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ABSTRACT
Given a signed network where edges are weighted in real
number, and positive weights indicate cohesion between ver-
tices and negative weights indicate opposition, we are in-
terested in finding k-Oppositive Cohesive Groups (k-OCG).
Each k-OCG is a group of k subgraphs such that (1) the
edges within each subgraph are dense and cohesive; and (2)
the edges crossing different subgraphs are dense and opposi-
tive. Finding k-OCGs is challenging since the subgraphs are
often small, there are multiple k-OCGs in a large signed net-
work, and many existing dense subgraph extraction methods
cannot handle edges of two signs. We model k-OCG find-
ing task as a quadratic optimization problem. However, the
classical Proximal Gradient method is very costly since it
has to use the entire adjacency matrix, which is huge on
large networks. Thus, we develop FOCG, an algorithm that
is two orders of magnitudes faster than the Proximal Gra-
dient method. The main idea is to only search in small
subgraphs and thus avoids using a major portion of the ad-
jacency matrix. Our experimental results on synthetic and
real data sets as well as a case study clearly demonstrate the
effectiveness and efficiency of our method.

1. INTRODUCTION
The US presidential primaries and then the US presiden-

tial election of 2016 are foreordained a hot topic in social
media this year. In the process of social media analysis, to
zoom in, it is interesting to find several groups of individuals
in an active social network, such as Facebook and Twitter, so
that within each group the individuals are of the same mind
while different groups have very different opinions. We call
such a data mining problem finding gangs in war.

Technically, we assume a signed network where edges be-
tween vertices are either cohesive or oppositive. A real num-
ber as the weight can be associated with each edge to model
the strength of the cohesion (a positive weight) or opposi-
tion (a negative weight) [25]. Given a signed network, find-
ing gangs in war tries to find a set of subgraphs such that
within each subgraph edges are dense and cohesive, and the
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edges crossing different subgraphs are dense and oppositive.
Finding gangs in war is a useful exercise that enjoys many

interesting application scenarios. For example, the interna-
tional relationships between countries can be modeled as a
signed network [2], where each vertex represents a country.
Friendly countries are connected by cohesive edges and hos-
tile countries are connected by oppositive edges. Finding
gangs in war in this network reveals hostile groups of al-
lied forces, such as the Allied and Axis power during World
War II. Social opinion networks with cohesive and opposi-
tive relationships are well studied [10, 17, 12], where each
vertex represents a user, a cohesive edge indicates a cohesive
relationship and an oppositive edge represents an oppositive
relationship. Finding gangs in war from such signed net-
works discovers multiple groups of friends with strong inter-
group enmity, such as the rival groups of voters that sup-
port different political leaders. Interestingly, finding gangs
in war can be used in applications well beyond social net-
works. For example, the network of adjectives in the Word-
Net database [18] is also a signed network, where each vertex
represents an adjective, the synonyms are connected by co-
hesive edges and the antonyms are connected by oppositive
edges. From this signed network, finding gangs in war can
identify groups of synonyms that are antonymous with each
other, which will be further demonstrated in Section 5.6.

As to be reviewed in Section 2, there are established meth-
ods for signed network partitioning and dense subgraph find-
ing. Can we adapt the existing methods to tackle the prob-
lem of finding gangs in war from signed networks? Unfortu-
nately, the answer is no due to three unique challenges.

First, the “gangs in war” are typically small groups and
are hard to be located. Most vertices and edges in a network
may not even participate in a “gang in war”. Although there
are many existing methods on partitioning signed networks
so that each partition is relatively cohesive [4, 14], those
methods cannot find needles from a haystack – they cannot
find small groups of dense cohesive subgraphs effectively.

Second, there often exist multiple groups of “gangs in
war”, such as multiple groups of synonym adjectives that
are antonymous group-wise. The existing signed network
partitioning methods are not capable of finding alternative
partitionings.

Last but not least, the signed edge weights create a huge
challenge for the existing dense subgraph detection methods.
To the best of our knowledge, the existing dense subgraph
extraction methods only consider edges of the same sign
and cannot distinguish edges of two signs. The well defined
concepts and algorithms for dense subgraph detection on
unsigned networks [25] no longer hold in signed networks.

In this paper, we tackle the novel problem of finding gangs



in war from signed networks. We make several contributions.
First, we formulate the problem of finding gangs in war as

finding k-Oppositive Cohesive Groups (k-OCG). A k-OCG is
a set of k subgraphs such that each subgraph is cohesive, that
is, having high intra-subgraph cohesion, and the subgraphs
are oppositive to each other, that is, among the subgraphs
there is a high inter-subgraph opposition. We model the
problem as a constrained quadratic optimization problem.

Second, we show that the classical Proximal Gradient
method (PG) [20] is very costly in finding k-OCGs on large
signed networks, since it has to use the entire adjacency ma-
trix. We develop a two-phase iterative method FOCG that
is experimentally two orders of magnitudes faster than PG
on average. The key idea is that FOCG confines the search
in small subgraphs instead of the whole graph so that it only
uses small sub-matrices of the adjacency matrix. Specifical-
ly, FOCG iteratively conducts a locate phase and an update
phase. The locate phase increases the intra-subgraph cohe-
sion and inter-subgraph opposition of a subgraph by remov-
ing weak vertices that contribute little to the cohesion and
opposition. The update phase further increases the cohesion
and opposition of the small subgraph by adding new vertices
that contribute more to the objective.

Third, we report an extensive experimental study on both
synthetic and real-world data sets. The results clearly show
that our method is accurate, efficient and scalable in finding
k-OCGs. We also conduct a case study on the adjective
network sampled from the WordNet database [18], where
the detected k-OCGs accurately identify significant groups
of synonyms that are antonymous with each other.

The rest of the paper is organized as follows. We review
the related work in Section 2. We formulate the problem in
Section 3 and develop our method FOCG in Section 4. We
report the experimental results in Section 5, and conclude
the paper in Section 6.

2. RELATED WORK
To the best of our knowledge, finding k-OCGs is a new

problem that has not been touched in literature. It is related
to the signed network partitioning problem and the dense
subgraph extraction problem on unsigned network.

2.1 Signed Network Partition
The signed network partitioning methods partition a

signed network into several cohesive subgraphs. A major
approach is to transform signed network partitioning into a
traditional data clustering problem and solve it by classic
clustering techniques.

Spectral clustering is one of the most widely adopted clus-
tering techniques. Kunegis et al. [11] proposed the signed
Laplacian matrix by extending the concept of graph Lapla-
cian matrix from unsigned networks to signed networks.
Performing classic spectral clustering algorithms [28] with
such signed Laplacian matrix results in subgraphs with only
cohesive edges. However, Kunegis’s Laplacian matrix [11]
tends to separate vertices connected by oppositive edges
rather than group vertices connected by cohesive edges. To
solve this problem, Chiang et al. [5] proposed the balanced
normalized cut and Zheng et al. [31] proposed the balanced
normalized signed Laplacian matrix.

As an alternative approach, Doreian et al. [7] first defined
the objective function for signed network partitioning as E =
αNn + (1−α)Np, where Np is the number of cohesive edges
between subgraphs and Nn is the number of oppositive edges
within subgraphs. Many methods attempt to partition a

Table 1: Frequently used notations.
Notation Description

U The universal index set of all vertices.
S A k-subgraph set. S = {S1, S2, ..., Sk}, Si is the

i-th subgraph.
S A set of k-OCGs. S = {S∗1 ,S∗2 , ...,S∗p}, S∗i is the

i-th k-OCG.
X An n-by-k dimensional matrix that represents a

k-subgraph set.
X∗ A KKT point of F (X) on graph G.
X∗j A KKT point of f(Xj) on graph G.

X̂j A KKT point of f(Xj) on subgraph Sj .

Ŝj The subgraph induced from X̂j .

signed network by minimizing Doreian’s objective function
E. For example, Traag et al. [26] used simulated annealing,
and Liu et al. [14] applied the k-balanced social theory to
solve a similar optimization problem.

The signed network partitioning task can also be tack-
led using the modularity algorithms [13, 1] and the mixture
model algorithms [8].

All the signed network partitioning methods partition the
entire signed network. However, in real applications, signif-
icant k-OCGs always exist in small local regions of a large
and sparse signed network. Such local regions are not known
beforehand. Thus, partitioning the entire signed network
cannot effectively find significant k-OCGs.

2.2 Dense Subgraph Extraction
The dense subgraph finding problem on unsigned net-

work has been well investigated in literature [27, 22, 6].
Motzkin et al. [19] proved that the dense subgraph seek-
ing problem on an un-weighted graph can be formulated
as a quadratic optimization problem on the simplex. Pa-
van et al. [21] extended the method by Motzkin et al.
to weighted graphs by reformulating the dense subgraph
detection problem as a standard quadratic optimization
(StQP) problem and solved it using the Dominant Set (DS)
method [21]. According to Bulò et al. [3], the time complex-
ity of DS is O(n2) for a graph of n vertices. Bulò et al. [3]
also proposed a more efficient method, Infection Immuniza-
tion Dynamics (IID), to solve the StQP problem [21].

Both DS and IID search an entire weighted graph. Li-
u et al. [16, 15] discovered that most dense subgraphs ex-
ist in local regions. By leveraging such locality property of
dense subgraphs, Liu et al. [16, 15] solved the StQP problem
by the Shrink and Expand Algorithm, which improves the
efficiency by searching only small subgraphs.

All these methods find dense subgraphs on unsigned
graphs by seeking the local maximums of the StQP prob-
lem [21]. However, due to the existence of oppositive edges,
the StQP problem [21] becomes undefined on signed net-
works. As a result, existing dense subgraph detection meth-
ods cannot be straightforwardly extended to solve the k-
OCG detection problem on signed networks.

3. PROBLEM FORMULATION
In this paper, we use bold lower case characters (e.g., x,

y, e) and upper case characters with subscript (e.g., Xj , Xh,
Xl) to represent column vectors. Upper case characters (e.g.,
X, M , E) are used to represent matrices, sets or graphs.
Some frequently used notations are summarized in Table 1.

A signed graph is a triple G = (V,E,A), where V =
{v1, . . . , vn} is a set of n vertices, E = {(vi, vj) | i, j ∈ [1, n]}



is a set of edges, and A is an n-by-n signed adjacency matrix
that describes the relationship between each pair of vertices.
The entry Ai,j at the i-th row and the j-th column of A is
positive if (vi, vj) is a cohesive edge, negative if (vi, vj) is an
oppositive edge, and 0 otherwise. The absolute value |Ai,j |
measures the strength of the cohesion or opposition.

The signed network adjacency matrix A can be rewritten
into A = A+−A−. A+ is the cohesion network and is com-
posed of all cohesive edges in A, that is, A+

i,j = max (Ai,j , 0).

A− is the opposition network, where A−i,j = |min (Ai,j , 0)|.
Let U = {1, . . . , n} be the universal index set of all vertices

in the set of vertices V . From any index subset S ⊂ U , we
can induce a subgraph GS = {VS , ES , AS}, where VS =
{vi | i ∈ S}, ES = {(vi, vj) | i, j ∈ S}, and AS = [Ai,j |
i, j ∈ S] is the signed adjacency matrix that describes the
relationship between each pair of vertices in VS .

A common way to represent a subgraph GS is to associate
it with a non-negatively-valued n-dimensional column vector
x = [x1, x2, . . . , xn] in the standard simplex 4n, where the
i-th dimension xi indicates the participation of vertex vi
in GS , that is, the weight of vertex vi in GS , and simplex
4n = {x |

∑n
i=1 xi = 1, xi ≥ 0}. Particularly, if xi = 0,

vertex vi does not belong to GS . If xi > 0, vi participates
in GS . Given GS and its vector representation x, we can
immediately have the set of indexes of the vertices in GS as
S = {i ∈ U | xi > 0}. In the rest of the paper, we refer
to a subgraph by the vector representation x and the set of
indexes of vertices S interchangeably.

We are interested in finding k-oppositive cohesive group-
s (k-OCG), where each cohesive group is a dense sub-
graph dominated by cohesive edges and thus has high intra-
subgraph cohesion. At the same time, among the groups
there are dense oppositive edges and thus the k-OCG as a
set has high inter-subgraph opposition.

To model a k-OCG, we introduce the notion of k-subgraph
set, denoted by S = {S1, S2, ..., Sk}, which is a set of k
subgraphs. We represent each subgraph Sj ∈ S (1 ≤ j ≤ k)
by an n-dimensional column vector Xj ∈ 4n. Consequently,
we represent S by an n-by-k dimensional matrixX where the
j-th column Xj ∈ 4n represents subgraph Sj . Obviously,
we have Sj = {i ∈ U | Xi,j > 0}, where Xi,j is the entry at
the i-th row and the j-th column of matrix X.

Pavan et al. [21] proposed a widely used measure for intra-
subgraph cohesion. For subgraph x ∈ 4n, define

g+(x) = x>A+x =

n∑
i=1

n∑
j=1

xixjA
+
i,j (1)

Due to the constraint
∑n
i=1 xi = 1 as x ∈ 4n, Equation 1

is actually the weighted average of cohesive edge weights
within subgraph x.

Similarly, we can measure the weighted average of oppos-
itive edge weights between two subgraphs x and y by

g−(x,y) = x>A−y =
n∑
i=1

n∑
j=1

xiyjA
−
i,j

We can further define the intra-subgraph cohesion of a k-
OCG S as the sum of all intra-subgraph cohesion of each
Sj ∈ S, that is,

g+(S) =

k∑
j=1

g+(Xj) = tr(X>A+X)

where tr(·) is the trace operator.

We can further define the inter-subgraph opposition of S
as the sum of the inter-subgraph opposition for each pair of
subgraphs in S, that is,

g−(S) =
∑
h 6=j

g−(Xh, Xj) = tr(X>A−X)

where tr(M) is the complementary trace that sums up
all non-diagonal entries of matrix M , that is, tr(M) =∑
i 6=jMi,j . It can be verified that tr(M1) ± tr(M2) =

tr(M1 ±M2).
A k-oppositive cohesive groups (k-OCG) is a k-subgraph

set that has a large intra-subgraph cohesion g+(S) and a
large inter-subgraph opposition g−(S). Accordingly, we de-
fine the k-OCG detection problem as

max
X∈4n×k

F (X)

F (X) = g+(S) + αg−(S)− βtr(X>X)

= tr(X>A+X) + αtr(X>A−X)− βtr(X>X)

= tr(X>A+X) + tr(X>HX)

(2)

where H = (αA− − βI), I is the identify matrix, parameter
α > 0 controls the tradeoff between intra-subgraph cohesion
and inter-subgraph opposition, and the term βtr(X>X) pe-
nalizes the overlap between different cohesive subgraphs.

Every local maximum of F (X) corresponds to a k-OCG in
graph G. However, not all local maximums are of the same
significance. More often than not, in real applications we
want to find the significant k-OCGs of large intra-subgraph
cohesion and inter-subgraph opposition. Such significant k-
OCGs are induced by the local maximums with large val-
ues of F (X). Since every local maximum of F (X) satisfies
the Karush-Kuhn-Tucker (KKT) conditions [9], every KKT
point X∗ of F (X) is a potential local maximum of F (X).
In the rest of the paper, we focus on detecting significant k-
OCGs by seeking the KKT points with large F (X∗) values.

The problem in Equation 2 is a constrained optimization
problem that can be solved by classic numerical optimiza-
tion methods, such as Proximal Gradient method (PG) [20].
However, the classic numerical optimization methods gener-
ally operate with the entire adjacency matrix A and often
involves the computationally expensive gradient calculation.
Therefore, when graph G is large, A is large. The classic nu-
merical optimization methods are not efficient in solving the
problem in Equation 2 on large graphs.

Since k-OCGs usually exist in small local regions of a
signed network, a lot of information carried by A is redun-
dant and we can accurately and efficiently find a k-OCG
using only small submatrices of A without calculating the
gradient. Next, we propose the FOCG algorithm that solves
the problem in Equation 2 by iteratively seeking the KKT
points [9] of F (X), and achieves high efficiency by confining
all iterations on small subgraphs.

4. THE FOCG ALGORITHM
We first re-organize Equation 2. For any j ∈ [1, k],

F (X) = f(Xj) +
∑
h 6=j

X>h A
+Xh +

∑
l 6=j

∑
h 6=j
h 6=l

X>l HXh (3)

where f(Xj) = X>j A
+Xj + 2

∑
h 6=j X

>
j HXh consists of all

the terms in F (X) that are related with Xj .
According to Equation 3, when the other columns of X

(i.e., {Xh | h 6= j, h ∈ [1, k]}) are fixed, we can monoton-



ically increase the value of F (X) by maximizing f(Xj) on
variable Xj . Thus, we can find the KKT points of F (X) by
optimizing f(Xj) on each column of X (i.e., {Xj ∈ 4n | j ∈
[1, k]}). The corresponding optimization problem is

max
Xj∈4n

f(Xj)

f(Xj) = X>j A
+Xj + 2X>j Mj

(4)

where Mj =
∑
h 6=j HXh is an n-dimensional column vector.

The first term X>j A
+Xj of f(Xj) in Equation 4 is the

intra-subgraph cohesion of subgraph Sj . This term is ex-
actly the objective function of the dense subgraph seek-
ing methods [21, 16, 15]. To understand the second ter-
m in Equation 4, we notice the following. First, since
H = (αA− − βI), we have Hi,l = αA−i,l when i 6= l.

Thus, Hi,l (i 6= l) represents the opposition between ver-
tices vi and vl. Second, we rewrite the i-th entry of HXh to
(HXh)i =

∑
l∈Sh

Hi,lXl,h. Since Xl,h is the weight of vertex

vl in subgraph Sh, (HXh)i represents the average opposition
between vertex vi and all the vertices in subgraph Sh. Then,
since Mj =

∑
h 6=j HXh, the i-th entry of Mj can be written

as Mi,j =
∑
h 6=j(HXh)i, which is the sum of the average

opposition between vertex vi and all the (k − 1) subgraphs
in S \ Sj = {Sh ∈ S | h 6= j}. By expanding the second
term of f(Xj) 2X>j Mj = 2

∑
i∈Sj

Xi,jMi,j , we can see that

2X>j Mj is the weighted average opposition between all the
vertices of subgraph Sj and all the other subgraphs in S\Sj .

In the rest of this Section, we illustrate how to efficient-
ly find a k-OCG by seeking a KKT point X∗ of F (X). In
Section 4.1, we first prove that we can find X∗ by seeking
the KKT points X∗j for all j ∈ [1, k]. Moreover, we inves-
tigate the KKT conditions of X∗j for any j ∈ [1, k], which
enables us to efficiently find X∗j with the Locate and Update
Algorithm (LUA). Section 4.2 introduces the LUA method
that efficiently finds X∗j of f(Xj) by iterative searches in s-
mall subgraphs. Section 4.3 summarizes the FOCG method,
which finds a KKT point X∗ of F (X) by seeking X∗j for all
j ∈ [1, k] with LUA. We also introduce the heuristic initial-
ization method IOCG and illustrate how to select significant
k-OCGs with the widely used “peeling-off” method [21, 16].

4.1 KKT Points
The following result establishes the relation between a

KKT point of F (X) and the KKT points of f(Xj), j ∈ [1, k].
Therefore, finding the KKT points of f(Xj) for all j ∈ [1, k]
can be used to find KKT points of F (X).

Theorem 1. X∗ ∈ 4n×k is a KKT point of F (X) if and
only if ∀j ∈ [1, k], X∗j is a KKT point of f(Xj).

Proof sketch. We prove here only the biconditional
logical connectivity with respect to the stationarity condi-
tion of KKT conditions. The proof on the biconditional log-
ical connectivity with respect to the primal feasibility, dural
feasibility and complementary slackness is straightforward
and thus is omitted for the interest of space.

For X and Xj , since X ∈ 4n×k = {X | Xj ∈ 4n, j ∈
[1, k]} and Xj ∈ 4n = {Xj |

∑n
i=1 Xi,j = 1, Xi,j ≥ 0}, the

Lagrange functions of F (X) and f(Xj) can be written to
Equations 5 and 6, respectively.

LF (X,µ,λ) = F (X) +R(X)

R(X) =

k∑
j=1

n∑
i=1

µi,jXi,j −
k∑
j=1

λj(

n∑
i=1

Xi,j − 1)
(5)


Lf (Xj ,µj , λj) = f(Xj) + r(Xj)

r(Xj) =

n∑
i=1

µi,jXi,j − λj(
n∑
i=1

Xi,j − 1)
(6)

where µ, λ, µj and λj are Lagrangian multipliers, µj is the
j-th column of the n-by-k dimensional matrix µ, and λj is
the j-th element of the k-dimensional vector λ. Apparently,
R(X) =

∑k
j=1 r(Xj).

Denote by ∇XLF the gradient of LF (X,µ,λ), which is
an n-by-k dimensional matrix. (∇XLF )j is the j-th column
of ∇XLF . We have

(∇XLF )j = ∇XjF (X) +∇XjR(X) (7)

where ∇Xj is the gradient operator over variable Xj .
According to Equation 3, we have ∇XjF (X) =

∇Xjf(Xj). Since R(X) =
∑k
j=1 r(Xj), we have

∇XjR(X) = ∇Xj r(Xj). By substituting the above two e-
quations into Equation 7, we have

(∇XLF )j = ∇Xjf(Xj) +∇Xj r(Xj) = ∇XjLf (8)

where ∇XjLf is the gradient of Lf (Xj ,µj , λj).
Sufficiency. If X∗ is a KKT point, then ∇X∗LF = 0.

According to Equation 8, we have ∇X∗j Lf = 0, ∀j ∈ [1, k],

thus the stationarity condition holds for each f(X∗j ).
Necessity. If ∀j ∈ [1, k], X∗j is a KKT point of f(Xj),

then we have ∇X∗j Lf = 0 for all j ∈ [1, k]. Thus, ∇X∗LF =

0. Therefore, the stationarity condition holds for F (X∗).

Theorem 2. X∗j ∈ 4n is a KKT point of f(Xj) if and
only if

Ri(X
∗
j )

{
= Q(X∗j ) if i ∈ S∗j
≤ Q(X∗j ) if i ∈ U \ S∗j

(9)

where S∗j = {i ∈ U | X∗i,j > 0} is the subgraph induced from

X∗j , Ri(X
∗
j ) = (A+X∗j )i + Mi,j, Q(X∗j ) = (X∗j )>R(X∗j ),

and (A+X∗j )i is the i-th entry of A+X∗j .

Proof. A KKT point X∗j of f(Xj) must satisfy the KKT

conditions: (1) Stationarity: 2(A+X∗j )i+2Mi,j+µi,j−λj =

0, ∀i ∈ [1, n]; (2) Complementary slackness:
n∑
i=1

µi,jX
∗
i,j = 0;

(3) Dual feasibility: µi,j ≥ 0, ∀i ∈ [1, n]; and (4) Primal

feasibility: X∗i,j ≥ 0, ∀i ∈ [1, n] and
n∑
i=1

X∗i,j = 1. Note that,

the primal feasibility trivially holds, since X∗j ∈ 4n.
Sufficiency. If X∗j is a KKT point, then X∗j satisfies all

the above KKT conditions. Considering Xi,j and µi,j are
non-negative for all i ∈ [1, n], the complementary slackness
condition can be rewritten as

∀i ∈ [1, n], if X∗i,j > 0, then µi,j = 0 (10)

Since X∗i,j > 0 means i ∈ S∗j , we transform Equation 10 into

∀i ∈ [1, n], if i ∈ S∗j , then µi,j = 0 (11)

By doing simple calculations on both Equation 11 and the
stationary condition, we can rewrite the KKT conditions as

Ri(X
∗
j )

{
=

λj

2
if i ∈ S∗j

≤ λj

2
if i ∈ U \ S∗j

(12)

which indicates Ri(X
∗
j ) =

λj

2
, for all i ∈ S∗j .



Since
∑
i∈S∗j

X∗i,j = 1, we have Q(X∗j ) = (X∗j )>R(X∗j ) =∑
i∈S∗j

X∗i,jRi(X
∗
j ) =

λj

2
. Plugging this into Equation 12,

we have Equation 9.
Necessity. If Eqnation 9 holds, then there always exists a

set of Lagrangian multipliers µi,j , i ∈ [1, n] and λj as follows
that make the KKT conditions hold.

µi,j =

{
0 if i ∈ S∗j
λj − 2Ri(X

∗
j ) if i ∈ U \ S∗j

where λj = 2Q(X∗j ). This means that X∗j satisfies the KKT
conditions and thus is a KTT point of f(Xj).

For Ri(X
∗
j ) in Equation 9, the first term (A+X∗j )i is

the average cohesion between vertex vi and all vertices in
subgraph S∗j , and captures the contribution from vertex
vi to the intra-subgraph cohesion of S∗j . The second ter-
m Mi,j is the average opposition between vi and the ver-
tices of the other (k − 1) subgraphs in S \ S∗j , and cap-
tures the contribution from vi to the inter-subgraph oppo-
sition between S∗j and the other subgraphs in S \ S∗j . Thus,
Ri(X

∗
j ) measures the contribution from vi to both the intra-

subgraph cohesion and inter-subgraph opposition of S∗j . For

Q(X∗j ) in the same equation, since Q(X∗j ) = (X∗j )>R(X∗j ) =∑
i∈S∗j

X∗i,jRi(X
∗
j ), we know that Q(X∗j ) is the weighted av-

erage contribution from all vertices in S∗j .
Theorem 2 indicates that, for a KKT point X∗j , the con-

tribution Ri(X
∗
j ) by each vertex vi inside subgraph S∗j is

equal to the average contribution Q(X∗j ) by S∗j . Moreover,
the contribution Ri(X

∗
j ) by each vertex vi outside subgraph

S∗j is not larger than the average contribution Q(X∗j ) by S∗j .
According to Theorem 2, any pointX∗j satisfying the KKT

conditions in Equation 9 is a KKT point of f(Xj) in graph

G. Thus, any X̂j ∈ 4n is a KKT point in subgraph Sj if

Ri(X̂j)

{
= Q(X̂j) if i ∈ Ŝj
≤ Q(X̂j) if i ∈ Sj \ Ŝj

(13)

where Ŝj = {i ∈ U | X̂i,j > 0} is a subset of Sj .

Apparently, a KKT point X̂j on Sj induces a subgraph

Ŝj ⊂ Sj , where no vertex vi in Sj \ Ŝj has a larger contribu-

tion Ri(X̂j) than the average contribution Q(X̂j). However,

since Sj \ Ŝj is not equal to U \S∗j , a KKT point in subgraph
Sj is not necessarily a KKT point in graph G. Therefore,
we further explore the relationship between a KKT point in
subgraph Sj and a KKT point in graph G as follows.

Corollary 2.1. If X̂j is a KKT point of f(Xj) in sub-

graph Sj, then X̂j is a KKT point of f(Xj) in graph G if

and only if Ωj = {i ∈ U \ Ŝj | Ri(X̂j) > Q(X̂j)} = ∅.

Proof. (Sufficiency.) If Ωj = ∅, then X̂j also satisfies

the KKT conditions in graph G (i.e., Equation 9), thus X̂j
is also a KKT point in graph G.

(Necessity.) Ωj 6= ∅ indicates the KKT conditions in

graph G do not hold for X̂j , which means X̂j is not a KKT
point in graph G.

Ωj contains all the vertices that are outside subgraph Ŝj
and contribute more cohesion and opposition to Ŝj than the

average contribution Q(X̂j). Adding the vertices in Ωj into

subgraph Ŝj can further increase the average cohesion and

opposition of Ŝj , thus can increase the value of f(X̂j).

In summary, a KKT point of f(Xj) corresponds to a po-
tential dense subgraph S∗j that possesses both large intra-
subgraph cohesion within itself and large inter-subgraph op-
position with the other subgraphs in S \ S∗j . Since a dense
subgraph usually consists of small subsets of vertices [16],
the size of S∗j is usually small if X∗j is a KKT point of G.
Based on this insight, we propose the Locate and Update
Algorithm next, which finds KKT points of graph G by con-
straining searches in small subgraphs.

4.2 The Locate and Update Algorithm (LUA)
In this section, we introduce the Locate and Update Al-

gorithm (LUA) that efficiently finds a KKT point of f(Xj)
in graph G. The key to the efficiency of LUA is that it al-
ways works on a small subgraph Sj and iteratively updates
Sj until a KKT point in graph G is found.

We first transform the problem in Equation 4 into the
following standard form of dense subgraph seeking problem

max
Xj∈4n

f(Xj)

f(Xj) = X>j BjXj

(14)

where Bj = A+ + eM>j + Mje
> is an n-by-n dimensional

matrix, and e is a column vector with all entries equal to 1.
When matrix Bj is given, there are many existing dense

subgraph seeking algorithms [21, 3, 16] that can be used to
solve the problem in Equation 14. However, since matrix Bj
is not sparse, it is hard to calculate and store Bj when graph
G is large. Without materializing Bj , we cannot solve the
problem in Equation 14 by a simple extension of the existing
dense subgraph seeking algorithms [21, 3, 16].

To tackle this problem, we design the LUA algorithm,
which effectively avoids computing the entire matrix Bj by
confining computation in small subgraphs. LUA iteratively
conducts a locate phase and an update phase. The locate

phase locates a KKT point X̂j in subgraph Sj and reduces

Sj into its subgraph Ŝj . The update phase updates subgraph

Ŝj by taking more vertices in Ωj whose contribution Ri(X̂j)
to the intra-subgraph cohesion and inter-subgraph opposi-

tion of subgraph Ŝj is larger than the average contribution

Q(X̂j). The iteration continues until Ωj = ∅. According to

Corollary 2.1, X̂j is also a KKT point in graph G. Next, we
discuss the details of LUA.

4.2.1 The Locate Phase
The locate phase locates a KKT point X̂j in subgraph Sj

and reduces Sj into its subgraph Ŝj = {i ∈ U | X̂i,j > 0}.
Given an initialization of Xj(0) that is obtained by a

heuristic method to be discussed in Algorithm 3, the locate

phase finds a KKT point X̂j in subgraph Sj by the Replica-
tor Dynamics (RD) iteration [29]. At the t-th iteration,

Xi,j(t+ 1) = Xi,j(t)
(BjXj(t))i

Xj(t)>BjXj(t)
(15)

where (BjXj(t))i is the i-th entry of the n-dimensional vec-
tor BjXj(t). According to [29], the iterations converge to

X̂j . The resulting subgraph is Ŝj .
A nice property of Equation 15 is that, if Xi,j(t) = 0,

then Xi,j(t+ 1) = 0. Thus, we can confine all computation
of Equation 15 within subgraph Sj by initializing Xj(0) as
Xj(0) = {Xi,j>0 | i ∈ Sj}. Since ∀i 6∈ Sj , Xi,j(t) = 0, we
only need to calculate and store a sub-matrix BSj of Bj that
corresponds to the edge set ESj of subgraph Sj .



The locate phase efficiently finds a KKT point X̂j of sub-

graph Sj and reduces Sj into its subgraph Ŝj . However, ac-

cording to Corollary 2.1, X̂j may not necessarily be a KKT
point in graph G. Thus, we use an update phase to fur-

ther increase the value of f(X̂j) and make sure that LUA
converges to a KKT point in graph G.

4.2.2 The Update Phase
According to Corollary 2.1, if Ωj = ∅, then X̂j is already

a KKT point in graph G, thus the LUA iteration converges.

However, if Ωj 6= ∅, then X̂j is not a KKT point in graph

G. In this case, we update X̂j with a carefully designed n-

dimensional vector b and a step size σ, such that f(X̂j +

tb) > f(X̂j) under the constraint (X̂j + σb) ∈ 4n.
The i-th entry of b = [b1, . . . , bn] is defined as

bi =


Ri(X̂j)−Q(X̂j) if i ∈ Ωj
−sX̂i,j if i ∈ Ŝj
0 otherwise

(16)

where s =
∑
i∈Ωj

bi. We can know from the definition of Ωj
that s > 0.

According to Corollary 2.1, if i ∈ Ωj , then the contribution

Ri(X̂j) of vertex vi is larger than the average contribution

Q(X̂j) of all vertices within subgraph Ŝj . Adding vi into

subgraph Ŝj further increases the intra-subgraph cohesion

and inter-subgraph opposition of Ŝj , thus increases the value

of f(X̂j). Therefore, we set bi = Ri(X̂j) − Q(X̂i). In this
situation, bi assigns a positive weight to the i-th entry of

(X̂j+σb), which is equivalent to adding vi into the updated
subgraph.

Another useful property of bi is that the constraint (X̂j +
σb) ∈ 4n always holds for all σ ∈ [0, 1

s
] due to the following.

First, since
∑
i∈Ŝj

X̂i,j = 1, we have
∑n
i=1 bi =

∑
i∈Ωj

bi +∑
i∈Ŝj

(−sX̂i,j) = s− s = 0, which means
∑
i(X̂i,j + σbi) =

1. Second, since σ ∈ [0, 1
s
] and s > 0, we have X̂i,j+σbi ≥ 0,

∀i ∈ [1, n].
Now, we can derive the optimal step size by maximizing

f(X̂j + σb)− f(X̂j) as

f(X̂j + σb)− f(X̂j) = b>A+bσ2 + 2b>(A+X̂j +Mj)σ

= b>A+bσ2 + 2b>R(X̂j)σ

= b>A+bσ2 + 2(
∑
i∈Ωj

b2i )σ

(17)
When Ωj 6= ∅, we have

∑
i∈Ωj

b2i > 0. Thus, the optimal

step size σ∗ is

σ∗ =


1
s

if b>A+b ≥ 0

min

(
1
s
,−

∑
i∈Ωj

b2i

b>A+b

)
if b>A+b < 0

(18)

which guarantees f(X̂j + σ∗b)− f(X̂j) > 0.
To sum up, when Ωj 6= ∅, the update phase updates sub-

graph Ŝj by taking some vertices in Ωj and further increases

the value of f(X̂j).

4.2.3 The Locate and Update Iteration
Algorithm 1 gives the pseudocode of the LUA algorithm.

The main computational cost of LUA lies in the locate phase,
whose efficiency is largely affected by the size of subgraph

Algorithm 1: The Locate and Update Iteration

Input: Xj(0) ∈ 4n.
Output: A KKT point X∗j of f(Xj) in graph G.

1: Set X̂j = Xj(0) and update Ωj .
2: repeat
3: if Ωj 6= ∅ then

4: Update phase: Xj ← (X̂j + σ∗b).
5: end if
6: Locate phase: Start from Xj and find a KKT

point X̂j in subgraph Sj using Equation 15.

7: Update Ωj = {i ∈ U \ Ŝj | Ri(X̂j) > Q(X̂j)}.
8: until Ωj = ∅.
9: X∗j ← X̂j .

10: return A KKT point X∗j of f(Xj) in graph G.

Algorithm 2: The FOCG Algorithm

Input: X(0) ∈ 4n×k.
Output: A KKT point X∗ of F (X) in graph G.

1: Set X = X(0).
2: repeat
3: for all j ∈ [1, k] do
4: Find a KKT point X∗j of f(Xj) in graph G by

Algorithm 1.
5: Update the j-th column of X by Xj ← X∗j .
6: end for
7: until ∀j ∈ [1, k], a KKT point X∗j of f(Xj) is found.
8: return a KKT point X∗ of F (X) in graph G.

Sj . In real world applications, the graph G is usually very
sparse, thus the size of both Ωj and Sj are usually small,
which leads to the high efficiency of locate phase. As a
result, LUA converges pretty fast on sparse graphs.

We prove the convergence of LUA as follows.

Theorem 3. The LUA iteration in Algorithm 1 con-
verges to a KKT point X∗j in graph G.

Proof. By setting all entries of Bj to the maximum val-
ue in Bj , we can easily obtain a trivial upper bound of
f(Xj). In both the locate phase and the update phase,
f(Xj) monotonously increases, therefore, the LUA iteration
converges in the perspective of numeric optimization.

Algorithm 1 converges only when Ωj = ∅. According to
Corollary 2.1, when LUA converges (i.e., Ωj = ∅), the KKT

point X̂j found in subgraph Sj is a KKT point X∗j in G.

4.3 The Complete Algorithm
Algorithm 2 gives the pseudocode of the FOCG algorithm,

which finds a KKT point of F (X) (Equation 3) by alterna-
tively optimizing f(Xj) over each column Xj of X.

Theorem 4. The FOCG algorithm converges to a KKT
point X∗ of graph G.

Proof. We first prove that FOCG converges. Accord-
ing to Equation 3, increasing the value of f(Xj) equivalent-
ly increases the value of F (X). Since for each iteration in
FOCG, the LUA algorithm monotonously increases the val-
ue of f(Xj), the value of F (X) is monotonously increased
as well. Due to the fact that F (X) has an upper bound, the
FOCG algorithm converges.



Algorithm 3: The IOCG Algorithm

Input: Adjacency matrices of A+ and A−.
Output: An initialization X(0) for FOCG algorithm.

1: Initialize the seed index set η = ∅.
2: Calculate the vertex degree vector on positive network

as d+ = [d+
1 , d

+
2 , ..., d

+
n ], where d+

i =
∑n
j=1 A

+
i,j .

3: Select the first seed h1 = Roul(d+) by roulette wheel
selection [23] and update η ← η ∪ h1.

4: for l ∈ [2, k] do
5: Calculate opposition vector o− = [o−1 , ..., o

−
i , ..., o

−
n ],

where o−i = 1
|η|
∑
j∈η A

−
i,j .

6: Select seed by hl = Roul(o−) and update η ← η∪hl.
7: end for
8: Initialize X as a n-by-k dimensional all zero matrix.
9: for j ∈ [1, k] do

10: Set Xηj ,j = 1, where ηj is the j-th seed index in η.
11: end for
12: return X(0)← X.

The FOCG algorithm does not terminate until X∗j is a
KKT point of f(Xj) for all j ∈ [1, k]. The reason is that,
if there exist an X∗j that is not a KKT point of f(Xj),
then F (X) can be further increased by LUA. Since FOCG
converges when all X∗j (j ∈ [1, k]) are KKT points of f(Xj),
according to Theorem 1, X∗ is a KKT point of graph G.

For Algorithm 2, a proper initialization of X(0) usually
improves the possibility of getting a KKT point X∗ with
large value of F (X∗). Here, we propose an initialization
method IOCG (Algorithm 3) for the initialization of X(0).

IOCG randomly selects k seed vertices as the initializa-
tions for the k subgraphs Si (1 ≤ i ≤ k) in S. The first seed
is selected according to the degree of each vertex on the co-
hesive network A+. The roulette wheel selection method [23]
h = Roul(d+) randomly selects a vertex vh with probability

dh∑n
i=1 di

, thus the vertices with larger degrees are more likely

to be selected. Heuristically, a vertex with a large degree
in the cohesive network is more likely to be a member of
a dense subgraph. The other (k − 1) seed vertices are se-
lected under the criterion that the opposition between seed
vertices should be large. Again, heuristically, such seed ver-
tices are more likely to belong to different dense subgraphs
such that the group of subgraphs in whole possesses a large
inter-subgraph opposition. As a result, IOCG provides a
good start point for FOCG to detect a KKT point X∗ with
large value of F (X∗). Such a KKT point often corresponds
to a significant k-OCG S∗ = {S∗j | j ∈ [1, k]}, where S∗j is
the subgraph induced by X∗j .

Let ψ be the set of all KKT points of F (X). The size of
ψ is often very large and it is impractical to compute the
entire set. However, in real applications, more often than
not we are interested in only the significant k-OCGs of large
value of F (X). Similar to most dense subgraph detection
methods, we adopt the “peeling-off” method [21, 16, 6]. Due
to its simplicity and robustness, such a “peeling-off” method
is widely used in the task of dense subgraph detection to
enumerate the set of KKT points.

Specifically in our case, when a KKT pointX∗ is obtained,
it is first added into the answer set. Then, we remove the ver-
tices and edges that belong to the corresponding k-subgraph
set S∗ from graph G and find another KKT point using a
new initialization of X(0). Such a process iterates until all

vertices in graph G are removed and a set of KKT points

ψ̂ is obtained. Then, we can search ψ̂ for the significant
k-OCGs of large value of F (X∗).

5. EXPERIMENTS
In this section, we evaluate the performance of the pro-

posed FOCG algorithm and compare it with the state-
of-the-art related signed network partitioning method-
s including (1) Simple Normalized Signed Graph Lapla-
cian method (SNS) [31], (2) Signed Normalized Laplacian
method (SNL) [11], (3) Balance Normalized Cut method
(BNC) [5], and (4) Ratio Associate method (RA) [5]. Both
the SNS and SNL methods are incorporated in the standard
spectral clustering framework [28] to perform the partition-
ing task on signed network. The codes for BNC and RA were
provided by Chiang et al. [5]. We also compare the scalabil-
ity of FOCG and the Proximal Gradient method (PG) [20].
We use the default parameters for all compared methods.
For FOCG and PG, we set α = 0.9, β = 50 and k = 10 by
default. All experiments are performed using MATLAB. We
use a PC with Core-i7-3370 CPU (3.40GHz), 16GB memory,
and a 5400 rpm hard drive running Ubuntu 15.04.

The following five data sets are used:
Synthetic Data Set. The synthetic data set is generated

by the data generation method proposed by Chiang et al. [5].
We generate four networks with different sparsity. Each net-
work contains 10,000 vertices that form 20 subgraphs. The
edges within a subgraph are cohesive and the edges between
different subgraphs are oppositive.

Slashdot Data Set. The public Slashdot data set is from
SNAP [24]. We use the version “soc-sign-Slashdot081106”,
which is a directed signed network containing 77,357 vertices
and 516,575 edges.

Epinions Data Set. The Epinions data set is a pub-
lic data set on SNAP [24]. It is a directed signed network
containing 131,828 vertices and 841,372 edges.

Douban Data set. The Douban data set [30] contains a
social network of users and the movie ratings of each user.
We build the signed network in three steps. First, we induce
a cohesive network G+ = {V,E+} by treating each user as
a vertex in vertex set V and their friendships as cohesive
edges in edge set E+. Second, we build an oppositive net-
work G− = {V,E−} by calculating the average movie rat-
ing difference between each pair of users. If the difference is
greater than 1, we build an oppositive edge between them.
Last, we obtain the signed network G = {V,E} by merging
G+ and G−. Since the set of vertices V in G+ and G− are
the same, we only merge the set of edges E = E+ ∪ E−. If
there are both cohesive edge and oppositive edge between a
pair of users, we keep the oppositive edge in G. The network
contains 1.59 million vertices and 19.67 million edges.

WordNetAdj Data Set. The WordNetAdj data set is
a subset of adjectives sampled from the adjective network of
the WordNet database [18]. It contains 12,883 vertices and
39,460 edges, where each vertex represents an adjective. The
edge between a pair of synonyms is cohesive and the edge
between a pair of antonyms is oppositive.

For the directed networks of Slashdot and Epinions, we

symmetrize the adjacency matrix A by A = A+A>

2
.

5.1 Performance Measures
Let S = {S∗1 ,S∗2 , . . . ,S∗p} be a set of p detected k-OCGs,

where S∗i = {S∗i,j | j = 1, . . . , k} is a k-OCG and S∗i,j is
a cohesive subgraph in S∗i . Let np be the total number of



vertices contained by the set of k-OCGs S. Apparently, we
have np ≤ n, where n is the number of vertices in G.

The intra-subgraph cohesion of a single subgraph S∗i,j is

Cohe(S∗i,j) =
1

|S∗i,j | (|S∗i,j | − 1)

∑
h∈S∗i,j

∑
l∈S∗i,j
l 6=h

A+
h,l

where |S∗i,j | is the number of vertices in subgraph S∗i,j .
Cohe(S∗i,j) is the average cohesive edge weight of subgraph
S∗i,j , which is a widely used measurement for intra-subgraph
cohesion [27].

The inter-subgraph opposition between two subgraphs
S∗i,j and S∗i,h can be measured by

Oppo(S∗i,j , S
∗
i,h) =

1

|S∗i,j | |S∗i,h|
∑
r∈S∗i,j

∑
l∈S∗

i,h

A−r,l

We define the Mean Average Cohesion (MAC) as the
mean of the average intra-subgraph cohesion for all k-OCGs
in S, that is,

MAC =
1

p

p∑
i=1

(
1

k

k∑
j=1

Cohe(S∗i,j)

)

Moreover, the Mean Average Opposition (MAO) is
the mean of the average inter-subgraph opposition for all
k-OCGs in S, that is,

MAO =
1

p

p∑
i=1

 1

k(k − 1)

∑
j∈[1,k]

∑
h∈[1,k]
h 6=j

Oppo(S∗i,j , S
∗
i,h)


Finally, we define Harmonic Mean (HAM) as

HAM =
2× (MAC ·MAO)

MAC + MAO

Mean Average Precision (MAP) is only used on the
synthetic data set, where the vertex index set for each of the
20 subgraphs is known and used as ground truth. Denote
such vertex index set of the j-th subgraph as Sgtj , j ∈ [1, 20],
we measure the average precision of a single k-OCG S∗i by

Prec(S∗i ) =
1

20

20∑
j=1

|S∗i,j ∩ Sgtj |
|S∗i,j |

and further evaluate MAP by

MAP =
1

p

p∑
i=1

Prec(S∗i )

Since all the signed network partitioning methods (i.e.,
SNS, SNL, BNC and RA) partition the entire graph G into
a single k-OCG, the size of S is p = 1 for those methods.
For FOCG, the k-OCGs in S are obtained by selecting the
top-p KKT points with large value of F (X∗) from the set of

KKT points ψ̂. Thus, the size of S for FOCG is p > 1.
Using a small value of p (e.g., p = 10) FOCG returns an

answer S that contains the top ten k-OCGs, which usual-
ly achieve very high MAC, MAO and HAM performance.
However, for the fairness of the comparison, we set p to a
large value so that np = 0.5 × n, which forces FOCG to
produce k-OCGs covering 50% of the vertices in graph G.
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Figure 1: Ranked HAM performances on real world
data sets. n is the number of vertices in G.
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Figure 2: The effect of parameter α.

5.2 Effect of Parameters
We analyze the effect of parameters np and α (Equation 2)

of FOCG.
To analyze the effect of np, we sort all the KKT points X∗

in ψ̂ in descending order of F (X∗), then evaluate the HAM
value for each KKT point X∗ by regarding it as the only
k-OCG in S. Figure 1 shows the results on the two real data
sets with respect to the percentage of vertices in G that are
covered by the top-p KKT points.

The KKT points ranked on the top (i.e.,
np

n
< 0.01)

achieve very high HAM on both data sets. The HAM de-
creases and approaches zero when

np

n
≈ 0.45. This indicates

that about 45% of the vertices in graph G can form signifi-
cant k-OCGs. Therefore, for the fairness of experiment, we
evaluate the performance of FOCG by the average perfor-
mance of all k-OCGs that cover 50% of the vertices of G,
that is, setting np = 0.5× n.

Figure 2 shows the effect of parameter α on the perfor-
mances of FOCG. In Equation 2, α controls the tradeoff
between intra-subgraph cohesion and inter-subgraph opposi-
tion. A larger α results in a smaller intra-subgraph cohesion
thus a lower MAC, and a larger inter-subgraph opposition
thus a higher MAO. As shown in Figure 2, the larger α, the
smaller MAC and larger MAO. However, when α > 1, MAC,
MAO and HAM all become stable. This indicates that the
second term αg−(S) of Equation 2 dominates F (X) when
α > 1, thus the detected k-OCGs favor MAO most and do
not change much when α increases further. HAM on both
data sets becomes stable when α = 0.9, thus we set α = 0.9
as default in our experiments.

5.3 Effect of Network Sparsity
We analyze the effect of network sparsity using the syn-

thetic data set. The sparsity of the signed network is defined
as the percentage of zero entries in the signed network ad-
jacency matrix A.

A higher sparsity weakens both the cohesive and opposi-
tive connections between graph vertices, thus decreases both
the intra-subgraph cohesion and inter-subgraph opposition.
Thus, in Figure 3(a)-(c), MAC, MAO and HAM all decrease
when the sparsity increases. However, in Figure 3(d), MAP
of all graph partitioning methods is not sensitive to sparsity.



0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

Sparsity

M
A

C

 

 

FOCG (k=20)
RA, BNC, SNS, SNL. (k=20)

(a) MAC performances

0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

Sparsity

M
A

O

 

 

FOCG (k=20)
RA, BNC, SNS, SNL. (k=20)

(b) MAO performances

0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

Sparsity

H
A

M

 

 

FOCG (k=20)
RA, BNC, SNS, SNL. (k=20)

(c) HAM performances

0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

Sparsity

M
A

P

 

 

FOCG (k=20)
RA, BNC, SNS, SNL. (k=20)

(d) MAP performances

Figure 3: The effect of network sparsity.

This is because the connectivity of the cohesive network and
oppositive network is not affected too much by the sparsity.
Thus, the partitioning methods can still accurately find the
20 subgraphs in the ground truth. FOCG achieves the same
good performance in MAP as the graph partitioning meth-
ods, which means the k-OCGs detected by FOCG are also
consistent with the ground truth.

In Figure 3(a)-(c), when the sparsity is 0.2, SNS, SNL,
BNC and RA achieve equivalently good performance as
FOCG. This is because when the sparsity is small, the 20
subgraphs of the synthetic data set form a single 20-OCG.
Thus, partitioning the entire graph into 20 subgraphs leads
to the perfect result. However, when the sparsity increas-
es, the original single k-OCG will be scattered into many
small k-OCGs. In this case, partitioning the entire graph
does not effectively obtain such small significant k-OCGs,
thus the performance of the graph partitioning methods de-
grades quickly. Nevertheless, FOCG is able to accurately
detect such small k-OCGs, thus achieves better performance
under high sparsity. It is worth noting that real word signed
network are often sparse. For example, the network sparsity
of Slashdot and Epinions are both larger than 0.99.

5.4 Results on Real Data
We compare the performance of all methods on Slash-

dot and Epinions. In such real world networks, a k-OCG
represents k groups of people with strong intra-group co-
hesion and strong inter-group opposition. Apparently, the
chance of finding k = 50 groups of people with strong inter-
group opposition is much smaller than finding k = 2 groups
of such people. Thus, it is more difficult to achieve good
performance in MAO when k is large. As a result, in Fig-
ure 4(c)-(d), the MAO of FOCG decreases when k increases.

Since the real world networks are highly sparse, the entire
network cannot form a single significant k-OCG. Instead,
there are many small sized k-OCGs in different local regions.
Since FOCG is designed to detect such small significant k-
OCGs, it achieves much better HAM in Figure 4(e)-(f).

In Figure 4(a)-(b), FOCG is not always the best in MAC.
In Figure 4(c)-(d), BNC outperforms FOCG in MAO when
k = 7 and k = 5, respectively. The reason is that the k-
OCGs in S of FOCG are selected according to the value of
F (X∗), which leads to a high HAM and a balanced per-
formance of MAC and MAO. Since we are most interested
in finding the significant k-OCG with both strong intra-
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(c) MAO on Slashdot
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Figure 4: Performances on Slashdot and Epinions.
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Figure 5: Scalability analysis on Douban data set.

subgraph cohesion and strong inter-subgraph opposition,
a good HAM performance with balanced MAC and MAO
guides the objective. Although FOCG may not achieve the
best in MAC or MAO, its advantage on HAM is significant
in Figure 4(e)-(f).

5.5 Scalability Analysis
We compare the scalability of FOCG and the Proximal

Gradient method (PG) [20] on the Douban data set. We
obtain four sub-networks from the Douban data set as fol-
lows. First, we start a breadth first search (BFS) from a
randomly picked vertex on the cohesive network G+ until
the desired number of vertices are visited. Let S be the set
of all vertices visited by the BFS. We use S to induce a co-
hesive sub-network G+

S and an oppositive sub-network G−S .
Last, we obtain the signed sub-network GS by merging the
edge sets of G+

S and G−S . The number of vertices and that
of edges of the 5 networks are listed in Table 2, where the
5-th network is simply the entire Douban data set.

On each of the 5 data sets, we run FOCG and PG 10 times
and report the average results. In each run, we randomly
initialize X(0) by the same initialization method of PG, then
run FOCG and PG using the same initialization.

Figure 5(a) shows the objective value F (X∗) of the KKT
point X∗ detected by FOCG and PG. The objective values
of FOCG and PG are close. Both FOCG and PG perform
well in solving the optimization problem of Equation 2.



Table 2: The sampled Douban data sets.
Sample ID 1 2 3 4 5

vertices (×103) 31.8 79.4 135.0 238.3 1,588.5
Edges (×106) 3.1 7.1 11.3 15.5 19.7

Table 3: k-OCGs detected on WordNetAdj.
ID Group 1 Group 2
1 outgoing, outer, external,

outward
inner, internal, inward,
interior

2 imprudent, improvident,
short

long, prudent, farsighted,
provident

3 descending, downward,
falling

ascending, rising, up

4 junior, insignificant,
minor

leading, senior, better,
major

5 noncurrent, backmost,
back, , hindermost, rear

frontal, front, advanced,
advancer, advance

6 unnecessary, excess,
inessential, spare, extra

inevitable, essential,
necessary

7 proud, stately, dignified,
distinguished, courtly

silly, undignified, infra
dig, demeaning, pathetic

8 active, alive, operational,
existent

dormant, inactive,
quiescent

9 inexperienced, unfledged,
unfeathered

fledgling, full-fledged,
fledged, feathered

10 involuntary, unwilled,
unwilling

voluntary, ready, willing,
inclined

Figure 5(b) shows the running time of FOCG and PG.
The running time increases as the number of edges increas-
es. FOCG is two orders of magnitudes faster. PG is a gener-
ic solution for constrained optimization problems, and is
not specifically designed for k-OCG detection. It calculates
the gradient of F (X) in each iteration. The computation-
al cost in calculating such gradients is very expensive when
the number of edges is large. On the contrary, all FOCG
iterations are efficiently performed on small subgraphs.

5.6 Case Study
We conduct a case study on the WordNetAdj data set,

where each vertex represents an adjective, a cohesive edge
indicates synonymous relationship and an opposite edge in-
dicates antonymous relationship. In this network, a cohe-
sive subgraph consists of a group of synonyms and a k-OCG
is k groups of synonyms such that the adjectives in differ-
ent groups are mostly antonymous with each other. Since
the antonymous relationship between adjectives are usually
bipolar, it is reasonable to set k = 2.

Table 3 shows the top-10 k-OCGs detected. Each row
shows the two adjective groups of a detected k-OCG. This
case study verifies that significant k-OCGs reveal interesting
patterns in WordNetAdj.

6. CONCLUSIONS
In this paper, we tackled the novel problem of finding

k-oppositive cohesive groups from signed networks. We
formulated the k-OCG detection problem as a constrained
quadratic optimization problem and designed FOCG, an ef-
fective and efficient algorithm. Our experiments on both
synthetic data sets and real data sets showed that FOCG can
find interesting “gangs in war”, and is two orders of magni-
tudes faster than the traditional proximal gradient method.
As future work, we will extend FOCG towards its online
version to process dynamic streaming signed networks.

7. REFERENCES
[1] P. Anchuri and M. Magdon-Ismail. Communities and balance in

signed networks: A spectral approach. In ASONAM, pages
235–242, 2012.

[2] R. Axelrod and D. S. Bennett. A landscape theory of
aggregation. British Journal of Political Science,
23(02):211–233, 1993.
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