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Abstract. In outlying aspects mining, given a query object, we aim
to answer the question as to what features make the query most out-
lying. The most recent works tackle this problem using two different
strategies. (i) Feature selection approaches select the features that best
distinguish the two classes: the query point vs. the rest of the data. (ii)
Score-and-search approaches define an outlyingness score, then search
for subspaces in which the query point exhibits the best score. In this
paper, we first present an insightful theoretical result connecting the two
types of approaches. Second, we present OARank – a hybrid frame-
work that leverages the efficiency of feature selection based approaches
and the effectiveness and versatility of score-and-search based methods.
Our proposed approach is orders of magnitudes faster than previously
proposed score-and-search based approaches while being slightly more
effective, making it suitable for mining large data sets.

Keywords: Outlying aspects mining, feature selection, feature ranking,
quadratic programming

1 Introduction

In this paper, we are interested in the novel and practical problem of investigat-
ing, for a particular query object, the aspects that make it most distinguished
compared to the rest of the data. In [5], this problem was coined outlying aspect
mining, although it has also been known as outlying subspaces detection [15],
outlier explanation [10], outlier interpretation [2], and object explanation [12].
Outlying aspects mining has many practical applications. For example, a home
buyer would be highly interested in finding out the features that make a partic-
ular suburb of interest stand out from the rest of the city. A recruitment panel
may be interested in finding out what are the most distinguishing merits of a
particular candidate compared to others. An insurance specialist may want to
find out what are the most suspicious aspects of a certain insurance claim. A
natural complementary task to outlying aspects mining is inlying aspects mining,
i.e., what features make the query most usual.

A practical example of outlying aspects mining is given in Fig. 1, where
we present the outlying-inlying aspects returned by our proposed approach–
OARank–for player Kyle Korver in the NBA Guards dataset (data details
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(a) 2D inlying subspace
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(b) 3D inlying subspace
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(c) 2D outlying subspace
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(d) 3D outlying subspace

Fig. 1. OARank inlying/outlying subspaces for NBA player Kyle Korver (red circle)

given in Section 4.1). NBA sports commentators are interested in the features
that make a player most unusual (and maybe also usual). If we take the kernel
density rank as an outlyingness measure, then it can be observed that in the
top 2D and 3D-inlying subspaces, Kyle has very low density ranking (198th and
168th over 220 players respectively). The attributes in which Kyle appears most
usual are “Rebound (Offensive)”, “Free throw (Percentage)” and “Field goal
(Percentage)”. On the other hand, in the top outlying subspaces, Kyle has very
high density rank (2nd and 5th over 220 players respectively). Kyle is indeed
very good at 3-points scoring: “3-points (Attempted)”, “3-points (Made)”, and
“3-points (Percentage)”.

Outlying aspects mining (or outlier explanation) has a close relationship with
the traditional task of outlier detection, yet with subtle but critical differences.
In this context, we only focus on the query object, which itself may or may not
be an outlier. It is also not our main interest to verify whether the query object is
an outlier or not. We simply are interested in subsets of features (i.e., subspaces)
that make it most outlying. We are also not interested in other possible outliers
in the data, if any. In contrast, outlier detection aims to identify all possible
outlying objects in a given data set, often without explaining why such objects
are considered as outliers. Outlier explanation is thus a complementary task to
outlier detection, but could be used in principle to explain any object of interest.
Thus, in this paper, we shall employ the term outlying aspects mining, which is
more generic than outlier explanation.

1.1 Related work

The latest work on outlying aspects mining can be categorized into two main
directions, which we refer to as feature selection approaches [4], and score-and-
search approaches [5].
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– In feature selection approaches [10, 12], the problem of outlying aspects min-
ing is first transformed into the classical problem of feature selection for clas-
sification. More specifically, the two classes are defined as the query point
(positive class) and the rest of the data (negative class). In [4], to balance
the classes, the positive class is over-sampled with samples drawn from a
Gaussian distribution centred at the query point, while the negative class is
under-sampled, keeping k full-space neighbors of the query point and some
other data points from the rest of the data. Similarly in [12], the positive
class is over-sampled while keeping all other data points as the negative
class. The feature subsets that result in the best classification accuracy are
regarded as outlying features and selected for user inspection.
A similar approach to feature selection is feature transformation [2], which
identifies a linear transformation that best preserves the locality around the
neighborhood of the query point while at the same time distinguishing the
query from its neighbors. Features with high absolute weights in the linear
transformation are deemed to contribute more to the outlyingness of the
query.

– In score-and-search based methods, a measure of outlyingness degree is needed.
The outlyingness degree of the query object will be compared across all pos-
sible subspaces, and the subspaces that score the best will be selected for
further user inspection. In [5], the kernel density estimate was proposed as
an outlyingness measure. It is well known, however, that the raw density
measure tends to be smaller for subspaces of higher dimensionality, as a re-
sult of increasing sparseness. For this reason, the rank statistic was used to
calibrate the raw kernel density to avoid dimensionality bias. Having defined
an outlyingness measure, it is necessary to search through all possible sub-
spaces and enumerate the ones with lowest density rank. Given a dataset of
dimension d, the number of subspaces is (2d − 1). If the user specifies a pa-
rameter dmax as the maximum dimensionality, then the number of subspaces
to search through is in the order of O(ddmax ).

1.2 Contribution

In this paper, we advance the state of the art in outlying aspects mining by
making two important contributions. First, we show an insightful theoretical
result connecting the two seemingly different approaches of density-based score-
and-search and feature selection for outlying aspects mining. In particular, we
show that by using a relevant measure of mutual information for feature selec-
tion, namely the quadratic mutual information, density minimization can be re-
garded as contributing to maximizing the mutual information criterion. Second,
as exhaustive search for subspaces is expensive, our most important contribution
in this paper is to propose an alternative scalable approach, named OARank,
in which the features are ranked based on their potential to make the query
point having low density. The top-ranked features are then selected either for
direct user inspection, or for a more comprehensive score-and-search with the
best-scored subspaces then reported to the user. The feature ranking procedure
takes only quadratic time in the number of dimensions and scales linearly w.r.t
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the number of data points, making it much more scalable and suitable for min-
ing large and high dimensional datasets, where a direct enumeration strategy is
generally infeasible.

2 Connection between density-based score-and-search
and feature selection based approaches

In the feature selection approach, the problem of explaining the query is first
posed as a two-class classification problem, in which we aim to separate the
query q (positive class c1) from the rest of the data O (negative class c0) of
n objects {o1, . . . ,on}, oi ∈ Rd. Let D = {D1, . . . , Dd} be a set of d numeric
features (attributes). In the feature selection approaches [4, 12], to balance the
class distribution, the positive class c1 is augmented with synthetic samples from
a Gaussian distribution centred at the query. The task is then to select the top
features that distinguish the two classes. These features are taken as outlying
features for the query.

We now show that there exists a particular feature selection paradigm which
has a close connection to density based approaches. Let us form a two-class data
set

X = {x1 ≡ o1, . . . ,xn ≡ on︸ ︷︷ ︸
c0

,xn+1 ≡ q, . . . ,x2n ≡ q︸ ︷︷ ︸
c1

}

Note that here we have over-sampled the positive class simply by duplicating
q n times, so that the classification problem is balanced. Mutual information
based feature selection aims to select a subset of m features such that the in-
formation shared between the data and the class variable is maximized, i.e.,
maxS⊂D,|S|=m I(XS;C), where XS is the projection of the data onto the sub-
space S and C is the class variable. We will show that by using a particular
measure of entropy coupled with the Gaussian kernel for density estimation, we
arrive at a formulation reminiscent of density minimization. In particular, we
shall make use of the general Havrda-Charvat’s α-structural entropy [6], defined
as:

Hα(X) = (21−α − 1)−1
[∫

f(x)αdx− 1

]
, α > 0, α 6= 1 (1)

Havrda-Charvat’s entropy reduces to Shanon’s entropy in the limit when α→ 1,
hence it can be viewed as a generalization of Shannon’s entropy [7, 9].

In order to make the connection, we shall make use of a particular ver-
sion of Havrda-Charvat’s entropy with α = 2, also known as quadratic Havrda-
Charvat’s entropy H2(X) = 1 −

∫
f(x)2dx (with the normalizing constant dis-

carded for simplicity).

Using the Gaussian kernel G(x − Xi, σ
2) = (2πσ2)−d/2 exp(−‖x−Xi‖2

2σ2 , the

probability density of X is estimated as f̂(x) = 1
2n

∑2n
i=1G(x − Xi, σ

2). The
quadratic entropy of X can be estimated as:

H2(X) = 1− 1

(2n)2

∫
x

(
2n∑
i=1

G(x−Xi, σ
2)

)2

dx = 1− 1

(2n)2

2n∑
i=1

2n∑
j=1

G(Xi −Xj , 2σ
2)
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wherein we have employed a nice property of the Gaussian kernel, which is that
the convolution of two Gaussian remains a Gaussian [14]:∫

x

G(x−Xi, σ
2)G(x−Xj , σ

2) dx = G(Xi −Xj , 2σ
2) (2)

The conditional quadratic Havrda-Charvat’s entropy of X given a (discrete)

variable C is defined as H2(X|C) =
∑K
k=1 p(ck)H2(X|C = ck). We have:

H2(X|C = c0) = 1− 1

n2

n∑
i=1

n∑
j=1

G(Xi −Xj , 2σ
2)

H2(X|C = c1) = 1− 1

n2

2n∑
i=n+1

2n∑
j=n+1

G(Xi −Xj , 2σ
2)

then H2(X|C) = 1
2H2(X|C = c0) + 1

2H2(X|C = c1). Finally, the quadratic
mutual information between X and C is estimated as:

I2(X;C) = H2(X)−H2(X|C) =
1

(2n)2
(CC + CS )

where

CC =

n∑
i,j=1

G(Xi −Xj , 2σ
2) +

2n∑
i,j=n+1

G(Xi −Xj , 2σ
2)

CS = −2

n∑
i=1

2n∑
j=n+1

G(Xi −Xj , 2σ
2)

An interesting interpretation for the quadratic mutual information is as follows:
the quantity G(Xi −Xj , 2σ

2) can be regarded as a measure of interaction be-
tween two data points, which can be called the information potential [3]. The
quantity

∑n
i,j=1G(Xi −Xj , 2σ

2) is the total strength of intra-class interaction

within the negative class and
∑2n
i,j=n+1G(Xi − Xj , 2σ

2) is the total strength

of intra-class interaction within the positive class (within-class total informa-
tion potential), thus CC is a measure of class compactness. On the other hand,∑n
i=1

∑2n
j=n+1G(Xi − Xj , 2σ

2) measures inter-class interaction (cross-class in-

formation potential), thus CS is a measure of class separability. For maximizing
I2(X, C), we aim to maximize intra-class interaction while minimizing inter-class
interaction.

Theorem 1. Density minimization is equivalent to maximization of class sep-
arability in quadratic mutual information based feature selection.

Proof. Note that since the positive class contains only q (duplicated n times),
we have

CS = −2n

n∑
i=1

G(Xi − q, 2σ2) = −2n2f̂(q),
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where f̂(q) = 1
n

∑n
i=1G(Xi − q, 2σ2) is nothing but the kernel density estimate

of q. Thus, it can be seen that minimizing the density of q is equivalent to mini-
mizing inter-class interaction (cross-class information potential), or equivalently
maximizing class separability. ut

This theoretical result shows that there is an intimate connection between
density-based score-and-search and feature selection based approaches for out-
lying aspects mining. Minimizing the density of the query will contribute to
maximizing class separation, and thus maximizing the mutual information cri-
terion. This insightful theoretical connection also points out that the mutual-
information based feature selection approach is more comprehensive, in that it
also aims to maximize the class compactness. The relevance of class-compactness
to outlying aspects mining is yet to be explored.

3 Outlying Aspects Mining via Feature Ranking

We now present the main contribution of this paper—OARank—a hybrid ap-
proach for outlying aspects mining that leverages the strengths of both the fea-
ture selection and the score-and-search paradigms. This is a two-stage approach.
In the first stage, we rank the features according to their potential to make the
query outlying. In the second (and optional) stage, score-and-search can be per-
formed on a smaller subset of the top-ranked m� d features.

3.1 Stage 1: OARank–Outlying Features Ranking

We aim to choose a subset of m features S ⊂ D such that the following criterion
is minimized:

SS : min
S⊂D
|S|=m

C(m)

n∑
i=1

∑
t,j∈S
t<j

K(qj − oij , hj)K(qt − oit, ht)

 (3)

where K(x − µ, h) = (2πh2)−1/2 exp{−(x − µ)2/2h2} is the one dimensional
Gaussian kernel with bandwidth h and center µ, and C(m) = 2

nm(m−1)2m−2 is a

normalization constant.
We justify this subset selection (SS) objective function as follows: the objective

function in SS can be seen as a kernel density estimate at the query point q. To
see this, we first develop a novel kernel function for density estimation, which
is the sum of 2-dimensional kernels. Herein, we employ the Gaussian product
kernel recommended by Scott [11], defined as:

K(q− oi,h) =
1

(2π)d/2
∏d
j=1 hj

d∏
j=1

exp(
−(qj − oij)

2

2h2j
) (4)

where hj ’s are the bandwidth parameters in each individual dimension. We note
that, in the product kernel (4), a particular dimension (feature) can be ‘de-
emphasized’, by assigning its corresponding 1D-kernel to be the ‘uniform’ kernel,
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or more precisely, a rectangular kernel with sufficiently large bandwidth σu, i.e.,

Ku(qj − oij , σu) =

{
1/(2σu) if

|qj−oij |
σu

≤ 1
0 otherwise

(5)

Note that σu can be chosen to be arbitrarily large, so that we can assume that
any query point of interest q will lie within σu-distance from any kernel center
oi in any dimension. In our work, we normalize the data (including the query) so
that oij ∈ [−1, 1] in any dimension, thus σu could simply be chosen as σu = 1.
From the product kernel (4), if we de-emphasize all dimensions, but keeping only
two ‘active’ dimensions {t, j}, then we obtain the following d-dimensional kernel:

Ktj(q− oi,h) =
1

(2σu)d−2
K(qj − oij , hj)K(qt − oit, ht) (6)

Averaging over all d(d− 1)/2 pairs of dimensions yields the following kernel:

K(q− oi,h) =
2

d(d− 1)(2σu)d−2

d∑
j<t

Ktj(q− oi,h) (7)

Theorem 2. The kernel function K(q − oi,h) as defined in (7) is a proper
probability density function.

Proof. It is straightforward to show that K(q−oi,h) ≥ 0 and
∫
Rd K(q−oi,h) =

1 ut

Employing this new kernel to estimate the density of the query point q in
a subspace S ⊂ D, we obtain exactly the objective function in SS, which when
minimized will minimize the density at the query q, i.e., making q most outlying.

3.2 Solving the Outlying-Inlying Aspects Ranking Problem

The subset selection problem SS can be equivalently formulated as a quadratic
integer programming problem as follows:

min
w

{
wTQ′w

}
s.t. wi ∈ {0, 1},

∑
wi = m (8)

where Q′tj =
∑n
i=1

1
hj
Kj(

qj−oij

hj
) × 1

ht
Kt(

qt−oit

ht
), t 6= j and Q′tt = 0. Equiva-

lently, we can rewrite it in a maximization form as

QIP : max
w

{
wTQw

}
s.t. wi ∈ {0, 1},

∑
wi = m (9)

where Qtj = Φ − Q′tj and Φ = maxi,jQ
′
ij . While (8) and (9) are equivalent,

the Hessian matrix Q is entry-wise non-negative, a useful property that we will
exploit shortly. The parameter m specifies the size of the outlying subspace we
wish to find. It is noted that SS and QIP are not monotonic with respect to
m, i.e., with two different m values, the resulting outlying subspaces are not
necessarily subsets of one another.



8 Vinh et al.

As QIP is well known to be NP-hard [1], we relax the problem to the real
domain, as follows. Note that with wi ∈ {0, 1},

∑
wi = m, we also have ‖w‖2 =√

m. We shall now drop the integral 0-1 constraint, which in fact causes NP-
hardness, while keeping the norm constraint:

max
w

{
wTQw

}
s.t. ‖w‖2 =

√
m, wi ≥ 0 (10)

The additional non-negativity constraints wi ≥ 0 ensure that the relaxed solu-
tion can be reasonably interpreted as feature ‘potential’ in making q outlying.
Also note that we can replace ‖w‖2 =

√
m with ‖w‖2 = 1 without changing

the optimal relative weight ordering (all the weights wi are scaled by the same
multiplicative constant 1/

√
m). Thus, we arrive at

QP : max
w

{
wTQw

}
s.t. ‖w‖2 = 1, wi ≥ 0 (11)

Observe that since Qij ≥ 0, the solution to this problem is simple and straight-
forward: it is the dominant eigenvector associated with the dominant eigenvalue
of the Hessian matrix Q [13]. Note that with this relaxation scheme, the pa-
rameter m has been eliminated, thus OARank will produce a single ranking.
The outcome of this quadratic program can be considered as feature potentials:
features that have higher potentials contribute more to the outlyingness of the
query. Features can be ranked according to their potentials. The top-ranked m
features will be chosen for the next score-and-search stage.

Note that an interesting novel by-product of this ranking process is the inlying
aspects, i.e., features with the lowest potentials. These inlying aspects are features
(subspaces) in which the query point appears to be most usual.

3.3 Stage 2: OARank+Search

Having obtained the feature ranking in stage 1, there are two ways to proceed:
(i) One can take the top k-ranked features as the single most outlying subspace
of size k. A more flexible way is to (ii) perform a comprehensive score-and-
search on the set of top-ranked m � d features, and report a list of top-scored
subspaces for user inspection. The search on the filtered feature set is however
much cheaper than a search in the full feature space.

3.4 Complexity analysis

Ranking stage: The cost of building the Hessian matrix Q is O(d2n). The cost
for finding the dominant eigenvector of Q is O(d2). Thus overall, the complexity
of the ranking process is O(d2n).
Score-and-Search stage: If we employ the density rank measure, the cost for
scoring (i.e., computing the density rank for the query) in a single subspace is
O(n2) time. The number of subspaces to score is O(2m−1) for exhaustive search,
or O(mdmax ) if a maximum subspace size is imposed. Note that for practical
applications, we would prefer the subspaces to be of small dimensionality for
improved interpretability, thus it is practical to set, for example, dmax = 5. The
overall complexity of this stage is O(n2mdmax )
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Overall, the complexity of both stages is O(d2n + n2mdmax ) for the pro-
posed two-stage approach. For comparison, a direct density rank based score-
and-search approach on the full space costs O(n2ddmax ), which is infeasible when
d is moderately large.

Techniques for further improving scalability: While the ranking phase
of OARank is generally very fast, the search phase can be slow, even on the
reduced feature set. To further speed up the search phase, one can further prune
the search space. In particular, the search space can be explored in a stage-
wise manner, expanding the feature sets gradually. In exhaustive search, every
feature set of size k will be expanded to size k+ 1 by adding 1 more feature. We
can improve the efficiency of this process, sacrificing comprehensiveness, by only
choosing a small subset of most promising subspaces (i.e., highly-scored) of size
k to be expanded to size k + 1.

4 Experimental Evaluation

In this section, we experimentally evaluate the proposed approaches, OARank
and OARank+Search. We compare our approaches with the density rank
based approach in [5] and Local Outlier with Graph Projection (LOGP) [2].
LOGP is the closest method in spirit to OARank, in that it also learns a set
of weights: features with higher weights contribute more to the outlyingness of
the query. These weights are from a linear transformation that aims to separate
the query from its full-space neighborhood. LOGP was proposed as a method
for both detecting and explaining outliers. We implemented all methods in Mat-
lab/C++ except LOGP for which the Matlab code was kindly provided by the
authors. The parameters for all methods were set as recommended in the original
articles [5, 2]. The bandwidth parameter for OARank was set according to [5],

i.e., h = 1.06 min{σ, R
1.34}n

− 1
5 with σ being the standard sample deviation, and

R being the difference between the first and third quartiles of the data distribu-
tion. In order to improve the scalability of score-and-search based methods, we
apply a stage-wise strategy as discussed in Section 3.4 where only at most 100
top-scored subspaces are chosen for expansion at each dimension k < dmax = 5.
All experiments were performed on an i7 quad-core PC with 16Gb of main mem-
ory. The source code for our methods will be made available via our website.

4.1 The NBA data sets

We first test the methods on the NBA data available at http://sports.yahoo.
com/nba/stats. This data set was previously analyzed in [5], where the authors
collected 20 attributes for all NBA guards, forwards and centers in the 2012-2013
season, resulting in 3 data sets. We compare the quality of the ranking returned
by OARank and LOGP. More specifically, for each player, we find the top 1, 2
and 3 inlying and outlying features, and then compute the density rank for the
player in his outlying-inlying subspaces.

The results of this analysis on the NBA Forwards data set are presented
in Fig. 2. It can be clearly seen that OARank is able to differentiate between
inlying and outlying aspects. More precisely, in the outlying subspaces (of the
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(b) LOGP

Fig. 2. Outlying Feature Ranking: OARank vs. LOGP on NBA Forwards data set
(best viewed in color)

top-ranked 1/2/3 features), all players tend to have higher density rank than
their ranks in the inlying subspaces (of the bottom-ranked 1/2/3 features). On
the same data set, LOGP ranking does not seem to differentiate well between
outlying and inlying features. In particular, the rank distribution appears to
be uniform in both inlying and outlying subspaces. Thus, in this experiment,
qualitatively we can see that OARank is more effective at identifying inlying-
outlying aspects. The same conclusion applies for the NBA Guards and Centers
data sets, for which we do not provide detailed results due to space restrictions.
We have seen the detailed analysis for a specific player, Kyle Korver, in Figure
1. The feature weights and ranking returned by OARank for Kyle Korver can
be inspected in Fig. 3(e).

4.2 Mining non-trivial outlying subspaces

For a quantitative analysis, we employ a collection of data sets proposed by Keller
et al. [8] for benchmarking subspace outlier detection algorithms. This collection
contains data sets of 10, 20, 30, 40, 50, 75 and 100 dimensions, each consisting of
1000 data points and 19 to 136 outliers. These outliers are challenging to detect,
as they are only observed in subspaces of 2 to 5 dimensions but not in any
lower dimensional projection. We note again that our task here is not outlier
detection, but to explain why the annotated outliers are designated as such.
For this data set, since the ground-truth (i.e., the outlying subspace for each
outlier) is available as part of Keller et al.’s data, we can objectively evaluate
the performance of all approaches. Let the true outlying subspace be T and
the retrieved subspace be P . To evaluate the effectiveness of the algorithms, we
employ the Jaccard index Jaccard(T, P ) , |T ∩ P |/|T ∪ P |, and the precision,

precision , |T∩P |/|P |. The average Jaccard index and precision over all outliers
for different approaches on all datasets are reported in Figure 3(a,b).



Scalable Outlying-Inlying Aspects Discovery via Feature Ranking 11

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of dimensions

P
re

c
is

io
n

(a) Precision

 

 

Density rank

LOGP

OARank

OARank+Search

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of dimensions

J
a
c
c
a
rd

 I
n
d
e
x

(b) Jaccard Index

0 20 40 60 80 100
10

−4

10
−2

10
0

10
2

10
4

Number of dimensions

T
im

e
 (

s
e
c
o
n
d
s
)

(c) Execution Time

0 2 4 6 8 10

x 10
5

0

1

2

3

4

5

6

7

Data size

Ti
m

e 
(s

)

(d) Scalability

 

 
OARank

LOGP

0.16

0.18

0.2

0.22

0.24

0.26

3−
Po

in
ts

 (M
ad

e)

3−
Po

in
ts

 (A
tte

m
pt

ed
)

3−
Po

in
ts

 (P
er

ce
nt

ag
e)

Bl
oc

k

Reb
ou

nd
s 

(D
ef

en
siv

e)
Pe

rs
on

al
 fo

ul
M

in
ut

es

Reb
ou

nd
s 

(P
er

ce
nt

ag
e)

Po
in

ts
/g

am
e

Fi
el

d 
go

al
 (M

ad
e)

Fi
el

d 
go

al
 (A

tte
m

pt
ed

)
St

ea
l

G
am

e 
pl

ay
ed

Tu
rn

ov
er

As
sis

t

Fr
ee

 th
ro

w (M
ad

e)

Fr
ee

 th
ro

w (A
tte

m
pt

ed

Fi
el

d 
go

al
 (P

er
ce

nt
ag

e)

Fr
ee

 th
ro

w (P
er

ce
nt

ag
e

Reb
ou

nd
s 

(O
ffe

ns
ive

)

Features

(e) Outlying−Inlying features for Kyle Korver

Fe
at

ur
e 

W
ei

gh
t

Fig. 3. (a)-(c): Performance on identifying non-trivial outlying high-dimensional sub-
spaces; (d) Scalability; (e): OARank feature weights for Kyle Korver

We can observe that OARank and the density based score-and-search ap-
proach both outperform LOGP. OARank (without search) obtains relatively
good results, slightly better than density rank score-and-search at higher dimen-
sions. OARank (with search) did not seem to improve the results significantly
on this data set. In terms of execution time (Fig. 3c), OARank is the fastest,
being orders of magnitude faster than density rank score-and-search. It can also
be observed that the OARank+Search approach admits a near-flat time com-
plexity profile with regards to the number of dimensions. This agrees well with
the theoretical complexity of O(d2n) for ranking and O(n2mdmax ) for search. On
these data sets, the ranking time was negligible compared to search time, while
the search complexity of O(n2mdmax ) is independent of dimensionality.

4.3 Scalability

We tested the method on several large datasets. We pick the largest of Keller’s
data sets of 1000 points in 100 dimensions, and introduce more synthetic exam-
ples by drawing points from a Gaussian distribution centred at each data points,
resulting in several large data sets of size ranging from 50,000 to 1 million data
points. The run time for OARank and LOGP is presented in Figure 3(d). It is
noted that for these large datasets, the search phase using the density score is
computationally prohibitive, due to quadratic complexity in data size n. Both
LOGP and OARank deal well with large datasets, with linear time complexity
in the number of data points. This observation matches well with OARank’s
theoretical complexity of O(d2n) and demonstrates that OARank is capable of
handling large data sets on commodity PCs.

We shall note that another prominent feature of OARank is that it is suitable
for applications on streaming data: as data come in, entries in the Hessian matrix
Q can be updated gradually. Feature weights can also be updated on-the-fly in
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real time, given that there exist very efficient algorithms for computing the
dominant eigenvector of symmetric matrices.

5 Conclusion

In this paper, we have made two important contributions to the outlying aspects
mining problem. First, we have made an insightful connection between the den-
sity based score-and-search and the mutual information based feature selection
approach for outlying aspects mining. This insight can inspire the development
of further hybrid approaches, which leverage the strengths of both paradigms.
Second, we proposed OARank, an efficient and affective approach for outlying
aspects mining, which is inspired by the feature ranking problem in classification.
We show that OARank is suitable for mining very large data sets.
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