
Asymmetric Transitivity Preserving Graph Embedding

Mingdong Ou
Tsinghua University

oumingdong@gmail.com

Peng Cui
Tsinghua University

cuip@tsinghua.edu.cn
Jian Pei

Simon Fraser University
jpei@cs.sfu.ca

Wenwu Zhu
Tsinghua University

wwzhu@tsinghua.edu.cn

ABSTRACT
Graph embedding algorithms embed a graph into a vector
space where the structure and the inherent properties of the
graph are preserved. The existing graph embedding meth-
ods cannot preserve the asymmetric transitivity well, which
is a critical property of directed graphs. Asymmetric transi-
tivity depicts the correlation among directed edges, that is,
if there is a directed path from u to v, then there is likely a
directed edge from u to v. Asymmetric transitivity can help
in capturing structures of graphs and recovering from par-
tially observed graphs. To tackle this challenge, we propose
the idea of preserving asymmetric transitivity by approxi-
mating high-order proximity which are based on asymmetric
transitivity. In particular, we develop a novel graph embed-
ding algorithm, High-Order Proximity preserved Embedding
(HOPE for short), which is scalable to preserve high-order
proximities of large scale graphs and capable of capturing the
asymmetric transitivity. More specifically, we first derive a
general formulation that cover multiple popular high-order
proximity measurements, then propose a scalable embedding
algorithm to approximate the high-order proximity measure-
ments based on their general formulation. Moreover, we pro-
vide a theoretical upper bound on the RMSE (Root Mean
Squared Error) of the approximation. Our empirical exper-
iments on a synthetic dataset and three real-world dataset-
s demonstrate that HOPE can approximate the high-order
proximities significantly better than the state-of-art algo-
rithms and outperform the state-of-art algorithms in tasks
of reconstruction, link prediction and vertex recommenda-
tion.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WOODSTOCK ’97 El Paso, Texas USA
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

100 101 102 103
0

0.005

0.01

0.015

0.02

0.025

0.03

Number of 2−hop paths

Li
nk

 R
at

io

Tencent Weibo

100 101

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Number of 2−hop paths

Li
nk

 R
at

io

Citation Network

Figure 1: Asymmetric Transitivity in Real Data.
Given a pair of vertexes (u, v), each point (x, y) on
the curve represents that if the number of 2-hop
paths from u to v is less than x, then the probability
(link ratio) that there exists an edge from u to v is
y. The left figure is the statistics from the social
network of Tencent Weibo, and the right figure is
the statistics from the citation network of academic
papers in Cora. As the two curves increases mono-
tonically, we can claim that the more paths from u to
v there are, the more probable it is that there exists
an edge from u to v, which reflects the asymmetric
transitivity assumption. In summary, asymmetric
transitivity can be widely observed in real datasets.

Keywords
asymmetric transitivity, directed graph, high-order proxim-
ity, graph embedding

1. INTRODUCTION
Nowadays, more and more applications are based on larg-

er and larger networks and graphs. It is well recognized
that graph data is sophisticated and challenging. To process
graph data effectively, the first critical challenge is graph da-
ta representation, that is, how to represent graphs properly
so that advanced analytic tasks, such as pattern discovery,
analysis, and prediction, can be conducted efficiently in both
time and space. However, graph representation in general
remains an open problem.

Recently, the graph embedding paradigm [35] is proposed
to represent vertices of a graph in a low-dimensional vector
space while the structures (i.e. edges and other high-order
structures) of the graph can be reconstructed in the vector
space. With proper graph embedding, we can easily apply
classic vector-based machine learning techniques to process
graph data. Meanwhile, it effectively facilitates the paral-
lelization of graph analysis by decoupling highly correlated

𝑣5

v2

𝑣6

𝑣3 𝑣4

𝑣1

𝒖1
𝒔

𝑢2
𝑠 𝑢3

𝑠

𝑢4
𝑠

{𝒖3
𝒕 , 𝒖4

𝒕 }

𝒖5
𝒕

𝒖6
𝒕{𝑢1

𝑡 , 𝒖2
𝒕 ,

𝑢5
𝑠 , 𝒖6

𝒔 }

0.3 0.3

0.3

0.3

0.3

0.18
0

0

0.09

0.3
HOPE

Figure 2: Framework of Asymmetric Transitivity Preserved Graph Embedding. The left is a input directed
graph, and the right is the embedding vector space of the left graph, which is learned by our algorithm.
In the left directed graph, the solid arrows represent observed directed edges and the numbers along with
the solid arrows are the edge weights. The numbers along with the dashed arrows is the Katz proximity,
which is highly correlated with asymmetric transitivity. For example, according to asymmetric transitivity,
the two paths, v1 → v3 → v6 and v1 → v4 → v6, suggest that there may exist v1 → v6. Then, the Katz proximity
from v1 to v6 is relatively large, i.e. 0.18. On the other hand, because v6 → v1 is in the opposite direction,
v1 → v3 → v6 and v1 → v4 → v6 do not suggest v6 → v1. Then, the Katz proximity from v6 to v1 is small, i.e. 0.
In the embedding space, the arrows represent the embedding vectors of vertices, where row vectors us

i and ut
i

represent the source vector and target vector of vi respectively. We use the inner product between us
i and ut

j

(i.e. us
i ·ut

j
>

) as the approximated proximity from vi to vj. Note that ut
1, ut

2, us
5 and us

6 are all zero vectors. We
can find that the approximated proximity perfectly preserve the Katz proximity. For example, with respect
to source vector us

1, the inner product with target vector ut
6 is larger than with ut

5, which preserves the rank
order of corresponding Katz proximities.

vertices into independent vectors. However, most of the exit-
ing graph embedding methods target on undirected graphs.
Directed graphs, a natural and popularly used representa-
tion of data in many applications, such as social networks
and webpage networks, are largely untouched.

Can we straightforwardly apply undirected graph embed-
ding methods on directed graphs? The answer is no due to
a fundamentally different characteristic of directed graphs:
asymmetric transitivity.

Transitivity is a common characteristic of undirected and
directed graphs [29] (see Figure 1). In undirected graphs,
if there is an edge between vertices u and v, and one be-
tween v and w, then it is likely that u and w are connected
by an edge. Transitivity plays a key role in graph inference
and analysis tasks, such as calculating similarities between
nodes [16, 14] and measuring the importance of nodes. Tran-
sitivity is symmetric in undirected graphs. However, transi-
tivity is asymmetric in directed graphs. If there is a directed
link from u to v and a directed link from v to w, there is
likely a directed link from u to w, but not from w to u.

Preserving the symmetric transitivity in undirected graph-
s in an embedding space is natural and straightforward, as
most of the distance metrics defined in the vector space pos-
sess the property of symmetric transitivity. However, how
to preserve the asymmetric transitivity of directed graphs in
a vector space is much more challenging.

Recently, a paucity of studies [37, 20, 3] focus on directed
graph embedding. In order to reflect the asymmetric edges

in vector space, these methods design asymmetric metrics
on the embedding vectors. Unfortunately, those asymmetric
metrics are not transitive, which severely limit the capability
of the learned embedding space in reflecting the structure of
graphs as well as supporting graph inference and analysis.

In this paper, we tackle the challenging problem of asym-
metric transitivity preserving graph embedding. Our major
idea is that we learn two embedding vectors, source vec-
tor and target vector, for each node to capture asymmetric
edges, as illustrated in Figure 2. Then, for a directed link
from v1 to v2 without the reverse link from v2 to v1, we can
assign similar values to v1’s source vector and v2’s target
vector, and assign very different values to v1’s target vector
and v2’s source vector. In this way, the feasibility of asym-
metry transitivity is preserved. The key challenge is how
well the asymmetric transitivity of directed graphs can be
preserved in the embedding learning.

From the learning perspective, a good way is to let the
learned embedding vectors directly approximate a target
measure reflecting asymmetric transitivity of graphs. From
the graph embedding pserspective, the property of asym-
metric transitivity leads to the assumption that the more
and the shorter paths from vi to vj , the more similar should
be vi’s source vector and vj ’s target vector. This assump-
tion coincides with high-order proximities of nodes in graphs,
such as Katz [16] and rooted pagerank [30]. What is more,
these high-order proximities are defined to be asymmetric in
directed graphs. Thus, in its place, we propose to use high-

order proximities of nodes as the target measure, resulting
in a novel directed graph embedding algorithm, High Order
Proximity preserved Embedding (HOPE).

In this model, we theoretically derive a general form cov-
ering multiple high-order proximities. Interestingly, the gen-
eral form is consistent with the formulation of generalized
SVD. Based on this, we propose a scalable embedding algo-
rithm for large-scale graphs by avoiding the time-consuming
computation of high-order proximities. Moreover, we derive
a theoretical upper bound on the approximation error of
HOPE, which is used to estimate the embedding quality in
theory and determine embedding dimensions automatically.

To verify the advantages of our algorithm, we conduct ex-
periments on both synthetic data and 3 real datasets. The
experiments show that our method consistently and signif-
icantly outperforms the state-of-the-art baselines in several
tasks, including high-order proximity approximation, graph
reconstruction, link prediction and vertex recommendation.

The main contributions of this paper are as follows:

• We propose a high-order proximity preserved embed-
ding (HOPE) method to solve the challenging problem
of asymmetric transitivity in directed graph embed-
ding.

• We derive a general form covering multiple common-
ly used high-order proximities, enabling the scalable
solution of HOPE with generalized SVD.

• We provide an upper bound on the approximation er-
ror of HOPE.

• Extensive experiments are conducted to verify the use-
fulness and generality of the learned embedding in var-
ious applications.

The rest of the paper is organized as follows. In Section 2,
we review the related work. We develop our method in Sec-
tion 3 and report the experimental results in Section 4. We
conclude the paper in Section 5.

2. RELATED WORK

2.1 Graph Embedding
Graph embedding technology has been widely studied in

the fields of dimensionality reduction [15, 27, 33, 1, 8], nat-
ural language processing [18], network analysis [11] and so
on.

For dimensionality reduction, adjacency matrices of graph-
s are constructed from the feature similarity (distance) be-
tween samples [35]. And the graph embedding algorithms
aim to preserve the feature similarity in the embedded laten-
t space. For example, Laplacian Eigenmaps (LE) [1] aims
to learn the low-dimensional representation to expand the
manifold where data lie. Locality Preserving Projection-
s (LPP) [8] is a linearization variant of LE which learns
a linear projection from feature space to embedding space.
Besides, there are many other graph embedding algorithms
for dimensionality reduction, including non-linear [33, 27],
linear [15, 6], kernlized [28] and tensorized [36] algorithm-
s. All of these algorithms are based on undirected graphs
derived from symmetric similarities. Thus, they cannot p-
reserve asymmetric transitivity.

In the field of natural language processing, the graph of
words is often used to learn the representation of words [19,

18, 23]. Mikolov et. al. [19] propose to ultilize the context of
words to learn representation, which has been proved equiv-
alent to factorizing word-context matrix [18]. Pennington
et. al. [23] exploit a word-word co-occurrance matrix.

In network analysis, Hoff et. al. [11] first propose to learn
latent space representation of vertexes in graph and the
probability of a relation depends on the distance between
vertexes in the latent space, and they apply it to link pre-
diction problem [10]. Handcock et. al. [7] propose to apply
the latent space approach to clustering in graph. And Zhu
et. al. [37] propose to address the classification problem in
graph with graph embedding model. While early graph em-
bedding works focus on modeling the observed first-order
relationship (i.e. edges in graph) between vertexes, some re-
cent works try to model the directed higher order relation-
ships between vertexes in sparse graphs [24, 2]. However,
as mentioned above, they cannot fully capture asymmteric
transitivity.

2.2 Directed Graph
Theoretically, any type (undirected and directed) of graph

can be represented as directed graph. So, modeling direct-
ed graph is a critical problem for graph analysis. Holland
et. al. [12] propose the p1 distribution model to capture the
structural properties in directed graph, including the atrrac-
tiveness and expansiveness of vertexes and the reciprocation
of edges. Besides these properties, Wang et. al. [34] take the
group information of vertexes into consideration. Recently,
some works adopt graph embedding [4, 26, 25, 21] to mod-
el directed graphs. Chen et. al. [4] learn the embedding
vectors in Euclidean space with locality property preserved.
Perrault-Joncas et. al. [26, 25] and Mousazadeh et. al. [21]
learn the embedding vectors based on Laplacian type op-
erators and preserve the asymmetry property of edges in a
vector field. However, all of these methods cannot preserve
asymmetry property in embedding vector space.

3. HIGH-ORDER PROXIMITY PRESERVED
EMBEDDING

In this section, we will derive how to preserve high-order
proximities in the embedding space. Before introducing the
detailed derivation, we will clarify the symbols and definition
that will be used.

3.1 Notations
We define a directed graph as G = {V,E}. V is the ver-

tex set. Let V = {v1, · · · , vi, · · · , vN} where N is the num-
ber of vertexes. E is the directed edge set. eij = (vi,vj) ∈ E
represents a directed edge from vi to vj . The adjacency
matrix is denoted as A. We define a high-order proximity
matrix as S, where Sij is the proximity between vi and vj .
And U = [Us,Ut] is the embedding matrix, where the i-th
row, ui, is the embedding vector of vi. Us,Ut ∈ RN×K are
the source embedding vectors and target embedding vectors
respectively, where K is the embedding dimensions. For any
matrix B, the lowercase symbol bi represents the i-th row
of B, and Bij represents the element at i-th row and j-th
column.

3.2 Problem Definition
In this paper, we focus on the directed graph embedding

problem. It aims to represent the vertexes in the numerical

Table 1: General Formulation for High-order Prox-
imity Measurements

Proximity Measurement Mg Ml

Katz I− β ·A β ·A
Personalized Pagerank I− αP (1− α) · I

Common neighbors I A2

Adamic-Adar I A ·D ·A

vector space, where asymmetric transitivity is preserved. As
high-order proximities are derived from asymmetric transi-
tivity, we propose to preserve the asymmetric transitivity
by approximating high-order proximity. Formally, we adopt
the L2-norm below as the loss function which need to be
minimized:

min ‖S−Us ·Ut>‖2F (1)

.
As Figure 2 shows, the embedding vectors can well pre-

serve the asymmetric transitivity.

3.3 High order proximities
Many high-order proximity measurements in graph can re-

flect the asymmetric transitivity. Moreover, we found that
many of them share a general formulation which will facili-
tate the approximation of these proximities, that is:

S = M−1
g ·Ml (2)

, where Mg and Ml are both polynomial of matrices. Below,
we will introduce some popular proximity measurements and
transform them into this formulation.

Katz Index [16]. This index is an ensemble of all paths,
which is a weighted summation over the path set between
two vertexes. The weight of a path is a exponential function
of its length. Actually, the formula of Katz index can also
be written as a recurrent formula:

SKatz =

∞∑
l=1

β ·Al = β ·A · SKatz + β ·A (3)

, where β is a decay parameter. It determines how fast
the weight of a path decay when the length of path grows.
β should be properly set to preserve the series converging.
Actually, β must be smaller than the spectral radius of ad-
jacency matrix.

Then, we can get that:

SKatz = (I− β ·A)−1 · β ·A (4)

, where I is a identity matrix.
For Katz index,

Mg = I− β ·A (5)

Ml = β ·A (6)

Rooted PageRank (RPR). SRPR
ij is the probability

that a random walk from node vi will locate at vj in the
steady state. Consider one step of a random walk from vi,
the random walker randomly jumps to one of the neighbor
of current node with probability α, and jumps back to vi
with probability α. The fomula is:

SRPR = α · SRPR
ij ·P + (1− α) · I (7)

, where α ∈ [0, 1) is the probability to randomly walk to a
neighbor, and P is the probability transition matrix satisfy-
ing that

∑N
i=1 Pij = 1.

Then, we can get:

SRPR = (1− α) · (I− αP)−1 (8)

So, for rooted PageRank,

Mg = I− αP (9)

Ml = (1− α) · I (10)

.
Common Neighbors (CN). SCN

ij counts the number of
vertexes connecting to both vi and vj . For directed graph,
SCN
ij is the number of vertexes which is the target of an edge

from vi and the source of an edge to vj . Formally,

SCN = A2 (11)

So, for common neighbors,

Mg = I (12)

Ml = A2 (13)

Adamic-Adar (AA). Adamic-Adar is a variant of com-
mon neighbors. Unlike common neighbors, Adamic-Adar
assigns each neighbor a weight, that is the reciprocal of the
degree of the neighbor. This means that the more vertexes
one vertex connected to, the less important it is on evaluat-
ing the proximity between a pair of vertex. Formally,

SAA = A ·D ·A (14)

, where D is a diagonal matrix,

Dii = 1/
∑
j

(Aij +Aji) (15)

.
So, for Adamic-Adar,

Mg = I (16)

Ml = A ·D ·A (17)

We list the corresponding formula of Mg and Ml of each
proximity measurement in Table 1. Note that Mg and Ml

are both the polynomial of adjacency matrix or its variants.
The above proximity measurements can be classified into t-
wo types, i.e. global proximity and local proximity. Global
proximities, i.e. Katz index and rooted PageRank, are de-
rived from a recurrent formula, which make the proximity
can preserve global asymmetric transitivity. And local prox-
imities, i.e. common neighbors and Adamic-Adar, have no
recurrent structure and just preserve the asymmetric transi-
tivity in the local structure, which we call it local asymmet-
ric transitivity. Intuitively, Mg is highly related to global
asymmetric transitivity. Mg has a formulation like I−α ·B,
where α is a parameter and B is a transition matrix. The
larger the alpha is, the easier the observed relationship (the
edges of the graph) is to be transited in the graph. When
α = 0, the observed relationship can just transit in a sub-
graph whose range is limited by the order of Ml.

3.4 Approximation of High-Order Proximity
The objective in Equation (1) aims to find an optimal

rank-K approximation of the proximity matrix S. Accord-
ing to [13], the solution is to perform SVD (Singular Value
Decomposition) on S and use the largest K singular value

and corresponding singular vectors to construct the optimal
embedding vectors. Formally, if

S =

N∑
i=1

σiv
s
iv

t
i
>

(18)

, where {σ1, σ2, · · · , σN} is the singular values sorted in de-
creasing order, vs

i and vt
i are corresponding singular vectors

of σi,
then, we can get the optimal embedding vectors as:

Us = [
√
σ1 · vs

1, · · · ,
√
σK · vs

K] (19)

Ut = [
√
σ1 · vt

1, · · · ,
√
σK · vt

K] (20)

.
However, this solution need to calculate the proximity ma-

trix S. Even for sparse adjacency matrix, the time com-
plexity of matrix inversion is up to O(N3). And the matrix
polynomial operation on adjacency matrix will make S much
denser than adjacency matrix A which will also make the
SVD on S very expensive. Thus, the solution is not feasible
for large scale graphs.

As the calculation of S is the efficiency bottleneck and S
is just the intermediate product in our problem, we propose
a novel algorithm to avoid the calculation of S and learn
the embedding vectors directly. As many proximity mea-
surements have the general formulation in Equation (2), we
transform the original SVD problem into a generalized SVD
problem [22] for proximity measurements with the general
formulation.

According to [22], it is easy to derive the following theo-
rem:

Theorem 1. If we have the singular value decomposition
of the general formulation

M−1
g ·Ml = VsΣVt>

, where Vt and Vs are two orthogonal matrices,

Σ = diag(σ1, σ2, · · · , σN)

.
Then, there exists a nonsingular matrix X and two diag-

onal matrices, i.e. Σl and Σg, satisfying that

Vt>M>
l X = Σl

Vs>M>
g X = Σg

, where

Σl = diag(σl
1, σ

l
2, · · · , σl

N)

Σg = diag(σg
1 , σ

g
2 , · · · , σ

g
N)

σl
1 ≥ σl

2 ≥ · · · ≥ σl
K ≥ 0

0 ≤ σg
1 ≤ σ

g
2 ≤ · · · ≤ σ

g
K

∀i σl
i

2
+ σg

i
2 = 1

,
and

σi =
σl
i

σg
i

(21)

As the generalized SVD can also derive the results of SVD,
we can still use Equation (19) (20) to get the embedding
vectors.

Algorithm 1 High-order Proximity preserved Embedding

Require: adjacency matrix A, embedding dimension K,
parameters of high-order proximity measurementθ.

Ensure: embedding source vectors Us and target vectors
Ut.

1: calculate Mg and Ml.
2: perform JDGSVD with Mg and Ml, and obtain the gen-

eralized singular values {σl
1, · · · , σl

K} and {σg
1 , · · · , σ

g
K},

and the corresponding singular vectors, {vs
1, · · · ,vs

K}
and {vt

1, · · · ,vt
K}.

3: calculate singular values {σ1, · · · , σK} according to E-
quation (21).

4: calculate embedding matrices Us and Ut according to
Equation (19) and (20).

Complete generalized SVD will also achieve O(N3) time
complexity, which is not feasible for large scale graphs. As
we only need the largest K singular values and correspond-
ing singular vectors, we adopt a partial generalized SVD
algorithm [9], which we call it JDGSVD. This is an iterative
Jacobi-Davidson type algorithm which is very scalable when
K � N . Algorithm 1 lists the steps of our algorithm.

3.4.1 Complexity Analysis
In this algorithm, we do not explicitly perform the poly-

nomial operation on adjacency matrix in Ml and Mg, whose
time complexity is up to O(N3). Because, in JDGSVD, we
only need to multiply Mg and Ml with some thin matrices
whose size is N ×K. If we change the multiplication order,
and first perform multiplication between adjacency matrix
and thin matrix, the time complexity of this operation will
reduce to O(m ·K), where m is the number of non-zero ele-
ments in adjacency matrix (i.e. the number of edges in the
graph) and much smaller than N2 in sparse graph. And, the
total time complexity of JDGSVD is O(m ·K2 ·L), where L
is the iteration number. We can see that the time complex-
ity is just linear with respect to the volumn of data (i.e. the
number of edges), which means that it is scalable for large
scale graphs.

3.4.2 Approximation Error
Finally, we give the error bound of our algorithm:

Theorem 2. Given the proximity matrix, S, of a directed
graph, and the embedding vectors, Us and Ut, learned by
HOPPE. Then the approximation error is

‖S−Us ·Ut‖2F =

N∑
i=K+1

σ2
i

, and the relative approximation error is:

‖S−Us ·Ut‖2F
‖S‖2F

=

∑N
i=K+1 σ

2
i∑N

i=1 σ
2
i

(22)

where {σi} are the singular values of S in descend order.

Prove:

‖S−Us ·Ut‖2F = ‖
N∑
i=1

σi · vs
iv

t
i
> −

K∑
j=1

σj · vs
jv

t
j
>‖2F

= ‖
N∑

i=K+1

σi · vs
iv

t
i
>‖2F

=

N∑
i=K+1

σ2
i

and we have:

‖S‖ = ‖
N∑
i=1

σi · vs
iv

t
i
>‖ =

N∑
i=1

σ2
i

.
So, the relative approximation error is:

‖S−Us ·Ut‖2F
‖S‖2F

=

∑N
i=K+1 σ

2
i∑N

i=1 σ
2
i

If S is low-rank, then the singular values {σK+1, · · · , σN}
will be close to zero and the error will be very small. That
is, the lower the rank of S is, the smaller the error is.

4. EXPERIMENTS
We conduct experiments on a synthetic data and three

real-world datasets. We will first introduce the experiment
setting, then show the results and analysis on the two types
of datasets respectively.

4.1 Experiment Setting

4.1.1 Datasets
We use four datasets, whose statistics are summarized in

Table 2.

Table 2: Statistics of datasets. |V | denotes the num-
ber of vertexes and |E| denotes the number of edges.

Syn Cora SN-Twitter SN-TWeibo
|V| 10,000 23166 465,017 1,944,589
|E| 144,555 91500 834,797 50,655,143

• Synthetic Data (Syn): We generate the synthetic da-
ta by the forest fire model [17]. The model can gen-
erate powerlaw graphs. We can observe asymmetric
transitivity in the generated graphs. As the time com-
plexity of computation of some high-order proximities
(e.g. Katz, RPR) is too high, we generate small-scaled
synthetic data to allow for the computation of high-
order proximities, so that we can evaluate the accuracy
of high-order proximity approximation. We random-
ly generate ten synthetic datasets. The graph in each
dataset is randomly separated into training set and
testing set, and training set contains 80% edges. Al-
l the reported performances are the average value on
these ten datasets.

• Cora1 [31]: This is a citation network of academic pa-
pers. The vertexes are academic papers and the direct-
ed edges are the citation relationship between papers.

1http://konect.uni-koblenz.de/networks/subelj cora

• Twitter Social Network2 (SN-Twitter) [5]: This dataset
is a subnetwork of Twitter. The vertexes are users of
Twitter, and the directed edges are following relation-
ships between users.

• Tencent Weibo Social Network3 (SN-TWeibo): This
dataset contains a subnetwork of the social network
in Tencent Weibo4, a Twitter-style social platform in
China. The vertexes are users and the directed edges
are following relationship between users.

Due to high time complexity of calculating high-order
proximity measurements, we first evaluate the high-order
proximity approximation error on two small datasets, i.e.
Synthetic Data and Cora. Furthermore, we conduct oth-
er application experiments on two large datasets, i.e. SN-
Twitter and SN-TWeibo, to evaluate the performance of
our algorithm in real large-scale graphs. For SN-Twitter
and SN-TWeibo, we generate three datasets by randomly
separated the graph into training graph and testing graph,
where training graph contains 80% edges and testing graph
contains the rest edges.

4.1.2 Baseline Methods

• LINE [32]: This algorithm preserves the first-order and
second-order proximity between vertexes. but it only
can preserve symmetric second-order proximity when
applied to directed graph. We use vertex vectors as
source vectors and context vectors as target vectors.
We use LINE1 to represent LINE preserving first-order
proximity and LINE2 to represent LINE preserving
second-order proximity.

• DeepWalk [24]: this algorithm first randomly walks on
the graph, and assumes a pair of vertexes similar if
they are close in the random path. Then, the embed-
ding is learned to preserve these pairwise similarities
in the embedding.

• PPE (Partial Proximity Embedding) [30]: This algo-
rithm first selects a small subset of vertexes as land-
marks, and learns the embedding by approximating
the proximity between vertexes and landmarks.

• Common Neighbors: We rank the links by the number
of common neighbors. We use it for link prediction
and vertex recommendation.

• Adamic-Adar: We rank the links by the Adamic-Adar
values. We use it for link prediction and vertex recom-
mendation.

In graph reconstruction, link prediction and vertex rec-
ommendation experiments, we adopt Katz as the target
high-order proximity for HOPE and PPE methods, as Katz
has shown superior performance in related tasks in previ-
ous works, to approximate for HOPE and PPE. For PPE,
we sample 1000 landmarks. For LINE and DeepWalk, we
search the parameters grid search.

2http://konect.uni-koblenz.de/networks/munmun twitter social
3http://www.kddcup2012.org/c/kddcup2012-track1/data
4http://t.qq.com/

10 20 30 40 50 60 70 80 90 100
0

0.002

0.004

0.006

0.008

0.01

0.012

Embedding Dimension

R
M

S
E

Katz

HOPPE
PPE

10 20 30 40 50 60 70 80 90 100
5.25

5.3

5.35

5.4

5.45

5.5

5.55
x 10−3

Embedding Dimension

R
M

S
E

Rooted PageRank

HOPPE
PPE

10 20 30 40 50 60 70 80 90 100
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Embedding Dimension

R
M

S
E

Common Neighbors

HOPPE
PPE

10 20 30 40 50 60 70 80 90 100
0.02

0.03

0.04

0.05

0.06

0.07

Embedding Dimension

R
M

S
E

Adamic−Adar

HOPPE
PPE

10 20 30 40 50 60 70 80 90 100
0

0.005

0.01

0.015

0.02

0.025

Embedding Dimension

R
M

S
E

Katz

HOPPE
PPE

10 20 30 40 50 60 70 80 90 100
0.0105

0.0106

0.0106

0.0107

0.0107

0.0108

0.0108

Embedding Dimension

R
M

S
E

Rooted PageRank

HOPPE
PPE

10 20 30 40 50 60 70 80 90 100
0.042

0.044

0.046

0.048

0.05

0.052

0.054

0.056

Embedding Dimension

R
M

S
E

Common Neighbors

HOPPE
PPE

10 20 30 40 50 60 70 80 90 100
0.0215

0.022

0.0225

0.023

0.0235

0.024

0.0245

0.025

Embedding Dimension

R
M

S
E

Adamic−Adar

HOPPE
PPE

Figure 3: Error of proximity approximation. We evaluate the errors of HOPE and PPE in approximating
four proximity measurements, including Katz, RPR, Common Neighbors and Adamic-Adar. First row is the
results on Synthetic Data, and second row is the results on Cora. For Katz, β = 0.1; for RPR, α = 0.5.

4.1.3 Evaluation Metrics
In the experiments, we adopt RMSE, Precision@k and

MAP (Mean Average Precision) as the evaluation metrics.
RMSE is used to evaluate the approximation error of the

proximity approximation algorithms, including HOPE and
PPE. The formula of RMSE in our problem is:

RMSE =

√
‖S−UsUt>‖2F

N2

NRMSE (Normalized RMSE) is used to evaluate the rel-
ative error of the proximity approximation algorithms. The
formula of NRMSE in our problem is:

NRMSE =

√
‖S−UsUt>‖2F

N2√
‖S‖2F
N2

=

√
‖S−UsUt>‖2F

‖S‖2F

Precision@k is used to evaluate the performance of link
prediction, which measures the prediction precision of top k
links. The formula of Precision@k is:

Precision@k =
|{(i, j)|(i, j) ∈ Ep ∩Eo}|

|Ep|

where Ep is the set of top k predicted links, Eo is the set of
observed links and | · | represents the size of set.

MAP is used to evaluate the performance of vertex rec-
ommendation, which measures the rank accuracy of recom-
mended vertex list. The formula of MAP@k is:

AP@k(i) =

∑k
j=1 Pi(j) · δi(j)∑k

j=1 δi(j)

MAP@k =

∑
vi∈Vt

AP (i)

|Vt|

4.2 High-order Proximity Approximation
As we preserve asymmetric transitivity by approximating

high-order proximity, the error of approximation can evalu-
ate how well we preserve asymmetric transitivity.

We evaluate the approximation error on Synthetic Data
and Cora. Besides our algorithms, PPE can also approxi-
mate high-order proximity. Here, we compare HOPE with
PPE on four proximity measurements, including Katz, R-
PR, Common Neighbors and Adamic-Adar. Figure 3 shows
the RMSE with different number of embedding dimensions.
When the number of embedding dimensions grows, the ap-
proximation error, RMSE, will decrease. We can see that
HOPE achieves much lower RMSE than PPE on all the
proximity measurements. Especially on Katz, the error of
HOPE is one order of magnitude smaller than the error of
PPE. With the number of embedding dimensions growing,
the error of both algorithms decreases but the margin be-
tween HOPE and PPE becomes larger. Although more em-
bedding dimensions can make these two methods be able to
incorporate more proximity information, PPE can only ap-
proximate a sub-block of the proximity matrix, while HOPE
can approximate the whole proximity matrix. Thus HOPE
can take more advantage of the increased embedding dimen-
sion.

0 0.2 0.4 0.6 0.8 1
6

6.5

7

7.5

8

8.5

9

9.5

10
x 10−6

α

N
R

M
S

E

Synthetic Data

HOPPE

0 0.2 0.4 0.6 0.8 1
0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10−5

α

N
R

M
S

E

Cora

HOPPE

Figure 4: Correlation between relative approxima-
tion error and the rank of proximity matrix. The
parameter α of Rooted PageRank is highly related
to the rank of proximity matrix. Here, we use α to
simulate the rank of proximity matrix. The embed-
ding dimension is 100.

Furthermore, we evaluate how the rank (more precisely,
the condition number) of proximity matrix will influence the
approximation error. In section 3.4.2, we have theoretically
proven that the approximation error of our method is related
to the rank of the promixity matrix. Here, we take Root-
ed PageRank as an example to empirically demonstrate the
claim. The parameter α of RPR is highly related to the rank
of RPR matrix (i.e. SRPR). When α = 0, SRPR = I, which
is full rank. When α = 1, all the rows of SRPR are the sta-
tionary distribution of transition matrix P, and the rank of
SRPR is 1. Intuitively, the larger α is, the lower the rank of
SRPR tends to be. We use NRMSE to evaluate the relative
error of RPR approximation. Figure 4 shows the NRMSE
of HOPE with different α. The larger α is, the smaller the
NRMSE is. This suggests that HOPE can achieve better
performance on lower-rank proximity matrix.

4.3 Graph Reconstruction

102 104 106
0

0.2

0.4

0.6

0.8

1

k

P
re

ci
si

on
@

k

SN−TWeibo

HOPPE
PPE
Line1
Line2
DeepWalk
Common Neighbors
Adamic−Adar

102 104 106
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

k

P
re

ci
si

on
@

k

SN−Twitter

HOPPE
PPE
Line1
Line2
DeepWalk
Common Neighbors
Adamic−Adar

Figure 5: Precision@k of graph reconstruction on
SN-TWeibo and SN-Twitter. We rank pairs of ver-
texes according to their reconstructed proximity and
evaluate the reconstruction precision in top k pairs
of vertexes.

As the representation of a graph, embedding vectors are
expected to well reconstruct the graph. We evaluate the re-
construction ability on training sets of SN-TWeibo and SN-
Twitter. We reconstruct the graph edges based on the recon-
structed proximity between vertexes. For graph embedding

algorithms (i.e. HOPE, PPE, Line and DeepWalk), we use
the inner product between embedding vectors to reconstruct
the proximity matrix. For Common Neighbors and Adamic-
Adar, we directly calculate the proximity matrix. We rank
the pairs of vertexes according to their corresponding recon-
structed proximity. Then, we calculate the ratio of real links
in top k pairs of vertexes as the reconstruction precision. As
the number of possible pairs of vertexes (N · (N − 1)) is too
large in SN-TWeibo and SN-Twitter, we randomly sample
about 0.1% pairs of vertexes for evaluation.

Figure 5 shows the Precision@k with different k. HOPE
significantly outperforms baselines. As mentioned above,
PPE just approximates a sub-block of proximity matrix. So,
it works poorer than HOPE. Comparing with Line2 which
directly reconstructs the directed links, HOPE still achieves
much better performance. It may because HOPE uses high-
order proximity as weight of directed edges, but LINE2 as-
signs equivalent weight for each directed edges. The edges in
densely connected vertex clusters will obtain higher weight-
s. Thus, these edges will be preserved first. Moreover, the
number of these edges is larger than that in sparsely con-
nected vertex clusters. Thus, HOPE may reconstruct more
edges than Line2.

4.4 Link Prediction

102 104 106
0

0.2

0.4

0.6

0.8

1

k

P
re

ci
si

on
@

k
SN−TWeibo

HOPPE
PPE
Line1
Line2
DeepWalk
Common Neighbors
Adamic−Adar

102 104 106
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

k

P
re

ci
si

on
@

k

SN−Twitter

HOPPE
PPE
Line1
Line2
DeepWalk
Common Neighbors
Adamic−Adar

Figure 6: Precision@k of link prediction on SN-
TWeibo and SN-Twitter. We rank pairs of vertexes
according to their reconstructed proximity and eval-
uate the reconstruction precision in largest k pairs
of vertexes.

Table 3: MAP of vertex recommendation on SN-TWeibo and SN-Twitter. For each vertex, the recommended
vertex list is ranked according to the predicted proximity between vertexes. For embedding algorithms, we
calculate the predicted proximity by performing inner product between embedding vectors.

Method
SN-TWebio SN-Twitter

MAP@10 MAP@50 MAP@100 MAP@10 MAP@50 MAP@100
HOPE 0.2295 0.1869 0.169 0.1000 0.0881 0.0766
PPE 0.0928 0.0845 0.077 0.0061 0.0077 0.0081

LINE1 0 0 0.005 0.0209 0.0221 0.0221
LINE2 0.051 0.051 0.048 0.0044 0.0043 0.0035

DeepWalk 0.0635 0.0583 0.004 0.0006 0.0008 0.001
Common Neighbors 0.1217 0.1031 0.155 0.0394 0.0379 0.0369

Adamic-Adar 0.1173 0.0990 0.156 0.0455 0.0442 0.0423

As asymmetric transitivity captures the correlation among
edges, we can use it to predict missing edges in graphs. This
experiment is conducted on SN-TWeibo and SN-TWitter.
We train the embedding vectors on training graphs, and e-
valuate the prediction performance on testing graphs. We
randomly sample about 0.1% pairs of vertexes for evalua-
tion. Then, we rank them according to the inner product
between embedding vectors (for HOPE, LINE1, LINE2 and
PPE) or the calculated proximity (for Common Neighbors
and Adamic-Adar), and evaluate the prediction precision in
top k pairs of vertexes.

Figure 6 shows the precision@k of link prediction with d-
ifferent k. Our algorithm, HOPE, outperforms the baselines
significantly. Compared to Section 4.3, the performance of
PPE significantly decreases in prediction task. This is main-
ly because PPE only trains on partial proximity matrix,
which is easy to overfit. Besides, we can see that all the
curves converges to a point when k is large. This is because
almost all the real edges have been correctly predicted by
all the algorithms.

4.5 Vertex Recommendation
The setting of training procedure in this experiment is

the same as link prediction. But, we evaluate the per-
formance of algorithms from the vertex view, i.e. vertex
recommendation performance. We randomly sample 1000
vertexes. For each vertex vi, we randomly hide 20% out-
going links as groundtruth. Then we derive the top 100
vertexes with the highest proximity with vi as the candi-
dates that vi will possible point to. After that, we use
MAP@10, MAP@50 and MAP@100 to evaluate the quality
of recommendation. Table 3 shows the MAPs of differen-
t algorithms. HOPE outperforms the baseline algorithms.
Especially, the MAP@10 of HOPE achieves at least 88.5%
improvement and the MAP@50 of HOPE achieves at least
81.2% improvement over all baseline algorithms. In most
settings, the algorithms preserving directed high-order re-
lationship, including HOPE, Common Neighbors, Adamic-
Adar and PPE, outperforms LINE2 which only preserves
directed first-order relationship. This proves that preserv-
ing directed high-order relationship is critical to capture the
structure of directed graphs.

5. CONCLUSION
In this paper, we aim to preserve asymmetric transitivi-

ty in directed graphs, and propose to preserve asymmetric
transitivity by approximating high-order proximities. We
propose a scalable approximation algorithm , called High-

Order Proximity preserved Embedding (HOPE). In this al-
gorithm, we first derive a general formulation of a class of
high-order proximity measurements, then apply generalized
SVD to the general formulation, whose time complexity is
linear with the size of graph. The empirical study demon-
strates the superiority of asymmetric transitivity and our
proposed algorithm, HOPE. Our future direction is to de-
velop a nonlinear model to better capture the complex struc-
ture of directed graphs.

6. REFERENCES
[1] M. Belkin and P. Niyogi. Laplacian eigenmaps and

spectral techniques for embedding and clustering. In
NIPS, volume 14, pages 585–591, 2001.

[2] S. Cao, W. Lu, and Q. Xu. Grarep: Learning graph
representations with global structural information. In
Proceedings of the 24th ACM International on
Conference on Information and Knowledge
Management, pages 891–900. ACM, 2015.

[3] S. Chang, G.-J. Qi, C. C. Aggarwal, J. Zhou,
M. Wang, and T. S. Huang. Factorized similarity
learning in networks. In Data Mining (ICDM), 2014
IEEE International Conference on, pages 60–69.
IEEE, 2014.

[4] M. Chen, Q. Yang, and X. Tang. Directed graph
embedding. In IJCAI, pages 2707–2712, 2007.

[5] M. De Choudhury, Y.-R. Lin, H. Sundaram, K. S.
Candan, L. Xie, A. Kelliher, et al. How does the data
sampling strategy impact the discovery of information
diffusion in social media? ICWSM, 10:34–41, 2010.

[6] R. A. Fisher. The use of multiple measurements in
taxonomic problems. Annals of eugenics,
7(2):179–188, 1936.

[7] M. S. Handcock, A. E. Raftery, and J. M. Tantrum.
Model-based clustering for social networks. Journal of
the Royal Statistical Society: Series A (Statistics in
Society), 170(2):301–354, 2007.

[8] X. He, S. Yan, Y. Hu, P. Niyogi, and H.-J. Zhang.
Face recognition using laplacianfaces. Pattern Analysis
and Machine Intelligence, IEEE Transactions on,
27(3):328–340, 2005.

[9] M. Hochstenbach. A jacobi–davidson type method for
the generalized singular value problem. Linear Algebra
and its Applications, 431(3):471–487, 2009.

[10] P. D. Hoff. Multiplicative latent factor models for
description and prediction of social networks.
Computational and Mathematical Organization

Theory, 15(4):261–272, 2009.

[11] P. D. Hoff, A. E. Raftery, and M. S. Handcock. Latent
space approaches to social network analysis. Journal
of the american Statistical association,
97(460):1090–1098, 2002.

[12] P. W. Holland and S. Leinhardt. An exponential
family of probability distributions for directed graphs.
Journal of the american Statistical association,
76(373):33–50, 1981.

[13] J. Hopcroft and R. Kannan. Foundations of data
science. 2014.

[14] G. Jeh and J. Widom. Simrank: a measure of
structural-context similarity. In Proceedings of the
eighth ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 538–543.
ACM, 2002.

[15] I. Jolliffe. Principal component analysis. Wiley Online
Library, 2002.

[16] L. Katz. A new status index derived from sociometric
analysis. Psychometrika, 18(1):39–43, 1953.

[17] J. Leskovec, J. Kleinberg, and C. Faloutsos. Graphs
over time: densification laws, shrinking diameters and
possible explanations. In Proceedings of the eleventh
ACM SIGKDD international conference on Knowledge
discovery in data mining, pages 177–187. ACM, 2005.

[18] O. Levy and Y. Goldberg. Neural word embedding as
implicit matrix factorization. In Advances in Neural
Information Processing Systems, pages 2177–2185,
2014.

[19] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and
J. Dean. Distributed representations of words and
phrases and their compositionality. In Advances in
neural information processing systems, pages
3111–3119, 2013.

[20] K. Miller, M. I. Jordan, and T. L. Griffiths.
Nonparametric latent feature models for link
prediction. In Advances in neural information
processing systems, pages 1276–1284, 2009.

[21] S. Mousazadeh and I. Cohen. Embedding and function
extension on directed graph. Signal Processing,
111:137–149, 2015.

[22] C. C. Paige and M. A. Saunders. Towards a
generalized singular value decomposition. SIAM
Journal on Numerical Analysis, 18(3):398–405, 1981.

[23] J. Pennington, R. Socher, and C. D. Manning. Glove:
Global vectors for word representation. Proceedings of
the Empiricial Methods in Natural Language
Processing (EMNLP 2014), 12:1532–1543, 2014.

[24] B. Perozzi, R. Al-Rfou, and S. Skiena. Deepwalk:
Online learning of social representations. In
Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining,
pages 701–710. ACM, 2014.

[25] D. Perrault-Joncas and M. Meila. Estimating vector
fields on manifolds and the embedding of directed
graphs. arXiv preprint arXiv:1406.0013, 2014.

[26] D. C. Perrault-Joncas and M. Meila. Directed graph
embedding: an algorithm based on continuous limits
of laplacian-type operators. In Advances in Neural
Information Processing Systems, pages 990–998, 2011.

[27] S. T. Roweis and L. K. Saul. Nonlinear dimensionality

reduction by locally linear embedding. Science,
290(5500):2323–2326, 2000.

[28] B. Scholkopft and K.-R. Mullert. Fisher discriminant
analysis with kernels. Neural networks for signal
processing IX, 1:1, 1999.

[29] T. A. Snijders, P. E. Pattison, G. L. Robins, and M. S.
Handcock. New specifications for exponential random
graph models. Sociological methodology, 36(1):99–153,
2006.

[30] H. H. Song, T. W. Cho, V. Dave, Y. Zhang, and
L. Qiu. Scalable proximity estimation and link
prediction in online social networks. In Proceedings of
the 9th ACM SIGCOMM conference on Internet
measurement conference, pages 322–335. ACM, 2009.

[31] L. Šubelj and M. Bajec. Model of complex networks
based on citation dynamics. In Proceedings of the 22nd
international conference on World Wide Web
companion, pages 527–530. International World Wide
Web Conferences Steering Committee, 2013.

[32] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and
Q. Mei. Line: Large-scale information network
embedding. In Proceedings of the 24th International
Conference on World Wide Web, pages 1067–1077.
International World Wide Web Conferences Steering
Committee, 2015.

[33] J. B. Tenenbaum, V. De Silva, and J. C. Langford. A
global geometric framework for nonlinear
dimensionality reduction. Science,
290(5500):2319–2323, 2000.

[34] Y. J. Wang and G. Y. Wong. Stochastic blockmodels
for directed graphs. Journal of the American
Statistical Association, 82(397):8–19, 1987.

[35] S. Yan, D. Xu, B. Zhang, H.-J. Zhang, Q. Yang, and
S. Lin. Graph embedding and extensions: a general
framework for dimensionality reduction. Pattern
Analysis and Machine Intelligence, IEEE Transactions
on, 29(1):40–51, 2007.

[36] J. Ye, R. Janardan, and Q. Li. Two-dimensional linear
discriminant analysis. In Advances in neural
information processing systems, pages 1569–1576,
2004.

[37] S. Zhu, K. Yu, Y. Chi, and Y. Gong. Combining
content and link for classification using matrix
factorization. In Proceedings of the 30th annual
international ACM SIGIR conference on Research and
development in information retrieval, pages 487–494.
ACM, 2007.

