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Abstract We tackle the novel problem of mining contrast subspaces. Given a set of mul-
tidimensional objects in two classes C+ and C− and a query object o, we want to find
the top-k subspaces that maximize the ratio of likelihood of o in C+ against that in C−.
Such subspaces are very useful for characterizing an object and explaining how it differs
between two classes. We demonstrate that this problem has important applications, and, at
the same time, is very challenging, being MAX SNP-hard. We present CSMiner, a mining
method that uses kernel density estimation in conjunction with various pruning techniques.
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We experimentally investigate the performance of CSMiner on a range of data sets, evaluat-
ing its efficiency, effectiveness, and stability and demonstrating it is substantially faster than
a baseline method.

Keywords Contrast subspace · Kernel density estimation · Likelihood contrast

1 Introduction

Imagine you are a medical doctor facing a patient with symptoms that include being over-
weight, shortness of breath, and tiredness. You want to check the patient against two specific
possible diseases: coronary artery disease and adiposity. Note that clogged arteries are among
the top-5 most commonly misdiagnosed diseases. You have available a set of reference sam-
ples for both diseases. Then, you may naturally ask “In what aspects is this patient most
similar to cases of coronary artery disease and, at the same time, dissimilar to adiposity?”

The above motivational scenario cannot be addressed well using existing data mining
methods and thus suggests a novel data mining problem. In a multidimensional data set of
two classes, given a query object and a target class, we want to find the subspaces where
the query object is most likely to belong to the target class versus the other class. We call
such subspaces contrast subspaces, since they contrast the likelihood of the query object in
the target class against the other class. Mining contrast subspaces is an interesting problem
with important applications. As another example, when an analyst in an insurance company
is investigating a suspicious claim, she may want to compare this suspicious case against
samples of frauds and normal claims. A useful question to ask is “In what aspects is this
suspicious case most similar to fraudulent cases and different from normal claims?”. In other
words, finding the contrast subspaces for the suspicious claim is informative for the analyst
and serves as a useful input for deeper exploration.

While there are many existing studies on outlier detection and contrast mining, they focus
on collective patterns that are shared by many cases of the target class. The contrast subspace
mining problem addressed here is different. It focuses on one query object and finds the
customized contrast subspaces. This critical difference makes the problem formulation, the
suitable applications and the mining methods rather different. We will review related work
and explain the differences in more detail in Sect. 2.

Challenges: To tackle the problem of mining contrast subspaces, we need to address several
technical challenges. First, we need to have a simple yet informative contrast measure to
quantify the similarity between the query object and the target class and the difference
between the query object and the other class.

Second, the problem of mining contrast subspaces is computationally challenging. Exhaus-
tive search, which enumerates every non-empty subspace and computes the contrast measure,
is very costly on data sets with a non-trivial dimensionality.

Third, one might attempt a brute-force method to tackle the contrast mining problem. One
major obstacle preventing effective pruning is that the contrast measure does not have any
monotonicity with respect to the subspace–superspace relationship.

Our contributions: Besides introducing the new problem of mining contrast subspaces, we
make several contributions in this paper.

– We use the ratio of the likelihood of the query object in the target class against that in
the other class as the contrast measure. This is essentially the Bayes factor on the query
object and comes with a well-recognized explanation [15].
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Efficient discovery of contrast subspaces for object... 101

– We show that the problem of contrast subspace mining is MAX SNP-hard and thus does
not allow polynomial time approximation methods unless P = NP. Therefore, the only
hope is to develop heuristics that may work well in practice.

– We develop pruning techniques based on bounds of likelihood and contrast ratio. Our
experimental results on real data sets clearly verify the effectiveness, stability, and effi-
ciency of our method.

Organization: The rest of the paper is organized as follows. We review related work in
Sect. 2. In Sect. 3, we formalize the problem and analyze it theoretically. We present a
heuristic method in Sect. 4 and evaluate our method empirically using real data sets in
Sect. 5. We conclude the paper in Sect. 6.

2 Related work

Our study is related to the existing work on contrast mining, subspace outlier detection, and
typicality queries. We review the related work briefly here.

Contrast mining discovers patterns and models that manifest drastic differences between
data sets. Dong and Bailey [9] presented a comprehensive review of contrast mining, together
with a range of real-life applications. Some of the best known types of contrast patterns include
emerging patterns [10], contrast sets [3], and subgroups [25]. Although their definitions vary,
the mining methods share many similarities [19].

Contrast pattern mining identifies patterns by considering all objects of all classes in the
complete pattern space. Orthogonally, contrast subspace mining focuses on one object and
identifies subspaces where a query object demonstrates the strongest overall similarity to
one class against the other. These two mining problems are fundamentally different. To the
best of our knowledge, the contrast subspace mining problem has not been systematically
explored in the data mining literature.1

Subspace outlier detection discovers objects that significantly deviate from the majority
in some subspaces. Data sets from real life often have very high dimensionalities. Due to
the curse of dimensionality, measurements designed to calculate the differences between an
object and the other objects, such as distance and probability density, become meaningless
in the full space [4].

Given a multidimensional database, subspace outlier detection aims to identify a set of
subspaces, where the outlier objects drastically deviate from the majority. It is different from
our study. In contrast subspace mining, the query object may or may not be an outlier. We are
trying to find the top-k subspaces, in which a query object is the most typical in the current
class and is very unlikely to occur in other classes. Some recent studies find subspaces that
may contain substantial outliers. Böhm et al [5] and Keller et al [16] proposed statistical
approaches HiCS and CMI to selecting subspaces for a multidimensional database, where
there may exist outliers with high deviations. Both HiCS and CMI differ from our method.
Technically, they choose subspaces for all outliers in a given database, while our method
chooses the most contrasting subspaces for a query object. In HiCS and CMI, contrast refers to
the differences between the assumptions on whether the subspaces are mutually independent
or not. In our work, contrast is defined as the differences of the likelihoods that a query
belongs to the given class or not.

1 While [8] presented a contrast-pattern length based algorithm to detection global outliers, their problem
setting is different from ours.
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Kriegel et al [18] introduced SOD, a method to detect outliers in axis-parallel subspaces.
For each outlier detected, the method selects a hyperplane, where the outlier deviates signifi-
cantly from the neighbors of the outlier in the full space as references. SOD also differs from
our work. First, SOD is still an outlier detection method, and the hyperplane is a byproduct
of the detection process. Our method does not detect outliers at all. Second, the input data
are different. Our work requires the input data to have class labels, while SOD does not have
this requirement.

Our method uses probability density to estimate the likelihood of a query object belonging
to different classes. There exist density-based outlier detection methods, such as [1,6,13,17].
Our method is different from those, since we do not target outlier objects and instead aim to
analyze any type of object.

Hua et al [14] introduced a novel top-k typicality query, which ranks objects according to
their typicality in a data set or a class of objects. Although both [14] and our work use density
estimation methods to calculate the typicality/likelihood of a query object with respect to
a set of data objects, typicality queries [14] do not consider subspaces. [14] aimed to find
the most typical data objects according to the query object; in contrast, we find the most
contrasting subspaces for a query object.

Cai et al [7] proposed a method that adopted concepts from human cognition, to answer
the top-k typicality queries. The typicality of an object with respect to a set of data objects
was calculated based on the similarity and support of the object with respect to the set of data
objects. Again, the problem setting and the method differ from our work.

We tackled the problem of contrast subspace mining in [11], a preliminary version of
this paper. Compared to that work, in this paper, we present a complete complexity analysis,
provide a more detailed description of the key steps in our method and perform more extensive
empirical evaluations, including using different bandwidths and kernel.

3 Problem formulation and analysis

In this section, we first formulate the problem. Then, we recall the basics of kernel den-
sity estimation for estimating the probability density of objects. Last, we investigate the
complexity of the problem.

3.1 Problem definition

Let D = {D1, . . . , Dd} be a d-dimensional space, where the domain of Di is R, the set of
real numbers. A subspace S ⊆ D (S �= ∅) is a subset of D. We also call D the full space.

Consider an object o in space D. We denote by o.Di the value of o in dimension Di

(1 ≤ i ≤ d). For a subspace S = {Di1 , . . . , Dil } ⊆ D, the projection of o in S is oS =
(o.Di1 , . . . , o.Dil ). For a set of objects O = {o j | 1 ≤ j ≤ n}, the projection of O in S is
O S = {oS

j | o j ∈ O, 1 ≤ j ≤ n}.
Given a set of objects O , we assume a latent distribution Z that generates the objects in O .

For a query object q , denote by L D(q | Z) the likelihood of q being generated by Z in full
space D. The posterior probability of q given O , denoted by L D(q | O), can be estimated by
L D(q | Z). For a non-empty subspace S (S ⊆ D, S �= ∅), denote by Z S the projection of Z
in S. The subspace likelihood of object q with respect to Z in S, denoted by L S(q | Z), can
be used to estimate the posterior probability of object q given O in S, denoted by L S(q | O).

In this paper, we assume that the objects in O belong to two classes, C+ and C−, exclusively
in full space D. Thus, O = O+∪O− and O+∩O− = ∅, where O+ and O− are the subsets of
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objects of O belonging to C+ and C−, respectively. Given a query object q , we are interested
in how likely q belongs to C+ and does not belong to C−. To measure these two factors
comprehensively, we define the likelihood contrast as LC(q) = L D(q|O+)

L D(q|O−)
.

Likelihood contrast is essentially the Bayes factor2 of object q as the observation. In other
words, we can regard O+ and O− as representing two models, and we need to choose one of
them based on query object q . Consequently, the ratio of likelihoods indicates the plausibility
of model represented by O+ against that by O−. Jeffreys [15] gave a scale for interpretation of
Bayes factor. When LC(q) is in the ranges of < 1, 1–3, 3–10, 10–30, 30–100, and over 100,
respectively, the strength of the evidence is negative, barely worth mentioning, substantial,
strong, very strong, and decisive.

We can extend likelihood contrast to subspaces. For a non-empty subspace S ⊆ D, we
define the likelihood contrast in the subspace as LCS(q) = L S(q|O+)

L S(q|O−)
. To avoid triviality in

subspaces where L S(q | O+) is very small, we introduce a minimum likelihood threshold
δ > 0 and consider only the subspaces S where L S(q | O+) ≥ δ. The number of likelihood
contrast subspaces will be reduced with larger δ.

Now, we formally define the problem. Given a multidimensional data set O in full space D,
a query object q , a minimum likelihood threshold δ > 0 and a parameter k > 0, the problem of
mining contrast subspaces is to find the top-k subspaces S ordered by the subspace likelihood
contrast LCS(q) subject to L S(q | O+) ≥ δ.

3.2 Kernel density estimation

We can use kernel density estimation to estimate the likelihood L S(q | O). Given a set of
objects O , we denote by f̂ S(q, O) the density of a query object q in subspace S. Follow-
ing [22], the general formula for multivariate kernel density estimation with kernel K and
bandwidth parameter hS in subspace S is defined as follows

f̂S(q, O) = f̂ S(q S, O) = 1

|O|h|S|
S

∑

o∈O

K

{
1

hS
(q − o)

}
(1)

Choosing K to be a radially symmetric unimodal3 probability density function, in this
paper, we adopt the Gaussian kernel

K (x) = 1

(2π)|S|/2 e− 1
2 xT x (2)

which is natural and widely used in density estimation.
This then leads to

f̂ S(q, O) = f̂S(q S, O) = 1

|O|(√2πhS)|S|
∑

o∈O

exp

(
−distS(q, o)2

2hS
2

)

where distS(q, o)2 = ∑
Di ∈S(q.Di − o.Di )

2.
Silverman [22] suggested that the optimal bandwidth value for smoothing normally dis-

tributed data with unit variance is hS_opt = A(K )|O|−1/(|S|+4), where A(K ) = {4/(|S| +
2)}1/(|S|+4) for the Gaussian kernel.

2 Generally, given a set of observations Q, the plausibility of two models M1 and M2 can be assessed by the

Bayes factor K = Pr(Q|M1)
Pr(Q|M2)

.
3 If it is not unimodal, then there could be multiple peaks at different distances from the query, which is
counter to intuition. Similarly, we have no basis for preferring any direction over another, so symmetry is
natural.
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As the kernel is radially symmetric and the data are not normalized in subspaces, we can
use a single scale parameter σS in subspace S and set hS = σS · hS_opt . As [22] suggested,
a reasonable choice for σS is the root of the average marginal variance in S.

Using kernel density estimation, we can estimate L S(q | O) as

L S(q | O) = f̂ S(q, O) = 1

|O|(√2πhS)|S|
∑

o∈O

exp

(
−distS(q, o)2

2hS
2

)
(3)

Correspondingly, the likelihood contrast of object q in subspace S is given by

LCS(q, O+, O−) = f̂ S(q, O+)

f̂ S(q, O−)
= |O−|

|O+| ·
(

hS−
hS+

)|S|
·
∑

o∈O+ exp

(
−distS(q,o)2

2hS+ 2

)

∑
o∈O− exp

(
−distS(q,o)2

2hS− 2

) (4)

We often omit O+ and O− and write LCS(q) if O+ and O− are clear from context.

3.3 Complexity analysis

Before developing any algorithms to tackle the contrast subspace mining problem, let us first
investigate its complexity. We will show that the contrast subspace mining problem is MAX
SNP-hard by constructing a linear reduction (L-reduction for short) from the emerging pattern
mining problem [10], which was been shown to be MAX SNP-hard [23]. The L-reduction
linearly preserves approximability features of the original problem after the transformation,
thus the name “linear reduction”.

To make the discussion self-contained, a brief description of the emerging pattern mining
problem is given as follows. Let D′ = {D′

1, D′
2, . . . , D′

d} denote a set of d items. A transaction
o′

i is represented by a binary vector of length d whose element o′
i j = 1 if item D′

j is present,
and 0 otherwise. A pattern S′ is a subset of items in D′. A transaction o′

i satisfies S′ if
o′

i j = 1, ∀D′
j ∈ S′. A transaction database O ′ is a set of transactions. Let SatO ′(S′) denote

the set of transactions in O ′ satisfying S′.

Definition 1 (Emerging pattern mining (EP)) Given two transaction databases O ′+ and O ′−,
find the pattern S′ such that the cost function cEP(S′) = |SatO ′+(S′)| is maximized subject to
the feasibility condition |SatO ′−(S′)| = 0.

We consider the following simplified version of the contrast subspace mining problem,
where the bandwidth parameters hS+ and hS− for all subspaces are set to the same value h.

Definition 2 (Contrast subspace mining (CS)) Given {q, O+, O−} where q is the query and
O+ and O− are the two classes, find the subspace S maximizing the cost function

cCS (S, q) =
∑

o∈O+
exp

(−dist S(q, o)2

2h2

)/ ∑

o∈O−
exp

(−dist S(q, o)2

2h2

)

(which is equivalent to the likelihood contrast, up to a constant multiplicative factor |O−|
|O+| ).

In addition, we define the complete contrast subspace mining problem as follows:

Definition 3 (Complete contrast subspace mining (Complete-CS)) Given {O+, O−} find the
subspace S such that the cost function

c(S) = max
oi ∈O+

cCS (S, q = oi )
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is maximized.

It can be seen that Complete-CS can be solved by solving at most |O+| CS sub-problems
corresponding to unique data points in O+. We will now prove that Complete-CS is MAX
SNP-hard, via the following reduction from the emerging pattern mining problem.

Reduction 1 The EP → Complete-CS reduction:

– For each item D′
i , set up a corresponding dimension Di .

– For each transaction o′
i ∈ O ′+, insert 2 copies of o′

i into O+.
– For each transaction o′

i ∈ O ′−, insert 2|O ′+| identical data points o′
i into O−.

– Insert 1 item (a numeric vector) with all 1’s into O−.
– Let h be an arbitrary user-specified bandwidth parameter, replace each occurrence of

the 0 value in O = O+ ∪ O− with a unique value in the set {2γ h, 3γ h, 4γ h . . .} where
γ is some fixed large constant.

– Replace each occurrence of the value 1 in O with γ h where γ is the same as the one
used above.

This transformation can be done in O(|O+||O−|) time. An example illustrating the trans-
formation is given in Table 1.

Theorem 1 The reduction EP → Complete-CSdefined above is an L-reduction, denoted by
EP →L Complete-CS.

For completeness, the formal definition of the L-reduction [20] is given as follows:

Definition 4 (L-Reduction) Let �1 and �2 be two optimization problems. We say that �1 L-
reduces to �2 if there are two polynomial time algorithms f, g and constants α, β > 0 such
that, for any instance I of �1, f (I ) forms an instance of �2 and

– (c1) OPT( f (I )) ≤ αOPT(I ) where OPT(.) denotes the optimal value of the respective
optimization problem.

Table 1 An example transformation from a transaction database to a numeric data set according to the EP →
Complete-CS reduction

Database Transactions O+ O−

O ′+ [0, 1, 1, 0] [2γ h, 1γ h, 1γ h, 3γ h]
[4γ h, 1γ h, 1γ h, 5γ h]

[0, 1, 0, 0] [6γ h, 1γ h, 7γ h, 8γ h]
[9γ h, 1γ h, 10γ h, 11γ h]

O ′− [1, 1, 0, 0] [1γ h, 1γ h, 12γ h, 13γ h]
[1γ h, 1γ h, 14γ h, 15γ h]
[1γ h, 1γ h, 16γ h, 17γ h]
[1γ h, 1γ h, 18γ h, 19γ h]

[0, 0, 0, 1] [20γ h, 21γ h, 22γ h, 1γ h]
[23γ h, 24γ h, 25γ h, 1γ h]
[26γ h, 27γ h, 28γ h, 1γ h]
[29γ h, 30γ h, 31γ h, 1γ h]
[1γ h, 1γ h, 1γ h, 1γ h]
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106 L. Duan et al.

– (c2) Given any solution s of f (I ), algorithm g produces a solution g(s) of I satisfying
|c�1(g(s))−OPT(I )| ≤ β|c�2(s)−OPT( f (I ))|, where c�i (.) denotes the cost function
of the corresponding optimization problem.

Proof First, we note that for any bandwidth value h, we can set γ to a large value such that

exp
(−dist S(q,o)2

2h2

)
can be arbitrarily close to 0 for all q ∈ O such that q S �= oS . The cost

function for CS can be computed as

cCS(S, q) =
∑

o∈O+ exp
(−dist S(q,o)2

2h2

)

∑
o∈O− exp

(−dist S(q,o)2

2h2

) = |O S,q
+ | + ε+(S, q)

|O S,q
− | + ε−(S, q)

(5)

where O S,q denotes the set of data points in O having values identical to q in the subspace
S, and

ε+(S, q) =
∑

o∈O+\O S,q
+

exp

(−dist S(q, o)2

2h2

)
,

ε−(S, q) =
∑

o∈O−\O S,q
−

exp

(−dist S(q, o)2

2h2

)
.

Let M > 1 be the maximum integer value such that Mγ h is a value occurring in O (e.g.,
M = 31 in the example in Table 1). Then |S|γ 2h2 < dist S(q, o)2 < M2|S|γ 2h2 for all
o ∈ O+ ∪ O−. Thus

(|O+| − |O S,q
+ |) exp

(−|S|γ 2 M2) < ε+(S, q) < (|O+| − |O S,q
+ |) exp

(−|S|γ 2) � 1

and similarly

(|O−| − |O S,q
− |) exp

(−|S|γ 2 M2) < ε−(S, q) < (|O−| − |O S,q
− |) exp

(−|S|γ 2) � 1

Note that limγ→∞ ε+(S, q) = 0 and limγ→∞ ε−(S, q) = 0. Now, it can be seen that:

– If a pattern S′ is an emerging pattern, then by construction at least one object q ∈ O+
must have |O S,q

+ | ≥ 2 and |O S,q
− | = 1. This is because S′ only appears in O ′+, and for

each transaction o′
i ∈ O ′+, we have inserted 2 copies of o′

i into O+. On the other hand,
S′ does not appear in O ′− and the only object having values identical to q in the subspace
S is the object containing all γ h’s. Therefore,

cCS(S, q) = |O S,q
+ | + ε+(S, q)

|O S,q
− | + ε−(S, q)

≥ 2 + ε+(S, q)

1 + ε−(S, q)
> 1 (6)

– If a pattern S′ is not an emerging pattern, then by construction all objects q ∈ O+ must
have |O S,q

− | ≥ |O S,q
+ | + 1 > |O S,q

+ |. Therefore,

cCS(S, q) = |O S,q
+ | + ε+(S, q)

|O S,q
− | + ε−(S, q)

< 1 (7)

With these observations, we are ready to prove the main complexity result. We need to
verify that the reduction EP → Complete-CS satisfies the two conditions (c1) and (c2) of
the L-reduction.
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– (c1) For any instance I of EP, if S′ is the most frequent emerging pattern with
cEP(S′) = |SatO ′+(S′)| and |SatO ′−(S′)| = 0, then the corresponding optimal S solu-
tion for Complete-CS must have a cost value of

c(S) = 2|SatO ′+(S′)| + ε+(S, q)

1 + ε−(S, q)
� 2|SatO ′+(S′)| = 2cEP(S′) (8)

where q is any data point in O+ corresponding to the transaction containing pattern S′.
This is because for each transaction o′

i containing S′ in O ′+, we have inserted 2 copies
of o′

i into O+. The ‘1’ in the denominator is due to the object containing all γ h in O−.
Thus condition 1 is satisfied with α = 2 when γ is sufficiently large.

– (c2) For any solution S of Complete-CS, if c(S) = λ ≥ 2, then the corresponding pattern
S′ constructed from S will be an emerging pattern. Further, let [λ] be the nearest integer
to λ. Then [λ] must be even, and [λ]/2 will be the cost of the corresponding EP problem.
Let λ∗ denote the optimal cost of Complete-CS, then

∣∣∣∣
[λ]
2

− [λ∗]
2

∣∣∣∣ = 1

2
|[λ] − [λ∗]| � 1

2
|λ − λ∗| ≤ |λ − λ∗| (9)

Thus condition 2 is satisfied with β = 1.

��
Since EP →L Complete-CS, if there exists a polynomial time approximation algorithm

for Complete-CS with performance guarantee 1 − ε, then there exists a polynomial time
approximation algorithm for EP with performance guarantee 1 − αβε. Since EP is MAX
SNP-hard, it follows that Complete-CS must also be MAX SNP-hard.

Last, we draw the connection between Complete-CS and CS.

Theorem 2 If there exists a polynomial time approximation scheme (PTAS) for CS , then
there must also be a PTAS for Complete-CS.

Proof This is straightforward, as Complete-CS can be solved by a series of |O+| CS prob-
lems. ��

Unless P = NP, there exists no PTAS for Complete-CS, implying no PTAS for CS.
The above theoretical result indicates that the problem of mining contrast subspaces is

even hard to approximate—it is impossible (unless P = NP) to design a good approximation
algorithm. In the rest of the paper, we turn to practical heuristic methods.

4 Mining methods

In this section, we first describe a baseline method that examines every possible non-empty
subspace. Then, we present the design of our method CSMiner (for Contrast Subspace Miner)
that employs smarter strategies for search.

4.1 A baseline method

A baseline naive method enumerates all possible non-empty spaces S and calculates the exact
values of both L S(q | O+) and L S(q | O−), since both L S(q | O+) and L S(q | O−) are not
monotonic with respect to the subspace–superspace relationship. Then, it returns the top-k
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Fig. 1 A set enumeration tree

{D1}

{}

{D1,D3} {D1,D4} {D2,D3} {D2,D4} {D3,D4}

{D2} {D4}{D3}

{D1,D2,D3} {D1,D2,D4}

{D1,D2,D3,D4}

{D2,D3,D4}{D1,D3,D4}

{D1,D2}

Algorithm 1 The baseline algorithm
Input: q: query object, O+: objects belonging to C+, O−: objects belonging to C−, δ: likelihood threshold,

k: positive integer
Output: k subspaces with the highest likelihood contrast
1: let Ans be the current top-k list of subspaces, initialize Ans as k null subspaces associated with likelihood

contrast 0
2: traverse the subspace set enumeration tree in a depth-first search manner
3: for each subspace S do
4: compute σS+, σS−, hopt ;
5: compute L S(q | O+) and L S(q | O−) using Equation 3;

6: if L S(q | O+) ≥ δ and ∃S′ ∈ Ans s.t. L S (q|O+)
L S (q|O−)

> LCS′ (q) then

7: insert S into Ans and remove S′ from Ans;
8: end if
9: end for
10: return Ans;

subspaces S with the largest LCS(q) values. To ensure the completeness and efficiency of sub-
space enumeration, the baseline method traverses the set enumeration tree [21] of subspaces
in a depth-first manner. A set enumeration tree takes a total order on a set, the set of dimensions
in our problem, and enumerates all possible subsets in the lexicographical order. Figure 1
shows a set enumeration tree that enumerates all subspaces of D = {D1, D2, D3, D4}.

Using Eqs. 3 and 4, the baseline algorithm, shown in Algorithm 1, computes the likelihood
contrast for every subspace where L S(q | O+) ≥ δ, and returns the top-k subspaces. The
time complexity is O(2|D| · (|O+| + |O−|)).
4.2 The framework of CSMiner

L S(q | O+) is not monotonic in subspaces. To prune subspaces using the minimum likelihood
threshold δ, we develop an upper bound of L S(q | O+). We sort all the dimensions in their
standard deviation descending order. Let S be the set of descendants of S in the subspace set
enumeration tree using the standard deviation descending order. Define

L∗
S(q | O+) = 1

|O+|(√2πσ ′
minh′

opt_min)τ

∑

o∈O+
exp

(
−distS(q, o)2

2(σSh′
opt_max )

2

)
(10)

where σ ′
min = min{σS′ | S′ ∈ S}, h′

opt_min = min{hS′_opt | S′ ∈ S}, h′
opt_max =

max{hS′_opt | S′ ∈ S}, and

τ =
{

|S| if
√

2πσ ′
minh′

opt_min ≥ 1

max{|S′| | S′ ∈ S} if
√

2πσ ′
minh′

opt_min < 1

We have the following result.
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Theorem 3 (Monotonic density bound) For a query object q, a set of objects O, and sub-
spaces S1, S2 such that S1 is an ancestor of S2 in the subspace set enumeration tree in which
dimensions in full space D are sorted by their standard deviation descending order, it is true
that L∗

S1
(q | O) ≥ L S2(q | O).

Proof Let S be the set of descendants of S1 in the subspace set enumeration tree using the
standard deviation descending order in O . We define σ ′

min = min{σS′ | S′ ∈ S}, h′
opt_min =

min{hS′_opt | S′ ∈ S}, h′
opt_max = max{hS′_opt | S′ ∈ S}, and

τ =
{

|S1| if
√

2πσ ′
minh′

opt_min ≥ 1

max{|S′| | S′ ∈ S} if
√

2πσ ′
minh′

opt_min < 1

(Note that the computing of σ ′
min , h′

opt_min , and h′
opt_max has linear complexity. As introduced

in Sect. 3.2, σS′ is the root of the average marginal variance in S′ and hS′_opt depends on the
values of |O| and |S′|. Let S′′ ∈ S such that for any subspace S′ ∈ S, S′ ⊆ S′′. Recall that the
dimensions in the set enumeration tree are sorted by the standard deviation descending order,
and then σ ′

min can be obtained by checking dimensions in S′′\S1 one by one in the standard
deviation ascending order. Moreover, h′

opt_min (h′
opt_max ) can be obtained by comparing

hS′_opt with different values of |S′| ∈ [|S1| + 1, |S′′|].) As S2 ∈ S, we have 1 ≤ |S1| <

|S2| ≤ max{|S′| | S′ ∈ S}, and σS1 ≥ σS2 ≥ σ ′
min . Then, σS2 hS2_opt ≥ σ ′

minh′
opt_min . Thus,

(
√

2πσS2 hS2_opt )
|S2| > (

√
2πσ ′

minh′
opt_min)τ

Moreover, for o ∈ O , distS1(q, o) ≤ distS2(q, o). Correspondingly,

−distS2(q, o)2

2(σS2 hS2_opt )2 ≤ −distS1(q, o)2

2(σS1 h′
opt_max )

2

By Eq. 3,

L S2(q | O) = 1

|O|(√2πσS2 hS2_opt )|S2|
∑

o∈O

exp

(−distS2(q, o)2

2(σS2 hS2_opt )2

)

≤ 1

|O|(√2πσ ′
minh′

opt_min)τ

∑

o∈O

exp

(
−distS1(q, o)2

2(σS1 h′
opt_max )

2

)

= L∗
S1

(q | O)

��
Using Theorem 3, in addition to L S(q | O+) and L S(q | O−), we also compute L∗

S(q |
O+) for each subspace S. We are now in a position to state a pruning rule based on this
theorem.

Pruning Rule 1 Given a minimum likelihood threshold δ, if L∗
S(q | O+) < δ in a subspace

S, all superspaces of S can be pruned.

Note that by using depth-first search, the distance between two objects in a super-space
can be computed incrementally from the distance among the objects in a subspace. Given
two objects q and o, let subspace S′ = S ∪ {Di }. We have distS′(q, o)2 = distS(q, o)2 +
(q.Di − o.Di )

2.
Algorithm 2 shows the pseudo-code of the framework of CSMiner. Similar to the baseline

method (Algorithm 1), CSMiner conducts a depth-first search on the subspace set enumeration
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Algorithm 2 CSMiner(q, O+, O−, δ, k)
Input: q: query object, O+: objects belonging to C+, O−: objects belonging to C−, δ: likelihood threshold,

k: positive integer
Output: k subspaces with the highest likelihood contrast
1: let Ans be the current top-k list of subspaces, initialize Ans as k null subspaces associated with likelihood

contrast 0
2: traverse the subspace set enumeration tree in a depth-first search manner
3: for each subspace S do
4: compute σS+, σS−, σ ′

min , hopt , h′
opt_min , and h′

opt_max ;

5: compute L∗
S(q | O+) using Equation 10;

6: if L∗
S(q | O+) < δ then

7: prune all descendants of S and go to Step 2; // Pruning Rule 1
8: else
9: compute L S(q | O+) and L S(q | O−) using Equation 3;

10: if L S(q | O+) ≥ δ and ∃S′ ∈ Ans s.t. L S (q|O+)
L S (q|O−)

> LCS′ (q) then

11: insert S into Ans and remove S′ from Ans;
12: end if
13: end if
14: end for
15: return Ans;

tree. For a candidate subspace S, CSMiner calculates L∗
S(q | O+) using Eq. 10. If L∗

S(q |
O+) is less than the minimum likelihood threshold, all superspaces of S can be pruned by
Theorem 3. Due to the hardness of the problem shown in Sect. 3.3 and the heuristic nature
of this method, the time complexity of CSMiner is O(2|D| · (|O+| + |O−|)), the same as
the exhaustive baseline method. However, as shown by our empirical study, CSMiner is
substantially faster than the baseline method.

As stated in Algorithm 2, CSMiner starts with reading q , O+ and O−. For a candidate
subspace S, CSMiner stores σS+, σS−, σ ′

min , hopt , h′
opt_min , and h′

opt_max to compute L∗
S(q |

O+), and LCS(q). As CSMiner traverses the subspace set enumeration tree in a depth-
first manner and finds top-k subspaces with the highest likelihood contrast, CSMiner only
stores the likelihood contrast information of k candidate subspaces. The space complexity of
CSMiner is O(|O+| + |O−| + k). Observe that k ≤ 2|D| (D representing the full space).

4.3 A bounding-pruning-refining method

For a query object q and a set of objects O , the likelihood L S(q | O), computed by Eq. 3, is the
sum of density contributions of objects in O to q in subspace S. In Gaussian kernel estimation,

given object o ∈ O , the contribution from o to L S(q | O) is 1
|O|(√2πhS)|S| exp

(−distS(q,o)2

2hS
2

)
.

We observe that the contribution of o decays exponentially as the distance between q and o
increases, and L S(q | O) can be bounded.

For a query object q and a set of objects O , the ε-neighborhood (ε > 0) of q in subspace
S is N ε

S(q | O) = {o ∈ O | distS(q, o) ≤ ε}. We can divide L S(q | O) into two parts, that
is, L S(q | O) = L N ε

S
(q | O) + Lrest

S (q | O). The first part is contributed by the objects in
the ε-neighborhood, that is,

L N ε
S
(q | O) = 1

|O|(√2πhS)|S|
∑

o∈N ε
S (q|O)

exp

(
−distS(q, o)2

2hS
2

)
,
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Fig. 2 An example of an
ε-neighborhood in a
2-dimensional subspace (within
the dashed circle)

o1

o2

o3
o4

o5

o6

o7

o8

o9

o10

and the second part is by the objects outside the ε-neighborhood, that is,

Lrest
S (q | O) = 1

|O|(√2πhS)|S|
∑

o∈O\N ε
S (q|O)

exp

(
−distS(q, o)2

2hS
2

)
.

Let dist S(q | O) be the maximum distance between q and all objects in O in subspace
S. We have,

exp

(
−dist S(q | O)2

2hS
2

)
≤ |O|(√2πhS)|S|

|O\N ε
S(q | O)| Lrest

S (q | O) ≤ exp

( −ε2

2hS
2

)

Example 1 Figure 2 illustrates an example of a ε-neighborhood of object q with respect to
object set O in a 2-dimensional subspace S. From Fig. 2, we can see that N ε

S(q | O) =
{o1, o2, o3, o4, o5}, and dist S(q | O) = distS(q, o10).

Using the above, an upper bound of L∗
S(q | O+) using ε-neighborhood (N ε

S(q | O+) =
{o ∈ O+ | distS(q, o) ≤ ε}), denoted by L∗ε

S (q | O+), is

L∗ε
S (q | O+)

=
∑

o∈N ε
S (q|O+) exp

(
−distS(q,o)2

2(σSh′
opt_max )2

)
+ |O+\N ε

S(q | O+)| exp

(
−ε2

2(σSh′
opt_max )2

)

|O+|(√2πσ ′
minh′

opt_min)τ
(11)

where the meanings of σ ′
min , h′

opt_min , h′
opt_max , and τ are the same as those in Eq. 10.

Pruning Rule 2 Given a minimum likelihood threshold δ, if L∗ε
S (q | O+) < δ in a subspace

S, all superspaces of S can be pruned.

Moreover, using the ε-neighborhood, we have the following upper and lower bounds of
L S(q | O).

Theorem 4 (Bounds) For a query object q, a set of objects O and ε ≥ 0,

L Lε
S(q | O) ≤ L S(q | O) ≤ U Lε

S(q | O)

where

L Lε
S(q | O) =

∑
o∈N ε

S (q|O) exp
(−distS(q,o)2

2hS
2

)
+ |O\N ε

S(q | O)| exp
(−dist S(q|O)2

2hS
2

)

|O|(√2πhS)|S|
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and

U Lε
S(q | O) =

∑
o∈N ε

S (q|O) exp
(−distS(q,o)2

2hS
2

)
+ |O\N ε

S(q | O)| exp
( −ε2

2hS
2

)

|O|(√2πhS)|S|

Proof For any object o ∈ O\N ε
S(q | O), ε2 ≤ distS(q, o)2 ≤ dist S(q | O)

2
. Then,

exp

( −ε2

2hS
2

)
≥ exp

(−distS(q, o)2

2hS
2

)
≥ exp

(
−dist S(q | O)2

2hS
2

)

Thus,

|O\N ε
S(q | O)|e

−ε2

2hS
2 ≥ |O\N ε

S(q | O)|e
−distS (q,o)2

2hS
2 ≥ |O\N ε

S(q | O)|e
−dist S (q|O)2

2hS
2

Correspondingly,

L Lε
S(q | O) ≤ L S(q | O) ≤ U Lε

S(q | O)

��
We obtain an upper bound of LCS(q) based on Theorem 4 and Eq. 4.

Corollary 1 (Likelihood contrast upper bound) For a query object q, a set of objects O+, a

set of objects O−, and ε ≥ 0, LCS(q) ≤ U Lε
S(q|O+)

L Lε
S(q|O−)

.

Proof By Theorem 4, we have L S(q | O+) ≤ U Lε
S(q | O+) and L S(q | O−) ≥ L Lε

S(q |
O−). Then,

LCS(q) = L S(q | O+)

L S(q | O−)
≤ U Lε

S(q | O+)

L S(q | O−)
≤ U Lε

S(q | O+)

L Lε
S(q | O−)

Using Corollary 1, we have the following.

Pruning Rule 3 For a subspace S, if there are at least k subspaces whose likelihood contrasts

are greater than
U Lε

S(q|O+)

L Lε
S(q|O−)

, then S cannot be a top-k subspace of the largest likelihood
contrast.

We implement the bounding-pruning-refining method in CSMiner to compute bounds of
likelihood and contrast ratio. We call this version CSMiner-BPR. For a candidate subspace
S, CSMiner-BPR calculates U Lε

S(q | O+), L Lε
S(q | O−), and L∗ε

S (q | O+) using the ε-
neighborhood. If U Lε

S(q | O+) is less than the minimum likelihood threshold (δ), CSMiner-
BPR checks whether it is true that L∗ε

S (q | O+) < δ (Pruning Rule 2) or L∗
S(q | O+) < δ

(Pruning Rule 1). Otherwise, CSMiner-BPR checks whether the likelihood contrasts of the

current top-k subspaces are larger than the upper bound of LCS(q)
(
= U Lε

S(q|O+)

L Lε
S(q|O−)

)
. If not,

CSMiner-BPR refines L∗
S(q | O+), L S(q | O+), and L S(q | O−) by involving objects that

are out of the ε-neighborhood. S will be added into the current top-k list if L∗
S(q | O+) ≥ δ

and the ratio of L S(q | O+) to L S(q | O−) is larger than one of the current top-k ones. Note
that the computational cost for L∗

S(q | O+) can be high, especially, when the size of O+ is
large. Thus for efficiency, we employ a tradeoff between Pruning Rule 1 and Pruning Rule 3.
Specifically, when we are searching a subspace S, once we can determine that S cannot be a
top-k contrast subspace, then we terminate the search of S immediately. Therefore, CSMiner-
BPR accelerates CSMiner by avoiding the cost for computing the likelihood contributions
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of objects outside the ε-neighborhood to q when L∗ε
S (q | O+) < δ (Pruning Rule 2) or

there are at least k subspaces whose likelihood contrasts are greater than
U Lε

S(q|O+)

L Lε
S(q|O−)

(Pruning

Rule 3).
Computing ε-neighborhood is critical in CSMiner-BPR. The distance between objects

increases when dimensionality increases. Thus, the value of ε should not be fixed. The
standard deviation expresses the variability of a set of data. For subspace S, we set

ε =
√

α · ∑
Di ∈S(σ 2

Di
+ + σ 2

Di
−) (α ≥ 0), where σ 2

Di
+ and σ 2

Di
− are the marginal vari-

ances of O+ and O−, respectively, on dimension Di (Di ∈ S), and α is a system defined
parameter. Our experiments show that α can be set in the range of 0.8–1.2 and is not sensitive.
Algorithm 3 provides the pseudo-code of CSMiner-BPR. Theorem 5 guarantees that no mat-
ter how the neighborhood distance (ε) is varied, and the mining result of CSMiner-BPR is
unchanged.

Theorem 5 Given data set O, query object q, minimum likelihood threshold δ and parameter
k, for any neighborhood distances ε1 and ε2, C Sε1(q | O) = C Sε2(q | O), where C Sε1(q |
O) (C Sε2(q | O)) is the set of contrast subspaces discovered by CSMiner-BPR using ε1 (ε2).

Proof We prove by contradiction.

Assume that subspace S ∈ C Sε1(q | O) but S /∈ C Sε2(q | O). As S ∈ C Sε1(q | O),
we have (�)L S(q | O+) ≥ δ. On the other hand, S′ /∈ C Sε2(q | O) means that (i) L∗ε2

S (q |
O+) < δ, or (ii) ∃S′ ∈ C Sε2(q | O) such that S′ /∈ C Sε1(q | O) and

U L
ε1
S (q|O+)

L L
ε1
S (q|O−)

< LCS′(q).

For case (i), as L S(q | O+) ≤ L∗
S(q | O+) ≤ L∗ε2

S (q | O+), we have L S(q | O+) < δ,

contradicting (�). For case (ii), as LCS(q) ≤ U L
ε1
S (q|O+)

L L
ε1
S (q|O−)

, we have LCS(q) < LCS′(q),

contradicting S′ /∈ C Sε1(q | O).

Corollary 2 Given data set O, query object q, minimum likelihood threshold δ, and para-
meter k, the mining result of CSMiner-BPR, no matter what the value of parameter α is, the
output is the same as that of CSMiner.

Proof For subspace S, suppose ε, computed by parameter α, is greater than dist S(q | O).
We have N ε

S(q | O) = O . Correspondingly, U Lε
S(q | O+) = L S(q | O+), L Lε

S(q | O−) =
L S(q | O−), and L∗ε

S (q | O+) = L∗
S(q | O+). Then the execution flow of CSMiner-BPR

(Algorithm 3) is the same as that of CSMiner (Algorithm 2). Furthermore, by Theorem 5,
the mining result of CSMiner-BPR is unchanged no matter what the value of neighborhood
distance is.

5 Empirical evaluation

In this section, we report a systematic empirical study using real data sets to verify the effec-
tiveness and efficiency of CSMiner (CSMiner-BPR). In general, we study how sensitive are
our methods to the running parameters, such as δ, k, and α, in terms of discovered contrast
subspaces and running time; and how sensitive are our methods to different bandwidth val-
ues and kernel function, in terms of the similarity of mining results. All experiments were
conducted on a PC computer with an Intel Core i7-3770 3.40 GHz CPU, and 8 GB main
memory, running Windows 7 operating system. All algorithms were implemented in Java and
compiled by JDK 7. We set δ = 0.001, k = 10, and α = 0.8 as defaults in our experiments.

123



114 L. Duan et al.

Algorithm 3 CSMiner-BPR(q, O+, O−, δ, k, α)
Input: q: a query object, O+: the set of objects belonging to C+, O−: the set of objects belonging to C−, δ: a likelihood

threshold, k: positive integer, α: neighborhood parameter
Output: k subspaces with the highest likelihood contrast
1: let Ans be the current top-k list of subspaces, initialize Ans as k null subspaces associated with likelihood contrast 0
2: for each subspace S in the subspace set enumeration tree, searched in the depth-first manner do
3: compute ε, σS+, σS−, σ ′

min , hopt , h′
opt_min , and h′

opt_max ;

4: Nε
S (q | O+) ← ∅; Nε

S (q | O−) ← ∅; dist S (q | O−) ← 0;
5: for each object o ∈ O+ ∪ O− do
6: distS (q, o)2 ← distS p (q, o)2 + (q.D′ − o.D′)2; // S p(= S\{D′}) is the parent of S.
7: if o ∈ O+ and distS (q, o) < ε then
8: Nε

S (q | O+) ← Nε
S (q | O+) ∪ {o};

9: end if
10: if o ∈ O− then
11: if distS (q, o) < ε then
12: Nε

S (q | O−) ← Nε
S (q | O−) ∪ {o};

13: end if
14: if dist S (q | O−) < distS (q, o) then
15: dist S (q | O−) ← distS (q, o);
16: end if
17: end if
18: end for
19: compute U Lε

S (q | O+), L Lε
S (q | O−) and L∗ε

S (q | O+); // bounding
20: if U Lε

S (q | O+) < δ then
21: if L∗ε

S (q | O+) < δ then
22: prune all descendants of S and go to Step 2; // Pruning Rule 2
23: end if
24: compute L∗

S (q | O+);
25: if L∗

S (q | O+) < δ then
26: prune all descendants of S and go to Step 2; // Pruning Rule 1
27: end if
28: else

29: if ∃S′ ∈ Ans s.t.
U Lε

S (q|O+)

L Lε
S (q|O−)

≥ LCS′ (q) then

30: compute L∗
S (q | O+) using Equation 10; // refining

31: if L∗
S (q | O+) < δ then

32: prune all descendants of S and go to Step 2; // Pruning Rule 1
33: else
34: compute L S (q | O+) and L S (q | O−) using Equation 3; // refining

35: if L S (q | O+) ≥ δ and ∃S′ ∈ Ans s.t.
L S (q|O+)

L S (q|O−)
> LCS′ (q) then

36: insert S into Ans and remove S′ from Ans;
37: end if
38: end if
39: end if
40: end if
41: end for
42: return Ans;

5.1 Effectiveness

We use 6 real data sets from the UCI machine learning repository [2]. We remove non-
numerical attributes and all instances containing missing values. Table 2 shows the data
characteristics.

As shown in Table 2, BCW, Glass, PID, and Wine are typical small data sets that contain
hundreds of objects with around 10 numerical attributes. The objects in BCW, Glass, and PID
are divided into 2 classes, respectively, while the objects in Wine are divided into 3 classes.
Compared with BCW, Glass, PID, and Wine, CMSC and Waveform contain more numerical
attributes. We note that CMSC is an unbalanced data set, in which the number of objects in the
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two classes are 46 and 494, respectively. Among all selected data sets, Waveform containing
5000 objects is the largest one with the highest dimensionality.

For each data set, we take each record as a query object q , and all records except q
belonging to the same class as q forming the set O1, and records belonging to the other
classes forming the set O2. Using CSMiner, we compute for each record (1) the inlying
contrast subspace taking O1 as O+ and O2 as O−, and (2) the outlying contrast subspace
taking O2 as O+ and O1 as O−. In this experiment, we only compute the top-1 subspace.
For clarity, we denote the likelihood contrasts of inlying contrast subspace by LCin

S (q) and
those of outlying contrast subspace by LCout

S (q). The minimum likelihood threshold (δ) is
set to 0.001.

Tables 3, 4, 5, 6, 7, and 8 list the joint distributions of LCin
S (q) and LCout

S (q) in each data
set. Consider that the query object has the same class label as objects in O1 in the original
data set. Thus, it is expected that, for most objects, LCin

S (q) are larger than LCout
S (q).

However, interestingly a good portion of objects have strong outlying contrast subspaces.
For example, in CMSC, more than 40 % of the objects have outlying contrast subspaces
satisfying LCout

S (q) ≥ 103. Moreover, we can see that, except PID, a non-trivial number
of objects in each data set have both strong inlying and outlying contrast subspaces (e.g.,
LCin

S (q) ≥ 104 and LCout
S (q) ≥ 102).

Figures 3 and 4 show the distributions of dimensionality of top-1 inlying and outly-
ing contrast subspaces with different minimum likelihood thresholds (δ), respectively. The
dimensionality distribution is an interesting feature characterizing a data set. For example, in
most cases the contrast subspaces tend to have low dimensionality. However, in CMSC and
Wine, the inlying contrast subspaces tend to have high dimensionality. Moreover, we can see

Table 2 Data set characteristics

Data set # Objects # Attributes # Classes

Breast cancer Wisconsin (BCW) 683 9 2

Climate model simulation crashes (CMSC) 540 18 2

Glass identification (Glass) 214 9 2

Pima Indians diabetes (PID) 768 8 2

Waveform 5000 21 3

Wine 178 13 3

Table 3 Distribution of LCS(q)

in BCW (δ = 0.001, k = 1)
LCin

S (q) LCout
S (q) Total

<1 [1,3) [3,10) [10, 102) ≥ 102

<104 0 3 0 7 23 33

[104, 105) 7 4 2 4 7 24

[105, 106) 21 21 5 8 9 64

[106, 107) 184 33 5 4 9 235

≥107 121 31 74 66 35 327

Total 333 92 86 89 83 683
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Table 4 Distribution of LCS(q) in CMSC (δ = 0.001, k = 1)

LCin
S (q) LCout

S (q) Total

[10, 102) [102, 103) [103, 104) [104, 105) ≥ 105

<103 1 11 12 2 0 26

[103, 104) 6 35 47 6 6 100

[104, 105) 10 46 44 8 2 110

[105, 106) 11 40 32 8 2 93

≥106 39 110 50 11 1 211

Total 67 242 185 35 11 540

Table 5 Distribution of LCS(q) in Glass (δ = 0.001, k = 1)

LCin
S (q) LCout

S (q) Total

<1 [1,3) [3,10) [10, 102) ≥ 102

<102 0 0 0 1 7 8

[102, 103) 2 8 4 4 7 25

[103, 104) 28 91 6 4 5 134

[104, 105) 1 4 0 0 3 8

≥105 0 1 0 30 8 39

Total 31 104 10 39 30 214

Table 6 Distribution of LCS(q) in PID (δ = 0.001, k = 1)

LCin
S (q) LCout

S (q) Total

<1 [1,3) [3,10) [10, 30) ≥ 30

<1 0 0 1 0 0 1

[1, 3) 2 241 62 8 2 315

[3, 10) 36 328 31 3 0 398

[10, 30) 23 23 2 0 0 48

≥30 3 3 0 0 0 6

Total 64 595 96 11 2 768

Table 7 Distribution of LCS(q) in Waveform (δ = 0.001, k = 1)

LCin
S (q) LCout

S (q) Total

[1, 3) [3,10) [10, 102) [102, 103) ≥ 103

<10 0 24 34 8 2 68

[10, 102) 204 676 772 190 71 1913

[102, 103) 471 1049 981 228 56 2785

[103, 104) 53 103 67 4 4 231

≥104 0 2 1 0 0 3

Total 728 1854 1855 430 133 5000
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Table 8 Distribution of LCS(q)

in Wine (δ = 0.001, k = 1)
LCin

S (q) LCout
S (q) Total

<1 [1,3) [3,10) [10, 102) ≥ 102

<103 0 13 8 7 5 33

[103, 104) 1 18 11 4 0 34

[104, 105) 2 23 12 5 2 44

[105, 106) 3 7 5 1 0 16

≥106 7 20 16 4 4 51

Total 13 81 52 21 11 178

that with the decrease of δ, the number of subspaces with higher dimensionality is typically
increased.

5.2 Efficiency

To the best of our knowledge, there is no previous method tackling the exact same mining
problem. Therefore, we evaluate the efficiency of CSMiner and its variations. Specif-
ically, we implemented the baseline method (Algorithm 1). To evaluate the efficiency
of our pruning techniques for contrast subspace mining, we also implemented CSMiner
(Algorithm 2) and CSMiner-BPR (Algorithm 3) using the bounding-pruning-refining
method.

We report the results on the Waveform data set only, since it is the largest one with
the highest dimensionality. We randomly select 100 records from Waveform as query
objects and report the average runtime. The results on the other data sets follow similar
trends.

Figure 5 shows the runtime with respect to the minimum likelihood threshold δ. A logarith-
mic scale has been used for the runtime to better demonstrate the difference in the behavior
between CSMiner and the baseline. The baseline performs exhaustive subspace search, and
thus its runtime is unchanged across different δ values. For CSMiner and CSMiner-BPR, as
δ decreases, their runtime increase exponentially. However, the heuristic pruning techniques
implemented in CSMiner and CSMiner-BPR accelerate the search substantially in practice.
Moreover, CSMiner-BPR is slightly more efficient than CSMiner.

Figure 6 shows the runtime with respect to the data set size, which is measured by the
number of objects. Again, the runtime is plotted using the logarithmic scale. We can see
that our pruning techniques can achieve a roughly linear runtime in practice. Both CSMiner
and CSMiner-BPR are considerably faster than the baseline method, and CSMiner-BPR is
slightly more efficient than CSMiner.

Figure 7 shows the runtime with respect to the dimensionality of the data set. The runtime
is also plotted using the logarithmic scale. As dimensionality increases, more candidate
subspaces are generated. Correspondingly, the runtime increases exponentially. However,
our heuristic pruning techniques implemented in CSMiner and CSMiner-BPR speed up the
search in practice. Moreover, CSMiner-BPR is faster than CSMiner.

As stated in Sect. 4.3, CSMiner-BPR employs a user-defined parameter α to define the
ε-neighborhood. Table 9 lists the average runtime of CSMiner-BPR for a query object with
respect to α on each real data set. The runtime of CSMiner-BPR is not sensitive to α in general.
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Fig. 3 Dimensionality distributions of top inlying contrast subspaces (k = 1)

Experimentally, the shortest runtime of CSMiner-BPR (bold values in Table 9) happens when
α is in [0.6, 1.0].

Figure 8 illustrates the relative runtime of CSMiner-BPR with respect to k on each real
data set, showing that CSMiner-BPR is linearly scalable with respect to k. Note that we show
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Fig. 4 Dimensionality distributions of top outlying contrast subspaces (k = 1)
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Fig. 5 Scalability test w.r.t δ

(k = 10, α = 0.8)
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Fig. 6 Scalability test w.r.t data
set size
(k = 10, δ = 0.01, α = 0.8)
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Fig. 7 Scalability test w.r.t
dimensionality
(k = 10, δ = 0.01, α = 0.8)
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relative performance in Fig. 8 so that the scalability of CSMiner-BPR with respect to k on
different data sets can be compared in one figure. The absolute performance of CSMiner-BPR
with k = 10, δ = 0.01 and α = 0.8 can be found in Table 9.

5.3 Sensitivity to the bandwidth

To test the sensitivity of the top-k contrast subspaces with respect to the bandwidth value,
we begin by defining the similarity measure for two lists of top-k contrast subspaces.

For any two subspaces S1 and S2, we measure the similarity between S1 and S2 by the
Jaccard similarity coefficient, denoted by Jaccard(S1, S2) = |S1∩S2|

|S1∪S2| .
Given a positive integer r , let P

r be the set of all permutations of the set {i | 1 ≤
i ≤ r}. Correspondingly, |Pr | = r !. For permutation P ∈ P

r , we denote the j-th (1 ≤
j ≤ r ) element in P by P[ j]. For example, by writing each permutation as a tuple, we have
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Table 9 Average runtime of CSMiner-BPR w.r.t α (k = 10, δ = 0.01)

Data set Average runtime (ms)

α = 0.6 α = 0.8 α = 1.0 α = 1.2 α = 1.4

BCW 20.97 20.14 17.76 16.32 15.59

CMSC 11446.2 11643.5 12915.1 14125.0 15210.2

Glass 16.13 15.83 15.62 15.69 15.76

PID 4.21 4.17 4.23 4.25 4.29

Waveform 6807.1 7102.3 7506.7 7874.7 8183.7

Wine 18.51 18.16 18.42 18.69 19.12

Fig. 8 Relative runtime of
CSMiner-BPR w.r.t
k(δ = 0.01, α = 0.8)
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P
3 = {(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)}. Suppose P = (2, 3, 1), then

P[2] = 3.
To the best of our knowledge, there is no previous work on measuring the similarity

between two ranked lists of subspaces. Given two ranked lists of top-k contrast subspaces
�1 and �2, without loss of generality, we follow the definition of average overlap [24] (also
named as average accuracy [26], or intersection metric [12]), which derives the similarity
measure by averaging the overlaps of two ranked lists at each rank, to measure the similarity
between �1 and �2. In addition, in consideration of the fact that each subspace in a list is a set
of dimensions, we introduce the Jaccard similarity coefficient into the overlap calculation.
Specifically, let �1[i] be the element (subspace) at rank i (1 ≤ i ≤ k) in list �1. The agreement
of lists �1 and �2 at rank r (1 ≤ r ≤ k), Agr(�1, �2, r), is

Agr(�1, �2, r) = 1

r
max

{
r∑

i=1

Jaccard(�1[P1[i]], �2[P2[i]]) | P1, P2 ∈ P
r

}

Then, the similarity between �1 and �2, denoted by Sim(�1, �2), is

Sim(�1, �2) = 1

k

k∑

r=1

Agr(�1, �2, r) (12)

Clearly, 0 ≤ Sim(�1, �2) ≤ 1. The larger the value of Sim(�1, �2), the more similar �1 and
�2 are.

Given a set of objects O , and a query object q , to find top-k contrast subspaces for q with
respect to O by CSMiner (Algorithm 2), as discussed in Sect. 3.2, we first fix the bandwidth
value hS = σS · hS_opt and use the Gaussian kernel function to estimate the subspace
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Fig. 9 The similarity scores of inlying contrast subspaces using different bandwidth values with respect to k
(δ = 0.001)

likelihood of q with respect to O in subspace S. We then vary the bandwidth value from
0.6hS to 1.4hS for density estimation in S. Let �hS be the top-k contrast subspaces computed
using the default bandwidth value hS and �h̃S

be the top-k contrast subspaces computed
using other bandwidth values. For each object q ∈ O , we discover top inlying contrast
subspaces and top outlying contrast subspaces of q by CSMiner using different bandwidth
values. Figure 9 illustrates the average value of Sim(�hS , �h̃S

) of inlying contrast subspaces
with respect to k, and Fig. 10 illustrates the average value of Sim(�hS , �h̃S

) of outlying
contrast subspaces with respect to k. From the results, we can see that the contrast subspaces
computed using different bandwidth values are similar in most data sets. As expected, using
a bandwidth whose value is closer to h causes less difference. Moreover, we observe that
with increasing k, the value of Sim(�hS , �h̃S

) slightly increases.

5.4 Comparison with Epanechnikov Kernel

Besides Gaussian kernel (Eq. 2), another possible kernel for multivariate kernel density
estimation is the multivariate Epanechnikov kernel

Ke(x) =
{ 1

2 cd
−1(d + 2)(1 − xT x) if xT x < 1

0 otherwise

where cd is the volume of the unit d-dimensional sphere and can be expressed by making
use of the Gamma function. It is,

cd = πd/2


(1 + d/2)
=

{
πd/2/(d/2)! if d ≥ 0is even
π�d/2�2�d/2�/d!! if d ≥ 0is odd

where d!! is the double factorial.
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Fig. 10 The similarity scores of outlying contrast subspaces using different bandwidth values with respect to
k (δ = 0.001)

Plugging Ke(x) into Eq. 1, the density of a query object q with respect to a set of objects
O in subspace S can be estimated as

f̂ S(q, O) = 1

|O|h|S|
S

∑

o∈O∧ distS (q,o)2

h2
S

<1

(
1

2
c|S|−1(|S| + 2)

(
1 − distS(q, o)2

h2
S

))
(13)

where hS is the bandwidth for subspace S.
Similar to calculating the bandwidth using Gaussian kernel in Sect. 3.2, we calculate hS

as follows.

hS = σS · hS_opt

As Silverman [22] suggested, σS is a single scale parameter that equals to the root of the
average marginal variance in S, and hS_opt is the optimal bandwidth value which equals to
A(K )|O|−1/(|S|+4), where A(K ) = {8c|S|−1(|S| + 4)(2

√
π)|S|}1/(|S|+4) for the Epanech-

nikov kernel.
We implemented CSMiner (Algorithm 2) using the Epanechnikov kernel for contrast

subspace mining as follows. Given a subspace S, let S be the set of descendants of S in
the subspace set enumeration tree using the standard deviation descending order. Then,
L S(q | O+) and L S(q | O−) can be computed by Eq. 13, and L∗

S(q | O+) =

1

|O|(σ ′
minh′

opt_min)τ

∑

o∈O∧ distS (q,o)2

hmax
S

2 <1

(
1

2
cmin
S

−1
(dmax

S + 2)

(
1 − distS(q, o)2

hmax
S

2

))
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where hmax
S = (σSh′

opt_max ), cmin
S = min{cd | |S| < d ≤ dmax

S }, dmax
S = max{|S′| | S′ ∈

S}, and the meaning of σ ′
min , h′

opt_min , h′
opt_max , τ are the same as those in Eq. 10.

Technically, the Epanechnikov kernel could also be implemented using the CSMiner-
BPR approach (Algorithm 3). However, the performance improvement by the bounding-
pruning-refining method would be less significant. The reason lies in the fact that on the one
hand, different from using the Gaussian kernel that each object o has a nonzero likelihood

contribution to the query object q , the contribution of o satisfying distS(q,o)2

h2
S

≥ 1 is 0 (by

the definition) to q when uses the Epanechnikov kernel. On the other hand, computing the
neighborhood requires additional computational overhead.

Note that when using the Epanechnikov kernel, f̂ S(q, O−) = 0 if for any object

o ∈ O−, distS(q,o)2

h2
S

≥ 1. Correspondingly, LCS(q) = f̂S(q,O+)

f̂S(q,O−)
= +∞. Given data

set O (composed by O+ and O−), we denote by O+∞
E the set of objects whose max-

imum likelihood contrast, computed using the Epanechnikov kernel, is infinity. That is,
O+∞

E = {o ∈ O | ∃S s.t. LCS(o) = +∞}.
Let �G be the top-k contrast subspaces computed using the Gaussian kernel, and �E be the

top-k contrast subspaces computed using the Epanechnikov kernel. For each object q ∈ O ,
we discover the top-10 inlying contrast subspaces and the top-10 outlying contrast subspaces
of q using the Gaussian kernel and the Epanechnikov kernel, respectively, and compute
Sim(�G , �E ) in each data set. For subspaces whose likelihood contrast values are infinity
(LCS(q) = +∞), we sort them by f̂ S(q, O+) in descending order. Tables 10 and 11 list the
minimum, maximum, and average values of Sim(�G , �E ), as well as the ratio of |O+∞

E | to
|O|.

Table 10 Similarity between
top-10 inlying contrast subspaces
using different kernel functions in
data set O (δ = 0.001)

Data set O Sim(�G , �E )
|O+∞

E |
|O|

Min Max Avg

BCW 0.168 0.980 0.539 590/683 = 0.864

CMSC 0.066 0.826 0.391 540/540 = 1.0

Glass 0.242 0.984 0.814 76/214 = 0.355

PID 0.620 1.0 0.924 1/768 = 0.001

Waveform 0.189 0.981 0.690 2532/5000 = 0.506

Wine 0.159 0.993 0.670 145/178 = 0.815

Table 11 Similarity between
top-10 outlying contrast
subspaces using different kernel
functions in data set O
(δ = 0.001)

Data set O Sim(�G , �E )
|O+∞

E |
|O|

Min Max Avg

BCW 0.239 1.0 0.916 67/683 = 0.098

CMSC 0.174 0.926 0.614 540/540 = 1.0

Glass 0.358 1.0 0.906 16/214 = 0.075

PID 0.655 1.0 0.938 1/768 = 0.001

Waveform 0.364 0.998 0.820 894/5000 = 0.179

Wine 0.209 1.0 0.804 40/178 = 0.225
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Table 12 Similarity between
top-10 inlying contrast subspaces
using different kernel functions in
data set O\O+∞

E (δ = 0.001)

Data set O\O+∞
E Sim(�G , �E ) |O\O+∞

E |
Min Max Avg

BCW 0.643 0.980 0.922 93

Glass 0.720 0.984 0.929 138

PID 0.620 1.0 0.924 767

Waveform 0.324 0.981 0.754 2468

Wine 0.527 0.988 0.904 33

Table 13 Similarity between
top-10 outlying contrast
subspaces using different kernel
functions in data set O\O+∞

E
(δ = 0.001)

Data set O\O+∞
E Sim(�G , �E ) |O\O+∞

E |
Min Max Avg

BCW 0.561 1.0 0.934 616

Glass 0.629 1.0 0.925 198

PID 0.655 1.0 0.938 767

Waveform 0.437 0.998 0.836 4106

Wine 0.482 1.0 0.863 138

From the results, shown in Tables 10 and 11, we can see that the value of Sim(�G , �E )

is related to
|O+∞

E |
|O| . Specifically, the smaller the value of

|O+∞
E |

|O| the more similar �G and �E

are. For example, when mining inlying contrast subspaces (Table 10), the values of
|O+∞

E |
|O|

in BCW, CMSC, Waveform, and Wine are larger than 0.5, which is larger than the values

of
|O+∞

E |
|O| in PID and Glass, while the values of Sim(�G , �E ) are lower in BCW, CMSC,

Waveform, and Wine than those values in PID and Glass. When mining outlying contrast

subspaces (Table 11), we note that the values of
|O+∞

E |
|O| are <0.1 in BCW, Glass, and PID,

while the values of Sim(�G , �E ) in these data sets are over 0.9.
Furthermore, we compute Sim(�G , �E ) in O\O+∞

E for each data set except CMSC,
because for CMSC, O\O+∞

E = ∅. From the results shown in Table 12 (inlying contrast
subspace mining) and Table 13 (outlying contrast subspace mining), we can see that �G is
more similar to �E without considering the objects whose maximum likelihood contrast is
infinity.

6 Conclusions

In this paper, we studied the novel and interesting problem of mining contrast subspaces to
discover the aspects in which a query object is most similar to a class and dissimilar to another
class. We demonstrated theoretically that the problem is very challenging and is MAX SNP-
hard. We presented a heuristic method based on pruning rules and upper and lower bounds
of likelihood and likelihood contrast. Our experiments on real data sets clearly show that our
method improves contrast subspace mining substantially compared to the baseline method.

As future work, we intend to investigate the use of contrast subspaces for improving the
accuracy of supervised learning methods. It is also interesting to consider using contrast
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subspaces to characterize a given data set. Moreover, we will explore parallel computation
approaches to improving the efficiency of CSMiner, and extend CSMiner for complex data
sets involving both nominal and numerical values.
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