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Abstract In this paper, we study a novel problem of continuous similarity search for evolving
queries. Given a set of objects, each being a set or multiset of items, and a data stream, we
want to continuously maintain the top-k most similar objects using the last n items in the
stream as an evolving query. We show that the problem has several important applications.
At the same time, the problem is challenging. We develop a filtering-based method and a
hashing-based method. Our experimental results on both real data sets and synthetic data sets
show that our methods are effective and efficient.

Keywords Similarity search · Data stream · Evolving query

1 Introduction

Let us consider a recommendation problem at a Q&A website. Suppose you want to run 3 ads
on the Q&A website, for a user who does not have a profile yet, what ads should you display?
In addition to many factors, such as click-through rates of ads and bidding price information,
a natural and important idea is to consider the ads that are most related to the questions being
recently asked at the website by all users. For example, technically, you may model ads and
questions as sets of keywords, and may want to retrieve the top-k ads that are most similar to

This work is partly supported by an NSERC Discovery grant, the Canada Research Chair program, and a
Yahoo! Faculty Research and Engagement Program (FREP) award. All opinions, findings, conclusions and
recommendations in this paper are those of the authors and do not necessarily reflect the views of the
funding agencies.

B Jian Pei
jpei@cs.sfu.ca

1 Fortinet Inc., Burnaby, BC, Canada

2 Simon Fraser University, Burnaby, BC, Canada

3 King Abdulaziz University, Jeddah, Saudi Arabia

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10115-015-0892-x&domain=pdf


X. Xu et al.

the last n questions asked, where the similarity measure captures the relevance between ads
and questions. Such ads can be used as the candidates for further selections.

The above scenario is just one of the many applications that motivate the problem to be
studied in this paper. Given a set of static data objects (e.g., ads in the above example), and an
evolving data stream (e.g., the questions asked in the above example), a sliding window on
the data stream (e.g., the last n questions in the above example) presents an evolving query.
The problem of continuous similarity search for evolving queries is to continuously conduct
top-k similarity search on the set of static objects using the evolving queries.

The problem of continuous similarity search for evolving queries has many important
applications. As another example, in a computer role-playing game, a player has a set of
weapons and tools, which is relatively stable. The player goes through a game mission scene,
where the objects in the continuously updated surrounding environment, such as different
types of enemies, scoring opportunities and obstacles, present a stream. The window over
the stream containing the most recent objects approaching the player presents an evolving
query. The player has to select proper weapons and tools that match the current surrounding
environment best. Here, an enemy can be modeled as a set of factors, such as explosion,
that it may be tackled, and a weapon/tool can be modeled as a set of factors that it may be
used. Again, before any gaming strategies can be used, an essential task is to continuously
maintain the top-k best weapons and tools with respect to the evolving enemies.

Our problem can be considered as the dynamic version of the top-k set similarity search
problem. More generally, a traditional similarity search problem involves a collection of
objects, a similarity function, and a user-defined threshold. The search is to find all objects
in the collection whose similarity scores regarding the query are no less than the predefined
threshold. Similarity search has many applications, such as information retrieval [14,16,33],
near-duplicate web page detection [19], record linkage [37], data compression [16], data
integration [9], image and video search and recommendation [13,15,31,35], statistics and
data analysis [12,22], machine learning [10], and data mining [3,18]. Besides answering
threshold-based queries, top-k queries are also of great value since given a threshold, the
size of the result may be unpredictable and, in many real applications, we are only inter-
ested in a small number of most similar objects. Moreover, as to be reviewed in Sect. 2.2,
the problem of similarity search on data streams has been extensively explored, espe-
cially for nearest neighbor search. However, to the best of our knowledge, the problem
of continuous set-based similarity search for evolving queries has not been systematically
investigated.

In this paper, we tackle the problem of continuous similarity search for evolving queries.
Since in many applications, an object can be represented as a set or multiset, such as using a
keyword vector to represent a document, we use weighted Jaccard similarity as the measure.
The major challenge is how to speed up the similarity computation and avoid checking evolv-
ing queries with every static object exactly at every time point. We develop an upper bound
for incremental maintenance of similarity scores. The bound can be computed in constant
time. We propose two algorithms, an exact one based on the pruning and verification frame-
work, and the other approximate one based on MinHash. We report an empirical evaluation
on both synthetic and real-world data sets, which validates the efficiency and effectiveness
of our proposed methods.

The rest of the paper is organized as follows. In Sect. 2, we review the related work. We
then formulate the problem in Sect. 3. In sect. 4, we propose a filtering-based method. In
Sect. 5, we present a hashing-based method. We report our experimental results in Sect. 6
and conclude the paper in Sect. 7.
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2 Related work

Our study is mainly related to the existing work on similarity search and continuous top-k
queries. In this section, we briefly review the state-of-the-art methods related to our study. A
thorough survey on those topics is far beyond the capacity of the paper.

2.1 Similarity join and search

The static version of similarity search has been studied extensively. The state-of-the-art
methods can be categorized into two major groups.

The first category is the filtering-based approaches. The general idea is to develop upper
and lower bounds of the similarity between an object and a query, which can be computed
efficiently. Many objects can be filtered out using the bounds. Consequently, the exact simi-
larity scores, which are supposed to be more expensive to compute, are calculated for only
a small number of surviving objects from filtering.

For instance, Sarawagi and Kirpal [34] proposed an inverted index-based probing method
for similarity joins on sets. Chaudhuri et al. [8] developed the prefix-filtering principle for
similarity joins. The all-pairs algorithm developed by Bayardo et al. [3] further improves this
approach by adding the minimum length constraint and some other filtering techniques to
speed up similarity joins. Nevertheless, all-pairs and prefix-filtering methods often generate a
nontrivial number of candidates, which have to be verified using the exact similarity measure.
Xiao et al. [38] extended the all-pairs method and proposed a new positional filtering method
PPJoin, which makes use of the ordering information. PPJoin+ [38] combines suffix filtering
with PPJoin and can further reduce the number of candidate pairs. A new similarity measure
PathSim, which is based on meta path and is used in heterogeneous networks, is defined in
[36].

The second category is hashing-based methods. The general idea is to develop hash func-
tions that have good locality preservation properties—similar objects are likely to be hashed
to the same bucket. The idea was introduced by Indyk and Motwani [21] for approximate
nearest neighbor search in d-dimensional Euclidean space. The basic principle is to hash
the points using multiple hash functions such that closer points have a higher probability of
collision than points that are far away. Gionis et al. [17] further improved the algorithms and
achieved better query time guarantees. Later, an improved algorithm that almost achieves
the space and time lower bounds is presented by Andoni and Indyk [1]. The MinHash tech-
nique [5] is used to approximate the resemblance and the containment of sets. This technique
is used to estimate the rarity and similarity between two windowed data streams in [11]. More-
over, Charikar [7] proposed SimHash to hash similar data to similar values. An estimation
for vector-based cosine similarity using a random projection method is also discussed [7].

In this paper, we explore both filtering-based and hashing-based methods, which have not
been addressed in the existing literature for evolving similarity search queries.

2.2 Continuous queries over a data stream

Different evolving models are used in previous studies that investigated continuous queries
over a data stream. For example, Kontaki et al. [24] studied similarity range queries in
streaming time sequences using Euclidean distance, where both the query and data objects
are evolving. An indexing method that is based on incremental computation method for
discrete Fourier transform is used to achieve a high candidates ratio. Lian et al. [26] tackled
the similarity search problem over multiple stream time series, given a static time series as a
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query. An approximation algorithm is developed using a weighted locality-sensitive hashing
technique.

Motivated by a wide range of applications such as network intrusion detection, much
work [4,25,28,29] has been embarked on monitoring nearest neighbor (NN) queries contin-
uously over a data stream. The basic idea is to utilize indexing structures for reducing memory
consumption and supporting efficient updates. Mouratidis et al. [28] proposed two approaches
for continuous monitoring of NN queries over sliding window streams. Koudas et al. [25]
developed an approximation algorithm that utilizes an indexing scheme, DISC, and has guar-
anteed bounds on error and performance.

The existing work on continuously monitoring nearest neighbors for mobile query object
is different from the problem studied here. In those previous studies, the mobile object is
assumed to move in a trajectory, potentially predictable to some extent. In this paper, the
stream presenting an evolving query is not assumed a moving object. Instead, we simply use
the current sliding window as the current query. The existing methods on continuous nearest
neighbor monitoring for mobile objects cannot solve our problem.

In addition to continuous queries on similarity search problems, some interesting problems
are defined over data streams. For example, Pan and Zhu [30] developed a two-level candidate
checking scheme for continuously querying the top-k correlated graphs in a data stream
scenario where static queries are posed on evolving graph streams. Mouratidis et al. [27]
proposed two approaches for continuously answering top-k queries where the query is a
static preference function over a fixed-size sliding window. One approach is to compute new
answers whenever a current top-k point expired and the other approach is to precompute future
changes partially. Rao et al. [32] devised methods for the problem that uses an aggregation
function to measure the relevance between a document stream and a query consists of terms.
They modeled documents as a data stream. That is, new documents keep coming while the
query is not evolving, which is different from our model where the evolving query consists
of the elements in the current sliding window in a data stream. Kollios and Tsotras [23]
proposed efficient hashing methods to answer membership queries in a temporal setting.

Table 1 summarizes the differences between our study and some previous methods related
to ours.

3 Problem definition

Let us consider an alphabet of items �, a collection of objects R where each object is a set
(or multiset) over �, a data stream S with each element e ∈ � keeps coming, and an integer
n as the size of a query sliding window on S. A query Q is the last n elements in S. A query
is in general a multiset, but also can be modeled as a set. The top-k continuous similarity
search for evolving query Q is to continuously find the k objects in R that are most similar
to Q. We answer the query continuously whenever a new element in S arrives.

In this paper, we consider each object being a set or multiset. Queries can be sets or
multisets as well. Since a set is a special case of a multiset where elements in the object are
all distinct, we use weighted Jaccard similarity to measure the similarity between objects and
queries.

Specifically, let X be a nonempty multiset that consists of items in alphabet � =
{v1, v2, . . . , v|�|}. We map X to a |�|-dimensional vector �X such that the value of the
i th component is the absolute frequency of item vi in X . �X is called the vector representation
of multiset X .
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Table 1 Comparison of our methods and the previous work

Method Problem solved Algorithm Features

Our methods

Pruning method Top-k set/multiset
similarity search

Upper bounding
similarity scores w.r.t.
evolving queries

Top-k, set/multiset
similarity search, static
objects, evolving queries

Hashing method Top-k set similarity search Using MinHash and
inverted indices for fast
computation of top-k
results

Top-k, set similarity
search, static objects,
evolving queries

Similarity join/search—pruning-based methods

Sarawagi and
Kirpal [34]

Threshold-based set
similarity join

A probing method based
on inverted index

Threshold, set similarity
join, static objects

Chaudhuri et al. [8] Threshold-based set
similarity join

Prefix-filtering principle Threshold, set similarity
join, static objects

Bayardo et al. [3] Threshold-based set
similarity join

All-Pairs: improved the
prefix-filtering method

Threshold, set similarity
join, static objects

Xiao et al. [38] Threshold-based set
similarity join

PPJoin, PPJoin+: add
positional filtering and
suffix filtering

Threshold, set similarity
join, static objects

Sun et al. [36] PathSim based top-k
similarity search

Co-clustering based
pruning method

Top-k, similarity search,
static objects

Similarity join/search—hashing-based methods

Indyk and
Motwani [21]

Approximate NN search
in Euclidean space

Locality-Sensitive
Hashing (LSH)

Threshold, NN search in
Euclidean space, static
objects

Gionis et al. [17] Approximate NN search
in Euclidean space

Improved [21] and
achieved better time
guarantees

Threshold, NN search in
Euclidean space, static
objects

Andoni and
Indyk [1]

Approximate NN search
in Euclidean space

Almost achieves the space
and time lower bounds

Threshold, NN search in
Euclidean space, static
objects

Broder [5] Finding similar
documents

MinHash technique Jaccard similarity
estimation, static
documents

Datar and
Muthukrish-
nan [11]

Estimate rarity and
similarity of windowed
data streams

Applying MinHash
technique

Jaccard similarity
estimation, two evolving
data windows

Charikar [7] Design new
locality-sensitive
hashing schemes

SimHash technique Similarity estimation,
static objects

Continuous queries over a data stream

Kontaki et al. [24] Similarity range queries
in streaming time
sequences

Indexing and Discrete
Fourier Transformation

Euclidean distance,
evolving objects and
evolving queries

Lian et al. [26] Similarity search over
multiple stream time
series

A weighted LSH A static time series as the
query, multiple stream
time series as the objects

Mouratidis et al.
[28]

Continuous monitoring of
NN queries over sliding
window streams

Conceptual partitioning
and precompute the
future changes

Euclidean space, evolving
objects and static
queries
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Table 1 continued

Method Problem solved Algorithm Features

Pan and Zhu [30] Continuously querying
the top-k correlated
graphs in a data stream

A two-level candidate
checking scheme

Evolving graph streams
and static queries

Rao et al. [32] Measure the relevance
between a document
stream and a query

A graph indexing
structure for results
sharing among queries

Evolving documents and
static queries

Table 2 A collection of sets R
T1 a b c f i

T2 a d e

T3 d e

T4 b c d i

T5 a c g h i j

T6 a c e f h

· · · b i c a d ←−
(a)

· · · b i c a d f ←−
(b)

Fig. 1 Query stream S. a Current query Q, b query Q′ after a new item arrives

Let X and Y be two nonempty multisets over alphabet �. Let �X = [x1, x2, . . . , x|�|] and
�Y = [y1, y2, . . . , y|�|] be the vector representations of X and Y , respectively. The weighted
Jaccard similarity is

sim jac(X, Y ) = sim jac( �X , �Y ) =
∑|�|

i=1 min(xi , yi )
∑|�|

i=1 max(xi , yi )
(1)

Example 1 (Computing similarity scores) Given an alphabet � = {a, b, c, d, e, f, g}, con-
sider two multisets X = {c, b, a, e, f } and Y = {a, b, a, c, e, d}. The vector representations
of X and Y are �x = [1, 1, 1, 0, 1, 1, 0] and �y = [2, 1, 1, 1, 1, 0, 0], respectively. Since∑7

i=1 max(xi , yi ) = 7 and
∑7

i=1 min(xi , yi ) = 4, the weighted Jaccard similarity score
between X and Y is sim jac(X, Y ) = 4

7 = 0.57.

We now model how a query evolves. Given a query Q = {ep+1, ep+2, . . . , ep+|Q|},
where item ep+i (1 ≤ i ≤ |Q|) is the i-th arrived item in the query, the updated
query after u time instants (u ≤ |Q|), that is, u updates in the stream, is Q′ =
{ep+u+1, ep+u+2, . . . , ep+|Q|, ep+|Q|+1, ep+|Q|+2, . . . , ep+|Q|+u}, where item ep+|Q|+ j is
the j-th newly coming element in the updated query, 1 ≤ j ≤ u.

Example 2 (Continuous top-k queries) A collection of sets R in a database is shown in
Table 2, and a data stream S is shown in Fig. 1a. The alphabet � = {a, b, c, d, e, f, g, h, i, j}
of 10 items. Suppose k = 2 and the size of the sliding window is 5, that is, we use the set of the
last 5 entries in stream S as the evolving query Q, and find the top-2 most similar sets in R.
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Table 3 Jaccard similarity
scores

T1 T2 T3 T4 T5 T6

Q 0.67 0.33 0.17 0.80 0.38 0.25

Q′ 0.67 0.33 0.17 0.50 0.38 0.43

Table 4 Summary of frequently used symbols

Symbol Interpretation

For all methods

R A collection of objects in database

S The querying data stream

� The alphabet used in database

Ti The i th object in R
Qt The query containing the elements in the sliding window at time t

�X The vector representation of a set (or multiset) X

sim(X, Y ) The exact similarity of two sets (or multisets) X and Y

k Number of objects in the result

topkt The k objects that are most similar to the query at time t

score(topkt [k]) The similarity score of the kth most similar result at time t

For pruning-based method

sim(X, Y )+u The upper bound of similarity score of two sets (or multisets) X and Y , after u
updates on Y

min_stepi The least number of updates needed for object Ti ’s progressive upper bound
sim(Ti , Qt )+min_stepi to exceed score(topkt [k])

For MinHash-based method

{[n]} The set {0, . . . , n − 1}
sim≈(X, Y ) The MinHash approximated similarity of two sets X and Y

H A set of hash functions h1, h2, . . . , h|H |
indexi Inverted index built on the MinHash values of the i th hash function, i ∈ [1, |H |]
indexi [v] Inverted list of hash value v which consists of the objects whose MinHash value is

v according to the i th hash function, i ∈ [1, |H |] and v ∈ [1, |�|]
min(hi (X)) The minimum hash (MinHash) value of set X according to the i th hash function

hi , i ∈ [1, |H |]
For experiments

|Q̄t | The average object length of the data set

We can compute the Jaccard similarity score between an object in R and the current query
Q = {b, i, c, a, d}. The scores are shown in the first row of Table 3. Objects T4 and T1 are
the top-2 similar objects with respect to query Q.

Suppose next an item f arrives at the data stream as shown in Fig. 1b. We now have an
updated query Q′ = {i, c, a, d, f }. The updated Jaccard similarity scores are shown in the
last row of Table 3. The rankings of the objects in R ordered by similarity scores change
slightly. For example, the rank of T4 changes from 1 to 2 (the lower the rank, the higher the
similarity). Consequently, T1 and T4 are the top-2 similar objects with respect to query Q′.

Table 4 lists the frequently used symbols in the paper.
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4 A pruning-based method

Computing the exact similarity score for every object against the updated query at every time
point is costly. A brute-force method takes O(|Qt | + |Ti |) time to compute the similarity
between each object Ti ∈ R with the current query Qt at every time instant t , and in total
O(|R| · (|Qt | + max1≤i≤|R|{|Ti |})) time to update the top-k results at each time instant.
In this section, we derive an upper bound of Jaccard similarity scores and then present a
pruning-based method that utilizes the upper bound.

4.1 A progressive upper bound

We define the length of a multiset as the number of elements, including duplicates, in the
multiset. To compute the upper bound of the Jaccard similarity between two multisets X and
Y after u updates on Y , we can use the following property.

Theorem 1 (A progressive upper bound) Let X and Y be two multisets, and Y ′ be the multiset
with u updates on Y . Then,

sim jac(X, Y ′) ≤ sim jac(X, Y )+u .

where sim jac(X, Y )+u = sim jac(X,Y )·α+β

α−β
and α = |X | + |Y |, β = (1 + sim jac(X, Y )) · u.

Proof By definition, we have

sim jac(X, Y ) =
∑|�|

i=1 min{xi , yi }
∑|�|

i=1 max{xi , yi }
(2)

and

|�|∑

i=1

max{xi , yi } = |X | + |Y | −
|�|∑

i=1

min{xi , yi }. (3)

Using Eqs. 2 and 3, we have

|�|∑

i=1

min{xi , yi } = sim jac(X, Y ) ·
|�|∑

i=1

max{xi , yi }

= sim jac(X, Y ) · (|X | + |Y | −
|�|∑

i=1

min{xi , yi })

Apparently,
∑|�|

i=1 min{xi , yi } can be rewritten using |X |, |Y | and sim jac(X, Y ) as follows.

|�|∑

i=1

min{xi , yi } = (|X | + |Y |) · sim jac(X, Y )

sim jac(X, Y ) + 1
(4)

After u updates, the maximum increase in the intersection size (the numerator of Eq. 2) and
the maximum decrease in the union size (the denominator of Eq. 2) are both u. Combining
Eqs. 3 and 4, we have
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sim jac(X, Y ′) ≤ u + ∑|�|
i=1 min{xi , yi }

−u + ∑|�|
i=1 max{xi , yi }

= u + ∑|�|
i=1 min{xi , yi }

−u + |X | + |Y | − ∑|�|
i=1 min{xi , yi }

= (|X | + |Y | + u) · sim jac(X, Y ) + u

|X | + |Y | − u · sim jac(X, Y ) − u

Let α = |X | + |Y | and β = (1 + sim jac(X, Y )) · u, we have

sim jac(X, Y ′) ≤ sim jac(X, Y ) · α + β

α − β
= sim jac(X, Y )+u

��
The upper bound can be computed based on |X |, |Y |, and sim jac(X, Y ). As to be shown

soon in the algorithm, sim jac(X, Y ) is already known when computing the upper bound.
Thus, it only takes constant time.

Example 3 (Progressive upper bound) Consider the same multisets X and Y in Example 1.
We have |X | = 5, |Y | = 6, and sim jac(X, Y ) = 0.57. Suppose u = 1, the upper bound of
the Jaccard similarity after an update is sim jac(X, Y )+1 = 0.83.

Obviously, the progressive upper bound has a monotonicity with respect to the num-
ber of updates u. Thus, if the upper bound sim jac(X, Y )+u is not large enough, so is any
sim jac(X, Y )+u′

(1 ≤ u′ < u).
Our strategy for deriving the upper bound after u steps can be further extended to other

multiset-based similarity measures, such as the weighted cosine similarity, the weighted
dice similarity, and the weighted overlap similarity. “Appendix” gives the details about the
extensions to other similarity measures.

4.2 A general pruning-based algorithm

A brute-force method is to compute the similarity score between the updated query and each
object at each time instant, and then obtain the top-k list. This approach is costly and involves
much unnecessary computation, since when the query window slides only a small number
of positions, such as 1 or 2, the changes of the similarity scores are limited.

In this subsection, we present a heuristic algorithm GP that finds the exact top-k objects
continuously. For the sake of simplicity, let us assume that new elements come in a manner
synchronized with time, that is, a new element arrives at the stream when there is an update
in time. The main idea is based on the observation that the query at time t + 1 shares a large
portion of elements, namely at least n−1

n , with the query at time t . Thus, the change in the
top-k list is limited. In other words, the objects with small similarity scores at time t have a
very limited chance to enter the top-k list at time t + 1.

To implement the above idea, we divide the objects into two categories according to their
current similarity scores.

– The first category C1 contains the objects whose similarity scores are small enough so that
those objects will not enter the top-k list in the next several updates. The objects in this
category do not need to be checked using the exact similarity scores at the next several
time instants. Instead, we only need to maintain their upper bounds of the similarity
scores.

123



X. Xu et al.

– The second category C2 contains the other objects not in the first category. The objects
in this category need to be checked by computing the exact similarity scores.

Suppose that at time instant t , we obtain the top-k list of objects topkt . Denote by
score(topkt [k]) the similarity score of the kth object, which is least similar to the current
query Qt . Apparently, score(topkt [k]) can be obtained without any extra cost.

For each object Ti not in the list topkt , we compute min_stepi , the smallest number of
updates needed for object Ti to have its progressive upper bound exceed score(topkt [k]).
According to Property 1, min_stepi is the smallest integer satisfying score(topkt [k]) <

sim(Ti , Qt )+min_stepi . min_stepi can be easily computed with respect to different similarity
functions according to the respective specific forms of the upper bounds. For weighted Jaccard
similarity, we have

min_stepi =
⌈

score(topkt [k]) · ∑|�|
i=1 max{xi , yi } − ∑|�|

i=1 min{xi , yi }
1 + score(topkt [k])

⌉

(5)

=
⌈

(score(topkt [k]) − sim(Ti , Qt )) · (|Ti | + |Qt |)
(1 + score(topkt [k])) · (1 + sim(Ti , Qt ))

⌉

(6)

Similarly, given Eq. 6, we only need constant time to compute min_stepi .
For the other three similarities, it is simply

min_stepi =
⌈

score(topkt [k]) − sim(Ti , Qt )

sim(Ti , Qt )+1 − sim(Ti , Qt )

⌉

Example 4 (Computing min_stepi ) Again, consider the collection of setsR shown in Table 2
and a data stream S shown in Fig. 1a. As the size of the sliding window is 5, the list of the
top-2 most similar objects in R at the current time t is {T1: 0.67, T4: 0.8}, where the numbers
after colons are the similarity scores.

The similarity score of object T5 at the current time instant t is 0.38. T5 is not one of the top-
2 results. However, for T5,

∑|�|
i=1 min{xi , yi } = 3 and

∑|�|
i=1 max{xi , yi } = 8 with xi ∈ �T5

and yi ∈ �Qt . Using Eq. 5 we can compute that, after min_sup5 =
⌈

0.38×8−3
0.38+1

⌉
= 	1.43
 = 2

updates, the progressive upper bound of T5, sim(T5, Qt )+2 = 3+2
8−2 = 0.83, is larger than the

score of the current kth most similar object score(topkt [k]) = sim(T1, Qt ) = 0.67.

At time instant t , for each object Ti , we maintain min_stepi and the corresponding
progressive upper bound sim(Ti , Qt )+min_stepi . Please note that the min_stepi values and the
sim(Ti , Qt )+min_stepi values may be computed at time instant t or before. After processing
the objects at time instant t − 1, at time instant t , with respect to query Qt , we process the
objects as follows.

1. For all objects Ti such that min_stepi = 0, including those already in topkt−1, we
compute the exact similarity between Ti and Qt and obtain a top-k list topkt among
those objects. Those objects are assigned to the second category C2. We set the similarity
threshold σ = score(topkt [k]).

2. For all objects Ti such that min_stepi > 0 but sim(Ti , Qt−1)+min_stepi > σ , since their
similarity to query Qt may be greater than score(topkt [k]), we have to compute their
exact similarity to Qt , too. We update the top-k list topkt and also the similarity threshold
σ = score(topkt [k]). Obviously, in this step, σ = score(topkt [k]) is monotonically
increasing, and never decreases. At the end of this step, topkt is finalized. Those objects
whose exact similarity scores are larger than score(topkt [k]), that is, in the list topkt ,
are also added to category C2.
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Algorithm 1: A general pruning algorithm (GP)

Input: Top-k results topkt−1 at previous time t − 1, Query Qt at current time t
Output: Top-k results topkt at current time t

1 for 0 ≤ u ≤ |queue| − 1 do
2 foreach Ti ∈ queue[u] do
3 if u = 0 or sim(Ti , Qt )+u > score(topkt−1[k]) then
4 delete Ti from bin queue[u]
5 compute sim(Ti , Qt ) and update topkt

6 min_stepi ← null
7 remove bin queue[0]
8 foreach Ti with min_stepi = null do
9 (min_stepi , sim(Ti , Qt )+min_stepi ) ← est_bound

(
sim(Ti , Qt ), score(topkt [k]))

10 insert Ti to bin queue[min_stepi ]

Algorithm 2: Update min_stepi and similarity bounds

Function: est_bound(sim(Ti , Qt ), score(topkt [k]))
Input: Ti ’s similarity score sim(Ti , Qt ) at current time t , The kth largest similarity score of top-k list

score(topkt [k]) at current time t
Output: The pair of (min_stepi , sim(Ti , Qt )+min_stepi )

1 if sim(Ti , Qt ) < score(topkt [k]) then
2 compute min_stepi ;

3 sim(Ti , Qt )+min_stepi ← upper bound after min_stepi updates;
4 else
5 min_stepi ← 0;

6 sim(Ti , Qt )+min_stepi ← sim(Ti , Qt );

7 return (min_stepi , sim(Ti , Qt )+min_stepi );

3. We update min_stepi and the corresponding progressive upper bound
sim(Ti , Qt−1)+min_stepi for objects Ti ∈ C2.

4. For the other objects not in C2, they belong to the first category C1 and have no hope to
be more similar to Qt than any of the object in the list topkt and thus do not need to be
checked in this round. We only need to decrease their min_stepi values by 1.

The pseudocode of the algorithm is given in Algorithms 1 and 2. In implementation, we
organize objects in bins according to their min_stepi values and use a heap to maintain the
top-k list. All the bins are maintained in a queue structure (called queue in the pseudocode).

5 A MinHash-based method

In this section, we use the technique MinHash [7], a locality-sensitive hashing (LSH) scheme,
to approximate Jaccard similarity. We design indices for efficient updating estimated similar-
ity scores. Since the MinHash technique is designed for estimating sets rather than multisets,
we limit the definition of the current query to the set of distinct elements.

5.1 Approximating Jaccard similarity over static query

We first discuss how to estimate Jaccard similarity using MinHash for static objects and
queries.
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Definition 1 (Image under permutation [2]) Denote by {[n]} the set {0, . . . , n − 1}. A per-
mutation π on {[n]} is a bijective function (one-to-one correspondence) from {[n]} to itself.
If x ∈ {[n]}, then π(x), the value of π when applied to x is the image of x under π . The
image of a subset X ⊆ [n] under π is π [X ] = {y | y = π(x) for x ∈ X}.
Definition 2 (Min-wise independent permutations [6]) Let Sn be the set of all permutations
of {[n]}. A family of permutations F ⊆ Sn is min-wise independent if for any set X ⊆ {[n]}
and any element x ∈ X , we have

Pr(min{π [X ]} = π(x)) = 1

|X | (7)

where the permutation π is chosen randomly in F .

The following property enables efficient estimation of Jaccard similarity between two
sets.

Theorem 2 (Jaccard similarity estimation [20]) Consider a query Q and an object Ti where
the elements are drawn from an alphabet �. Let h be a hash function that maps elements in
� to distinct integers in range [0, |�|− 1] and is randomly picked from a family of min-wise
independent permutations. Let the MinHash value, min(h(Ti )), be the element in Ti with the
smallest hash value. Then, Pr [min(h(Ti )) = min(h(Q))] = |Ti ∩Q|

|Ti ∪Q| .

The MinHash values for all objects and that of the query can be stored in a MinHash
signature matrix, M , where each entry M(i, j) is the MinHash value of the j th itemset
under hash function hi . Based on Property 2, the Jaccard similarity between two sets can
be estimated by the ratio of the number of rows containing the same MinHash values to the
number of all the rows in the signature matrix. We deliberate the computation in Example 5.

Example 5 (Jaccard similarity estimation) Consider the matrix representation of an example
with four objects and a static query Q shown in Table 5a. Each column in the matrix represents
a set and an element is in the set if the corresponding entry is 1. We apply five random
permutations defined in Table 5b as the min-wise independent hash functions on objects
and the query. The signature matrix is shown in Table 5c. For example, since object T1

contains elements a, b, and c, the corresponding hash values according to h4 are 1, 3, and 4,
respectively. The MinHash value of T1 according to h4 is a since a is the element in T1 with
the smallest hash value.

We can estimate the Jaccard similarity score between two sets by computing the ratio of the
number of rows containing the same MinHash values to the number of random permutations.
For example, the MinHash values of T1 and Q are the same according to random permutations
h2 and h3. Thus, the estimated Jaccard similarity between T1 and Q is 2

5 . We compare the
estimated Jaccard similarity with the exact Jaccard similarity for each object in Table 5d.
When objects are ordered in descending order of estimated similarity score regarding to the
query, we have T3 > T1 = T4 > T2, which is identical to the order using exact similarity.
Therefore, in this example, we can get the top-k result accurately using estimated scores.

5.2 Approximating Jaccard similarity over evolving query

To answer evolving queries, given a fixed set of hash functions, the MinHash values for all
the objects are fixed and only the MinHash values for the query are subject to modification.
That is, we only need to update the MinHash values for the query. Therefore, we have a fast
solution shown in Algorithm 3.
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Table 5 An example of Jaccard
similarity estimation

Element T1 T2 T3 T4 Q

(a) Matrix representation of sets

a 1 1 0 1 0

b 1 0 1 0 1

c 1 0 1 0 1

d 0 1 0 1 1

e 0 0 1 1 1

Element h1 h2 h3 h4 h5

(b) Random permutations

a 1 2 3 1 0

b 2 3 0 3 4

c 3 0 1 4 3

d 4 4 2 0 1

e 0 1 4 2 2

T1 T2 T3 T4 Q

(c) Signature matrix

h1 a a e e e

h2 c a c e c

h3 b d b d b

h4 a d e d d

h5 a a e a d

T1 T2 T3 T4

(d) Exact and approximated Jaccard similarity

sim jac(Ti , Q) 0.40 0.25 0.75 0.40

sim≈
jac(Ti , Q) 0.40 0.20 0.60 0.40

Algorithm 3 first computes the MinHash signature for an updated query. To determine
whether we need to update the estimated Jaccard similarity of object Tj with respect to the
updated query Qt according to a hash function hi , we consider the following 4 cases based
on whether the MinHash values of the object and the queries are equal or not.

– Case 1: If min(hi (Tj )) �= min(hi (Qt−1)) and min(hi (Tj )) = min(hi (Qt )), the esti-
mated Jaccard similarity between Tj and the updated query should be increased by 1

|H | ,
where |H | is the number of hash functions applied.

– Case 2: If min(hi (Tj )) = min(hi (Qt−1)) and min(hi (Tj )) �= min(hi (Qt )), the esti-
mated Jaccard similarity between Tj and the updated query should be decreased by 1

|H | .
– Case 3: If min(hi (Tj )) = min(hi (Qt−1)) and min(hi (Tj )) = min(hi (Qt )), the esti-

mated Jaccard similarity between Tj and the updated query remains.
– Case 4: If min(hi (Tj )) �= min(hi (Qt−1)) and min(hi (Tj )) �= min(hi (Qt )), the esti-

mated Jaccard similarity between Tj and the updated query remains, too.

We can further reduce the computational cost using inverted indices. The MinHash sig-
nature matrix that stores the MinHash values of objects can be transformed into |H | inverted
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Algorithm 3: A MinHash-based algorithm (MHB)

Input: Current query Qt , |H | hash functions, a set of previous MinHash values {min(hi (Qt−1))},
MinHash table for |R| objects.

Output: Top-k results topkt at current time t
1 compute {min(hi (Qt ))};
2 foreach j ∈ {1, . . . , |R|} do
3 foreach i ∈ {1, . . . , |H |} do
4 if min(hi (Tj )) �= min(hi (Qt−1)) and min(hi (Tj )) = min(hi (Qt )) then
5 sim≈(Tj , Qt ) ← sim(Tj , Qt ) + 1

|H | ;

6 else if min(hi (Tj )) = min(hi (Qt−1)) and min(hi (Tj )) �= min(hi (Qt )) then
7 sim≈(Tj , Qt ) ← sim(Tj , Qt ) − 1

|H | ;

8 if Tj /∈ topkt and sim≈(Tj , Qt ) > score(topkt [k]) then
9 update topkt ;

Fig. 2 Inverted indices for MinHash values

indices whose structure is shown in Fig. 2. For each hash function, its corresponding inverted
index stores a mapping from each existing MinHash value to a list of object ids, that is,
inverted list. Moreover, elements in each inverted list are sorted in ascending order of object
id, which enables more efficient list merge and intersection operations. In this way, we can
efficiently retrieve the objects with a specified MinHash value according to a certain hash
function.

The algorithm that uses the inverted indices is presented in Algorithm 4. The MinHash
signature for the updated query is computed first. We need to search the inverted index
of a hash function hi only when the MinHash values of Qt and Qt−1 regarding hi are
different. Suppose the MinHash value of the updated query changes according to hi , to
determine the objects whose similarity scores need to be updated, we recall Case 1 and Case
2 mentioned earlier in this section. Each case corresponds to a scan in an inverted list of hi .
Specifically, in Case 1, we increase the estimated Jaccard similarity by 1

|H | for objects in the
inverted list of hash value min(hi (Qt )). That is, instead of checking for each object as in
Algorithm 3, we search for the objects that satisfy Case 1 using the index. Similarly, in Case
2, we decrease the estimated Jaccard similarity by 1

|H | for objects in the inverted list of hash

value min(hi (Qt−1)).

123



Continuous similarity search for evolving queries

Algorithm 4: A MinHash-based algorithm using inverted indices (MHI)

Input: Current query Qt , |H | hash functions, a set of MinHash values {min(hi (Qt−1))}, Inverted
indices.

Output: Top-k results topkt at current time t
1 compute {min(hi (Qt ))};
2 foreach i ∈ {1, . . . , |H |} do
3 if min(hi (Qt−1)) �= min(hi (Qt )) then
4 for Tj ∈ indexi [min(hi (Qt ))] do
5 sim≈(Tj , Qt ) ← sim≈(Tj , Qt ) + 1

|H | ;

6 for Tj ∈ indexi [min(hi (Qt−1))] do
7 sim≈(Tj , Qt ) ← sim≈(Tj , Qt ) − 1

|H | ;

8 foreach j ∈ {1, . . . , |R|} do
9 if Tj /∈ topkt and sim≈(Tj , Qt ) > score(topkt [k]) then

10 update topkt ;

The time complexity of this algorithm is O(|H | · |R|), where |R| is the number of objects
and |H | is the number of hash functions. It is achieved when the MinHash values of consec-
utive queries differ under all the hash functions. However, this case rarely occurs because the
Jaccard similarity between consecutive queries is in fact very high.

6 Experimental results

In this section, we discuss our experimental results on a series of synthetic data sets and two
real data sets. All experiments were conducted on a Mac Pro (Late 2013) server with Intel
Xeon 3.70GHz CPU, 64GB memory, and 256GB SSD hard drive installed. All the algorithms
were implemented in Python 3 using a much faster just-in-time compiler PyPy 3.

6.1 Results on synthetic data sets

To evaluate the effectiveness and efficiency of our two methods, the general pruning-based
method (“GP” for short) and the MinHash-based method (“MHI” for short), in this section,
we first report the experimental results on synthetic data sets.

We used the IBM Quest data generator1 to produce synthetic data sets. We conducted
experiments to test the efficiency and accuracy of our methods with respect to the following
parameters.

– k: top-k;
– |Qt |: the parameter controlling both the number of items per query and average number

of items per object.
– |�|: alphabet size;
– |H |: the number of different hash functions.
– |R|: number of objects;

To generate synthetic data sets using the IBM Quest data generator, we set parameters |Qt |,
|�|, and |R|. The synthetic query stream was generated by concatenating random objects
whose lengths are between 0.8|Q̄t | and 1.2|Q̄t |, where |Q̄t | is the average object length of
the data set.

1 http://www.cs.loyola.edu/~cgiannel/assoc_gen.html.
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Table 6 Values of controlled variables for tests on Jaccard similarity

Data set Varying k |Qt | |�| |H | |R| Figures

Synthetic k Multiple 10 10,000 100 100,000 3a, 4a, 6a

Synthetic k Multiple 10 20 100 100,000 3b, 4b, 6b

Synthetic |Qt | 10 Multiple 10,000 100 100,000 3d, 4d, 6c

Synthetic |�| 10 10 Multiple 100 100,000 3c, 4c, 6c

Synthetic |H | 10 10 10,000 Multiple 100,000 3e, 6e

Synthetic |R| 10 10 10,000 100 Multiple 3f, 4e, 5a, 6f

Market basket k Multiple 10 16,470 100 88,162 7a–c

Market basket |H | 10 10 16,470 Multiple 88,162 7g, h

Market basket |R| 10 10 16,470 100 Multiple 7d–f, 5b

Click stream k Multiple 5 17 50 31,790 8a–c

Click stream |H | 10 5 17 Multiple 31,790 8g, h

Click stream |R| 10 5 17 50 Multiple 5c, 8d–f

The way we produce synthetic query streams mimics some real application scenarios.
Take the online RPG gaming scenario as an example. Suppose one is exploring the game
map and walks from one game scene to another. While each scene has its combination of
enemies (as objects here), when moving from one scene to another, the most suitable query
is the combination of enemies from both scenes (concatenation of the two objects within
sliding window).

In each experiment, we varied one factor and fixed the others. Table 6 shows the values
of controlled variables along with the corresponding figures for each test. We compare the
performance of GP and MHI on the average querying time with two baseline methods, namely
BFM and MHB. BFM is a brute-force method that computes the exact similarity score for
every object with respect to a query. MHB is a method based on MinHash technique but does
not use any indexing structures. To better illustrate how our upper bounds derived in Sect. 4
can be used to prune unpromising objects, we define the pruning effectiveness with respect
to an update as follows.

Definition 3 (Pruning effectiveness of GP) Suppose we have |R| objects in total and we com-
pute the exact similarity scores for |R|∗ objects during an update. The pruning effectiveness
with respect to this update is 1 − |R|∗

|R| .

In this section, we report the average pruning effectiveness of 1000 updates. Moreover,
we provide peak memory usage for all the methods when testing the scalability.

The accuracy in our context is defined as follows.

Definition 4 (Accuracy) For a method A that returns a top-k list topk_At with respect to
query Qt , the accuracy of A is the proportion of objects in topk_At whose exact similarity
scores with respect to Qt is no smaller than the similarity between topkt [k] and Qt , where
topkt is the ground truth top-k list. That is,

acc_A = |{T |T ∈ topk_At ∧ sim(T, Qt ) ≥ sim(topkt [k], Qt )}|
k

.
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The idea here is to check the percentage of objects reported in the answer indeed have a
similarity score passing the minimum similarity threshold set by the kth most similar object
in the ground truth. The higher this percentage, the more accurate the answer.

The pruning algorithm GP always returns the exact query results and thus has 100 %
accuracy. Since the MinHash-based methods compute similarity scores approximately, MHB
and MHI give estimated answers to top-k queries. We report the average accuracy of MinHash
methods in Fig. 6.

6.1.1 Efficiency

The average querying time of the four methods when k varies is shown in Fig. 3a, b on two
synthetic data sets with a large alphabet (104) and a small one (20), respectively. In both
cases, our baseline methods, BFM and MHB, almost have no change in average processing
time. MHI that uses 100 hash functions outperforms the other four methods greatly. The
pruning effectiveness of GP is shown in Fig. 4a, b when the alphabet size is set to 104 and
20, respectively. The pruning effectiveness of GP drops gradually because the similarity
score of the kth best object in the top-k result tends to decrease when k increases. Given
other parameters fixed, the similarity score of the kth best object in the result with respect to
queries becomes smaller. Thus, the pruning effectiveness generally is weaker in the case of
larger alphabet size.

Figure 3c provides a better illustration of the trends of the pruning effectiveness of GP
when the alphabet size changes. When the alphabet size increases dramatically, the pruning
effectiveness of GP drops from 69.2 to 56.3 % gradually. Thus, the average processing time
of GP slightly increases. The average running time of BFM remains stable with respect to
alphabet size. The average running time of MHI first decreases and then increases. When the
alphabet size is small, the length of each inverted list is relatively large. Thus, a change in
MinHash value of the query may result in many updates in the estimated similarity scores.
When alphabet size becomes very large, though the size of each inverted list is small, the
number of unmatched MinHash values between the MinHash lists of the previous query and
the new query increases, which results in more searches on the inverted indices.

We also examined how the average query answering time changes with respect to average
object length. The results on efficiency and pruning effectiveness are shown in Figs. 3d and 4d,
respectively. The average processing time of BFM increases linearly while the performance
of MHB does not increase greatly. It is because we transformed the objects of varied length
into MinHash signatures of the same length. MHI still performs much better than the others
and increases linearly. It is because when the average object length becomes larger, the size
of each inverted list becomes larger, too, which results in longer processing time. When the
average object length increases, the pruning effectiveness of GP increases dramatically, from
61.1 to 94.47 %. However, its average running time still increases slightly, since there is an
increase in the cost of computing exact similarity scores for larger sets in the verification
phase.

The performance with respect to the number of hash functions is shown in Fig. 3e. The
average processing time of both MHB and MHI increases. MHI is roughly linear. The scal-
ability of our methods is shown in Fig. 3f. The runtime of all the methods increases almost
linearly as the number of object increases. The pruning effectiveness of GP increases from
48.3 to 64.2 % when the number of objects increases from 104 to 106, which is shown in
Fig. 4e.

The peak memory usage of our methods is shown in Fig. 5a. BFM and GP follow the
similar growth trend and GP requires only a little more memory than BFM. It is because we
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Fig. 3 Average processing time on synthetic data set. a Vary k, large |�|, b vary k, small |�|, c vary |�|, d
vary |Qt |, e vary |H |, f vary |R|

use extra data structures like queue and max-heap to store the upper bounds of similarity
scores. Compared to BFM and GP, MinHash-based methods need more space since we need
to store a MinHash signature for each object. MHB costs less space than MHI because we
store MinHash signatures differently for these two methods. For MHB, we simply store each
MinHash signature as an array, while in MHI, we construct an inverted index for each hash
function to enable more efficient update, which requires more space.
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Fig. 4 Pruning effectiveness of GP on synthetic data set. a Vary k, large |�|, b vary k, small |�|, c vary |�|,
d vary |H |, e vary |R|

6.1.2 Accuracy

We also tested the accuracy of the MinHash-based algorithms. By our definition, the accuracy
of the two MinHash-based algorithms are the same according to the same set of hash functions.
We denote the MinHash methods by MH in the figures that report accuracy. The accuracy can
be affected by two factors, the number of hash functions used and the intrinsic characteristics
of our data set, such as the distribution of similarity scores among objects.
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Fig. 5 Data set peak memory usage on different data sets. a Synthetic data set, b market basket data set, c
click stream

The results show that the MinHash-based methods achieve an accuracy ranging from 68
to 98 % on the synthetic data sets when 100 hash functions are used. Figure 6a, b shows
the change in accuracy when k increases on data sets of large alphabet and small alphabet,
respectively. On the data set of alphabet size 104, the accuracy decreases gradually, from 98
to 68.7 %. When alphabet size is 20, the average accuracy does not vary much but still in a
slightly descending trend.

The average accuracy increases quickly and then decreases when the alphabet size
increases, as shown in Fig. 6c. The highest accuracy is achieved when the alphabet size
is 104. The reason is as follows. With the fixed number of objects, when alphabet size is
small, there are many similar objects in the data set, which lowers the accuracy. In contrast,
when the alphabet size is too large, objects in the data set would be less similar and lead
to slightly lower accuracy. In Fig. 6c, when the average object length increases from 10 to
103, the accuracy drops drastically from 86.7 to 10 %. The reason is apparent. In MinHash,
the Jaccard similarity is the probability of two objects having the same minimal hash values
with respect to all the hash functions. With a fixed number of hash functions, the larger the
window size (average object length here), the less the portion of the elements in the window
are hashed as the common MinHash value, which leads to a less accurate estimation. Thus,
more hash functions are needed to achieve the same level of accuracy when the object length
becomes larger.

123



Continuous similarity search for evolving queries

MH

 50

 60

 70

 80

 90

 100

 1  10  100  1000

A
vg

. A
cc
ur

ac
y 

(%
)

k

Varying k

 50

 60

 70

 80

 90

 100

 1  10  100  1000

A
vg

. A
cc
ur

ac
y 

(%
)

k

Varying k

 50

 60

 70

 80

 90

 100

100 1k 10k 100k 1m

A
vg

. A
cc
ur

ac
y 

(%
)

Lexicon Size

Varying Lexicon Size

0

 20

 40

60

80

100

10 50 100 500 1000

A
vg

.
A

cc
ur

ac
y

(%
)

Avg. Transaction Length

Varying Avg. Transaction Length

50

60

 70

80

90

100

100  200  300  400 500

A
vg

.
A

cc
ur

ac
y

(%
)

Number of Hash Functions

Varying Number of Hash Functions

 50

 60

 70

 80

 90

 100

10k 50k 100k 500k 1m

A
vg

. A
cc
ur

ac
y 

(%
)

Number of Transactions

Varying Number of Transactions

(a) (b)

(c) (d)

(e) (f)

Fig. 6 Average accuracy of hashing-based method on synthetic data set. a Vary k, large |�|, b vary k, small
|�|, c vary |�|, d vary |Qt |, e vary |H |, f vary |R|

We also tested the trend of accuracy when the number of hash functions and the number
of objects increase. The results are shown in Fig. 6e and f, respectively. When more hash
functions are used, the estimated Jaccard similarity is closer to the exact score and thus leads
to a higher accuracy. As shown in Fig. 6e, the result follows this trend. Our methods achieve
average accuracy rate ranging from 86.7 to 95 %. Figure 6f suggests that the average accuracy
increases gradually when the number of objects increases.
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Table 7 Statistics of the real
data sets

Data set |R| Avg. |Ti | |�|
Market basket 88,162 10.306 16, 470

Click stream 31,790 5.3338 17

6.2 Results on real data sets

We conducted experimental studies on two real data sets: a Market Basket data set2 from an
anonymous Belgian retail store, and a Click Stream data set3 where the predefined category,
such as “news” and “tech,” replaces each URL on the MSNBC website. The data processing
was conducted by the provider. Moreover, the provider of the Click Stream data set also
removed those short sequences of lengths no larger than 8. We then transformed each sequence
into a set. For Click Stream data set, each static object is a set of categories for URLs visited
by each user, while for the market basket data set, each static object is a set of items purchased
by a customer. There is a significant difference in alphabet size of the two real data sets. The
market basket data set has 16,470 distinct items, while the Click Stream data set contains
only 17 distinct items. Table 7 shows the detailed statistics of the data sets.

To generate the querying stream, we used the same method when generating querying
streams for synthetic data sets. That is, we concatenated objects randomly selected in the
data set whose size is between 0.8|Q̄t | and 1.2|Q̄t |, where |Q̄t | is the average object length
of the data set. For each data set, we compared the average processing time and the average
accuracy when k or |H | varies, respectively. We also include scalability test on both time and
peak memory usage. The results are shown in Figs. 5, 7, and 8.

The trends of the curves for the market basket data set are consistent with the results on
the synthetic data sets. To compare the average processing time of different methods when
k varies, we set the default number of hash functions to 100. The processing time of BFM
and MHB is stable. MHI always has the best performance, and the processing time increases
gradually. The pruning effectiveness of GP decreases from 64.9 to 38.3 % gradually when k
increases. Therefore, the processing time of GP increases when k increases. The MinHash-
based algorithms can always achieve accuracy over 70 % when k varies from 1 to 1000,
which is shown in Fig. 7b. Figure 7g, h shows the trends of processing time and accuracy
of the MinHash-based methods, respectively, when different numbers of hash functions are
used. The average processing time of both MHB and MHI increases almost linearly with the
number of hash functions. The performance of MHI is between 31 and 96 times faster than
MHB. The average accuracy increases steadily from 73.1 to 93.4 % when the number of hash
functions increases from 100 to 500.

We also tested the scalability on this data set by duplicating the data set 5, 10, 50, and
100 times. We report the average processing time, average accuracy, average pruning effec-
tiveness, and peak memory usage in Figs. 7d–f and 5b, respectively. Figure 7d shows that
the processing time of all the methods increases linearly as the data set size increases. The
accuracy first increases drastically and then reaches the level of over 95 % and remains steady.
The pruning effectiveness does not change much and is around 60 %.

2 http://fimi.ua.ac.be/data/.
3 http://www.philippe-fournier-viger.com/spmf/index.php?link=datasets.php.
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Fig. 7 Results on market basket data set. aVary k (time), b vary k (accuracy), c vary k (pruning effectiveness),
d vary |R| (time), e vary |R| (accuracy), f vary |R| (pruning effectiveness), g vary |H | (time), h vary |H |
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Fig. 8 Results on click stream data set. a Vary k (time), b vary k (accuracy), c vary k (pruning effectiveness),
d vary |R| (time), e vary |R| (accuracy), f vary |R| (pruning effectiveness), g vary |H | (time), h vary |H |
(accuracy)

123



Continuous similarity search for evolving queries

The peak memory usage is shown in Fig. 5b. The peak memory size used of all the methods
increases almost linearly when the data set increases. Similar to the results in the scalability
test on the synthetic data sets, GP uses only a little more memory than BFM. Their trends are
similar. The MinHash-based methods consume more space than BFM and GP. The reason is
the same as explained on the synthetic data sets in Sect. 6.1.1.

The results on the click stream data set are shown in Figs. 8 and 5c. Since the average length
of the objects in this data set is only 5.33, the MinHash-based algorithms do not need many
hash functions in order to achieve high accuracy. As shown in Fig. 8h, the average accuracy
is higher than 90 % when 40 or more hash functions are used. To test the performance when k
varies, we used 50 hash functions as the default. When k varies, MHI is still the best method
with respect to average query answering time. The average accuracy drops gradually from 90
to 67 %. As shown in Fig. 8c, the pruning effectiveness of GP decreases from 75.8 to 54.2 %,
which is generally better than the results on the market basket data set.

We tested the scalability on the click stream data set by duplicating the data set 10, 100, and
1000 times. Figures 8d–f and 5c show how the average processing time, average accuracy,
average pruning effectiveness, and peak memory usage change with respect to different scale
of data set, respectively. The average processing time of all the methods increases almost
linearly when the data set size increases. MHI always achieves the lowest processing time
and outperforms the baselines by more than an order of magnitude. Moreover, it reports with
reasonably high accuracy in the range of 81.6 and 90 % as shown in Fig. 8e. When the data
set size increases, the pruning effectiveness of GP increases steadily and is generally higher
than the results on the market basket data set.

The memory usage of BFM, GP, and MHB is very close and the corresponding curves
in Fig. 5c overlap with each other. Comparing to the other data sets, the memory usage of
MHB is much closer to BFM and GP because we use less number of hash functions. MHI
still consumes more memory due to the inverted indices data structure. However, its memory
usage is much closer to the other three methods comparing to the results on the other data
sets. Recall that the size of our indexing structure depends on the number of hash functions
used and the alphabet size.

6.3 Summary

We conclude the following from our experiments. First, the pruning-based method is an exact
method and the hashing-based method can achieve very good accuracy when a few hundreds
of hash functions are used. The hashing-based method can lead to good accuracy and can
achieve faster average querying time than the pruning-based method in most cases. However,
when k increases, the accuracy drops and the running time increases greatly. The pruning-
based method runs slower but maintains relatively stable running time with increasing k.
For the hashing-based method, usually larger number of hash functions |H | provides better
accuracy but also takes more running time. However, when the number of hash functions
exceeds 1,000, the increase in accuracy usually is very minor. As shown on synthetic data
set, when the average object length |Qt | becomes larger, the accuracy of the hashing-based
method drops greatly while the pruning effectiveness of the pruning-based method increases
significantly, which implies that the pruning-based method is more feasible in this case. In
general, both methods achieve better performance on data sets with larger lexicon size |�|.
The sparser the data, the more significant the difference on similarity, and usually the better
runtime performance.
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7 Conclusions

In this paper, we studied the problem of continuous similarity search for evolving queries.
To the best of our knowledge, it is the first research endeavor on this problem. We devised
two efficient methods with different framework. The pruning-based method uses pruning
strategies to reduce the cost of computing the exact similarity scores. The MinHash-based
method approximates the Jaccard similarity score based on MinHash technique and efficiently
updates the estimated scores using indexing structures. The empirical results on synthetic
and real data sets verify the effectiveness and efficiency of our methods.

As for future work, we plan to consider the following interesting directions.

– Enhance the pruning effectiveness For example, we may incorporate the evolving feature
into the pruning techniques used in static similarity join and search algorithms to further
prune candidates.

– Improve the hashing-based method for other similarity measures We may extend our
hashing-based framework to other similarity and distance measures that can be approxi-
mated by an LSH scheme used in MinHash.

– Similarity search over multiple evolving streams Given a static object and multiple data
streams with a fixed sliding window size, we may want to continuously find the top-k data
streams whose last n items are most similar to the static object. The techniques proposed
in this paper can be further extended for the problem.

Appendix: Other similarity measures and their upper bounds for pruning
method

In this section, we extend the upper bounds for pruning method to weighted overlap, weighted
cosine, and weighted dice similarity. Similar to the case of weighted Jaccard similarity, they
all have monotonicity with respect to number of updates u.

Property 1 (A progressive upper bound for weighted overlap similarity). We first define the
weighted overlap similarity as follows.

simover (X, Y ) = simover ( �X , �Y ) =
|�|∑

i=1

min(xi , yi ) (8)

Let X, Y be two multisets and Y ′ be the multiset with u updates on Y . Given |X |, |Y |,
and the weighted overlap similarity score simover (X, Y ) between X and Y , without the
knowledge of the updated elements in Y ′, we have an upper bound for simover (X, Y ′).

simover (X, Y ′) ≤ simover (X, Y ) + u (9)

Proof By definition,

simover (X, Y ) =
|�|∑

i=1

min(xi , yi )

Obviously, the maximum possible increase after u updates is u. ��
Property 2 (A progressive upper bound for weighted cosine similarity) We first define the
weighted cosine similarity as follows.
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simcos(X, Y ) = simcos( �X , �Y ) =
∑|�|

i=1 min(xi , yi )√|X ||Y | (10)

Let X, Y be two multisets and Y ′ be the multiset with u updates on Y . Given |X |, |Y |, and
the weighted cosine similarity score simcos(X, Y ) between X and Y , without the knowledge
of the updated elements in Y ′, we have an upper bound for simcos(X, Y ′).

simcos(X, Y ′) ≤ simcos(X, Y ) + u√|X ||Y | (11)

Proof In our scenario, |Y | = |Y ′|. Thus,
√|X ||Y | = √|X ||Y ′|. By Property 1, we have

simcos(X, Y ′) ≤
∑|�|

i=1 min(xi , yi ) + u√|X ||Y ′| = simcos(X, Y ) + u√|X ||Y |
��

Property 3 (A progressive upper bound for weighted dice similarity) We first define the
weighted dice similarity as follows.

simdice(X, Y ) = simdice( �X , �Y ) = 2
∑|�|

i=1 min(xi , yi )

|X | + |Y | (12)

Let X, Y be two multisets and Y ′ be the multiset with u updates on Y . Given |X |, |Y |, and
the weighted dice similarity score simdice(X, Y ) between X and Y , without the knowledge
of the updated elements in Y ′, we have an upper bound for simdice(X, Y ′).

simdice(X, Y ′) ≤ simdice(X, Y ) + 2u

|X | + |Y | (13)

Proof In our scenario, |Y | = |Y ′|. Thus, |X | + |Y | = |X | + |Y ′|. By Property 1, we have

simdice(X, Y ′) ≤ 2
∑|�|

i=1 min(xi , yi ) + 2u

|X | + |Y ′| = simdice(X, Y ) + 2u

|X | + |Y |
��
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