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A Small Survey

» Please raise your hands if you did NOT
access internet in the past 7 days

* How do you find the conference web page?

» Please raise your hands if you did NOT use
any search engine in the past 7 days
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Why Are Search Engines Useful?

» Retrieve practically useful information from
the web

— What is Vancouver?
« Attract potential customers and users
— Search map of Vancouver
— Hotels and accommodations in Vancouver
— City tour
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Web Spam

* Increasing exposure on the World Wide
Web may achieve significant financial gains
for the web site owners!

— The increasing importance of search engines to
commercial web sites has given rise to a
phenomenon called “Web Spam”

* Web Spam: tricks misleading search
engines to obtain higher-than-deserved
ranking
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Basics of Web Search

» Keyword search

— What are the documents matching query
“Vancouver history” the best?

— TFIDF

* Link-based ranking

— Among all websites containing keywords
“VYancouver” and “history”, how they should be
ranked?

— PageRank, HITS
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Keyword Search

* In full text retrieval, all words in a document
are considered to be keywords

« Search engines typically allow query
expressions formed using keywords and the
logical connectives and, or, and not
— Ands are implicit, even if not explicitly specified
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Relevance Ranking

* Term frequency
— Frequency of occurrence of query keyword in
document
* Inverse document frequency
— How many documents the query keyword
occurs in
* Fewer = give more importance to keyword
» Hyperlinks to documents

— More links to a document = document is more
important
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TF-IDF

1
» Term frequency/Inverse Document frequency ranking

* Let n(d) = number of terms in the document d

* n(d, t) = number of occurrences of term t in the document d
* Relevance of a document d to atermt

d,
TF (d, t) = log <1 + nn((d)t)>

The log factor is to avoid excessive weight to frequent
terms

» Relevance of document to query Q r (d, Q) = %—Q
teQ
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Relevance Ranking Using Terms

* Most systems also consider

— Words that occur in title, author list, section headings, etc. are given
greater importance

— Words whose first occurrence is late in the document are given
lower importance

— Very common words (stop words) such as “a”, “an”, “the”, “it" etc
are eliminated

— Proximity: if keywords in query occur close together in the
document, the document has higher importance than if they occur
far apart

* Documents are returned in decreasing order of relevance
score

— Usually only top few documents are returned, not all
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Similarity Based Retrieval

» Similarity based retrieval - retrieve
documents similar to a given document

« Similarity may be defined on the basis of
common words: e.g. find k terms in A with
highest TF (d, t) / n (t ) and use these terms
to find relevance of other documents
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Vector Space Model

» Define an n-dimensional space, where n is
the number of words in the document set

» Vector for document d goes from origin to a
point whose i " coordinate is TF (d,t) / n (t)

* The cosine of the angle between the vectors
of two documents is used as a measure of
their similarity
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Relevance Using Hyperlinks

* The number of documents relevant to a query can
be enormous if only term frequencies are taken
into account

» Using term frequencies makes “spamming” easy

— E.g. a travel agency can add many occurrences of the
words “travel” to its page to make its rank very high

» People often look for pages from popular sites
 Idea: use popularity of Web site (e.g. how many

people visit it) to rank site pages that match given
keywords

— Problem: hard to find actual popularity of site
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Relevance Using Hyperlinks

» Use the number of hyperlinks to a site as a
measure of the popularity or prestige of the site
— Count only one hyperlink from each site (why?)
— Popularity measure is for site, not for individual page

< But, most hyperlinks are to root of site
« Also, concept of “site” is difficult to define since a URL prefix like
cs.sfu.ca contains many unrelated pages of varying popularity
* Refinements

— When computing prestige based on links to a site, give
more weight to links from sites that themselves have
higher prestige

« Definition is circular
< Set up and solve system of simultaneous linear equations
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PageRank

PRG@)=q+ (L-0) PR(P)/C(p)

« Simulate a user navigating randomly in the
web who jumps to a random page with
probability g or follows a random hyperlink
with probability (1-q)

» C(a) is the number of outgoing links of page
a

» Page ais pointed to by pages p, to p,
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Relevance Using Hyperlinks

« Connections to social networking theories
that ranked prestige of people
— E.g. the president of the U.S.A has a high
prestige since many people know him
« Someone known by multiple prestigious
people has high prestige
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Rethinking Search Engines

» High recall, low precision

— Many mildly relevant or irrelevant documents may be
returned

— “Too much can easily become as bad as too little”
e Low or no recall, often when combinations of
keywords are used
» Results are highly sensitive to vocabulary

— A search engine does not know “XML data” is “semi-
structured data”

* Results are single web pages

— How to find information spread over various documents,
e.g., a survey on the latest XML initiatives
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HITS: Capturing Authorities & Hubs

¢ [ntuition

Many rivals, such as Toyota and Honda, do not cite each other on
the Internet

Pages that are widely cited (i.e., many in-links) are good authorities

Pages that cite many other pages (i.e., many out-links) are good
hubs

— Authorities and hubs have a mutual reinforcement relationship
* The key idea of HITS (Hypertext Induced Topic Search)

— Good authorities are cited by good hubs

— Good hubs point to good authorities

— lterative reinforcement ...

J. Pei, B. Zhou, Z. Tang, and D. Huang: Data Mining Techniques for Spam Detection
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HITS: Strength and Weakness

» Advantages: Rank pages according to the
qguery topic

» Disadvantages
— Does not have anti-spam capability: One may

add out-links to his own page that points to
many good authorities

— Topic-drift: One may collect many pages that
have nothing to do with the topic — by just
pointing to them

— Query-time evaluation: expensive
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Improvements on HITS

o SALA [Lemple & Moran, WWW’00], a stochastic
algorithm, two Markov chains, an authority and a
hub Markov chains, less susceptible to spam

» Weight the links [Bharat & Henzinger SIGIR’98]: if
there are k edges from documents on a first host
to a single document on a second host, give each
edge an authority weight of 1/k, ...

» Handling topic drifting: Content similarity
comparison, or segment the page based on the
DOM (Document Object Model) tree structure to
identify blocks or sub-trees that are more relevant
to query topic

J. Pei, B. Zhou, Z. Tang, and D. Huang: Data Mining Techniques for Spam Detection
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Link Spam

* PageRank

PR(p;,G)  1-—d
PR, ) =d Y PG 1
e (py OutDeg(pi)

 Link spam refers to deliberately build
auxiliary pages and links to boost the
PageRank or other link-based ranking score
of the target page.

e Those structures are referred to as link
spam farms
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Term Spam

 TFIDF
— Given a web page p and a search query Q
TFIDF(p,Q) = Xiepn TF(t) x IDF(¢)

* Term spam refers to tricks that tailor the
contents of text fields to make spam pages
relevant for some queries

* The primary way to increase the score is to
increase the frequencies of keywords within
some specific text fields of the term spam
pages

J. Pei, B. Zhou, Z. Tang, and D. Huang: Data Mining Techniques for Spam Detection
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Web Spam Taxonomy

e Term spam

— Add many keywords into one page

— Make those keywords invisible but searchable
* Link spam

— Construct links to mislead search engines
» Both tricks are often used together

Web Spam
Link Spam
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Data Mining and Spam Detection

» Classification approaches
» PageRank-like approaches
e Spam mass and spamicity approaches

J. Pei, B. Zhou, Z. Tang, and D. Huang: Data Mining Techniques for Spam Detection
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Classification and Prediction

» Classification: predict categorical class
labels
— Build a model for a set of classes/concepts
— Classify whether a page is web spam

» Prediction: model continuous-valued
functions
— Predict the economic growth in 2008
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A Two-step Process

* Model construction: describe a set of
predetermined classes

— Training dataset: tuples for model construction
» Each tuple/sample belongs to a predefined class

— Classification rules, decision trees, or math formulae

* Model application: classify unseen objects

— Estimate accuracy of the model using an independent
test set

— Acceptable accuracy - apply the model to classify
tuples with unknown class labels

J. Pei, B. Zhou, Z. Tang, and D. Huang: Data Mining Techniques for Spam Detection
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Model Construction

Classification

— Algorithms
Training
Data l
Name Rank Years Classifier
Mike Ass. Prof 3 (Model)
Mary Ass. Prof 7
Bill Prof 2
Jim Asso. Prof 7
Dave | Ass. Prof 6 IF rank = *professor’
Anne | Asso. Prof 3 OR years > 6

THEN tenured = ‘yes’
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Model Application

Testing
e AN
/ \ (Jeff, Professor, 4)

Name Rank

Tom Ass. Prof Tenured? l
Merlisa | Asso. Prof
George Prof I
Joseph | Ass. Prof Y(%S)

J. Pei, B. Zhou, Z. Tang, and D. Huang: Data Mining Techniques for Spam Detection




Decision Tree

* A node in the tree — a test of some attribute
» A branch: a possible value of the attribute

» Classification
Outlook
— Start at the root
— Test the attribute Sunny Overcast Rain

— Move down the tree branch é*

High Normal Strong  Weak
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Training Dataset

Outlook Temp Humid Wind PlayTennis
Sunny Hot High Weak
Sunny Hot High Strong

Overcast Hot High Weak

Rain Mild High Weak
Rain Cool Normal Weak
Rain Cool Normal Strong

Overcast Cool Normal Strong
Sunny Mild High Weak
Sunny Cool Normal Weak

Rain Mild Normal Weak
Sunny Mild Normal Strong
Overcast Mild High Strong
Overcast Hot Normal Weak
Rain Mild High Strong

J. Pei, B. Zhou, Z. Tang, and D. Huang: Data Mining Techniques for Spam Detection
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Basic Algorithm ID3

» Construct a tree in a top-down recursive divide-
and-conguer manner
— Which attribute is the best at the current node?
— Create a nodes for each possible attribute value
— Partition training data into descendant nodes

» Conditions for stopping recursion
— All samples at a given node belong to the same class

— No attribute remained for further partitioning
« Majority voting is employed for classifying the leaf

— There is no sample at the node
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Which Attribute Is the Best?

» The attribute most useful for classifying
examples

 Information gain and gini index
— Statistical properties

— Measure how well an attribute separates the
training examples

J. Pei, B. Zhou, Z. Tang, and D. Huang: Data Mining Techniques for Spam Detection
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Entropy

* Measure homogeneity of examples

C

Entropy(S) =Y - p log, p,

i=1
— S is the training data set, and pi is the
proportion of S belong to class i
* The smaller the entropy, the purer the data
set
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Information Gain

* The expected reduction in entropy caused
by partitioning the examples according to an
attribute

Gain(S, A) = Entropy(S)- )| mEntropy(Sv)
veValues(A)
Value(A) is the set of all possible values

for attribute A, and S, is the subset of S
for which attribute A has value v

J. Pei, B. Zhou, Z. Tang, and D. Huang: Data Mining Techniques for Spam Detection
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Outlook | Temp | Humid | Wind | PlayTennis

Example

Overcast Hot High Weak Yes
1 Rain | Mid | High | weak ves
Rain Cool Normal | Weak Yes

Sunny Cool Normal [ Weak Yes
Rain Mild Normal [ Weak Yes
9 9 5 5 Sunny Mild Normal | Strong Yes
Entropy (S) = - |0g 2 T Og 9 | Overcast Mild High Strong Yes
14 14 14 14 Overcast Hot Normal [ Weak Yes
=0.94 [ Rain | wid [ Hgn Jswong[ No |

Gain(S,Wind) = Entropy (S)-  >_ MEntr0|oy(i~7v)

ve{Weak ,Strong } |

8 6
= Entropy (S) - u Engropy (Syea ) — u Engropy (Syong )

=0.94 —ix 0.811—£><1.00 =0.048
14 14
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Extracting Classification Rules

« Each path from the root to a leaf > an IF-
THEN rule

— Each attribute-value pair along a path forms a
conjunction

— The leaf node holds the class prediction
— IF age = “<=30" AND student = “no” THEN
buys_computer = “no”

* Rules are easy to understand

J. Pei, B. Zhou, Z. Tang, and D. Huang: Data Mining Techniques for Spam Detection



Bagging

|

* Given a set S of s samples, generate a sequence
of k independent bootstrap training sets

» Construct a sequence of classifiers C1,C2,...,Ck
by using the same classification algorithm

» To classify an unknown sample X, let each
classifier predict or vote

» The bagged classifier C* counts the votes and
assigns X to the class with the “most” votes

J. Pei, B. Zhou, Z. Tang, and D. Huang: Data Mining Techniques for Spam Detection

Boosting Technique

» Assign every example an equal weight 1/N
e Fort=1,2, ..., TDo

— Obtain a classifier C(t) under w(t)

— Calculate the error of C(t) and re-weight the
examples based on the errors. Samples
incorrectly predicted have bigger weight

» Output a weighted sum of all the classifiers,
with each classifier weighted according to its
accuracy on the training set

J. Pei, B. Zhou, Z. Tang, and D. Huang: Data Mining Techniques for Spam Detection
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Spam Detection by Classification

» Use a set of spam web pages as a training
data set

» Train a classification model (e.g., a decision
tree)

» Apply the classification model to combat
web spam

J. Pei, B. Zhou, Z. Tang, and D. Huang: Data Mining Techniques for Spam Detection

Heuristic Feature Selection

* Web page top domains

* Languages

* Number of words (body and title)
» Average word length

« Anchor words

* Visibility of content

* Repeating keywords

* The most common keywords

* N-gram likelihood

* [Ntoulas et al. WWW’06]

J. Pei, B. Zhou, Z. Tang, and D. Huang: Data Mining Techniques for Spam Detection
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Web Page Top Domains
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Languages

35%
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Number of Words

fraction of pagos

probabifity of spam

number of words

fraction of pages

number of words in title
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Average Word Length
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probability of spam

probability of spam
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Fraction of Anchor Words

» Anchor words: words for hyperlinks

16% 100%
14% 90%
80%
12%
0y
- 0% g
E‘“’ 0% &
— o
5 gy ! 50% 2
: I
- .h--m% 3
= 30% o
/ L AR oo
2% { l

J. Pei, B. Zhou, Z. Tang, and D. Huang: Data Mining Techniques for Spam Detection

Visibility of Content
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Repeating Keywords
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Most Common Keywords
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Using C4.5 to Combine Features

» Using bagging and boosting

class recall | precision [Illdep. S-gram ]ike]illoucl]
spam 82.1% | 84.2% <17y T - 1373
non-spam | 97.5% 97.1% T
Table 1: Recall and precision of our classifie Frac. of top-1K in text
g
- < 0.062 TN = 0,062
class recall | precision = /,-// \
spaim 84.4% 91.2% 7
non-spam | 98.7% 97.5% (won-spanm] [1"-1-;.‘_-, text in top-500
Table 2: Recall and precision after bagging. = 0.644 \ 0.646
\\.
class recall | precision [Frac. of top-500 intext| -
04 0
spam 86.2 o 91.1 % < 0.154 0154
non-spam | 98.7% 97.8%
Table 3: Recall and precision after boosting.
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SpamRank: ldeas

» Supporters of an honest (non-spam) page
should not be overly dependent on one
another

 The PageRank of the supporters of an
honest page should follow a power law
distribution as if a sample of the whole web

» Link spammers have a limited budget —
boosting utility is important for supporters of
spam pages

» [Benczur et al. AIRWeb’05]

J. Pei, B. Zhou, Z. Tang, and D. Huang: Data Mining Techniques for Spam Detection
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SpamRank: A Three-Step Method

* Phase 1: select the supporters of each page
by a Monte Carlo simulation

* Phase 2: pages are penalized if their
supporters do not follow power law
distribution in PageRank histogram

* Phase 3: compute SpamRank as PageRank
personalized on the vector of penalties

J. Pei, B. Zhou, Z. Tang, and D. Huang: Data Mining Techniques for Spam Detection

PageRank versus SpamRank

— reputable O

Percent

spam

ad m
weborg
eBay.de O
reputable O

5 10 15 20
PageRank buckers

Percent

10 135 20
SpamRank buckets
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TrustRank: Ideas and Method

Honest pages often point to honest pages and
seldom point to spam pages

Use a set of known honest pages as the seed set
— Assign high trust scores to those pages

Propagate the trust scores via out-linksto
unknown web pages — a PageRank computation

procedure

When the TrustRank converge, pages with high
TrustRank scores are honest pages

Critical issue: the seed set must be good and

balanced

[Gyongyi et al. VLDB’04]
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PageRank versus TrustRank

» Good pages

% Good PageRank

100

80

60

40

20

1l

Bucket

I1 2345678 91011121314151617-20

% Good TrustRank

100

80

60

40

20

Bucket

12345678 91011121314151617-20
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PageRank versus TrustRank

» Bad pages

% Bad PageRank % Bad TrustRank
50 50
40 40
30 30
20 20
10 10
Bucket Bucket

12345678 91011121314151617-20

12345678 91011121314151617-20
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Precision and Recall

o
4]

Precision/Recall

o
[N]
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Precision

o
o

o
I~

= m

Threshold TrustRank Bucket

2345678 91011121314151617-20
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Topical TrustRank

* General TrustRank has a bias towards
heavily represented communities in the
seed set

» Use pages in well-maintained topic
directories such as dmoz Open Directory
Project as the seed set

— Patrtition the seed set into topics
« Compute TrustRank score vectors on topics

* [Wu et al. WWW’06]

J. Pei, B. Zhou, Z. Tang, and D. Huang: Data Mining Techniques for Spam Detection

TrustRank versus Topical TrustRank

J. Pei, B. Zhou, Z. Tang, and D. Huang: Data Mining Techniques for Spam Detection
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Spam Farms

» The set of pages supporting a spam page
* Three components

— A single target page to be boosted by the
spammer

— A reasonable number of boosting pages that
deliberately push the ranking of the target page

— Some external links accumulated from pages
outside the spam farm

» [Gyongyi and Garcia-Molina, VLDB’05]

J. Pei, B. Zhou, Z. Tang, and D. Huang: Data Mining Techniques for Spam Detection

Spam Farms

» Optimal structure for single target page
» General structure

J. Pei, B. Zhou, Z. Tang, and D. Huang: Data Mining Techniques for Spam Detection
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Spam Alliance

* A spam farm may boost multiple target
pages

o P 1
By .
p1 p2 Px g g2 Im
norn '
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Irregular Spam Alliance

J. Pei, B. Zhou, Z. Tang, and D. Huang: Data Mining Techniques for Spam Detection

32



Questions Remained

 How can we derive spam farms in the real
web?

« A spam page may play both link spam and
content spam tricks?

* |s spamming as simple as black-and-white?

J. Pei, B. Zhou, Z. Tang, and D. Huang: Data Mining Techniques for Spam Detection

A Spamicity Approach

» Use spamicity to measure how likely a web
page is spam

« Efficient spamicity-based link spam
detection methods

 Efficient spamicity-based term spam
detection methods

* [Zhou et al. SDM’08]
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Page Farm Model

» Typically, link spam is a local activity.
— Where does PR(p, G) come from?

PR(p;, G 1-d
PRGp.)=d Y PG 1
picni(p) OvtDea (i)

* (6,k)-page farm of page p: the minimal set of
pages contributing to a 6 portion of PR(p, G) and
each page has a distance to p at most k
— According to [Zhou and Pei, SDM'07], when 6 >= 0.8

and k >= 3, the farms captures the local environments of
web pages accurately
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Utility-based Link Spamicity

» Given a page p, its page farm Farm(p)
captures its local link structures

* Farm(p) should try to achieve the PageRank
of p as high as possible

» The utility of Farm(p) is the ratio of the
PageRank of p against the maximum
PageRank that can be achieved
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Optimal Spam Farms

J. Pei, B. Zhou, Z. Tang, and D. Huang: Data Mining Techniques for Spam Detection

Utility-based Link Spamicity

_ PRO
ULSpam(p) = prttbd s

 ULSpam(p) can be used as a measure on
the likelihood that p is link spam
— It is an objective measure
— It also works for those disguised link spam
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Link Spam Detection Scenarios

* When the whole web graph is available
— Search engine companies

— Parties who have the access to data (e.g., by crawling
the web)

— But, the maintenance of the data is a big issue

* When the whole web graph is unavailable
— Online spam detection (e.g., intelligent web browsers)
— Efficient spam detection (e.g., only want to label a small
set of pages)
« Out-links: parsing the content of the page
« In-links: querying web search engines using link search queries
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Efficient Link Spam Detection

» Given a link spamicity threshold and a web
page

— Determine whether the link spamicity of the
page is greater than or equal to the threshold

» Major calculation costs
— Search engine querying load
— Web page out-link parsing load
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Local Greedy Search Method

» Page contributior PR G PR GO — (o)) (0%
PCont(v,p) = { l;dlj')-G) — PR(p, G(V —{v})) :: ii:
N (S o
» Path contribution
— Considerapath p =45 vy —... 5wy —p
1 - 1
LCont(P,p) = —d"™1 (1 —d _—
ort ': j)) N [ ]1;[n O't{-fo’g{'f-"i,]
» Page contribution and path contribution
— PCont(v,p) can be calculated efficiently by summing up LCont(P,p)
* A local greedy search method
— Given a target page p, greedily add pages with the highest page
contribution to p into the farm Farm(p)
— The procedure stops until Farm(p) achieves a 6 portion of the
PageRank score of p
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Monotone Greedy Search Method

» The local greedy search method needs to extract
the whole farm so as to calculate the link spamicity

A critical observation: If pages are added in the
page contribution descending order, the utility of
adding new pages to improve the PageRank of the
target page decreases monotonically

« A monotone greedy search method

— Given a target page p, greedily add a page to the
current farm Farm(p) which makes the largest
improvement on PR(p)

— The iteration continues until the link spamicity is lower
than the link utility threshold, or all the pages within
distance to p up to k are in the farm
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Utility-based Term Spamicity

 If page p is term spam, to be relevant to a search
guery Q, p should try to achieve the TFIDF score
as high as possible.

* The keywords in page p can be treated as the
targeted keywords to which the builder of the page
wants to make p relevant

« Utility-based term spamicity

UT Spam(p) = %ﬁm

 UTSpam(p) can be used as a measure on the
likelihood that p is term spam
— It is an objective measure
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Char-Based Term Spamicity

» Keyword stuffing detection
— Page body, page title, page meta tags, page anchor text
— H(p) (i=1,2,3,4): the ratio of the total number of keywords in each
field against the number of distinct keywords in each field
 Invisible keywords detection
— Set the keywords to have the same color as the page body
— Hs(p): the ratio of the number of invisible keywords in the body
against the total number of keywords in the body
» Page URL keywords detection
— Embed spam keywords in the URL address of the page.

— Hg(p): the ratio of the total length of keywords in the URL against
the total length of the URL

» Characteristics-based term spamicity crs,um () — if;w
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Efficient Term Spam Detection

» Given a term spamicity threshold and a web
page

— Determine whether the term spamicity of the
page is greater than or equal to the threshold

» Major calculation costs
— Web page keyword parsing load
— Search engine querying load
— IDF scores of keywords

J. Pei, B. Zhou, Z. Tang, and D. Huang: Data Mining Techniques for Spam Detection

Data Set

* The webspam-UK2006 data set, released
by Yahoo! Research Barcelona

» 8,239 pages are labeled manually, either
“spam” or “normal”
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The Effectiveness of Spamicity
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Content Spam Detection
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Comparisons of Three Spamicities
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Scalability
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Summary

* Web spam hurts information retrieval quality
on the web
— Link spam
— Content spam
« Can data mining techniques help in web
spam detection?
— Classification approaches
— PageRank-like approaches
— Spam mass and spamicity approaches

J. Pei, B. Zhou, Z. Tang, and D. Huang: Data Mining Techniques for Spam Detection

Future Directions

» Effectiveness
— More accurate spam detection?
 Efficiency
— Scalable and online spam detection?
» PageRank is not all about web information
retrieval
— Spam detection for other ranking methods?

— Spam detection for search of other types of
data, e.g., images, videos, news, shopping, ...
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