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Outline

• Information retrieval from the web
• Spam tricks
• Spam detection techniques
• Summary and future directions
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A Small Survey

• Please raise your hands if you did NOT 
access internet in the past 7 days

• How do you find the conference web page?
• Please raise your hands if you did NOT use 

any search engine in the past 7 days
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Why Are Search Engines Useful?

• Retrieve practically useful information from 
the web
– What is Vancouver?

• Attract potential customers and users
– Search map of Vancouver
– Hotels and accommodations in Vancouver
– City tour
– …
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Look at This Page

Extracted from [Ntoulas et 
al. WWW’06]
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Web Spam

• Increasing exposure on the World Wide 
Web may achieve significant financial gains 
for the web site owners!
– The increasing importance of search engines to 

commercial web sites has given rise to a 
phenomenon called “Web Spam”

• Web Spam: tricks misleading search 
engines to obtain higher-than-deserved 
ranking
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Basics of Web Search

• Keyword search
– What are the documents matching query 

“Vancouver history” the best?
– TFIDF

• Link-based ranking
– Among all websites containing keywords 

“Vancouver” and “history”, how they should be 
ranked?

– PageRank, HITS



5

J. Pei, B. Zhou, Z. Tang, and D. Huang: Data Mining Techniques for Spam Detection 9

Keyword Search

• In full text retrieval, all words in a document 
are considered to be keywords

• Search engines typically allow query 
expressions formed using keywords and the 
logical connectives and, or, and not
– Ands are implicit, even if not explicitly specified
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Relevance Ranking

• Term frequency
– Frequency of occurrence of query keyword in 

document
• Inverse document frequency

– How many documents the query keyword 
occurs in 

• Fewer give more importance to keyword

• Hyperlinks to documents
– More links to a document document is more 

important
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TF-IDF

• Term frequency/Inverse Document frequency ranking
• Let n(d) = number of terms in the document d
• n(d, t) = number of occurrences of term t in the document d
• Relevance of a document d to a term t 

The log factor is to avoid excessive weight to frequent 
terms

• Relevance of document to query Q

nn((dd))
nn((dd, , tt))

1 +1 +TF TF ((dd, , tt) = ) = loglog

r r ((dd, , QQ) =) = ∑∑ TF TF ((dd, , tt))
nn((tt))tt∈∈QQ
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Relevance Ranking Using Terms
• Most systems also consider

– Words that occur in title, author list, section headings, etc. are given 
greater importance

– Words whose first occurrence is late in the document are given 
lower importance

– Very common words (stop words) such as “a”, “an”, “the”, “it” etc 
are eliminated

– Proximity: if keywords in query occur close together in the 
document, the document has higher importance than if they occur 
far apart

• Documents are returned in decreasing order of relevance 
score
– Usually only top few documents are returned, not all
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Similarity Based Retrieval

• Similarity based retrieval - retrieve 
documents similar to a given document

• Similarity may be defined on the basis of 
common words: e.g. find k terms in A with 
highest TF (d, t ) / n (t ) and use these terms 
to find relevance of other documents
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Vector Space Model

• Define an n-dimensional space, where n is 
the number of words in the document set

• Vector for document d goes from origin to a 
point whose i th coordinate is TF (d,t ) / n (t )

• The cosine of the angle between the vectors 
of two documents is used as a measure of 
their similarity
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Relevance Using Hyperlinks

• The number of documents relevant to a query can 
be enormous if only term frequencies are taken 
into account

• Using term frequencies makes “spamming” easy
– E.g. a travel agency can add many occurrences of the 

words “travel” to its page to make its rank very high
• People often look for pages from popular sites
• Idea: use popularity of Web site (e.g. how many 

people visit it) to rank site pages that match given 
keywords
– Problem: hard to find actual popularity of site
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Relevance Using Hyperlinks

• Use the number of hyperlinks to a site as a 
measure of the popularity or prestige of the site
– Count only one hyperlink from each site (why?)
– Popularity measure is for site, not for individual page

• But, most hyperlinks are to root of site
• Also, concept of “site” is difficult to define since a URL prefix like 

cs.sfu.ca contains many unrelated pages of varying popularity

• Refinements
– When computing prestige based on links to a site, give 

more weight to links from sites that themselves have 
higher prestige

• Definition is circular
• Set up and solve system of simultaneous linear equations
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PageRank

• Simulate a user navigating randomly in the 
web who jumps to a random page with 
probability q or follows a random hyperlink 
with probability (1-q)

• C(a) is the number of outgoing links of page 
a

• Page a is pointed to by pages p1 to pn

∑
=

−+=
n

i
ii pCpPRqqaPR

1
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J. Pei, B. Zhou, Z. Tang, and D. Huang: Data Mining Techniques for Spam Detection 18

Relevance Using Hyperlinks

• Connections to social networking theories 
that ranked prestige of people
– E.g. the president of the U.S.A has a high 

prestige since many people know him
• Someone known by multiple prestigious 

people has high prestige
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Rethinking Search Engines
• High recall, low precision

– Many mildly relevant or irrelevant documents may be 
returned

– “Too much can easily become as bad as too little”
• Low or no recall, often when combinations of 

keywords are used
• Results are highly sensitive to vocabulary

– A search engine does not know “XML data” is “semi-
structured data”

• Results are single web pages
– How to find information spread over various documents, 

e.g., a survey on the latest XML initiatives
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HITS: Capturing Authorities & Hubs

• Intuition
– Many rivals, such as Toyota and Honda, do not cite each other on

the Internet
– Pages that are widely cited (i.e., many in-links) are good authorities
– Pages that cite many other pages (i.e., many out-links) are good 

hubs
– Authorities and hubs have a mutual reinforcement relationship

• The key idea of HITS (Hypertext Induced Topic Search)
– Good authorities are cited by good hubs
– Good hubs point to good authorities
– Iterative reinforcement …
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HITS: Strength and Weakness

• Advantages: Rank pages according to the 
query topic  

• Disadvantages
– Does not have anti-spam capability: One may 

add out-links to his own page that points to 
many good authorities

– Topic-drift: One may collect many pages that 
have nothing to do with the topic — by just 
pointing to them

– Query-time evaluation: expensive
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Improvements on HITS
• SALA [Lemple & Moran, WWW’00], a stochastic 

algorithm, two Markov chains, an authority and a 
hub Markov chains, less susceptible to spam

• Weight the links [Bharat & Henzinger SIGIR’98]:  if 
there are k edges from documents on a first host 
to a single document on a second host, give each 
edge an authority weight of 1/k, …

• Handling topic drifting: Content similarity 
comparison, or segment the page based on the 
DOM (Document Object Model) tree structure to 
identify blocks or sub-trees that are more relevant 
to query topic
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Link Spam

• PageRank

• Link spam refers to deliberately build 
auxiliary pages and links to boost the 
PageRank or other link-based ranking score 
of the target page.

• Those structures are referred to as link 
spam farms
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Term Spam

• TFIDF
– Given a web page p and a search query Q

• Term spam refers to tricks that tailor the 
contents of text fields to make spam pages 
relevant for some queries

• The primary way to increase the score is to 
increase the frequencies of keywords within 
some specific text fields of the term spam 
pages
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Web Spam Taxonomy

• Term spam
– Add many keywords into one page
– Make those keywords invisible but searchable

• Link spam
– Construct links to mislead search engines

• Both tricks are often used together
Web Spam

Link Spam Term Spam
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Data Mining and Spam Detection

• Classification approaches
• PageRank-like approaches
• Spam mass and spamicity approaches
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Classification and Prediction

• Classification: predict categorical class 
labels 
– Build a model for a set of classes/concepts
– Classify whether a page is web spam

• Prediction: model continuous-valued 
functions
– Predict the economic growth in 2008
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A Two-step Process 

• Model construction: describe a set of 
predetermined classes
– Training dataset: tuples for model construction

• Each tuple/sample belongs to a predefined class

– Classification rules, decision trees, or math formulae
• Model application: classify unseen objects

– Estimate accuracy of the model using an independent 
test set

– Acceptable accuracy apply the model to classify 
tuples with unknown class labels
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Model Construction

Training
Data

Classification
Algorithms

IF rank = ‘professor’
OR years > 6
THEN tenured = ‘yes’

Classifier
(Model)

No3Asso. ProfAnne
No6Ass. ProfDave
Yes7Asso. ProfJim
Yes2ProfBill
Yes7Ass. ProfMary
No3Ass. ProfMike

TenuredYearsRankName
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Model Application

Classifier

Testing
Data Unseen Data

(Jeff, Professor, 4)

Tenured?

Yes7Ass. ProfJoseph
Yes5ProfGeorge
No7Asso. ProfMerlisa
No2Ass. ProfTom

TenuredYearsRankName
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Decision Tree

• A node in the tree – a test of some attribute
• A branch: a possible value of the attribute
• Classification

– Start at the root
– Test the attribute
– Move down the tree branch

Outlook

Sunny Overcast Rain

Humidity

High Normal

No Yes

Yes Wind

Strong Weak

No Yes
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Training Dataset

NoStrongHighMildRain
YesWeakNormalHotOvercast
YesStrongHighMildOvercast
YesStrongNormalMildSunny
YesWeakNormalMildRain
YesWeakNormalCoolSunny
NoWeakHighMildSunny
YesStrongNormalCoolOvercast
NoStrongNormalCoolRain
YesWeakNormalCoolRain
YesWeakHighMildRain
YesWeakHighHotOvercast
NoStrongHighHotSunny
NoWeakHighHotSunny

PlayTennisWindHumidTempOutlook
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Basic Algorithm ID3

• Construct a tree in a top-down recursive divide-
and-conquer manner
– Which attribute is the best at the current node?
– Create a nodes for each possible attribute value
– Partition training data into descendant nodes

• Conditions for stopping recursion
– All samples at a given node belong to the same class
– No attribute remained for further partitioning

• Majority voting is employed for classifying the leaf

– There is no sample at the node
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Which Attribute Is the Best?

• The attribute most useful for classifying 
examples

• Information gain and gini index
– Statistical properties
– Measure how well an attribute separates the 

training examples
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Entropy

• Measure homogeneity of examples

– S is the training data set, and pi is the 
proportion of S belong to class i

• The smaller the entropy, the purer the data 
set

∑
=

−≡
c

i
ii ppSEntropy

1
2log)(
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Information Gain

• The expected reduction in entropy caused 
by partitioning the examples according to an 
attribute

∑
∈

−≡
)(

)(
||
||)(),(

AValuesv
v

v SEntropy
S
SSEntropyASGain

Value(A) is the set of all possible values 
for attribute A, and Sv is the subset of S
for which attribute A has value v
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Example

NoStrongHighMildRain
YesWeakNormalHotOvercast
YesStrongHighMildOvercast
YesStrongNormalMildSunny
YesWeakNormalMildRain
YesWeakNormalCoolSunny
NoWeakHighMildSunny
YesStrongNormalCoolOvercast
NoStrongNormalCoolRain
YesWeakNormalCoolRain
YesWeakHighMildRain
YesWeakHighHotOvercast
NoStrongHighHotSunny
NoWeakHighHotSunny

PlayTennisWindHumidTempOutlook
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Extracting Classification Rules

• Each path from the root to a leaf an IF-
THEN rule
– Each attribute-value pair along a path forms a 

conjunction
– The leaf node holds the class prediction
– IF age = “<=30” AND student = “no” THEN 

buys_computer = “no”
• Rules are easy to understand
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Bagging 

• Given a set S of s samples, generate a sequence 
of k independent bootstrap training sets

• Construct a sequence of classifiers C1,C2,…,Ck 
by using the same classification algorithm 

• To classify an unknown sample X, let each 
classifier predict or vote 

• The bagged classifier C* counts the votes and 
assigns X to the class with the “most” votes
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Boosting Technique

• Assign every example an equal weight  1/N
• For t = 1, 2, …, T Do 

– Obtain a classifier C(t) under w(t)
– Calculate the error of C(t) and re-weight the 

examples based on the errors. Samples 
incorrectly predicted have bigger weight

• Output a weighted sum of all the classifiers, 
with each classifier weighted according to its 
accuracy on the training set 
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Spam Detection by Classification

• Use a set of spam web pages as a training 
data set

• Train a classification model (e.g., a decision 
tree)

• Apply the classification model to combat 
web spam
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Heuristic Feature Selection

• Web page top domains
• Languages
• Number of words (body and title)
• Average word length
• Anchor words
• Visibility of content
• Repeating keywords
• The most common keywords
• N-gram likelihood
• [Ntoulas et al. WWW’06]
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Web Page Top Domains
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Languages
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Number of Words
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Average Word Length
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Fraction of Anchor Words

• Anchor words: words for hyperlinks
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Visibility of Content
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Repeating Keywords
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Most Common Keywords
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Using C4.5 to Combine Features

• Using bagging and boosting
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SpamRank: Ideas

• Supporters of an honest (non-spam) page 
should not be overly dependent on one 
another

• The PageRank of the supporters of an 
honest page should follow a power law 
distribution as if a sample of the whole web

• Link spammers have a limited budget –
boosting utility is important for supporters of 
spam pages

• [Benczur et al. AIRWeb’05]
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SpamRank: A Three-Step Method

• Phase 1: select the supporters of each page 
by a Monte Carlo simulation

• Phase 2: pages are penalized if their 
supporters do not follow power law 
distribution in PageRank histogram

• Phase 3: compute SpamRank as PageRank
personalized on the vector of penalties
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PageRank versus SpamRank
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TrustRank: Ideas and Method
• Honest pages often point to honest pages and 

seldom point to spam pages
• Use a set of known honest pages as the seed set

– Assign high trust scores to those pages
• Propagate the trust scores via out-links to 

unknown web pages – a PageRank computation 
procedure

• When the TrustRank converge, pages with high 
TrustRank scores are honest pages

• Critical issue: the seed set must be good and 
balanced

• [Gyongyi et al. VLDB’04]

J. Pei, B. Zhou, Z. Tang, and D. Huang: Data Mining Techniques for Spam Detection 56

PageRank versus TrustRank

• Good pages
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PageRank versus TrustRank

• Bad pages
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Precision and Recall
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Topical TrustRank

• General TrustRank has a bias towards 
heavily represented communities in the 
seed set

• Use pages in well-maintained topic 
directories such as dmoz Open Directory 
Project as the seed set
– Partition the seed set into topics

• Compute TrustRank score vectors on topics
• [Wu et al. WWW’06]
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TrustRank versus Topical TrustRank



31

J. Pei, B. Zhou, Z. Tang, and D. Huang: Data Mining Techniques for Spam Detection 61

Spam Farms

• The set of pages supporting a spam page
• Three components

– A single target page to be boosted by the 
spammer

– A reasonable number of boosting pages that 
deliberately push the ranking of the target page

– Some external links accumulated from pages 
outside the spam farm

• [Gyongyi and Garcia-Molina, VLDB’05]
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Spam Farms

• Optimal structure for single target page
• General structure
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Spam Alliance

• A spam farm may boost multiple target 
pages

J. Pei, B. Zhou, Z. Tang, and D. Huang: Data Mining Techniques for Spam Detection 64

Irregular Spam Alliance
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Questions Remained

• How can we derive spam farms in the real 
web?

• A spam page may play both link spam and 
content spam tricks?

• Is spamming as simple as black-and-white?
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A Spamicity Approach

• Use spamicity to measure how likely a web 
page is spam

• Efficient spamicity-based link spam 
detection methods

• Efficient spamicity-based term spam 
detection methods

• [Zhou et al. SDM’08]
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Page Farm Model

• Typically, link spam is a local activity.
– Where does PR(p, G) come from?

• (θ,k)-page farm of page p: the minimal set of 
pages contributing to a θ portion of PR(p, G) and 
each page has a distance to p at most k
– According to [Zhou and Pei, SDM’07], when θ >= 0.8 

and k >= 3, the farms captures the local environments of 
web pages accurately
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Utility-based Link Spamicity

• Given a page p, its page farm Farm(p) 
captures its local link structures

• Farm(p) should try to achieve the PageRank 
of p as high as possible

• The utility of Farm(p) is the ratio of the 
PageRank of p against the maximum 
PageRank that can be achieved
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Optimal Spam Farms
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Utility-based Link Spamicity

• ULSpam(p) can be used as a measure on 
the likelihood that p is link spam
– It is an objective measure
– It also works for those disguised link spam
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Link Spam Detection Scenarios

• When the whole web graph is available
– Search engine companies
– Parties who have the access to data (e.g., by crawling 

the web)
– But, the maintenance of the data is a big issue

• When the whole web graph is unavailable
– Online spam detection (e.g., intelligent web browsers)
– Efficient spam detection (e.g., only want to label a small 

set of pages)
• Out-links: parsing the content of the page
• In-links: querying web search engines using link search queries
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Efficient Link Spam Detection

• Given a link spamicity threshold and a web 
page
– Determine whether the link spamicity of the 

page is greater than or equal to the threshold
• Major calculation costs

– Search engine querying load
– Web page out-link parsing load
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Local Greedy Search Method
• Page contribution

• Path contribution
– Consider a path 

• Page contribution and path contribution
– PCont(v,p) can be calculated efficiently by summing up LCont(P,p)

• A local greedy search method
– Given a target page p,  greedily add pages with the highest page

contribution to p into the farm Farm(p)
– The procedure stops until Farm(p) achieves a θ portion of the 

PageRank score of p
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Monotone Greedy Search Method

• The local greedy search method needs to extract 
the whole farm so as to calculate the link spamicity

• A critical observation: If pages are added in the 
page contribution descending order, the utility of 
adding new pages to improve the PageRank of the 
target page decreases monotonically

• A monotone greedy search method
– Given a target page p, greedily add a page to the 

current farm Farm(p) which makes the largest 
improvement on PR(p)

– The iteration continues until the link spamicity is lower 
than the link utility threshold, or all the pages within 
distance to p up to k are in the farm
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Utility-based Term Spamicity

• If page p is term spam, to be relevant to a search 
query Q, p should try to achieve the TFIDF score 
as high as possible.

• The keywords in page p can be treated as the 
targeted keywords to which the builder of the page 
wants to make p relevant

• Utility-based term spamicity

• UTSpam(p) can be used as a measure on the 
likelihood that p is term spam
– It is an objective measure
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Char-Based Term Spamicity
• Keyword stuffing detection

– Page body, page title, page meta tags, page anchor text
– Hi(p) (i=1,2,3,4): the ratio of the total number of keywords in each

field against the number of distinct keywords in each field
• Invisible keywords detection

– Set the keywords to have the same color as the page body
– H5(p): the ratio of the number of invisible keywords in the body 

against the total number of keywords in the body
• Page URL keywords detection

– Embed spam keywords in the URL address of the page.
– H6(p): the ratio of the total length of keywords in the URL against 

the total length of the URL
• Characteristics-based term spamicity
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Efficient Term Spam Detection

• Given a term spamicity threshold and a web 
page
– Determine whether the term spamicity of the 

page is greater than or equal to the threshold
• Major calculation costs

– Web page keyword parsing load
– Search engine querying load
– IDF scores of keywords
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Data Set

• The webspam-UK2006 data set, released 
by Yahoo! Research Barcelona

• 8,239 pages are labeled manually, either 
“spam” or “normal”
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The Effectiveness of Spamicity
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Content Spam Detection
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Comparisons of Three Spamicities
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Scalability
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Summary

• Web spam hurts information retrieval quality 
on the web
– Link spam
– Content spam

• Can data mining techniques help in web 
spam detection?
– Classification approaches
– PageRank-like approaches
– Spam mass and spamicity approaches
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Future Directions

• Effectiveness
– More accurate spam detection?

• Efficiency
– Scalable and online spam detection?

• PageRank is not all about web information 
retrieval
– Spam detection for other ranking methods?
– Spam detection for search of other types of 

data, e.g., images, videos, news, shopping, …
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