of the field and is
responsible for collecting data within the area. The data
reporting follows a spanning tree rooted at the base station
no. The routing protocol design for forming the spanning
tree is out of the scope of this paper, and there are indeed
numerous solutions in the literature [5], [8].

Each sensor node n; first collects its local training data
D;. If node n; is a leaf node, it builds a classifier C; by a
learning algorithm R, which we will illustrate in Section 3.2.
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The node then sends C; to its parent node, say n;. We use
a decision tree to represent the classifier!, which, compared
to the original data, is of a much smaller size.

An upstream node n;, upon receiving the classifiers from
its children, combines the children’s classifiers with its local
training data D; to build an enhanced classifier C;. These
local classifiers will be iteratively enhanced from bottom
to top and finally reach the base station, making a global
classifier for all the data distributed across the sensors.
Since only the classifiers will be forwarded upstream, the
energy consumption for transmission can be significantly
reduced. The sensor nodes may continuously sense new
data and forward to upstream. Depending on the application
requirement, the new data can be used either for updating the
classifier or for classification based on the existing classifier.

The challenge here lies in training the enhanced classifier
from a mix of downstream classifiers and the local dataset,
which cannot be directly accomplished by the existing
training algorithms that work on dataset only. To address
this problem, a pseudo training dataset will be generated
from each downstream classifier. For each child node n;,
node n; will generate a set of pseudo training data D] from
the classifier C;, and then combine all these data with its
own training data to build the enhanced classifier. Obviously,
the pseudo data, recovered from classifiers, should closely
reflect the characteristics of the original local data, e.g., the
distribution of different classes and the attribute values. The
amount of the pseudo data is also an important concern given
that a sensor node generally has a limited memory. We will
address these detailed issues in Section 3.3.

We list the major notations in Table 1. Also note that, in
this paper, we do not consider issues like node failure or
packet loss, which have been extensively addressed in the
literature [5], [6], [9].

Notation | Explanation

N the number of sensor nodes, excluding the base station
n; sensor node (1 = 1,2, ..., N)

no base station

D; the training data collected by node n;

D; the pseudo data generated from classifier C;

C; the local classifier built by node n;

Co the global classifier built at the base station

Table 1. List of Notations

3.2. Building Decision Tree

In our system, the decision trees are built by the widely-
used ID3 algorithm [7]. The basic ID3 algorithm, however,
does not keep the information about the attribute distribution
and the amount of the original training data, preventing
pseudo data recovering from a classifier.

1. We will use “classifier” and “decision tree” interchangeably through-
out this paper provided the context is clear.
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To solve this problem, we let each leaf node record the
count of each class (i.e., the number of positive and negative
labels in this application scenario). Therefore, we have the
knowledge about the amount of the samples for building
each branch of the decision tree, and thus we can make
the distribution of the generated pseudo data resemble the
original ones.

Moreover, in the basic ID3 algorithm, if all the samples
belong to the same class, the recursion stops (e.g., when
temperature is low in Figure 1). Hence, the information of
other attributes will be missing, which can cause problems
with heterogeneous data distribution across different sensor
nodes. For example, if all the training data sensed by a sensor
node are below 10 degree in temperature and below 20%
in humidity, and the class labels are all negative, using the
basic ID3 algorithm, only one attribute, say temperature, will
appear in the decision tree, and the information of humidity
is completely missing. This will likely lead to a set of pseudo
data generated with humidity uniformly distributed from 0%
to 99%, which is clearly not the case for the original data.

Therefore, for the stop condition of the recursion, we
eliminate the first one (referred to Section 2) in our enhanced
ID3 algorithm. The new stop condition thus becomes when
no attribute remains for further partitioning or when there is
no sample.

In Algorithm 1 and Algorithm 2 below, we describe the
enhanced ID3 algorithm for building the decision tree. Note
that a brief illustration of the key steps of the basic ID3 is in
Section 2, and more details can be found in Quinlan’s work

[7].

Algorithm 1 LearningAlgorithm (D)

Require: training dataset D
call EnhancedIDS3 (root, D, 0)
return root

3.3. Generating Pseudo data

The pseudo data generation is one of the most important
steps in our framework. A critical challenge here is to
generate data that are as close to the original data as possible.
In particular, the distribution of each attribute should closely
resemble that of the original data.

Another issue is how many pseudo data should be gen-
erated. Intuitively, the fewer data we generate from the
child nodes, the less weight they have. Since data from
one node should not be considered less important than those
from another, we need to generate the same amount of the
pseudo data as the original data. Therefore, a sensor node
close to the base station has to generate a huge amount of
pseudo data, i.e., the same amount of the original data at all
its descendants (not only the immediate children). This is
often impossible given the limited memory of the embedded
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Algorithm 2 EnhancedID3 (p, D, d)
Require: pointer to the decision tree p, training dataset D,
depth of the decision tree node d
if number of data |D| = 0 then
return
end if
if d = number of attributes of the training data then
get the most common class label in D — attribute of p
record the counts of the class labels for p
return
end if
get the best attribute — target_attribute
for all target_attribute value branches do
add a child p’
set the value range of the branch
partition D — D’ satisfying the value range
call EnhancedID3 (p/, D', d + 1)
end for

sensor nodes. To this end, we introduce a preservation
factor, ranging from 0 to 1 (the base station always has a
factor of 1), to control the amount of the generated pseudo
data.

Algorithm 3 GeneratePseudoData (C, a)
Require: decision tree received from one child C, preser-
vation factor a
for all leaf nodes node of decision tree C do
get rule R of node
get class label counts — ¢;,co,...,cL
randomly generate a - ZiL=1 ¢; data satisfying R
assign class label [ (k 1,...,L) to the data
with probability as the proportion of the class label
ck/ St C
add these data to pseudo data set D’
end for
return pseudo data set D’

Algorithm 3 summarizes our method to generate the
pseudo data. For illustration, suppose the decision tree’s leaf
node represents a rule of when temperature is between 10
and 20, humidity is between 20 and 40, and sunlight is
normal, there are 5 positive class labels and 45 negative
ones. As such, the class label is negative. Assuming the
preservation factor is set to 0.8, we then randomly generate
(5+45) % 0.8 = 40 data that satisfy the attribute requirement.
It follows that each data has a probability 5/50 = 0.1 to be
assigned a class label as positive and 0.9 to be negative.

The original data are partitioned to each decision tree
leaf node, and each set of generated data resembles part of
the original data. Therefore, the combined pseudo data will
largely reflect the characteristics the original training data.

13

@ sensornode A
A local classifier

O combined classifier

Figure 2. A hierarchical structure of the sensor network

We will closely examine the effectiveness of our method as
well as the impact of the preservation factor in Section 4.

3.4. Hierarchical Classification

As mentioned above, we let the sensor nodes in the
network be organized by a spanning tree, as illustrated in
Figure 2. A leaf node builds the decision tree with the local
sensed training data and sends the decision tree to the parent.
The intermediate node periodically checks if there is any
new classifier from children. If yes, it will generate a set
of pseudo data for each new classifier, and combines them
with its local data. There are two situations here. (1) If the
node has never built any classifier, which indicates that it
has never received any classifier from its children, it will
combine the generated pseudo data with its local sensed data
and performs the learning algorithm. (2) If the node has once
built a classifier, the previous received classifiers may have
already been discarded (due to the memory constraint). The
node will then generate a set of pseudo data for its local
classifier with the preservation factor being 1, and combines
it with the other pseudo datasets to build the new decision
tree.

The base station will build the global classifier. Initially,
it waits until receiving all the classifiers from its children,
and then generates pseudo data for each, and combines them
to build the decision tree. Since the base station in general
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is a more powerful node, it could store all the classifiers
from its immediate children. Therefore, when one of them
updates the classifier, the base station discards the old one
and re-performs the operations as above.

In Algorithm 4, we summarize the detailed procedure of
the hierarchical classification.

Algorithm 4 HierarchicalClassification ()
if node is leaf then
periodically collect data D
C « LearningAlgorithm (D)
send C to its parent
else if node is not base station then
periodically collect data D
for all new classifiers C), from child k£ do
D;, — GeneratePseudoData (Cy,a)
end for
C — LearningAlgorithm (D U (lJ Dy;,))
send C to its parent
else {//base station}
if no classifier has been built then
for all classifiers C; from child j do
D, — GeneratePseudoData (Cy, 1)
end for
C  LearningAlgorithm (| D;,)
else if receive new classifier Cj, from child k& then
replace old classifier of child k£ with Cj
for all classifiers Cy, from child k£ do
D;, — GeneratePseudoData (Cy, 1)
end for
T « LearningAlgorithm (|J D;,)
end if
end if

3.5. Further Discussion

Our approach utilizes the ID3 as the basis for classi-
fication, so it inherits the effectiveness and efficiency of
ID3 when building local classifiers [7]. To make it fit our
application scenario better, we suggest that all the leaf nodes
in the decision tree have the same depth as the number of the
attributes, so that we can keep all the attribute information
when abstracting the rule from each branch. Thanks to the
modification, we can generate the pseudo data that are very
similar to the original data. Apparently, this modification will
increase the size of the decision tree, however, such increase
is acceptable and it noticeably increases the classification
accuracy, as will be validated in our performance evaluation.

In order to keep the high accuracy and achieve our goals
of saving energy and storage space, we have introduced two
parameters in our solution. One is the class count. It not
only records the count but also indicates the distribution of
all the class labels in the original dataset when we build
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the decision tree. In other words, we keep the “noise”
information because the “noise” may be important in some
cases, in particular, the heterogeneous data distribution. For
example, suppose one decision tree branch has the negative
label because the numbers of positive and negative training
data satisfying the constraint are 1 and 9, while another
decision tree branch has the positive label on the same
attribute constraint because the counts are 99 and 1. Without
recording the class label counts, we have no idea about
which one is more accurate, and we will likely treat them
equally. In fact, combining the two training dataset, we will
obtain the positive label with the class counts 100 versus
10. The problem is particularly severe when the training
dataset have the heterogeneous distribution, which critically
demands the recording of the class count.

The other parameter is the preservation factor, which
determines the amount of the pseudo data to generate. We
introduce this parameter due to the limited memory of the
sensor node. The smaller the preservation factor is, the more
dominant the local training data are. For example, suppose a
node has three children, each having 200 training data, and
the node itself also has 200 training data. If the preservation
factor is set to 1.0, the node will learn from 800 data, in
which 25% are its local data. If the preservation factor is set
to 0.1, the node will learn from 260 data, in which 77% are
its local data. Intuitively, if the pseudo data can represent
the original data very well, the greater the preservation
factor is, the more accurate the classifier is, because every
area should be treated equally. Otherwise, the greater the
preservation factor is, the more noise it will make, thus
decreasing the accurate. Therefore, the representativeness of
the pseudo data of the original data is crucial in our solution.
In the next section, we will closely examine its impact to
the classification accuracy.

4. Performance Evaluation

4.1. Configuration and Dataset

We evaluate our framework with our customized simula-
tor. We consider a square field consisting of m xm randomly
deployed sensor nodes, with the base station being located
in the center. We set m from 5 to 20, and for each m value,
we build different topologies so that the spanning tree has
height of 2, 3 and 4, respectively. Figure 3 shows an example
of 25 nodes (m = 5) with height 2. Our results however
have shown that the performance of our algorithm is mainly
affected by the height of the spanning tree, while not the
node population. This is intuitive because the algorithm is
distributed and localized. Hence, in this section, we will
focus on the average results (and the associated standard
deviations) over the tested m values. We have also tested
the topology with larger height, and the results show the
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Figure 3. An example of topology of 25 nodes and
height being 2

same trend as the smaller height, thus we only provide the
results of height being 2, 3 and 4.

The data has three attributes and a class label. The three
attributes are temperature, humidity and sunlight. The first
two are numerical attributes, ranging from 0 to 49 and from 0
to 99, and the last one is a categorical attribute, having values
weak, normal and strong. For simplicity, we consider
the two numerical attributes as categorical attributes, as the
temperature has values [0, 10), [10, 20), [20, 30), [30, 40) and
[40,50), and the humidity values [0, 20), [20,40), [40, 60),
(60, 80) and [80,100). The class label is either positive or
negative, say, indicating whether or not the environment is
suitable for the animal. We randomly generate data having
the temperature between 0 and 49, humidity between 0 and
99, and sunlight being 0, 1 or 2. We manually define some
rules to assign each data a class label. We also consider
noise and thus add a factor €, which indicates the data has
the probability of ¢ to be the other class label determined
by the rules.

We generate 10 training datasets, each having 200 -
(m? — 1) data. Among the 10 datasets, five of them have
€ = 1% noise, and five of them have ¢ = 10% noise. For
each dataset, we make it into two versions, one is called
heterogeneous data and the other is called homogeneous
data. In the heterogeneous data set, the data distribution
depends on the location of the sensor nodes, while the
homogeneous data is independent on the location, and is
randomly and uniformly distributed across sensor nodes.

For homogeneous data, we just randomly divide and
assign all the training data to the (m? — 1) sensor nodes
as the local training data, thus each sensor node has 200
training data. For heterogeneous data, we assume that the
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temperature increases from left to right, and the humidity
increases from bottom to top in the sensor field; the attribute
of sunlight is uniformly distributed. For example, a node in
the bottom right corner is supposed to have the data with
temperature between 40 and 49, humidity between O and
19, and a node in the top left has the data with temperature
between 0 and 9, humidity between 80 and 99. For each data
in one dataset, we first calculate its coordinates according
to the above, and then assign the data to the sensor node
of that location if the training set of the node is not full
(200 data). If that node is full, we then assign this data to
another random node. For each training dataset, we perform
different simulations that have different data distributions.
For example, one is described as above, and another one
is that temperature increases from bottom to top, humidity
increases from right to left, and so forth.

In our experiments, we generate 10 test datasets, each
having 1000 data. Among the 10 datasets, five of them have
€ = 1% noise, and five of them have ¢ = 10% noise. If we
use the training data with £ = 1% noise to learn, we use the
test data with ¢ = 1% noise to test (same as the data with
€ = 10% noise).

4.2. Baseline for Comparison

We have also implemented an ensemble method [10]
for the baseline comparison. The ensemble method is to
construct a set of base classifiers and take a majority voting
on predictions in classification. The method can significantly
improve the accuracy of prediction, because if the base clas-
sifiers are independent, then the ensemble makes a wrong
prediction only if more than half of the base classifiers are
wrong. For example, suppose there are two classes and each
base classifier has an error rate of 35%. With 25 base classi-
fiers, the error rate will be 320 . (*°)0.35%0.6525% = 0.06
only.

The ensemble method has been widely adopted in dis-
tributed classification [11]. In our evaluation, we customize
the ensemble method to our application scenario. Specifi-
cally, all the nodes learn from their local training data to
build the classifiers, and send the classifiers to the base
station through multi-hop routing. The base station then
conducts the second step of the classification, in particular,
the base station tests the unseen data with all the classifiers
and takes a majority voting to get the final decision. Ob-
viously, sending all the local classifiers to the base station
consumes more energy than only sending the local classifier
to the parents. Moreover, the ensemble method does not
accommodate to heterogeneous data, thus the accuracy of
classification can be low, as will be shown later.
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Figure 4. Comparison of accuracy for different preser-
vation factor, noise and height with heterogeneous data

4.3. Impact of Preservation Factor, Noise and
Height for Heterogeneous Data

We first examine our algorithm with different preservation
factors, noises and heights for the heterogeneous data. We
plot the results in Figure 4. The x axis is the preservation
factor ranging from 0.1 to 1.0, and we also evaluate the
best-possible accuracy of learning from the entire dataset
(assuming one sensor node collects all the data and builds the
classifier), referred to as “A”, and accuracy of the ensemble
method, referred to as “E”.

From the figure, we find that the preservation factor does
affect the accuracy, especially when it is small, the height
is big, and the noise is large. When the noise is very small
(1%), the preservation factor does not affect the accuracy
when the factor is larger than 0.4, regardless of the height.
When the noise becomes greater (10%), the preservation
factor should be at least 0.8, so as not to decrease the
accuracy. When the preservation factor is very small, the
larger the height is, the less accuracy it achieves. We also
find that when the preservation factor is large enough, the
accuracy is almost the same as that of learning from the
entire training data, i.e., the practically optimal accuracy.

The figure indicates that our mechanism to generate
pseudo data works quite well, in particular, when the factor
is large enough, the pseudo data can well represent the
original data. When the preservation factor is small, the
accuracy becomes relatively lower. The reason is that, from
the whole system’s view, the areas that are close to the
base station generally become dominative, but as mentioned
before, we should consider different areas equally. Moreover,
when the height is higher, the noise will be accumulated,
hence the accuracy will be reduced.
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Figure 5. Comparison of enhanced and basic ID3
algorithms for heterogeneous data with ¢ = 1%

Comparing with the ensemble method, when the preser-
vation factor is large enough, our approach achieves much
higher accuracy, and when the noise is greater, the difference
is even larger. This is because in the ensemble method, for
heterogeneous data, each sensor node only learns a part of
the data (e.g., low temperature and low humidity). In other
words, in the ensemble method, only a few classifiers are
responsible for a certain test data. If a given unlabeled data
has the attribute value that is much different from its training
data, it probably needs to randomly guess a class label,
which will greatly decrease the accuracy.

4.4. Comparison of Enhanced and Basic ID3 Algo-
rithm

We next compare our enhanced ID3 algorithm with the
basic ID3 algorithm. We clarify that we modify the basic
ID3 because it does not suitable for generating pseudo data
in our approach for the heterogeneous data distribution. We
again use the heterogeneous data with different noises, and
plot the results in Figure 5 and Figure 6, respectively.

We find that the enhanced ID3 algorithm is not noticeably
affected by the preservation factor (when the factor is large
enough), nor the height. On the other hand, the accuracy
of basic ID3 algorithm is much lower than ours, and is
particularly lower when the preservation factor is smaller
and the height is larger.

The difference is because when all the samples belong to
the same class label, the basic algorithm stops the recursion,
while our enhanced version continues. As mentioned before,
in heterogeneous data distribution, it is probably that all the
data from one node are below 10 in temperature and below
20 in humidity, and all the labels are negative; if we utilize
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Figure 6. Comparison of enhanced and basic ID3
algorithms for heterogeneous data with ¢ = 10%

the basic ID3, the decision tree is likely to contain only one
attribute, say temperature, with the information of humidity
being completely missing. As such, when generating the
pseudo data, the humidity has to be uniformly distributed
from 0 to 99, adding remarkable noises.

To validate this, we also examine their performance with
the homogeneous data, and the results show that the two
algorithms perform almost the same.

4.5. Impact of Training Data Distribution

To further understand the impact of the distribution of the
data set, we perform comparative experiments with both the
heterogeneous data and the homogeneous data. Figure 7 and
Figure 8 plot their respective accuracy results with different
noises.

We find that for the heterogeneous data, when the preser-
vation factor is small, the accuracy is low. On the other hand,
for the homogeneous data, the factor does not affect the
accuracy. For data with small noise, when the preservation
factor is greater than 0.4, the two achieve the same accuracy.
If the noise is larger, the preservation factor has to go
beyond 0.8 to achieve the same accuracy. This is because in
homogeneous data distribution, all the nodes have similar
training data, thus the classifiers built by the nodes are
almost the same, which leads to the high similarity between
the generated pseudo data and the local training data. There-
fore, the accuracy is independent on the preservation factor
for homogeneous data.

In the ensemble method, the accuracy for heterogeneous
data is much lower than that of homogeneous data and
our hierarchical approach. This has been explained in the
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neous data distribution with ¢ = 10%

first experiment. For the homogeneous data, the ensemble
method has the same accuracy as our approach.

4.6. Comparison of Energy Consumption

Finally, we investigate the energy consumption, which
is one of the most important concerns in wireless sensor
networks. We compare our hierarchical classification with
the ensemble method that transmits all the classifiers to the
base station. The energy consumption consists of the com-
putation energy consumption and the transmission energy
consumption, which is significantly larger than the prior one
[6], thus we neglect the computation energy consumption.
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The transmission energy consumption depends on the size of
the transmitted data and the distance between the two nodes.
Generally, it is proportional to the data size and square of the
distance [6]. We normalize the result and plot in Figure 9.

From the figure, we find that the energy consumption of
our approach is much lower than the ensemble method in all
the situations when the height is greater than 1. On average,
our method saves nearly half of the energy spent in the
ensemble method in all situations. The greater the height is,
the more energy we save, simply because a classifier is only
forwarded to the parent in our solution, while it is forwarded
all the way to the base station in the ensemble method.

We also find that the energy consumption for the het-
erogeneous data is lower than that for homogeneous data.
This is because in the enhanced ID3 algorithm, the recursion
stops when there is no sample at the node, and thus for the
heterogeneous data, it is likely that the data from a node all
exist in one branch. Therefore the size of the decision tree
is smaller than that in the homogeneous data scenario.

According to the figures, the noise does not affect the
energy consumption much. We believe that it is because the
noise does not change the transmission distance, and it also
does not noticeably change the size of the decision trees.

As we modify the basic ID3 algorithm, the constructed
decision tree is thus larger in our enhanced ID3 algorithm.
We also examine the size of the decision tree built in the two
algorithms, and find that the size in enhanced ID3 is 45%
larger than that in the basic ID3 algorithm. Considering that
the basic ID3 algorithm cannot even work due to its low
accuracy in our application, this increased size is reasonably
acceptable.
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5. Related Work

There are many classic methods for centralized classifi-
cation, such as bagging [12], boosting [13] and AdaBoost
[14]. Random forest [15] is another advanced tool, which
combines tree predictors, such that each tree depends on
the values of a random vector sampled independently and
with the same distribution for all trees in the forest. Random
inputs and random features produce good results in the
classification.

For distributed data classification using the ensemble
method, several techniques have been proposed [16], [17].
Distributed classification in peer-to-peer networks is also
studied [11]. The authors proposed an ensemble approach,
in which each peer builds its local classifiers on the local
data and then combines all the classifiers by plurality voting.
These distributed solutions however are not customized for
sensor networks. In particular, they do not consider the limit
of memory sizes, nor the energy consumption, which are
two critical concerns with battery-powered sensor nodes.
Directly applying these distributed classifications into our
application scenario will thus result in poor performance, as
demonstrated through our simulations.

There have been numerous works on data gathering in
wireless sensor networks. For example, LEACH [6] and
PEGASIS [18] attempt to make the data collection task
energy efficient. There are also a few related works about
classification in this context [19], [20], [21], but they have
focused on detecting or tracking objects, while not giving
detailed design of classifiers. To the best of our knowledge,
our work is the first addressing energy-efficient distributed

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on May 26,2010 at 18:32:37 UTC from IEEE Xplore. Restrictions apply.



classification for wireless sensor networks, particularly with
heterogeneous data distribution across the sensor nodes.

6. Conclusion

In this paper, we have proposed a novel hierarchical dis-
tributed classification approach in wireless sensor networks.
In particular, we consider a practical scenario in which
the data distribution is heterogeneous, which is seldom
studied before. In our solution, local classifiers are built
by individual sensor nodes and merged along the routing
path. The classifiers are iteratively enhanced by combining
strategically generated pseudo data with new local data,
eventually converging to a global classifier for the whole
network. We demonstrate that our approach maintains high
classification accuracy with very low storage and communi-
cation overhead.
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