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Abstract How can we maintain a dynamic profile capturing a user’s reading interest
against the common interest? What are the queries that have been asked 1,000 times
more frequently to a search engine from users in Asia than in North America? What
are the keywords (or tags) that are 1,000 times more frequent in the blog stream
on computer games than in the blog stream on Hollywood movies? To answer such
interesting questions, we need to find discriminative items in multiple data streams.
Each data source, such as Web search queries in a region and blog postings on a
topic, can be modeled as a data stream due to the fast growing volume of the source.
Motivated by the extensive applications, in this paper, we study the problem of
mining discriminative items in multiple data streams. We show that, to exactly find
all discriminative items in stream S1 against stream S2 by one scan, the space lower
bound is �(|�| log n1

|�| ), where � is the alphabet of items and n1 is the current size
of S1. To tackle the space challenge, we develop three heuristic algorithms that can
achieve high precision and recall using sub-linear space and sub-linear processing
time per item with respect to |�|. The complexity of all algorithms are independent
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to the size of the two streams. An extensive empirical study using both real data sets
and synthetic data sets verifies our design.

Keywords data mining · data streams · discriminative items

1 Introduction

We want to build a personalized news delivery service. When a user joins the system,
we have no idea about the user’s profile, and thus we start to provide all news topics
to the user. As the user keeps reading some news articles, how can we maintain a
dynamic profile capturing the user’s reading interest? One meaningful approach is
to find the keywords that are much, say, 1,000 times, more frequent in the articles
read by the user than in the collection of all articles. We can use the profile to search
the news articles in the future to achieve a dynamic personalized service. However,
this problem is far from trivial since the user’s reading interest is dynamic and may
change from time to time. Moreover, news articles as well as the articles read by the
user keep arriving as data streams.

Problems carrying the similar nature can be found in many aspects of Web search.
For example, a search engine may want to monitor the search queries that are asked
1,000 times more frequently in a region, say Asia, than in another region, say North
America. Such queries are very useful for the search engine in query optimization,
localization, and suggestion. As another example, tagging and blogging are common
exercises on the Web now. One may wonder, comparing to the blog postings on
Hollywood movies, which tags are 1,000 times more frequent in the blog postings
on computer games. Those tags provide a means to characterize the ongoing topic
of computer games and the differences from Hollywood movies. Such information is
also useful in analyzing a social network of bloggers.

If one wishes, the list of similar examples can easily continue. For example, one
may compare the tags on images taken by different user groups to understand the
users’ interest. Moreover, in Intranet, one may compare activities and documents
in failed projects against those in successful projects to obtain hints of problems in
projects. To name one more, it is interesting to monitor the advertisements that are
clicked much more frequently by mobile users than those by other users so that we
can understand the differences in user preferences for sponsored search.

The above examples motivate a problem of mining discriminative items in data
streams. Due to the large and fast growing volumes of those data sources such as
Web search queries in a region and blog postings and tags on a topic, each data source
can be modeled as a data stream, for which only one scan of data is allowed by the
computation resource or application requirements. We want to compare two data
streams S1 and S2, and maintain the collection of items such that their frequencies
in S1 are θ times more than their frequencies in S2, where θ is a user specified
parameter.

The problem of mining discriminative items in data streams is also related to the
conditional topic model [4, 5, 33]. A topic can be modeled as a keyword distribution
describing the topic. Then, a conditional topic model of “computer games” against
“Holleywood movies” is the distribution of keywords in the documents related to
“computer games” conditional on the distribution of keywords in the documents
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related to “Holleywood movies”. The discriminative keywords can be regarded as
the points of high density in the conditional distribution.

Although finding frequent items in a single stream is well studied (see Section 7
for a brief review), little work has been done to find discriminative items over
multiple streams, mainly due to the difficulty of finding infrequent items in a stream
[19].

In this paper, we tackle the problem of mining discriminative items on multiple
data streams. We make the following contributions. First, we show that, to exactly
find all discriminative items in stream S1 against stream S2 by one scan, the space
lower bound is �(|�| log n1

|�| ), where � is the alphabet of items and n1 is the current
size of S1. The lower bound clearly indicates that any exact one-scan method for
mining discriminative items is infeasible for online applications since a stream grows
constantly in size and the alphabet such as tags and queries often grows fast, too. To
tackle the space challenge, we develop three heuristic algorithms that can achieve
high precision and recall using sub-linear space and sub-linear processing time per
item with respect to |�|. The complexity of all algorithms are independent of the size
of the two streams. We report an extensive empirical study using both real data sets
and synthetic data sets to verify our design.

The rest of the paper is organized as follows. In Section 2, we formulate the
problem of mining discriminative items over data streams and give a space lower
bound. In Section 3, we develop a frequent item based method which derives
discriminative items from frequent items in a single stream. We devise a hash-based
method in Section 4. In Section 5, we integrate the advantages of the frequent
item based method and the hash-based method, which consumes the least space to
achieve high precision and recall. Section 6 reports extensive experiments on real and
synthetic data sets and shows that our methods are efficient and scalable. Section 7
reviews the related work. Section 8 concludes the paper.

2 Problem definition

In this section, we first formulate the problem of mining discriminative items from
streams. Then, we give a space lower bound. Last, we summarize the theoretical
results.

2.1 Discriminative items in data streams

Given an alphabet of items �, we consider two streams S1 and S2 which are
composed of occurrences of items in �. Denote by n1 and n2 the current sizes of
S1 and S2, respectively. We do not require that two streams are synchronized.

Let fi(e) (i = 1, 2) denote the frequency, or the number of occurrences, of an item
e in Si. We also define the frequency rate of e in Si (i = 1, 2) as ri(e) = fi(e)

ni
.

We are interested in discriminative items which are relatively frequent in S1 but
relatively infrequent in S2. Formally, an item e is a discriminative item if

R(e) = r1(e)
r2(e)

= f1(e)n2

f2(e)n1
≥ θ,
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where θ > 1 is a user specified threshold. The larger the value of θ , the more
discriminative the item. In many applications, we favor a large θ , such as in the order
of hundreds or thousands.

To deal with the cases where f2(e) = 0, We introduce a user specified threshold
0 < φ < 1

θ
, and require that any discriminative item should have a frequency in S1

no less than φθn1. φ is called the minimum support threshold in S1. The rationale
is that infrequent items are not of significance in many applications. For example, a
query seldom asked is not very interesting to a search engine. By this remedy, when
an item e is not observed in S2 (i.e., f2(e) = 0), whether e is discriminative or not is
determined by the condition f1(e) ≥ φθn1.

2.2 Space lower bound

Let E denote the set of discriminative items, we establish the fact that any one-scan
algorithm that can compute the exact E must use �(|�| log n1

|�| ) space in the worst
case.

Theorem 1 (Space lower bound) Any one-scan algorithm that computes the exact set
of discriminative items E requires �(|�| log n1

|�| ) space in the worst case, where |�| is
the size of the alphabet �.

Proof We reduce the problem of computing the exact set of frequent items to the
problem of mining discriminative items. Given a stream S whose current size is n, let
us consider finding all items in S with a minimum frequency αn where 1

|�| < α < 1.

We construct a stream S′ such that S′ contains 1
φ

(φ < α) distinct items each of which

appears once. This can be done using 1
φ

space which is less than the complexity stated
in the theorem. We also set θ = α

φ
. Then, an item e is a discriminative item in S against

S′ with ratio θ if and only if e has a frequency αn in S. Therefore, any exact algorithm
computing the set of discriminative items between two streams can be used to find
the exact set of frequent items from one stream.

Karp et al. [22] (Proposition 2.1) showed that that any online algorithm that can
find the exact set of frequent items, whose frequencies are no less than αn, requires
�(|�| log n

|�| ) space in the worst case. Thus, any one-scan algorithm that can compute
the exact set of discriminative items E must use �(|�| log n1

|�| ) space in the worst
case. ��

Given two streams for mining discriminative items, n1
n2

is fixed for all items and
can be treated as a constant. Without loss of generality, in the rest of the paper, we
assume n1 = n2 = n to keep our discussion simple. Consequently, we use a simplified
definition of the discriminative item as follows.

Definition 1 (Discriminative items) Given an alphabet of items �, two streams S1

and S2, whose current sizes are n, a minimum ratio parameter θ > 1, and a minimum
support threshold φ ∈ (0, 1

θ
), an item e is discriminative in S1 against S2 if e ∈ �,

f1(e) ≥ φθn and R(e) = f1(e)
f2(e)

≥ θ . The problem of mining discriminative items in S1

against S2 is to find the set of discriminative items

E = {e ∈ �| f1(e) ≥ φθn ∧ R(e) ≥ θ}.
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We note that, when n1 �= n2, we simply multiply the simplified R(e) with a constant
n2
n1

. The algorithms, proofs, and complexities presented in the rest of the paper can
be extended in the same way in the cases where n1 �= n2.

Example 1 (Discriminative items) Table 1 shows our running example. The alphabet
� = {x, y, z, w}. Two streams S1 and S2 are of size 10 each. Items are shown from
left to right in the table in the arriving order. The frequencies of x, y, z, and w in S1

are 4, 2, 3, and 1, respectively, and in S2 1, 4, 1, and 4, respectively. Let θ = 3 and
φ = 0.1. Then, x and z are the discriminative items.

Next, we give an upper bound on the number of discriminative items.

Theorem 2 (The number of discriminative items) Given two streams S1 and S2, a
ratio threshold θ , and a minimum support threshold φ, there are at most min{|�|, 1

φθ
}

discriminative items.

Proof It is trivial that |E| ≤ |�|. We prove |E| ≤ 1
φθ

by contradiction. Suppose |E| >
1
φθ

. Because for any e ∈ E, f1(e) ≥ φθn, we have

∑

e∈E

f1(e) ≥ |E|φθn > n.

This contradicts that the current size of stream S1 is n. Thus, |E| ≤ 1
φθ

, and |E| ≤
min{|�|, 1

φθ
}. ��

2.3 Summary of our heuristic methods

The lower bound clearly indicates that any exact one-scan method for mining dis-
criminative items is infeasible for online applications since a stream grows constantly
in size and the alphabet of streams such as tags and queries often grows fast, too. In
this paper, we develop heuristic algorithms to tackle the space limitation. Specifically,
we explore three approaches.

A frequent item based method (Section 3) has a precision of 100% and high recall,
and uses O( 1

φ
) space and O(log 1

φ
) time to process each item.

A hash-based method (Section 4) favors large θ , and has the space complexity
O(

hb logb |�|
φθ

) and per item time complexity O(hb logb |�|), where b is the number
of buckets of a hash function and h is the number of pairwisely independent hashes
used in the algorithm.

Table 1 A running example.

S1 y w y x x x z z x z
S2 x w w y w y y z y w

x and z are discriminative items when θ = 3 and φ = 0.1
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The hash-based method uses less space than the frequent item-based method
when θ is large. The hash-based method also achieves a precision of 100% but the
recall is worse than the frequent item-based method.

A hybrid method (Section 5) boosts the recall of the hash-based method, and
consumes the least space among the three to achieve high precision and recall.

3 A frequent item based method

Since a discriminative item must be frequent in S1 with respect to a threshold φθn,
straightforwardly, we can employ any algorithms for finding frequent items on a
single stream to first retrieve frequent items in S1, and then remove false positives.
Among numerous algorithms in the literature for finding frequent items, the space-
saving algorithm [30] is the state-of-the-art method with low space complexity and
high accuracy [10]. In this section, we first briefly review the space-saving algorithm,
and then show how to extend it to find discriminative items.

3.1 The space-saving algorithm

Given a stream S whose current size is n, and a minimum support φn, the space-
saving algorithm is a counter-based deterministic algorithm for finding items in S
whose frequencies are no less than φn. The algorithm maintains a summary of
the stream consisting of at most m = 1

φ
counters. The i-th counter (ei, c(ei), ε(ei))

(1 ≤ i ≤ m) records an item ei being counted, the estimated count c(ei) of ei, and
the estimation error ε(ei). The m counters are sorted in the descending order of the
estimated frequency c.

At the beginning, the counters are not associated with any item. When an item e
is observed, if it is monitored in one of the m counters, the corresponding estimated
count is incremented by 1. Otherwise, if there is a counter not associated with any
item yet, then we assign the counter to e and initialize c(e) = 1 and ε(e) = 0. If all
counters are associated with some items other than e, then e replaces em, which is the
one with the least estimated frequency min, and sets em = e, c(em) = min + 1, and
ε(em) = min.

Any item with a frequency exceeding φn must exist in the summary. Therefore,
by reporting all items in the summary, the algorithm achieves 100% recall. For any
item ei (1 ≤ i ≤ m) in the summary, its exact frequency f (ei) is bounded in the range
[c(ei) − εi(ei), c(ei)]. Thus, if c(ei) − ε(ei) ≥ φn, ei is guaranteed to have a frequency
no less than the minimum support. By reporting the set of such guaranteed items, the
algorithm achieves 100% precision.

Example 2 (The space-saving algorithm [30]) Assuming φ = 0.3, let us find frequent
items in S1 in Table 1 with minimum frequency 10 × φ = 3. We set up 1

φ
= 3 counters.

After the first item y in the stream is read, counter C1 = (y, 1, 0) is set. After the
first 6 items are read, i.e., ywyxxx, the content of the counters are C1 = (y, 2, 0),
C2 = (w, 1, 0), and C3 = (x, 3, 0).
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When we read the first z from S1, C2 is updated to C2 = (z, 2, 1). As the stream
goes on, we sequentially update the counters as follows, C2 = (z, 3, 1), C3 = (x, 4, 0),
and C2 = (z, 4, 1) .

Finally, the content of the three counters are C1 = (y, 2, 0), C2 = (z, 4, 1), and
C3 = (x, 4, 0). By checking the value of c − ε in each counter against the minimum
frequency support, x and z are reported as frequent items.

The space-saving algorithm requires space O( 1
φ
). With a simple heap implemen-

tation of the stream summary, the algorithm processes every item in time O(log 1
φ
),

and this can be improved to O(1) by the Stream-Summary data structure [30].

3.2 Finding discriminative items

To find discriminative items in S1 against S2, we can run the space-saving algorithms
on S1 and S2 separately and combine the information in the two summaries to
discover discriminative items.

To be specific, we run the space-saving algorithm on S1 to find items with
frequency in S1 no less than φθn. We also run the space-saving algorithm on S2 to
find items with frequency in S2 no less than φn. Let Ei (i = 1, 2) denote the set of
items stored in the summary of the space-saving algorithm running on stream Si.

If an item e is in the summary of Si (i = 1, 2), we denote the counter of e by
(e, ci(e), εi(e)). By the property of the space-saving algorithm, we have ci(e) − εi(e) ≤
fi(e) ≤ ci(e). Utilizing these upper and lower bounds of the frequencies of items in
the summaries, we obtain the lower bound of the ratio.

Considering an item e ∈ E1 such that c1(e) − ε1(e) ≥ φn, e is guaranteed to be a
discriminative item if it is in one of the following two cases.

Case 1 e /∈ E2. Because e is not in the summary of S2, so f2(e) < φn. We calculate
the ratio R(e) = f1(e)

f2(e)
≥ φθn

φn = θ .

Case 2 e∈ E2 and c1(e)−ε1(e)
c2(e)

≥θ . Because f2(e) ≤ c2(e), so R(e)= f1(e)
f2(e)

≥ c1(e)−ε1(e)
c2(e)

≥θ .

Clearly, by reporting the items in the above two cases, we achieve a precision of
100%. However, the recall of the above algorithm highly depends on the accuracy
of the frequency bounds of the items. In general, in addition to the space-saving
algorithm, any algorithm for finding frequent items can be used here as long as the
algorithm can provide a bounded estimation of the frequencies of frequent items.

Example 3 (The frequent item based method) Consider the running example in
Table 1. Let θ = 3 and φ = 0.1. We run the space-saving algorithm on S1 to find items
with minimum frequency 10φθ = 3. As shown in Example 2, x and z are frequent
items in S1 whose frequency lower bounds are 4 and 3, respectively. Similarly, we
also find frequent items in S2 with minimum frequency 10φ = 1. By checking x and
z with respect to the two cases, we report that x and z are discriminative items.
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3.3 Complexity analysis

Running the space-saving algorithms on S1 and S2 requires O( 1
φθ

) and O( 1
φ
) space,

respectively. Hence, the frequent item based algorithm requires O( 1
φθ

+ 1
φ
) = O( 1

φ
)

space. Importantly, the space complexity of the frequent item based method is
independent from θ .

To update the summaries when a new item arrives, using a heap implementation,
the algorithm spends O(log 1

φθ
+ log 1

φ
) = O(log 1

φ
) time, while it can achieve O(1)

update time using the Stream-Summary data structure [30].
In many applications, we favor highly discriminative items and thus a large value

of θ . Theorem 2 indicates that the number of discriminative items decreases as θ

increases. There is potential to lower the space complexity when the value of θ is
large. To take advantage of a large value of θ , we develop a hash-based method in
the next section using space O(

log |�|
φθ

) which is better than the frequent item based
method in space cost.

4 A hash-based method

In the frequent item based method, frequent items in S1 and S2 are computed
independently. The frequent items in the two streams are compared only after the
frequent item finding algorithm is completed on both streams. This late interaction
of the two mining processes on the two streams may lead to counting many non-
discriminative items. If an item x is frequent in S1 and also very frequent in S2, x will
be counted in both streams. Can we try to let the two mining processes on the two
streams communicate early so that the information that x is very frequent in S2 can
help to save the effort of counting x in S1 and thus S2? This is the motivation of the
hash-based method.

4.1 Ideas

The following lemma helps us to identify a subset of items which may contain
discriminative items.

Lemma 1 (Discriminative sets) Let T ⊆ � be a set of items. If

∑

e∈T

f1(e) ≥ θ
∑

e∈T

f2(e), (1)

then T contains at least one item e such that f1(e) ≥ θ f2(e).

Proof We prove by contradiction. Suppose for any item e ∈ T, f1(e) < θ f2(e). Then,

∑

e∈T

f1(e) <
∑

e∈T

θ f2(e) < θ
∑

e∈T

f2(e),

resulting in a contradiction. ��
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For an item e, it may not be a discriminative item even if f1(e) ≥ θ f2(e), since we
constrain f1(e) ≥ θφn. However, Lemma 1 provides a necessary condition for finding
discriminative items.

To utilize Lemma 1, once a set T of items is found to satisfy Formula (1),
we recursively partition T into subsets until there is only one item e. Then, we
check whether f1(e) ≥ θφn, if so, e is identified to be a discriminative item. We
develop a hierarchical hashing structure to systematically manage the recursive
partitioning.

4.2 Hierarchical hashing

Figure 1 illustrates the structure of the hierarchical hashing. A uniform hashing
function with b � |�| buckets on the alphabet � serves as the first level of the
hierarchical hashing. A bucket B will be selected to expand to the next level if it
satisfies our expanding criteria, which will be discussed in just a moment. Such a
bucket is called a discriminative bucket.

For a discriminative bucket B, a different uniform hashing function is applied
to the items hashed in B to construct the second level hashing. Then, those sub-
buckets of B which are discriminative are recursively hashed into next level, forming
the hierarchical hashing structure. We note that all hashing functions are uniform
and each has b buckets. The number of distinct items hashed in every bucket is
roughly equal. Thus, the hierarchical hashing has at most logb |�| levels. On the
logb |�|-th level, we directly put each item into a separate bucket, so that no conflicts
can happen. The number of buckets on the last level may be slightly different
from b .

A bucket B at a higher level is the ancestor of another bucket B′ at a lower level
if B ⊃ B′, that is, any item hashed into B′ is hashed into B first. If B and B′ are at
two adjacent levels, B is also called the parent of B′ and B′ is a child of B. We call a
bucket a leaf if it has no child. Please note that a leaf bucket may still have multiple
items and may be expanded at a later time of the stream.

Each bucket B is associated with two counters Ci(B) (i = 1, 2) recording the
occurrences of items from stream Si hashed into the bucket from the time B is
created until it is expanded into the next level child buckets. Therefore, the counters
of a bucket are initialized to be 0 when the bucket is created, and are stopped being

Figure 1 An illustration of the
hierarchical hashing.
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updated once the bucket is expanded. For a leaf bucket B, we can bound the sum of
the frequencies of all items in B as

Ci(B) ≤
∑

e∈B

fi(e) ≤ Ci(B) +
∑

B′∈Anc(B)

Ci(B′),

where Anc(B) is the set of all ancestor buckets of B.
To process a new item from stream Si, the new item is hashed all the way down to

the currently lowest level of the hierarchical hashing into the corresponding bucket
B. The counter Ci(B) is incremented. We note again that the counters of the ancestor
buckets of B are not incremented. Only the bucket on the lowest level is updated.

Now, we present the expanding criteria that guides the hierarchical hashing to find
discriminative items.

Lemma 2 (Discriminative buckets) Given a bucket B, let Anc(B) be the set of
ancestor buckets of B. If

C1(B) ≥ θ(C2(B) +
∑

B′∈Anc(B)

C2(B′)), (2)

then B contains at least one item e such that f1(e) ≥ θ f2(e).

Proof For all items e hashed into B,
∑

e∈B

f1(e) ≥ C1(B),

and, due to the construction of the hierarchical hashing,
∑

e∈B

f2(e) ≤ C2(B) +
∑

B′∈Anc(B)

C2(B′).

Then,
∑

e∈B

f1(e) ≥ θ
∑

e∈B

f2(e).

By Lemma 1, this lemma follows immediately. ��

Based on Lemma 2, we call a bucket B a discriminative bucket if B satisfies
Formula (2) and C1(B) ≥ θφn. The condition C1(B) ≥ θφn is to make sure that B
is possible to contain frequent item in S1.

A bucket which used to be a discriminative bucket may be disqualified from
Lemma 2 as the streams continue. Given a bucket B, if none of its child buckets
is discriminative at this moment, we delete all its child buckets and sum up their
counters to B. In detail, let Chi(B) denote the set of child buckets of B. The counter
Ci(B) (i = 1, 2) of B is increased by

∑
B′∈Chi(B) Ci(B′). We note that the deleting

procedure is always conducted bottom-up from the lowest level.
At the end, for an item e at the logb |�|-th level discriminative bucket, if f1(e) ≥

θφn, then, it is a discriminative item. By reporting all such items, the hash-based
method has 100% precision.

A bucket that does not satisfy Formula (2) is still possible to contain discriminative
items. To boost the recall, we adopt the common methedology of applying multiple



World Wide Web (2010) 13:497–522 507

independent hierarchical hashings to process the streams. The number of hierarchical
hashing is determined empirically.

Example 4 (The hash-based method) Consider the running example in Table 1. Let
θ = 3, φ = 0.1, and b = 2. At level one of the hierarchical hashing, assume x and
y are hashed into bucket B1,1, and z and w are hashed into bucket B1,2. Table 2
shows the sequential updates of the counters of each bucket in the item arriving
order.

After we read the first x from S1, we detect that B1,1 is discriminative. So it is
expanded to buckets B2,1 and B2,2 at the second level, where x and y are hashed into
B2,1 and B2,2, respectively.

Finally, we find x to be a discriminative item since B2,1 satisfies Formula (2) and
C1(B2,1) is larger than the minimum frequency support 3. However, the hash-based
method does not report z as a discriminative item, because z is hashed into the same
bucket with w and unfortunately w is very frequent in S2. By a different hierarchical
hashing, z might be hashed together with x, then, it can be found as a discriminative
item.

In summary, the hash-based method consists of three steps, hashing items, growing
hashing, and deleting buckets. Algorithm 1 presents the pseudo-code.

4.3 Complexity analysis

Since for a discriminative bucket B, C1(B) ≥ φθn, there are at most 1
φθ

discriminative
buckets at each level of the hierarchical hashing. So the number of buckets in a single
hashing structure is no more than b logb |�|

φθ
. Assume h hierarchical hashing structures

are used concurrently. The hash-based method uses O(
hb logb |�|

φθ
) space in the worst

case. In practice, the space is much smaller since the number of discriminative
buckets is much less than 1

φθ
.

To process an item in a single hierarchical hashing structure, the hashing pro-
cedure takes time O(logb |�|). The deleting procedure spends at most O(b logb |�|)
time from bottom up. Therefore, the update time of the hash-based method is at most
O(hb logb |�|). The hash-based method also runs much faster in practice because the
deleting procedure does not happen often.

Table 2 A running example of the hash-based method.

B 1,1 C1 0 1 1 2
{x, y} C2 1 1 1 1

B 2,1 C1 1 1 1 2 3 3 3 3 4 4
{x} C2 0 0 0 0 0 0 0 0 0 0

B 2,2 C1 0 0 0 0 0 0 0 0 0 0
{y} C2 0 1 1 2 3 3 3 3 4 4

B 1,2 C1 0 0 1 1 1 1 1 1 1 2 3 3 3 4
{z , w} C2 0 1 1 1 2 2 3 3 3 3 3 4 4 5
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Algorithm 1 The hash-based method.
Input: two streams S1 and S2; parameters φ and θ ;
Output: the set E of discriminative items;
Description:

1: construct h independent hierarchical hashing structures and initialize their first
level buckets;

2: for all item e ∈ Si (i = 1, 2) do
3: for all hierarchical hashing H do
4: /* hashing items */

let B be the bucket on the first level of H where e is hashed into;
5: while B is not a leaf bucket do
6: assume e is hashed into the child bucket B′ of B;
7: B = B′;
8: end while
9: Ci(B) = Ci(B) + 1;

/* growing hashing */
10: if B is discriminative (Lemma 2) and B is not on the logb |�|-th level then
11: apply a uniform hash with b buckets on the items of B to construct the

next level hashing;
12: end if

/* deleting buckets */
13: if e is from stream S2 then
14: let Bp be the parent of B;
15: while non of Bp’s child bucket is discriminative do
16: Ci(Bp) = ∑

Bc∈Chi(Bp) Ci(Bc);
17: delete all child buckets of Bp;
18: assign Bp the parent of Bp;
19: end while
20: end if
21: end for
22: end for
23: return all items in the discriminative buckets on the logb |�| level;

5 A hybrid method

One drawback of the hash-based method is that a number of discriminative items
may be buried in non-discriminative buckets, so that the recall of a single hierarchical
hashing structure is low. In this section, we aim at discovering those concealed
discriminative items to improve the recall of a single hierarchical hashing structure.
By doing this, we are able to achieve the same recall while reducing the number of
hierarchical hashing structures, compared to the hash-based method.

5.1 The method

To discover the concealed discriminative items in a non-discriminative bucket B (i.e.,
a bucket that does not satisfy Formula (2)), we need a more aggressive expanding
criteria to grow the hierarchical hashing to deal with non-discriminative buckets.
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Given a bucket, the items hashed into this bucket can be viewed as the sub-streams of
streams S1 and S2, respectively. We build a space-saving summary on the sub-stream
of S1 flowing through B. Thus, by this hybrid structure, we can capture items in B
which are frequent in S1. Then, by expanding B, we have a good chance to discover
discriminative items hidden in the non-discriminative bucket. Figure 2 illustrates the
idea.

To be concrete, for each leaf bucket B, the hybrid method maintains a space-
saving summary with k � |�|

b counters for items from S1 hashed into B. When B is
selected to be expanded to the next level in the hashing growing phase, the counters
of an item e ∈ B are forwarded to the corresponding child bucket of B where e is
hashed into. Therefore, the space-saving summaries are only kept in leaf buckets.
Any intermediate bucket does not keep such a summary. For an item e kept in the
summary of S1, in addition to its counter (e, c1(e), ε1(e)) of S1, we maintain another
counter c2(e) to record the number of occurrences of e in S2 once it is recorded by
the summary of S1. By doing this, inequality c1(e) − ε1(e) ≤ f1(e) ≤ c1(e) still holds.

Using the space-saving summary, we handle discriminative buckets in a slightly
different way from the process in the hash-based method. For a bucket B, according
to the space-saving algorithm introduced in Section 3.1, the k counters are initially
filled with the first k distinct items coming into B. In the hash-based method, a bucket
B is expanded immediately once it is found to be discriminative. However, the k
counters of B already record the top-k most frequent items in B. It is not necessary
to expand B if the k counters are not all occupied. Therefore, we delay expanding a
discriminative bucket B until all k counters are used. In the process of expanding a
discriminative bucket, the existing counters are simply forwarded to its child buckets.

To handle non-discriminative buckets, in the cases where all k counters of a bucket
B are used and B has not been found discriminative at the moment, we adopt a
more aggressive expanding criteria. When a new item comes in B and it is different
from the k items in the summary, let e be the item with the minimum estimated
frequency in S1 among the k items. We expand B to the next level if c1(e) − ε1(e) ≥
max{φθn, μ}. Here, μ is a controlling parameter which is set to

√
θ empirically. The

rationale behind this expanding criteria is that the k items kept in the summary have
high possibility to be discriminative items, as they are frequent in S1.

Finally, to report discriminative items, we check every leaf bucket B in the
hierarchical hashing structure. For each counter (e, c1(e), ε(e)) kept in B, we report
e as a discriminative item if c1(e)−ε(e)

c2(e)
≥ θ . Although f1(e) ≥ c1(e) − ε(e), we cannot

guarantee that f2(e) ≤ c2(e), thus R(e) ≥ θ is not assured. However, the recall is

Figure 2 An illustration of the
hybrid method.
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improved. Essentially, the hybrid method trades precision for recall. Our experi-
ments in Section 6 verify that this trade-off is beneficial.

In the same way as the hash-based method, multiple hierarchical hashing struc-
tures can be applied.

Example 5 (The hybrid method) For the running example in Table 1, the hash-based
method shown in Example 4 cannot find z as a discriminate item, since z is concealed
by the effect of w. To tackle this problem, the hybrid method runs a space saving
algorithm on S1 with 1 counter. Then, it will find that z is frequent in S1 and expand
bucket B1,2. At the end, the space-saving counter of z is (z, 4, 1) and the additional
counter of z on stream S2 is c2(z) = 1. Thus, z is found to be discriminative.

5.2 Complexity analysis

In a single hierarchical hashing, to store the space-saving summaries, the hybrid
method requires at most O( bk

φθ
) space more than the hash-based method, since there

are no more than O( b
φθ

) leaf buckets. So the space complexity of the hybrid method
is

O
(

hb logb |�|
φθ

)
+ O

(
hbk
φθ

)
= O

(
hb(logb |�| + k)

φθ

)
,

which is the same as the hash-based method. However, to achieve the same recall,
the hybrid method reduces the number of hierarchical hashing needed. Therefore,
the hybrid method is expected to outperform the hash-based method in terms of
space usage.

The hybrid method needs to update both the hierarchical hashing and the space-
saving summaries. With a heap implementation for the space-saving summaries,
its time complexity is O(h(b logb |�| + log k)), and O(hb logb |�|) with the Stream-
Summary data structure [30].

6 Empirical studies

We conducted experiments on real and synthetic data sets to evaluate the accuracy
and efficiency of our three methods,1 the frequent item based method (FE), the
hash-based method (HA), and the hybrid method (HY). The space-saving algorithm
used in FE and HY was implemented using heap rather than the Stream-Summary
structure. The performance of our algorithms is not sensitivc to the minimum support
threshold φ. So we set φ = 10−6 and does not change it in the experiments. For HA
and HY, the hash fanout b is set to 32 all the time, and the number of counters used
in each bucket in HY is k = 5. The hash functions we use are pairwisely independent
and implemented by the method stated in [8].

All methods were implemented in C++ and compiled by Microsoft Visual Studio
2008. Experiments were conducted on a desktop computer with an Intel Core 2 Duo
E8400 3GHz CPU and 4GB main memory running 64bit Microsoft Windows XP.

1The source code of the three methods can be downloaded at http://www.cs.sfu.ca/∼bjiang/
personal/discriminative_item_code.zip.

http://www.cs.sfu.ca/~bjiang/personal/discriminative_item_code.zip
http://www.cs.sfu.ca/~bjiang/personal/discriminative_item_code.zip
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6.1 Synthetic data

We generated two streams in Zipfian distribution with skewness factor s varying
from 0.8 to 2. The size of each stream is 1,000,000 drawn from the alphabet �

whose size is 220 ≈ 1,000,000. We also ensure that there are a set of frequent
items in S1 also being frequent in S2, so that the set of discriminative items is not
trivially equivalent to the set of frequent items in S1. To do this, we select items
with frequencies over 100 from S1 and randomly choose 25% of them so that their
frequencies in S2 also exceeding 100. By default, the ratio parameter θ = 500, the
skewness factor s = 1, and the number of hashes are 35 and 18 for HA and HY,
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Figure 3 Space on synthetic data sets.
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respectively, which are selected from our experiment results to balance accuracy and
efficiency.

We conduct experiments to test the efficiency and accuracy of our three methods
with respect to the ratio parameter θ , the skewness factor s, the number of hashes h,
the number of distinct items in the two streams, and the value of n2

n1
.

6.1.1 Ef f iciency

Figure 3 compares the space usage in the three methods. FE uses the most space
among the three. It is only dependent on the minimum support threshold φ and
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invariant to the ratio parameter θ , the skewness factor s, the number of distinct items,
and n2

n1
.

HA uses only about 1
5 space of FE. Although the space complexity of HA is

O(
hb logb |�|

φθ
), Figure 3a shows that its space usage is not sensible to θ , because the

number of discriminative buckets is far less than 1
φθ

. We also see that the space
usage of HA is small on data sets of large skewness factors, where the number of
discriminative items is small. The space usage of HA increases linearly with respect
to the number of hierarchical hashing. It also increases with respect to the number of
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distinct items, since more distinct items would expand more buckets. But it decreases
when n2

n1
increases, since the number of expanded buckets decreases.

HY is the most space-efficient method which outperforms FE by tens of times.
HY also beats HA by several times. Figure 3c shows that even using the same
number of hierarchical hashing, HY uses less space than HA. Because expanding
a discriminative bucket in HY is delayed until all k counters are filled, HY may have
less expanded discriminative buckets than HA thus reduces space usage. The space
usage of HY is not very sensitive to θ and s, while it also has a linear increasing trend
with respect to the number of hierarchical hashing. HY has similar trends as HA
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Table 3 Topics in real data
sets.

Data set Partition P1 Partition P2

Wikipedia Mathematics Law
Newsgroups comp.graphics alt.atheism

comp.sys.ibm.pc.hardware rec.autos
comp.sys.mac.hardware rec.motorcycles
comp.os.ms-windows.misc rec.sport.baseball
comp.windows.x rec.sport.hockey
misc.forsale soc.religion.christian
sci.crypt talk.politics.guns
sci.electronics talk.politics.mideast
sci.med talk.politics.misc
sci.space talk.religion.misc

with respect to the number of distinct items and n2
n1

, since they share the hierarchical
hashing structure.

The runtime is plotted in Figure 4. FE is the fastest method which can process
more than 6,000 items per millisecond. It can even handle more than 60,000 items
on data sets with skewness factor s = 2. In Figure 4b, we see that FE runs faster
in more skewed data sets. This is due to the heap implementation of the space-
saving algorithm. We can expect a stable performance with the Stream-Summary
implementation. FE also runs faster when the number of distinct items is small, since
in this case the summary does not change often.

HA and HY can support around 1,000 updates per millisecond. Figure 4a shows
that HY is slightly faster than HA, since HY uses less hierarchical hashing than HA.
When using the same number of hashing, Figure 4c shows that HY is slower than
HA, as HY needs to maintain the space-saving summary.

6.1.2 Accuracy

Figure 5 compares the precision of the three methods. As stated in Sections 3 and 4,
FE and HA are guaranteed to have 100% precision. We see that the precision of HY
is also close to 100%, and there is no clear trend related to the number of distinct
items and n2

n1
.

In terms of recall, Figure 6 shows that FE has a recall of almost 100%. The recalls
of HA and HY also increase to 100% as the skewness factor increases or using
more hierarchical hashing. HY has a better recall than HA in most cases, even when
HY uses only a half number of hierarchical hashing. In Figure 6a, the recall of HA
increases slowly as θ increases, however, the recall of HY decreases. When θ is large,
there are less expanded buckets since the expanding criteria of non-discriminative
buckets is controlled by the parameter μ = √

θ .
Figure 6e shows that the recall of HA decreases dramatically as n2

n1
increases over

1, since the number of expanded buckets decreases a lot because items from S2 flood

Table 4 Size of the real data
sets in words.

Wikipedia Newsgroups

P1 P2 P1 P2

3,676,073 3,851,345 2,637,816 2,914,446
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Table 5 Top-5 most
discriminative words in the
Wikipedia data set.

Mathematics against law Law against mathematics

Words Ratio Words Ratio

Polynomial 855.55 Constitution 1,010.25
Algebra 761.14 Jurisdiction 894.75
Algebraic 703.65 Justice 480.38
Geometry 679.17 Parliament 448.58
Topology 645.50 Defendant 442.86

the buckets and make them difficult to expand. However, as a remedy, when n2
n1

is
larger than 1, we could duplicate every item from S1

n2
n1

times it is observed it so that
S1 has similar size as S2. Then, we also scale θ to n2

n1
θ correspondingly. So, the set of

discriminative does not change while HA can work well on the duplicated streams.

6.2 Real data

We use two real data sets, namely the Wikipedia data set and the 20 Newsgroups
data set, obtained from http://en.wikipedia.org/ and http://people.csail.mit.edu/
jrennie/20Newsgroups/, respectively. In the Wikipedia data set, we obtain 5,000
articles on the topic of mathematics and 4,000 articles on the topic of law. Articles
on the same topic are merged into one stream.

The 20 Newsgroups data set consists of 18, 846 newsgroup documents, partitioned
evenly across 20 different newsgroups, each corresponding to a different topic shown
in Table 3. We divide the 20 newsgroups into to 2 partitions as shown in Table 3, such
that the topics in one partition are closely related to each other. Articles in the same
partition then are merged into a single stream.

For all articles, we only conduct stemming but do not filter out stopping words.
Table 4 lists the size of the two partitions of each data set.

Table 5 lists the top-5 high ratio words in the Wikipedia data set, which match our
common intuition. Figures 7 and 8 show the ratio distribution of all terms on the two
real data sets in log-log graph. We observe a power law distribution of the ratio. The
sharp tails are caused by the minimum support threshold φ.
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Figure 7 The distribution of ratio on the Wikipedia data set.

http://en.wikipedia.org/
http://people.csail.mit.edu/jrennie/20Newsgroups/
http://people.csail.mit.edu/jrennie/20Newsgroups/
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Figure 8 The distribution of ratio on the Newsgroups data set.

Tables 6 and 7 show the space and time usage, the precision, and the recall of the
three methods on the two real data sets. We fix the number of hierarchical hashing
used in HA and HY to 30 and 2, respectively. The trends are consistent with those
on the synthetic data sets.

FE always has a precision and a recall of 100% on the real data sets, and the fastest
update time per item. However, the space usage in FE is 2 orders of magnitude larger
than the other two methods. HA has a low recall on the real data sets. HY can achieve
the comparable precision and recall to FE, at the same time, use much smaller space.

7 Related work

The problem of finding discriminative items between two streams can provide
solutions to many Web mining applications such as tag suggestions [16, 21, 28, 34],
web document summarization [23, 26, 38], email summarization [7, 27], web search
result summarization [24], search engine query analysis [36], and social network

Table 6 Results on the
Wikipedia data set.

θ Space Updates/ms Precision Recall
(MB) (%) (%)

S1 = P1 and S2 = P2

100 FE 34.68 20,967.74 100 100
HA 0.97 1,068.17 100 56.64
HY 0.29 5,803.71 100 89.51

300 FE 34.44 20,967.74 100 100
HA 0.96 1,063.50 100 61.11
HY 0.22 5,803.71 100 83.33

S1 = P2 and S2 = P1

100 FE 34.68 20,073.11 100 100
HA 1.72 1,082.61 100 59.29
HY 0.50 5,668.24 97.87 81.42

300 FE 34.44 19,301.07 100 100
HA 1.71 1,087.46 100 69.23
HY 0.51 5,732.99 100 84.62
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Table 7 Results on the
Newsgroups data set.

θ Space Updates/ms Precision Recall
(MB) (%) (%)

S1 = P1 and S2 = P2

100 FE 34.68 17,795.71 100 100
HA 3.24 981.49 100 59.57
HY 0.65 5,470.21 91.67 93.62

200 FE 34.50 16,927.63 100 100
HA 3.23 973.57 100 68.75
HY 0.36 5,552.26 93.75 93.75

S1 = P2 and S2 = P1

100 FE 34.68 16,876.18 100 100
HA 1.12 984.27 100 33.33
HY 0.48 5,228.12 82.35 93.33

200 FE 34.50 16,140.30 100 100
HA 1.11 989.71 100 42.86
HY 0.30 5,464.82 77.78 100

analysis [32, 35]. An essential issue inherent in those applications is to find discrim-
inative tags or keywords that can distinguish the target object from many others.
Statistically, we model such discrimination in frequency ratio. Due to the large
amount of data arriving or being generated in high speed on the Web, the streaming
model is appropriate.

Discriminative items are highly related to frequent items in data streams and
emerging patterns in pattern mining. We review the studies on mining frequent items
in data streams and mining emerging patterns in Section 7.1 and 7.2, respectively.

7.1 Finding frequent items in data streams

The problem of finding frequent items is extensively studied in data stream com-
munity since 1980s due to its intuitive interest and importance. In the literature,
there are various formulations of this problem, including finding top-k most frequent
items [9, 30, 31], finding all frequent items with respect to a user-specified frequency
threshold [2, 22, 25], finding frequent items over sliding windows [2, 13, 25, 31],
and so on. Among all these formulations, the problem of finding all frequent items
with respect to a user-specified frequency threshold is the one most relevant to our
problem. We review the major algorithms of this problem in detail.

Formally, given a stream S of length n and a threshold φ, the goal is to return a
set of items E so that for each e ∈ E, the frequency f (e) ≥ φn. Unfortunately, any
online algorithm that finds the exact set E must use �(|�| log n

|�| ) space in the worst
case [22], where � denotes the alphabet. To overcome this lower bound, the problem
of finding ε-approximate frequent items [29, 30] is introduced. The goal is to find a
set of items Ê where each item e ∈ Ê satisfies f (e) > (φ − ε)n.

Cormode and Hadjieleftheriou [10] compared several algorithms on this subject,
and divided them into three classes, namely, counter-based algorithms [6, 14, 22,
29, 30], quantile algorithms [20, 29], and randomized sketch algorithms [1, 11, 12].
Besides finding frequent items, counter-based algorithms can also estimate their
frequencies. We note that any counter-based algorithm can be plugged into the
framework of our frequent item-based method for finding discriminative items.
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Below, we summarize several representative counter-based algorithms, which are the
frequent algorithm, the lossy counting algorithm, and the space-saving algorithm.

The frequent algorithm was discovered independently by [22] and [14], which
generalized the majority algorithm [6, 18] of finding the item whose frequency
exceeds n/2. The central idea of these algorithms is “cancelation”. The algorithms
maintain 1

φ
− 1 (item, count) pairs, whose counts are initialized to 0. If a new

observation e is an item in these pairs, increment the corresponding count by 1. Else,
if there is some pair with 0 count, then allocate this pair to this item and set it to (e, 1);
otherwise, decrement the counts of all pairs by 1. It can be proved that any item with
frequency exceeding φn must be kept in these pairs when the algorithms terminate.
Besides output of a super set of frequent items, the count associated with each item
is at most φn below the true frequency. However, in practice, it’s not suitable to be
used for frequency estimation [10]. Space used by the frequent algorithms is O(1/φ),
which is independent from the size of the stream.

The lossy counting algorithm proposed by [29] stores tuples ( j, l j, δ j) where j is an
element from �, l j is the lower bound of j’s count, and δ j satisfies l j ≤ f ( j) ≤ l j + δ j.
When an item j arrives, if j is stored, then increment its lower bound by 1. Otherwise,
create a new tuple ( j, 1, �φn�). From time to time, the algorithm deletes tuples with
l j + δ j < φn. Like the frequent algorithm, when the algorithm terminates, all items
with frequencies larger than φn are stored and the error of frequency estimation is
within φn for any item. There is a nice property that highly frequent items, if they
appear early in the stream, have very accurate estimated frequencies. In terms of
space usage, the algorithm requires O( 1

φ
log φn) in the worst case.

The space-saving algorithm [30] described in Section 3.1 is also a one-pass counter-
based algorithm similar to the lossy counting algorithm and shares the same nice
property that the items stored by the algorithm early in the stream and not removed
later have very accurate estimated frequencies. Experiments in [10] indicate that the
space-saving algorithm outperforms other algorithms in terms of precision, recall,
and space usage.

7.2 Emerging patterns

We note that emerging patterns (EP for short) studied in [3, 15, 17, 37] is another
notion that discovers the discriminative items/patterns in one data set against the
other. Given two transaction data sets, emerging patterns are those itemsets whose
supports in one data set are significantly larger than their supports in the other.
Formally, let suppi(X) denote the support of X in dataset i (i = 1, 2) and define
growth rate GR(X) of an item set X as

GR(X) =

⎧
⎪⎨

⎪⎩

0, if supp1(X) = 0 and supp2(X) = 0

∞, if supp1(X) = 0 and supp2(X) �= 0
supp1(X)

supp2(X)
, otherwise

Given φ > 1, the goal is to find emerging patterns with growth rates more than φ.
These emerging patterns are called φ-emerging patterns.

Emerging patterns as itemsets inherently have a combinatoric nature. Algorithms
for finding emerging patterns spend most effort on addressing the problem of
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compactly representing emerging patterns and efficient manipulation of emerging
patterns to avoid enumerating all possible itemsets. Mining discriminative items does
not need to deal with this issue. Furthermore, the problem of emerging patterns are
considered in a static transaction database environment. We position our problem in
the data stream settings and focus on reducing memory space of use. To the best of
our knowledge, we are the first to study the problem of finding discriminative items
between two data streams.

8 Conclusions

In this paper, motivated by a class of Web mining applications including tagging
Web objects, summarizing web documents, and analyzing search queries, we tackle
the problem of finding discriminative items between streams, which are frequent in
one stream but infrequent in another. We prove a space lower bound of exactly
finding all discriminative items and develop three heuristic algorithms that by one
scan can achieve high precision and recall using sub-linear space and sub-linear
processing time per item with respect to the size of the alphabet. The complexity
of all algorithms are independent from the size of streams.
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