
Mining Frequent Co-occurrence Patterns across Multiple
Data Streams

Ziqiang Yu
School of Computer Science &

Technology
Shandong University

Jinan, China
zqy800@gmail.com

Xiaohui Yu
∗

School of Computer Science &
Technology

Shandong University
Jinan, China

xyu@sdu.edu.cn

Yang Liu
School of Computer Science &

Technology
Shandong University

Jinan, China
yliu@sdu.edu.cn

Wenzhu Li
School of Computer Science &

Technology
Shandong University

Jinan, China
sduliwenzhu@gmail.com

Jian Pei
School of Computing Science

Simon Fraser University
Burnaby, BC, Canada, V5A

1S6
jpei@cs.sfu.ca

ABSTRACT
This paper studies the problem of mining frequent co-occurrence
patterns across multiple data streams, which has not been addressed
by existing works. Co-occurrence pattern in this context refers to
the case that the same group of objects appear consecutively in mul-
tiple streams over a short time span, signaling tight correlations be-
tween these objects. The need for mining such patterns in real-time
arises in a variety of applications ranging from crime prevention to
location-based services to event discovery in social media.

Since the data streams are usually fast, continuous, and unbounded,
existing methods on mining frequent patterns requiring more than
one pass over the data cannot be directly applied. Therefore, we
propose DIMine and CooMine, two algorithms to discover fre-
quent co-occurrence patterns across multiple data streams. DIMine
is an Apriori-style algorithm based on an inverted index, while
CooMine uses an in-memory data structure called the Seg-tree to
compactly index the data that are already seen but have not expired
yet. CooMine employs a one-pass algorithm that uses the filter-
and-refine strategy to obtain the co-occurrence patterns from the
Seg-tree as updates to the streams arrive. Extensive experiments
on two real datasets demonstrate the superiority of the proposed
approaches over a baseline method, and show their respective ap-
plicability in different senarios.

1. INTRODUCTION
We study the problem of mining frequency co-occurrence pat-

terns across multiple data streams. Given a set of unbounded streams
of objects si (i = 1, 2, . . . , n), we call a set of objects O =

∗Corresponding author.

c© 2015, Copyright is with the authors. Published in Proc. 18th Inter-
national Conference on Extending Database Technology (EDBT), March
23-27, 2015, Brussels, Belgium: ISBN 978-3-89318-067-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0
.

(o1, o2, . . . , ok) a frequent co-occurrence pattern (FCP) if (1) they
appear in at least θ streams within a period of time no longer than
τ , and (2) their appearance within each of those streams happens
within a time window of size no greater than ξ, where θ, τ , and ξ
are user-specified thresholds.

1.1 Motivation
FCPs usually indicate strong correlations between these objects,

and their timely discovery has applications in a wide spectrum of
contexts. The following are some typical examples.

• Crime prevention. An increasing number of cities are now
having traffic surveillance cameras installed on major roads
and intersections for traffic management and public safety.
A picture is taken when a vehicle passes by, and a structured
vehicle passing record (VPRs) is sent to the data center for
processing. Thus, each camera effectively produces a contin-
uous stream of VPRs. Finding FCPs across these streams can
help uncover groups of vehicles that travel together within a
short time span, which is often a good indicator for potential
gang crimes.

• Discovering emerging topics. Each user of a microblogging
platform (e.g., Twitter) can be considered to produce a stream
of words by posting microblogs. The intensive co-occurrence
of a set of keywords in many streams (microblogs) over a
short period of time can often imply the emergence of a new
topic.

• Location-based services. Check-in apps (e.g., Foursquare)
allow mobile users to check-in to the places they are located.
Finding FCPs across the streams in real-time, where each
stream consists of the checkin locations of a user, would help
discover groups of people that are currently hanging out to-
gether, so that location-based advertising can be better tar-
geted (e.g., offering group buying deals).

• E-Commerce. The browsing trace of a particular user on a
e-commerce website contains a stream of items she has vis-
ited. When a set of items appear in the traces of a lot of users
over a short period, it could be a sign of strong correlation

 

 

73 10.5441/002/edbt.2015.08

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2015.08


between those items, and sales strategies can be adjusted ac-
cordingly in real-time (e.g., offering combo deals for those
products).

In all of the examples above, a common theme is the need to dis-
cover the frequent co-occurrence of a set of items (vehicles, people,
keywords, etc.) over a short time span in multiple streams.

1.2 Challenges
Mining FCPs in realtime present some unique challenges. First,

the streams are unbounded and often contain a vast volume of data
with high arrival rates, allowing only one pass over the data. For
example, the peak of 143,199 tweets per second were recorded
by Twitter on August 3, 2013, and on average, 58 million tweets
are produced per day. As another example, in the City of Jinan, a
provincial capital in eastern China with a population of 6 million,
the traffic surveillance cameras (each generating a stream) produce
20 million VPRs per day on average. Second, mining FCPs is
a cross-stream operation, making it highly complex when many
streams are involved. For instance, there are around 3,000 traffic
surveillance cameras installed in Jinan; not to mention the more
than 600 million active registered users of Twitter.

Existing methods for mining frequent patterns cannot be directly
applied to solve the FCP mining problem. Most of the algorithms
for mining frequent patterns from databases require multiple passes
over the data, rendering them inapplicable in the streaming data
context. Methods proposed for data streams [4, 10, 18, 15], on the
other hand, focus on mining patterns from a single stream where the
frequent patterns are defined as those that occur more often than
a given threshold in that stream. Contrastingly, the problem we
tackle is concerned with the occurrences of patterns within multiple
streams, where the number of streams in which a pattern appears is
an important parameter.

Probably the most related work to ours is that by Guo et al. [8]
which considers frequent patterns in multiple data streams. But
according to the their definition, whether a pattern is considered
frequent totally depends on the number of its occurrences within
a single stream. The frequent patterns are discovered separately
from each stream, and then analysis of those patterns is performed
to find the interesting ones based on their presence across multiple
streams. In contrast, in order for a pattern to be considered frequent
in our problem, it has to appear in at least θ streams within a short
period of time. It is not the number of times a patten appearing
in any single stream that matters; it is the number of streams the
pattern appears in. Moreover, the algorithms proposed by Guo et al.
are approximate, whereas we focus on computing exact solutions.

One seemingly promising strategy to simplify this problem is to
first combine all streams into one, and then mine the FCPs on the
combined data stream with some time window constraints. How-
ever, the complexity of the problem remains the same as discover-
ing FCPs from the combined data stream still requires the differ-
entiation between the component streams (e.g., we count a pattern
twice if it appears in two different component streams, but only
once if it appears twice in the same component stream), as well as
restriction on the time interval of the pattern occurring in these data
streams.

1.3 Our proposal
To address the above challenges, we propose two algorithms for

discovering FCPs across multiple streams. They both adopt a filter-
and-refine strategy with two stages. The first stage produces a set of
candidate co-occurrence patterns (CPs) from the data streams, and
the second stage generates the FCPs from those candidate CPs. To

limit the scope of search, we divide each data stream into overlap-
ping segments, guaranteeing that any FCP can only appear in those
segments. This allows us to solve the problem of finding FCPs by
focusing only on the recent segments in each stream.

As we are dealing with unbounded streams, the search for new
candidate CPs is an ongoing process. The key is to efficiently
search for new candidate CPs when there are newly arrived ob-
jects in any of the streams. In the DIMine approach, we introduce
an inverted index called DI-Index to index the existing segments,
and it computes FCPs based on the DI-Index with an Apriori-style
heuristic. Although straightforward to implement, it needs to be
improved in terms of memory consumption and maintenance cost.

In the CooMine approach, we propose a compact in-memory
data structure called Seg-Tree to maintain the existing segments,
which are dynamically updated as streams proceed, including the
deletion of segments when they are guaranteed not to contain any
FCPs. When a new segment is generated resulting from newly ar-
rived objects, we search the existing segments using the Seg-Tree
to find the common CPs they all contain, which form the set of
candidate CPs that must be examined further. With all candidate
CPs obtained, an Apriori-style algorithm is then used to compute
the FCPs.

1.4 Contributions and outline
The contributions of this paper can be summarized as follows.

• For the first time, we tackle the problem of mining frequent
co-occurrence patterns across data streams, an operation that
has extensive applications in a variety of contexts but can-
not be readily solved using existing frequent pattern mining
techniques.

• We propose the DIMine and CooMine approaches with sev-
eral facilities specifically designed for discovering FCPs across
unbounded streams. The CooMine method includes the seg-
mentation of data streams to limit the scope of processing,
the Seg-Tree structure that compactly indexes and stores the
segments for further processing, the SLCP algorithm that
searches the candidate CPs for each new incoming segment,
and an Apriori-style algorithm for generating FCPs from can-
didate CPs.

• Extensive experiments are conducted on two real data sets
(a traffic surveillance data set and a Twitter data set), which
demonstrate the superiority of two proposed approaches over
the baseline method. Indeed, the CooMine method has been
deployed in the City of Jinan’s Traffic Surveillance and Pub-
lic Safety Control System, and it has helped the early detec-
tion of dozens of criminal activities including vehicle thefts
and burglaries over a period of six months.

The remainder of the paper is organized as follows. Section 2 re-
views the related work and discusses the distinctions between our
proposal and existing methods. Section 3 introduces the preliminar-
ies, and presents the DIMine method as a first attempt to solve the
FCP mining problem. Section 4 presents the Seg-tree, which is a
novel index structure to maintain the valid segments. The CooMine
algorithm based on Seg-tree is described in detail in Section 5. Sec-
tion 6 presents the experimental results, and Section 7 concludes
this paper.

2. RELATED WORK

74



2.1 Mining frequent patterns from databases
Mining frequent patterns (FPs) from databases is one the clas-

sic topic in data mining and has been well studied [2]. Agrawal
et al. [3] present the Apriori algorithm to discover the association
rules in databases, followed by a great volume of studies (e.g., [19,
18]) that also adopt Apriori-like approaches. All of them require
repeatedly scanning the databases to generate candidate frequent
patterns. Han et al [9] propose the FP-Tree that can discover fre-
quent patterns without candidate generation, but the method still
requires two database scans. Since the data streams are unbounded,
in general only one-pass over the data is allowed, rendering those
methods inapplicable.

The methods proposed by Tanbeer et al. [20] are claimed to
require only a single pass over the database. However, the premise
is that all relevant information is captured and stored during this
pass over the database, which is then processed in later stages. This
is clearly infeasible for unbounded streams.

2.2 Mining frequent patterns from data streams
Mining frequent patterns in data streams has also received con-

siderable attention. The works based on the landmark model (e.g.,
[15, 21]) aim at mining frequent patterns from the start of the stream
to the current moment. Other studies [4, 13, 12, 17] utilize the slid-
ing window technique to discover the recent frequent patterns from
data streams. All of these approaches obtain only approximate re-
sults with an error bound.

Some methods are proposed to obtain the exact set of recent fre-
quent patterns from data streams [4, 12]. Chang et al [4] propose a
data mining method for finding recent frequent itemsets adaptively
over an online data stream with diminishing effect for old trans-
actions. Leung and Khan propose a novel tree structure (DSTree)
to capture important data from the streams to mine exact frequent
patterns [12].

Although these approaches can mine frequent patterns in data
streams, they cannot be directly employed to solve the FCP mining
problem. Most of them focus on mining frequent patterns in a sin-
gle data stream, while our task is finding FCPs across multiple data
streams.

The only exception to our knowledge is the H-Stream algorithm
to discover frequent patterns from multiple data streams [8]. At a
first glance, that problem is very similar to ours, but indeed they
are quite different. As discussed in Section 1, that work aims to
search the frequent patterns that take place in multiple data streams,
but does not care about the time interval of the frequent patterns
occurring in these data streams. In our problem, the time interval
of any FCP across multiple data streams cannot be greater than the
specified threshold. Second, this work provides an approximate
method but our approach can obtain the exact results. Therefore,
the H-Stream algorithm cannot be applied to solve our problem.

The aforementioned existing works about mining frequent pat-
terns from data streams always assume the streams are composed of
transactions, and they can directly discover frequent patterns within
transactions. But in our problem, the streams just consist of con-
tinuous unbounded objects and we have to first determine which
objects in one data stream probably can construct a FCP, making
the problem more complex.

2.3 Mining spatio-temporal patterns
An extensive body of literature exists on mining interesting pat-

terns from spatio-temporal data [7, 11, 14, 5]. Some [11, 5] study
the discovery of valuable trajectories of moving objects, while Li et
al. [14] focus on mining spatial association rules. Moreover, there
also exist works [7, 16] that study the problem of mining tempo-

rally annotated sequences. However, none of them addresses the
same problem as mining FCPs, and methods proposed therein can-
not be directly applied to our problem.

3. PRELIMINARIES AND A FIRST ATTEMPT
In this section, we first introduce the terminology used in the

following discussion and formally define the problem, and then
present a first attempt to the FCP mining problem.

3.1 Preliminaries and problem definition

DEFINITION 1. (Data stream) A data stream is a continuous
ordered (by timestamps) sequence of objects.

Data streams are unbounded, and thus it is infeasible to store
the data stream locally in its entirety. For an object oi in the data
stream, its ID and timestamp are idi and ti respectively.

DEFINITION 2. (Co-occurrence pattern, or CP) For a set of
objects O={o1, o2, · · · , ok} that appear in a data stream si, we
say that O is a co-occurrence pattern CPk (where k is the number
of objects) if tO

si

max − tO
si

min ≤ ξ, where tO
si

max = max{t1, · · · , tk},
tO

si

min = min{t1, · · · , tk}, and ξ is a user-specified threshold.

DEFINITION 3. (Frequent co-occurrence pattern, or FCP)
A co-occurrence pattern CPk that appears in a set of l streams
{s1, s2, . . . , sl} is deemed a frequent co-occurrence pattern, FCPk,
if it satisfies the following conditions: (1) l ≥ θ, where θ is a user
specified threshold; and (2) Tmax

O − Tmin
O ≤ τ , where Tmax

O =
max{tO

s1

max, · · · , tO
sl

max}, Tmin
O = min{tO

s1

min, · · · , tO
sl

min}, and τ is
a user-specified threshold and τ � ξ.

To understand the differences between our problem and the fre-
quent pattern mining problem defined in earlier literature, we also
present below the definition of frequent pattern in data streams
given in [6].

DEFINITION 4. (Frequent patterns, or GHP-FP [6]) Let the
frequency of an itemset I over a time period (τ ) in the data stream
si be the number of transactions (where transactions correspond to
non-overlapping time windows) in which I occurs. The support of
I is the frequency divided by the total number of transactions ob-
served within the time interval tw of si. The itemset I is deemed a
frequent pattern if its support is no less than a user-specified thresh-
old, δ.

We use some examples to illustrate the differences between the
above definitions. In Section 1, we have discussed the scenario of
each surveillance camera producing a continuous stream of VPRs,
and the stream can be divided into time windows, where each win-
dow can considered as corresponding to a transaction defined in
Definition 4. Consider the following cases.

Case 1: A group of cars are captured by one camera within time
span ξ. This group forms a CP even if it is not captured by any
other cameras.

Case 2: Within the time interval τ , a group of cars are captured
by the same camera together in k non-overlapping time windows
and the total number of such windows within τ is f . If k/f ≥ δ,
this group constitutes a GHP-FP. It is not necessarily a CP unless
this group of cars appear within time span ξ (ξ � τ ) at least once.

Case 3: Within the time interval τ , a group of cars are captured
by m different cameras and they pass each camera within the time
span ξ. If m ≥ θ (where θ is a threshold that corresponds to the
support δ in Definition 4), then this groups is deemed a FCP. By
definition, it is also a CP.

75



Problem Statement. Given a set of data streams of objects and
the values of parameters θ, ξ and τ , the problem of mining frequent
co-occurrence patterns is to identify, on the fly, the FCPs within the
streams as streams evolve over time.

To facilitate the search for FCPs, we divide each stream into
overlapping segments. Each segment is a sequence of objects or-
dered by their timestamps, and the time span of a segment is the
time interval between its first and last objects.

DEFINITION 5. (Segment) For a given data stream s, a seg-
ment G(o1o2 · · · om) is a subsequence of s that satisfies both of
the following conditions:

(1) |ti − tj | ≤ ξ, ∀ oi, oj in G; and
(2) The time span of G must be maximal with respect to ξ. That

is, that does not exist a subsequence of s, G′, such that G′ is a
segment and G is a strict subsequence of G′.

d

G0 G1

t
a c g e b

Figure 1: A segment. The temporal relationship between the
objects is as follows: td − ta < ξ, tg − ta > ξ, tg − td < ξ,
tg − tc > ξ, te − td < ξ, tb − td > ξ.

Example 1. Figure 1 shows a stream of objects, where a is the
first object of the segmentG0. Because td−ta < ξ and tg−ta > ξ,
d is the last object of G0. Note that the objects c, d, and g do not
constitute a segment because tg − tc > ξ.

DEFINITION 6. (Prefix of the segment) For a given segment
Gi (o1o2 · · · om), its prefix is a subsequence of G, o1o2 · · · oj ,
where 1 ≤ j ≤ m.

The definition of segment dictates that any data stream can be
uniquely partitioned. In addition, any CP must be covered by some
segment(s). Therefore, the problem of mining FCPs accross multi-
ple streams can be converted to finding the FCPs contained in the
segments of the data streams.

3.2 A first attempt: the DIMine approach
Our first attemp to solve the problem of mining FCP is a simple

method called DIMine. Following the discussion in Section 3.1,
the basic approach is to divide the data streams into segments as
the streams evolve, and then discover FCPs from those segments.
To this end, we use an inverted index called DI-index to index all
existing segments, and also maintain a list storing the information
related to each segment including its starting and ending times as
well as the ID of the data stream it belongs to. The DI-index can
be implemented as a hash map, with each entry taking the form of
(oi,Gi), where oi is an object and Gi stores the set of IDs of the
segments containing oi.

For an incoming segment G, DIMine finds the newly formed
FCPs caused by G in the following steps using the anti-monotone
Apriori heuristic based on the DI-Index.

(1) For each object oi in G, it finds the entry (oi,Gi) from the
DI-Index and then sets Gi = Gi ∪ G, It then verifies whether oi is
a FCP1 (a FCP with only one object) by straightforward counting
based on Gi.

(2) It next iteratively generates the set of candidate FCPs with
(k+1) objects from FCPk (k ≥ 1) caused by G, and picks those
that conform to the FCP definition. Assuming that Pk+1 is a can-
didate FCP with the set of objects {o1, · · · , ok+1} and G = G1 ∩

· · · ∩ Gk+1, if the segments in the set G involve no less than θ data
streams within the time interval τ , then Pk+1 is a FCP.

As the DI-Index is a hash map, the DIMine approach can find the
segments containing a given object o with constant time. Also, the
use of the Apriori heuristic helps prune the search space, making
the algorithm more efficient.

In addition to finding the FCPs, we also need to worry about the
maitenance of the DI-Index, as streams constantly evolve over time,
and some objects may become obsolete. The DIMine approach
needs to scan all entries of the DI-index frequently to remove the
identifiers of the obsolete segments because the expired data will
not only cause false positive results but also increase the memory
consumption. This task incurs non-trivial cost. Assuming that in
a stable state, the number of segments being indexed is n and the
average number of objects in a segment is p, then it takes O(n · p)
time to detect all expired segments. As will be shown in the exper-
imental results in Section 6, this is actually much more expensive
than finding the FCPs.

4. THE SEG-TREE
Addressing the problems with DI-Mine, we present the CooMine

approach that has better maintenance efficiency with an index that
is more compact when significant overlapping exists between adje-
cent segments. We call this index the Seg-Tree.

4.1 Motivation
There are two critical issues to be addressed in mining FCPs

across multiple data streams. First, as a large volume of segments
may be generated at a varying rate, it is important to effectively
index them with in a space-efficient manner for further processing.
Second, for a new incoming segment, not every existing segment
can form FCPs with it; thus it is necessary to quickly narrow down
the search space. As such, we need an effective index structure
that meets the following requirements: (1) good support for mining
FCPs; (2) efficient handling of the insertion of new segments and
deletion of obsolete segments; and (3) being frugal with its memory
usage.

4.2 Overview of the Seg-tree structure
To satisfy the above requirements, we propose the Seg-Tree, a

main-memory-based structure, to manage the valid segments. A
segment G is valid, if and only if tnow − tfG ≤ ξ, where tnow is
the current time and tfG is the timestamp of the first object of G.

The Seg-tree index structure has three components: the Seg-tree
itself and two auxiliary structures,Hlist and Tlist. Figure 2 shows a
Seg-tree that indexes the segments in Figure 3.

The Seg-tree is a trie-like structure (but with notable differences)
with its nodes corresponding to the objects. (We hereinafter use
nodes and objects interchangeably when there is no ambiguity.)
Edges exist between objects that appear adjacent to each other in
some segment. Segments can be continuously inserted based on
their prefixes, and obsolete segments can be removed as time pro-
gresses. The nodes are doubly-linked between child and parent.
The details of insertion and deletion will be discussed later in Sec-
tions 4.4 and 4.5.

The two auxiliary structures are used to quickly locate specific
nodes in the Seg-tree. We maintain a separate linked list of refer-
ences to the nodes corresponding to the same object, and the head
of each list is stored in Hlist. In Figure 2, we show the Hlist con-
taining the heads for some of the lists.

Tlist, on the other hand, stores references to all the tail nodes of
the Seg-tree, where a tail node refers to the last object of a segment.
Each node in the Tlist is a reference to a tail node in the Seg-tree.

76



Once a tail node expires, we can use Tlist to quickly locate the cor-
responding segment in the Seg-tree and remove it. Figure 2 shows
the links of tail nodes k and o.

4.3 Node structure
For a segmentGj , its last object is represented in the Seg-tree by

a tail node tnj and other objects by ordinary nodes. An ordinary
node has four attributes 〈Id, object, distance, count, reference〉),
where Id is the identifier of the node, object is the reference to the
object represented by this node, distance represents the distance
(number of edges) from this node to tnj , count records the number
of segments containing this node, and reference points to the next
node corresponding to the same object in the Seg-tree. For the
new segmentGj , for each node, distance can be easily calculated,
object is known, count is set to 1, and reference is initialized to
null.

The tail node tnj has five attributes 〈Id, object, distance, count,
reference, L〉. Here, Id, distance, count, and reference have the
same meaning as that for ordinary nodes. L is a set of tuples
{Gj , lj}, whereGj is the segment with tnj being the tail node and
lj is the length of segment Gj . Because tnj may be the tail nodes
of multiple segments, for each segment Gj , we have to record its
length lj .

With the help of Tlist, the Seg-tree structure has the following
property. For the segment Gi, since tni records the length (li) of
Gi, backtracking li-1 steps from tni to the root of the Seg-tree can
uniquely determine the segment Gi, which is linear with respect to
the length of the segment.

4.4 Constructing the Seg-tree
The Seg-tree is initialized as a root node (null). A new segment

Gj can be inserted into the Seg-Tree using the following steps.

• We search for the longest matching prefix (prej) ofGj in the
Seg-tree, the details of which will be discussed later.

• If prej exists, the remaining objects in Gj are appended to
prej . For a segment, its longest matching prefix probably
exists in different branches of the Seg-tree. In case this hap-
pens, the first being found will be picked. Otherwise,Gj will
be directly added to the root.

• If prej exists, we need to update attribute values of the nodes
in prej afterGj being inserted into the Seg-tree; the attribute
values of other nodes remain unchanged.

• We insert the tail node tnj into Tlist, and append each node
of Gj to the respective linked list for the corresponding ob-
ject.

Example 2. In Figure 2, the Seg-tree manages the segments in
data streams s1 and s2 (as shown in Figure 3). Now we describe
the process of inserting the segments from s1. At the beginning,
the Seg-Tree contains the root only. When the segment G0 (b, c,
d) appears, it is added to the root. As to the segment G1 (c, d, f,
k), since its prefix (c, d) exists in the tree, the objects f, k can be
appended to the existing prefix. The segment G2 (h, m, n) has no
matching prefix, so it is inserted at the root. The segments G3 (n,
c, p, o) andG4 (h, b, k, r, s, t) also have existing matching prefixes
n and h separately in the Seg-tree, so they can be appended to their
existing prefixes.

The Seg-tree is similar to trie [1], but they have significant dif-
ferences. In a trie, the children of any node must have the common
prefix. But in the Seg-tree, if a segment has a matching prefix in any
branch of the Seg-tree (not necessarily starting from the root), then

Algorithm 1 Searching prefix Algorithm
Require:

The new segment Gj , the Seg-Tree;
Ensure: :

The Seg-Tree after Gj being inserted;
1: H=Hlist(o1); //H is the set of nodes that have the same identi-

fier with the first node o1 of Gj

2: prej=∅;
3: for ni:H do
4: prei=prei+ni; count=1; nj=ni;
5: while count < Gj .length do
6: flag=false; count++;
7: Nc= child nodes of nj ;
8: for nc:Nc do
9: if nc==Gj .next() then

10: prei=prei+nc; nj=nc; flag=true;
11: break;
12: end if
13: end for
14: if flag==false then
15: break;
16: end if
17: end while
18: if prej .size < prei.size then
19: prej =prei;
20: end if
21: end for

this segment can be appended to the existing prefix that are shared
by multiple segments. Because there may be extensive overlap-
ping between adjacent segments, this sharing can be quite effective
in saving memory. For the trie, on the other hand, most of the
overlapping segments cannot be compacted because they start with
different objects.

In the aforementioned procedure of building the Seg-tree, two
issues need to be discussed further.

(1) Searching matching prefixes. Searching the matching pre-
fixes in the Seg-tree for an incoming segment is critical for its
insertion. We can utilize the Hlist to accelerate this process. To
search the matching prefix (prej) of a segment Gj (o1o2 · · · olj ),
we first determine the set (H) of nodes matching o1 based on the
Hlist. Next, for each node nr (nr ∈ H), we shall traverse its chil-
dren to find the node matching o2. If the child nc matches o2, then
{nr, nc} is the current matching prefix of Gj , and we only need
to scan the children of nc to expand prej , while other children of
nr can be safely discarded because it is impossible for nr to have
two children that correspond to the same object. In this iterative
fashion, prej can be determined. The details of searching prefixes
are shown in Algorithm 1.

THEOREM 1. For a given segment Gj with length lj , the time
complexity of searching for the longest matching prefix of Gj from
the Seg-tree is O(lj).

PROOF. Suppose that there are f nodes corresponding to the
object o1 (the first object of Gj). For any node nr matching o1,
we at most traverse lk levels of the subtree rooted at nr . Hence,
the dominating time cost of searching the longest existing prefix of
Gj is f · lk · tp, where tp is the unit time of traversing one level of
the subtree. Since the parameters f and tp are constants, the time
complexity of searching the prefix of Gj is O(lj).

(2) Updating the attribute values of the nodes being inserted.
When Gj is inserted into the Seg-tree, for any node ni ∈ prej ,
its attribute values have to be updated. Assuming that (distancei,
counti and referencei) and (distance′i, count

′
i and reference′i)

77



root

e(3,1)

c(3,3)

n(0,1,{(G3,s2),4})

m(1,0)

b(2,1) h(5,2)

m(1,1)

f(2,2,{(G0,s2),3})n(3,2,{(G2,s1),3})

c(3,2)

d(2,2,{(G0,s1),3})

f(1,1)

k(0,1,{(G1,s1,),4})

c(2,1)

p(1,1)

o(0,1,{(G3,s1),4})

b(4,1)

k(3,1)

r(2,1)

s(2,2)

h(1,1)

p(1,1)

o(0,1,{(G2,s2),3})

b

c

d

f

k

d     k     n     o     t     z    f     j    o    n

Hlist

t(0,1,{(G4,s1),6})

Tlist

p

j(2,1,{(G1,s2),4})

w(1,1)

z(0,1,{(G4,s2),3})

Figure 2: A sample Seg-tree. In this tree, the node in bold boxes
are tail nodes and others are ordinary. The node annotation
h(5,2) indicates that the distance between h and the farthest tail
node t of G4 is 5, and it appears in two segments. For the tail
node t(0,1,((G4,s1),6)), the tuple ((G4, s1),6)) represents that t is
the tail node of the segment G4 in s1, and the length of G4 is 6.

b c d f k h m n c p o

e c f h j p o e c m

s1

s2

G0 G1 G2 G3

G0 G1 G2 G3

h r s tb

n s w z

k

G4

G4

Figure 3: The segments managed by the Seg-tree shown in Fig-
ure 2

are the original and updated attribute values of ni, the attribute val-
ues can be updated as follows.

• distance′i=max{distancei, distance′i}. If ni belongs to
multiple segments, distance′i records the distance between
ni and the farthest tail node of the segments containing ni.

• count′i=count′i + 1, which means that the number of seg-
ments that ni appears in increases by one.

• reference′i is still null. If a node n′
i corresponding to the

same object as ni is inserted later, then reference′i will
point to n′

i.

• If the tail node tnj also belongs to prej , then aside from do-
ing the above updates, we also need to add the tuple {Gj , lj}
into L′

j , that is, L′
j = L′

j ∪ {Gj , lj}.

Example 3 In Figure 2, before inserting the segment G1 from
stream s1, the distance and count values of c and d in the Seg-
tree are (1, 1) and (0, 1) separately. When G1 is inserted, since
c and d belong to the matching prefix of G1, the values will be
updated to (3,2) and (2,2) respectively.

4.5 Removing obsolete segments from the Seg-
tree

As streams proceed, some segments in the Seg-tree will become
obsolete. These obsolete segments will waste memory and have
negative influence on mining FCPs, and they thus should be re-
moved from the Seg-Tree in time, taking into the cost of removal.

On one hand, the existing segments become obsolete frequently,
so it is unwise to continuously monitor all segments and delete a
segment as soon as it becomes obsolete. On the other hand, if the
expired segments are retained in memory for too long, its impact on
the memory consumption as well the search efficiency will become
an issue.

As a good trade-off between effects of obsolete segments and
the deletion cost, a Lazy Deletion (LD) strategy is introduced. In
this strategy, we do not delete all expired segments at once, but
only remove those that are relevant to the new incoming segment
that needs to be processed. The deletion can also be triggered by
the used memory exceeding the specified threshold, at which time
we will scan the Tlist to find and remove all obsolete segments.
Here, the relevant obsolete segments for a new segment can be de-
termined by Algorithm 3 to be presented in Section 5.

Deleting an obsolete segmentGe involves two specific tasks: (1)
decreasing the attribute value count of nodes in Ge and removing
the nodes with count being zero from the Seg-tree; and (2) insert-
ing the disconnected subtrees into the Seg-tree. Deleting Ge can
possibly cause one or more subtrees being disconnected from the
Seg-Tree, and these subtrees need to be added back into the Seg-
Tree. For a disconnected subtree, we define its single prefix as the
path from the root to the first node with more than one child. We
treat the single prefix as a segment and insert it into the Seg-tree
using the insertion method. The other objects of the disconnected
subtree are appended to the prefix. In this way, any disconnected
subtree can be inserted back into the Seg-tree.

The deletion cost can be reduced with the help of the Tlist. In
the Tlist, we order the tail nodes by their arrival time, and thus we
only need to determine the latest obsolete tail node, and then we
can infer that all the tail nodes preceding this node are all obsolete.
Hence, the obsolete segments can be quickly determined.

4.6 Comparison of Seg-tree and FP-tree
We are inspired by the FP-tree [9] in designing the Seg-tree to

support the mining of FCPs. Compared with FP-tree, the Seg-Tree
has the following advantages for the problem addressed in this pa-
per.

(1) To construct the FP-tree, the objects in the transactions need
to be sorted according to their counts. But in the Seg-tree, the ob-
jects in the segments do not need to be sorted, saving on the sorting
cost. To be more specific, the count of each object changes fre-
quently as data streams evolve, and therefore the order of objects
in existing transactions needs to be adjusted constantly as required
by the FP-tree. The FP-tree thus has to be updated or rebuilt fre-
quently, causing inhibitive maintenance cost. As such, the FP-tree
is not suitable for mining FCPs across data streams in real-time.

(2) In our problem, there may exist extensive overlapping be-
tween nearby segments. If we employ the FP-tree to index them
without sorting, no compaction can be achieved according to the
insertion rules defined in [9]. When the Seg-tree is used, however,
many overlapping segments can be compacted tightly because they
have common matching prefixes in the Seg-tree.

(3) The FP-tree deals with static datasets and does not specif-
ically consider the effect of frequent updates, while in our case,
the Seg-Tree has to be constantly updated and thus efficient main-
tenance cost is vital. By adopting the LD strategy to delete the
obsolete data at different time granularities, we strive to achieve a
balance between memory consumption and deletion cost.

5. THE COOMINE APPROACH
We propose the CooMine approach that can utilize the Seg-tree

for mining FCPs. We first give an overview of this approach, and

78



then describe each component in more detail.

5.1 Overview of the CooMine approach
As discussed in Section 3, any FCP is covered by at least θ seg-

ments. We thus propose the CooMine approach to mine FCPs from
the segments in each data stream. Since the streams are constantly
changing with newly arrived objects, the task of mining FCPs is a
continuous process, with actions triggered by the creation of each
new segment as new objects arrive. For the new segment Gj , the
CooMine approach consists of two components.

(1) Searching for the largest common CPs: If the new segment
Gj can form new FCPs with existing segments, the FCPs must be
covered by their common CPs. The largest common CP between
any two segments refers to the largest set of common objects be-
tween them, so any common CP of two segments must be covered
by their largest common CP. Therefore, we design an algorithm
to find the largest common CPs between Gj and the existing seg-
ments to narrow down the search scope. Hereinafter, we use LCP
to represent the longest common CP.

(2) Mining FCPs from the LCPs: Since the set of LCPs is finite
and its size is usually small, mining FCPs boils down to the prob-
lem of finding the CPs that appear in at least θ data streams within
time interval τ . This problem can be solved with an Apriori-style
algorithm.

5.2 The SLCP algorithm for searching LCPs
A naive method to find the LCP is to compare the new segment

with every existing segment. However, since only a few existing
segments have common CPs with the new segment, comparisons
with many segments are wasteful. Also, the cost will be huge when
the Seg-tree is large.

To cut down the search cost, we design the SLCP algorithm to
find the LCPs between the new segment Gj and existing segments.
This algorithm first searches the relevant segments for each node
of Gj , where the relevant segments are defined below in Definition
7. Next, it can deduce which common nodes with Gj each rele-
vant segment has. The set of common nodes between each relevant
segment and Gj is a LCP.

DEFINITION 7. (Relevant segment): For any node ni (except
the root) in the Seg-tree, if the segment Gi contains ni, then Gi is
a relevant segment of ni, and tni is a relevant tail node of ni.

Algorithm 2 describes the SLCP algorithm. First, for each node
ni of Gj , we find all nodes that have the same identifier with ni

based on Hlist (Line 4). Second, for any node nj that corresponds
to the same object as ni, we determine its valid relevant segments
(Line 5). Third, once the relevant segments of each node are deter-
mined, the LCPs are computed (Line 6-8).

In the SLCP algorithm, discovering the LCPs is a non-trivial
problem. In the procedure of building the Seg-tree, any segment
itself will be discarded after being inserted into the Seg-tree. Mean-
while, the ordinary nodes of the Seg-tree no longer record the in-
formation of their relevant segments for memory saving. In this
case, for any ordinary node, we cannot directly determine the seg-
ments containing it. Therefore, we need to find an efficient way to
determine the relevant segments for the specified nodes.

5.2.1 Searching relevant segments
We propose the DistanceBound method that can efficiently find

relevant segments for the specified nodes. The DistanceBound method
can prune the search scope by utilizing the distance between each
node and its furthest relevant tail node as bound to accelerate search-
ing relevant segments for the specified node. For the specified node

h(5,2)

m(1,1)

c(2,1)

p(1,1)

b(4,1)

k(3,1)

r(2,1)

s(2,2)

o(0,1,{(G3,s1),4}) t(0,1,{(G4,s1),6})

n(3,2,{(G2,s1),3})

w(1,1)

z(0,1,{(G4,s2),3})

(a)

c(3,2)

n(0,1,{(G3,s2),4})

m(1,0)f(2,2,{(G0,s2),3})

h(1,1)

p(1,1)

o(0,1,{(G2,s2),3})

j(2,1,{(G1,s2),4})

(b)

Figure 4: Two subtrees of the Seg-tree

nj , this method visits nj and guarantees that by visiting Disj lev-
els of the tree rooted at nj , it can find all relevant tail nodes for
nj according to Theorem 2. When this method visits any child nc

of nj , only min{Disc, Disj − 1} levels of the tree rooted at nc

need to be traversed. In this way, the search algorithm can quickly
converge and the search space can be reduced.

Algorithm 3 describes the process of searching relevant segments
for nj , which consists of four steps:

Step 1: Build a queue Q and enqueue the pair 〈nj , stepcount〉
into Q, where stepcount=Disj . (Lines 1-4)

Step 2: Get the first pair 〈nx, stepcount〉 from Q. (Line 6)
Step 3: If nx is a relevant tail node of nj , insert nx into the set
R. Otherwise, for each child nc of nx, set stepcount asmin{Disc,
stepcount-1} and enqueue 〈nc, stepcount〉 into Q if stepcount 6=
0. (Lines 7-15)

Step 4: If Q is not empty, go to step (2); otherwise, return the set
R and the search ends. (Line 5)

In Step 3 , for the tail node nx, if we assume that its correspond-
ing segment is Gx with length lx and the distance from nj to nx is
Djx, then Gx is a relevant segment of nj if lx is no less than Djx

and Gx is valid.

THEOREM 2. For any node nj in the Seg-tree, all relevant tail
nodes of nj can be found by visiting at most Disj levels of the tree
rooted at nj .

PROOF. Suppose that there is a tail node tnj that cannot be dis-
covered even if after taking (Disj-1) steps in each branch of nj .
Since nj and tnj belong to the same segment, tnj and nj must be
in the same branch. Because tnj cannot be found by taking Disj
steps from nj in this branch, the distance from nj to tni must be
greater than Disj . However, Disj is the distance between ni and
the farthest relevant tail node. Contradiction.

The DistanceBound algorithm can effectively prune the search
space based on the attribute distance of nodes. Figure 4 shows two
subtrees of the Seg-tree in Figure 2. In Figure 4(a), the node h has
attribute Dish as 5; the DistanceBound algorithm thus probably
needs to take 5 steps in its each branch to find the relevant tail nodes
for h. However, when it visits the node m and finds that Dism is
equal to 1, it then only needs to take one step in the branch of m to
search the relevant tail node n. The nodes after n do not need to be
scanned. As to the node c in Figure 4(b), since Disc is 3, we only
need to traverse its left branch by 3 steps to search for the relevant
tail node j, and nodes after j can be ignored.

5.2.2 Obtaining the LCPs
For each node ni in Gi, all relevant segments of ni can be deter-

mined by the DistanceBound algorithm. If we employ a hash table

79



Algorithm 2 Searching for LCPs (SLCP)
Require:

The new segment Gj , the Seg-Tree;
Ensure: :

The LCPs between Gj and existing segments;
1: Hi=null; // a set of nodes have the same identifier with ni

2: The Map< Gi, Pi > map=null; // Pi is the LCP between Gj

and Gi

3: for ni:Gj do
4: Hi=Hlist(ni);
5: Ri=DistanceBound (Hi); //Ri includes segments covering

ni

6: for Gi:Ri do
7: map.add(< Gi, ni >);
8: end for
9: end for

10: Output map;

Algorithm 3 DistanceBound Algorithm
Require:

Hi;
Ensure: :

The relevant segments of ni;
1: stepcount=0,R=null, Queue=null;
2: for nk:Hi do
3: stepcount=Disk and generate the pair 〈nk, stepcount〉;
4: Queue.put(〈nk, stepcount〉);
5: while Queue6= empty do
6: nf=Queue.getfirst();
7: if nf is a tail node andGf covers nk andGf is valid then
8: Rk.add(Gf )
9: end if

10: for nc:children of nf do
11: stepcount=min{Disf , (stepcount− 1)};
12: if stepcount 6= 0 then
13: Queue.put(〈nc, stepcount〉);
14: end if
15: end for
16: end while
17: R=R∪Rk;
18: end for
19: returnR;

to store the relevant segments with the key being the ID of each rel-
evant segment and the value being a list of nodes common to this
segment and Gi, then the largest set of common nodes between
each relevant segment and Gi can be immediately determined, and
the largest set of common nodes is a LCP between Gi and the cor-
responding relevant segment.

5.3 Mining FCPs from the LCPs

5.3.1 Mining FCPs with the Apriori heuristic
For the new incoming segmentGj , if it can form new FCPs with

existing segments, then these FCPs must be covered by their LCPs.
Therefore, we can mine the FCPs from the these LCPs with the
anti-monotone Apriori heuristic. The basic idea is to iteratively
generate the set of FCPs with (l + 1) objects based on the set of
FCPs with l (l ≥ 1) objects. Theorem 3 guarantees the correctness
of the CooMine algorithm.

Table 1: Summary of common CPs
LCPs segments
{m,n, } {G2, s1}
{n, p, o} {G3, s1}
{p, o} {G2, s2}
{m,n} {G3, s2}
{n} {G4, s2}

Algorithm 4 CooMine Algorithm
Require:

The new segment Gi, The Seg-Tree;
Ensure: :

The FCPs of length k formed by Gi;
1: LCPtable = SLCP(Gi, Seg-tree);
2: l=1;
3: while l < k do
4: if l = 1 then
5: Obtaining FCPs of length l based on the LCPtable;
6: else
7: Generating candidate FCPs with length l based on the

FCPs of length l − 1;
8: Detecting each candidate FCP based on the LCPtable and

discover the FCPs of length l;
9: end if

10: end while
11: Output the FCPs of length k.

THEOREM 3. If a set of objects On is a FCP, then any of its
subset O

′
n must also be a FCP.

Since LCPs are found from valid segments, the time span of all
obtained LCPs must be no greater than the threshold τ . Accord-
ing to the Definitions 2 and 3, if a CP occurs in more than θ data
streams within the time interval τ , then this CP must be a FCP.
Hence, the CooMine algorithm only needs to consider the number
of data streams that the LCPs appear in. Because all LCPs between
Tk and existing segments have been found by the SLCP algorithm,
the CooMine algorithm (Algorithm 4) only needs to mine all FCPs
from the LCPs.

Example 4. Assuming that G0 (mnpo) is a new segment in data
stream s3 and the parameters k and θ (cf. Definition 3) are 2 and
3 separately. Table 1 shows the LCPs between G0 and existing
segments in Figure 2. Based on Table 1, CooMine can find the
FCPs of size 1 ({m}, {n}, {o}, {p}), and then deduce the FCPs of
size 2 ({m,n}, {p, o}). Since only one LCP has three objects, we
assert that there does not exist a FCP of size 3.

5.4 Advantages of our approach
CooMine has the following advantages.
(1) The use of the Seg-tree to index the valid segments can help

save on memory consumption. The segments are inserted into the
Seg-tree based on the prefix rule, and many common objects in
multiple segments can be compacted to save memory. In addition,
the ordinary nodes in the Seg-tree do not record the segments that
they belong to and only the tail nodes maintain this information.
Since ordinary nodes make up the largest part of the Seg-tree and
each ordinary node always takes place in multiple segments, omit-
ting the segments information from ordinary nodes can save much
on memory consumption.

(2) The maintenance cost of the Seg-tree is low. A new seg-
ment can be inserted into the Seg-tree with a small cost because its

80



Table 2: The parameters used in the experiments
parameters meaning
ξ the time interval in Definition 2
k the number of objects in one FCP
τ the time interval in Definition 3
θ the number of streams in Definition 3
Ds the scale of data

matching prefix can be quickly determined; the obsolete segments
can be immediately determined with the help of the Tlist, and the
LD strategy can remove the obsolete data at different granularities
to reduce the deletion cost.

(3) CooMine first searches the LCPs covering all FCPs between
each new segment and existing ones; this step can effectively nar-
row down the search scope for mining FCPs.

6. EXPERIMENTS
We conduct experiments to evaluate the performance of DIMine

and CooMine methods, and compare them with the MatrixMine
algorithm that is introduced as a baseline method. The parameters
involved in experiments are illustrated in Table 2.

Specifically, we first evaluate the index structures employed in
three methods with respect to memory consumption and mainte-
nance cost, and then compare the performance of the three meth-
ods for computing FCPs. Finally, we test the influence of varying
parameters on the CooMine algorithm in the following aspects: the
time of discovering FCPs, the sustainable workload, and the num-
ber of FCPs.

In our experiments, we implement three methods (CooMine, DI-
Mine, and MatrixMine) using Java and the indexes of three meth-
ods all employ the standard Java Collection classes as the storage
structure to record the segments information. To make the results
more accurate, every evaluation is repeated ten times and the aver-
age values are recorded as the final results.

6.1 Experimental setup
The experiments are conducted on a Dell OPTIPLEX 990, a

PC with a 3.1GHz Intel i5-2400 processor and 8GB RAM. Two
real datasets are used. One dataset is a traffic records dataset (TR
dataset) of Jinan city in China. The TR dataset contains all VPRs
(vehicle passing records) of each monitoring camera in Jinan on
May 1, 2013. For each monitoring camera, we simulate its passing
records as a data stream, then the TR dataset can be viewed as mul-
tiple data streams. For the TR dataset, Ds represents the number of
VPRs, and each vehicle (identified by its license plate) is an object.

The other dataset (the Twitter dataset) is provided by Twitter for
academic research purposes1. In Twitter dataset, each word is con-
sidered an object and a tweet corresponds to a segment. In this
case, all of the objects in a segment appear at once, as a tweet as a
collection of words is posted as a whole. The tweets by the same
user constitute one data stream. Ds represents the number of all
segments (tweets).

6.2 The baseline method
Since none of the existing methods is applicable to the problem

of finding FCPs in real-time either because they address a differ-
ent problem or because their cost is apparently too expensive when
applied to this problem, we introduce the MatrixMine algorithm as
the baseline method, and compare it with our proposed methods
w.r.t. memory consumption, maintenance cost, mining time, and

1Tweets2011. http://trec.nist.gov/data/tweets/

total cost.
MatrixMine also divides the data stream into segments and then

mines FCPs from the segments. The information of all segments
are maintained in an independent list and we can obtain the infor-
mation of each segment based on its identifier from this list. Ma-
trixMine maintains a matrix M that keeps track of each pair of co-
occurring objects. If we assuming that there are n distinct objects
({o1, · · · , on}) in a particular application, then M is a n × n ma-
trix, where each element ci,j of M corresponds to the pair pi,j that
consists of objects oi and oj (1≤ i, j ≤ n). Because the pair pi,j
probably occurs in different segments, the corresponding element
ci,j has to maintain a set Ii,j that contains multiple tuples and each
tuple is represented as 〈Gj , sh〉, where Gj is the identifier of the
segment that pi,j belongs to, and sh is the data stream containing
Gj .

For any pair pi,j of the new segment Gj , MatrixMine can de-
termine whether pi,j is a FCP based on Ii,j because it records the
identifiers of all segments covering the pair pi,j . Once the FCPs
with two objects are obtained, MatrixMine can iteratively generate
the FCPs with more objects employing the Apriori heuristic.

The maintenance of the matrixM includes the insertion of newly
generated pairs and the deletion of obsolete pairs. When a new pair
pi,j appears, it must be inserted into M right away. To reduce
the deletion cost of the Matrix structure, we also adopt the Lazy
Deletion strategy to remove the obsolete data from the matrix.

6.3 The performance of index structures
We compare the Seg-tree, the DI-Index, and the Matrix with re-

spect to memory consumption and the maintenance cost, and the
results are shown in Figure 5.

Memory consumption. Figure 5(a) shows the memory con-
sumption of index structures on the TR dataset. Here, we test the
memory consumption for processing the incoming data within one
second with varying arrival rates whenDs is fixed, whereDs repre-
sents the volume of data that has been processed. The experimental
results demonstrate that the memory consumed by Seg-tree is about
80% of that consumed by DI-Index and only 25% of that by Ma-
trix because of the overlap between segments makes it possible to
compact them tightly in the Seg-tree. Matrix consumes much more
memory than Seg-tree and DI-Index, and the reason is the Matrix
has to maintain a large volume of elements.

Figure 5(b) shows the result on the Twitter dataset, where the
Seg-tree consumes slightly more memory than DI-Index. The rea-
son is that most adjacent segments (tweets) do not overlap, and the
Seg-tree cannot compact them as well as for TR. However, the Seg-
tree still consumes much less memory than the Matrix.

Maintenance cost. Figure 5(c), 5(d) and 5(e) show the mainte-
nance time of processing the data within one second with different
arrival rates for the two datasets. In Figure 5(c), we evaluate the
maintenance cost of the Seg-tree, DI-Index, and Matrix with the
fixed values of the parameters ξ, τ , and Ds . The results demon-
strate that the maintenance cost of the Seg-tree is much smaller than
that of DI-Index and Matrix, while the Matrix has the largest main-
tenance cost. Specifically, the maintenance cost of the Seg-tree is
approximately 50% of that consumed by DI-Index, while the main-
tenance cost of Matrix is almost 20 times as big as that of Seg-tree.
In the Seg-tree, we can immediately determine the expired seg-
ments based on the Tlist and remove them, which can save much
maintenance time. But in DI-Index and Matrix, we have to detect
each element to remove the obsolete data, increasing the mainte-
nance cost. Since the number of elements in Matrix is greater than
that of elements in DI-Index, maintaining Matrix is more expensive
than maintaining the DI-Index.

81



0

50

100

150

200

250

1 2 3 4 5M
em

o
ry

 c
o

m
su

m
p

ti
o

n
  

(M
B

)

Arrival rate (thousand/s)

TR: 𝜉=60s, Ds=200,000 VPRs

Seg-tree DI-Index Matrix

(a) Memory consumption (TR)

0

10

20

30

40

50

1 2 3 4 5M
em

o
ry

 c
o

m
su

m
p

ti
o

n
  

(M
B

)

Arrival rate (thousand/s)

Twitter: Ds=200,000 tweets

Seg-tree DI-Index Matrix

(b) Memory consumption (Twitter)

1

10

100

1000

10000

1 2 3 4 5M
ai

n
te

n
an

ce
 c

o
st

 (
m

s)

Arrival rate (thousand/s)

TR: 𝜉=60s  𝜏=30min, Ds=200,000 VPRs

Seg-tree DI-Index Matrix

(c) Maintenance cost w.r.t Ds (TR)

0

100

200

300

400

1 2 3 4 5M
ai

n
te

n
an

ce
 c

o
st

 (
m

s)

Arrival rate (thousand/s)

TR: Ds =100,000  𝜏=30min
𝜉=40s,Seg-tree 𝜉=60s,Seg-tree
𝜉=40s,DI-Index 𝜉=60s,DI-Index
𝜉=40s,Matrix 𝜉=60s,Matrix

(d) Maintenance cost w.r.t ξ (TR)

1

10

100

1000

1 2 3 4 5M
ai

n
te

n
an

ce
 c

o
st

 (
m

s)

Arrival rate (thousand/s)

Twitter: Ds=200,000 twitters

Seg-tree DI-Index Matrix

(e) Maintenance cost w.r.t Ds (Twitter)

0

0.2

0.4

0.6

0.8

1

50 100 150 200 250

C
o

m
p

re
ss

io
n

 r
at

io
 

Ds (thousand)  

TR Twitter

(f) Compression ratio w.r.t ξ

Figure 5: Evaluation of index structures

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5

M
in

n
in

g
 c

o
st

 (
m

s)
 

Arrival rate (thousand/s) 

TR: Ds=100,000VPRs,  𝜉=60s 

CooMine DIMine MatrixMine

(a) Comparison of mining cost (TR)

0

50

100

150

200

250

1 2 3 4 5

M
in

n
in

g
 c

o
st

 (
m

s)
 

Arrival rate (thousand/s) 

Twitter: Ds=200,000 tweets 

CooMine DIMine MatrixMine

(b) Comparison of mining cost (Twitter)

1

10

100

1000

10000

1 2 3 4 5

T
o

ta
l 

co
st

 (
m

s)
 

Arrival rate (thousand/s) 

TR: Ds=100,000VPRs,  𝜉=60s 

CooMine DIMine MatrixMine

(c) Comparison of total cost (TR)

0

100

200

300

400

500

600

700

1 2 3 4 5

T
o

ta
l 

co
st

 (
m

s)
 

Arrival rate (thousand/s) 

Twitter: Ds=200,000 tweets 

CooMine DIMine MatrixMine

(d) Comparison of total cost (Twitter)

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5

M
in

n
in

g
 c

o
st

  
(m

s)
 

Arrival rate (thousand/s) 

 TR:  𝜉=60s   τ=30min 

Ds=100,000VPRs Ds=150,000VPRs
Ds=200,000VPRs

(e) Mining cost w.r.t Ds

0

50

100

150

200

250

1 2 3 4 5

M
in

n
in

g
 c

o
st

  
(m

s)
 

Arrival rate (thousand/s) 

Twitter 

Ds=100,000 tweets Ds=150,000 tweets

Ds=200,000 tweets

(f) Mining cost w.r.t Ds

Figure 6: Performance of mining algorithms

Figure 5(d) shows that the parameter ξ has little influence on the
maintenance time of the Seg-tree, but it affects the maintenance
cost of DI-Index and Matrix more significantly. The reason is that
the sizes of segments will become larger when ξ takes greater val-
ues, and the larger segments have very slight influence on the main-
tenance time of the Seg-tree because each segment can be inserted
and removed in its entirety regardless of its length. However, the
larger segments contain more objects, which can produce more el-
ements for DI-Index and Matrix, and they thus need much more
time to maintain the larger segments.

Fig. 5(e) shows the maintenance cost of the three index struc-
tures for the Twitter dataset. Similar to the case of the TR dataset,
the Seg-tree has the less maintenance cost than DI-Index and Ma-
trix.

According to the aforementioned experimental results, we con-
clude that the Seg-tree and the DI-Index outperform the Matrix

w.r.t. memory consumption and maintenance cost. In most cases,
the performance of Seg-tree is better than that of the DI-Index struc-
ture except the memory consumption for processing the Twitter
dataset.

Compression ratio. To help us better understand the memory
consumption, assuming that the original data to be indexed is d1
and the real data stored in the Seg-tree is d2, the compression ratio
of the Seg-Tree is defined as (d1-d2)/d1. In Fig. 5(f), the com-
pression ratio based on TR dataset is very high, which means the
Seg-tree can compact the overlapping segments very well. As to
the Twitter dataset, the compression ratio becomes very low as
there are less overlapping between segments. Therefore, it would
be helpful to look at the degree of overlapping between segments
before deciding on the index structure for mining FCP.

82



6.4 Performance comparison of the mining al-
gorithms

Comparison of mining cost. First, we compare the mining per-
formance of CooMine, DIMine, and MatrixMine algorithms on the
two datasets in Fig. 6(a) and 6(b). For the TR dataset, the mining
time of the three algorithms is almost identical. However, the min-
ing cost of the CooMine algorithm is larger than that of the DIMine
and MatrixMine methods on the Twitter dataset. This is again due
to the lower degree of overlapping between segments, which ren-
ders some optimizations of the CooMine algorithm not applicable
in reduing the mining cost.

Comparison of total cost. In this group of experiments, we
evaluate the total cost of the three algorithms for processing the data
within one second with varying arrival rates based on two datasets,
and the results are shown in Fig. 6(c) and 6(d). For the set of data
being processed, the total cost includes the time of inserting this set
of data into the index structure and removing the relevant obsolete
data from the index structure, as well as the time of mining FCPs
from this set of data. The results show that CooMine performs
best, and both CooMine and DIMine outperform the MatrixMine
approach dramatically regardless of the dataset.

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5

M
in

n
in

g
 c

o
st

 (
m

s)

Arrival rate (thousand/s)

TR: τ=30min, Ds=100,000VPRs  

𝜉=20s 𝜉=40s 𝜉=60s

(a) Mining cost w.r.t ξ

0

20

40

60

80

100

1 2 3 4 5

M
in

n
in

g
 c

o
st

 (
m

s)

Arrival rate (thousand/s)

TR: Ds=100,000VPRs  𝜉=60s

𝜏=30min 𝜏=60min 𝜏=90min

(b) Mining cost w.r.t τ

Figure 7: FCPs w.r.t Ds

6.5 Evaluation of the CooMine algorithm
Since the CooMine algorithm is better than the other two meth-

ods with respect to the total cost, we only evaluate the influence of
varying parameters on its performance.

Mining cost w.r.t. Ds. We test the influence ofDs on the perfor-
mance of CooMine for mining FCPs on two datasets in Fig. 6(e)
and 6(f). The results show that Ds has no evident effect on the
mining cost because the CooMine algorithm only needs to search a
small portion of the data to find FCPs.

Mining cost w.r.t. ξ and τ . Fig. 7(a) shows that the mining time
is also affected by the parameter ξ. The larger value of ξ will give
rise to longer segments, and the segments with larger sizes will
cause more LCPs between each new segment and existing ones,
which can increase the mining time. Fig. 7(b) demonstrates that
the parameter τ has little impact on the mining cost. This is be-
cause although the larger value of τ can cause more valid segments,
the CooMine algorithm can still efficiently narrow down the search
scope.

Maximum sustainable workload. To evaluate the maximum
sustainable workload of the CooMine algorithm, we introduce a
buffer queue with 5000 storage units to cache the incoming data,
and the CooMine algorithm will fetch the data from this queue. In
this case, the usage rate of the buffer queue reflects the processing
capacity of the CooMine algorithm.

In Fig. 8(a), we evaluate the buffer queue usage at different time
points based on the TR dataset. When the arrival rate reaches 8000
VPRs per second, the maximum usage of the buffer queue is 5000.
Therefore, the maximum sustainable workload of the CooMine al-
gorithm based on the TR dataset is 8000 VPRs per second. Fig.

0

1000

2000

3000

4000

5000

5 10 15 20 25 30 35 40 45 50 55 60

Q
u

eu
e 

 

Time (s) 

TR: 𝜉=60s  𝜏=30min  queue size=5000 

Arrival rate=4000/s

Arrival rate=6000/s

Arrival rate=8000/s

(a) Maximum sustainable work-
load (TR)

0

1000

2000

3000

4000

5000

5 10 15 20 25 30 35 40 45 50 55 60

Q
u

eu
e 

Time (s)

Twitter: queue size=5000

Arraival rate=2000/s Arraival rate=3000/s
Arraival rate=4000/s

(b) Maximum sustainable work-
load (Twitter)

Figure 8: FCPs w.r.t Ds

8(b) shows that the maximum sustainable workload based on the
Twitter dataset is about 4000 tweets per second.

6.6 Effect of parameters on the number of FCPs
We now evaluate the influence of the parametersDs and θ on the

number of FCPs generated for the two datasets.

1

10

100

1000

10000

20 40 60 80 100 120 140 160 180 200

N
u

m
b

er
 o

f
F

C
P

s 

Ds (thousand)

TR: 𝜉=60s  τ=30min  𝜃=3

k=2 k=3 k=4 k=5

(a) Results on TR

1

10

100

1000

10000

20 40 60 80 100 120 140 160 180 200

N
u

m
b

er
 o

f 
 F

C
P

s

Ds (thousand)

Twitter: θ=10
k=2 k=3 k=4

(b) Results on Twitter

Figure 9: The number of FCPs discovered w.r.t Ds

Fig. 9(a) and 9(b) show that the number of FCPs increases with
more data being mined for the TR and Twitter datasets respectively.
For a fixed volume of data, there exist more FCPs with smaller sizes
(k).

1

10

100

1000

3 4 5

N
u

m
b

er
 o

f 
F

C
P

s

θ

TR: 𝜉=60s   Ds =100,000VPRs

k=2 k=3 k=4

(a) Results on TR

1

10

100

1000

10000

100000

5 10 15 20

N
u

m
b

er
 o

f 
F

C
P

s 

θ 

Twitter: Ds=100,000 tweets 

k=2 k=3 k=4

(b) Results on Twitter

Figure 10: The number of FCPs discovered w.r.t θ
We also test the effect of the parameter θ on the number of FCPs

in Figure 10(a) and 10(b). When the value of θ becomes larger, the
number of FCPs drops sharply, which coincides with our intuition
that the higher the threshold, the less FCPs will appear.

Finally, we analyze the FCPs from the Twitter dataset with θ
equal to 60 and illustrate some typical hot events that the FCPs
imply in Table 3 and Table 4, demonstrating that mining FCP is
indeed useful in such applications.

6.7 Discussion
We have compared the CooMine, DIMine, and MatrixMine ap-

proaches with respect to the memory consumption, the mainte-
nance cost, the mining cost, and the total cost on two datasets.
The results demonstrate that CooMine and DI-Mine approaches
outperform the MatrixMine method significantly for mining FCPs.
Between the CooMine and DI-Mine approaches, we find that the
CooMine approach based on the Seg-tree is better suited to process

83



Table 3: Typical FCPs from the Twitter dataset
FCPs The number of streams Hot event
super bowl 1378

event1green bay packers 213
win steelers 226
jack lalanne dies 139 event2
airport killed 111 event3airport domodedovo 101
union state address 409

event4obama sotu 456
science fair 63
health care 261

Table 4: Hot events
Event Meaning
event1 Green Bay Packers and Pittsburgh Steelers

played the Super Bowl on February 6, 2011.
event2 Jack lalanne, the American exerciser, and

nutritional expert, died on January 23, 2011.
event3 The Domodedovo International Airport

bombing on January 24, 2011.
event4 Barack Obama presented the 2011 State of the

Union Address on January 25, 2011.

data streams that have much overlap between segments, while the
DIMine approach is more suitable for handling data streams with-
out overlapping segments.

7. CONCLUSION
Mining frequent co-occurrence patterns (FCPs) across multiple

data streams is essential to many real-world applications, but this
problem has not been addressed by exiting works. In this paper,
we design the DIMine and CooMine approaches to mine FCPs us-
ing only one pass over the data streams. In both approaches, we
first divide each data stream into overlapping segments, and then
mine the FCPs within those segments. The DIMine approach uses
an inverted index (DI-Index) to maintain the valid segments in main
memory and adopts an Apriori-style heuristic to iteratively discover
FCPs based on this index. In the CooMine approach, we construct
the Seg-tree, a memory-based index structure, to compactly index
all valid segments. Based on the Seg-tree, the CooMine approach
first finds the largest common CPs between each new segment and
the existing ones to narrow down the search scope, and then dis-
cover the FCPs from the obtained common CPs. Finally, we in-
troduce a baseline method and conduct extensive experiments to
compare our proposed approaches with this baseline method. The
experimental results demonstrate that our proposed approaches out-
perform the baseline method by a significant margin.

For future work, we would like to study how to extend the pro-
posed approaches to a distributed environment to handle greater
scales of data streams, when a single machine is no longer capable
of managing the large volumes of data and computation.

8. ACKNOWLEDGMENT
This work was supported in part by the 973 Program (2015CB352

500), the National Natural Science Foundation of China Grant (6127
2092), the Shandong Provincial Natural Science Foundation Grant
(ZR2012 FZ004), the Science and Technology Development Pro-
gram of Shandong Province (2014GGE27178), the Independent In-
novation Foun-dation of Shandong University (2012ZD012), the
Taishan Scholars Program, and NSERC Discovery Grants.

9. REFERENCES
[1] Trie. http://en.wikipedia.org/wiki/Trie.
[2] R. Agrawal, T. Imieliński, and A. Swami. Mining association

rules between sets of items in large databases. In SIGMOD,
pages 207–216, 1993.

[3] R. Agrawal, R. Srikant, et al. Fast algorithms for mining
association rules. In VLDB, pages 487–499, 1994.

[4] J. H. Chang and W. S. Lee. Finding recent frequent itemsets
adaptively over online data streams. In SIGKDD, pages
487–492, 2003.

[5] Z. Chen, H. T. Shen, and X. Zhou. Discovering popular
routes from trajectories. In ICDE, pages 900–911, 2011.

[6] C. Giannella, J. Han, J. Pei, X. Yan, and P. S. Yu. Mining
frequent patterns in data streams at multiple time
granularities. Next generation data mining, pages 191–212,
2003.

[7] F. Giannotti, M. Nanni, F. Pinelli, and D. Pedreschi.
Trajectory pattern mining. In SIGKDD, pages 330–339,
2007.

[8] J. Guo, P. Zhang, J. Tan, and L. Guo. Mining frequent
patterns across multiple data streams. In Proceedings of the
20th ACM international conference on Information and
knowledge management, pages 2325–2328, 2011.

[9] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without
candidate generation. In SIGMOD, pages 1–12, 2000.

[10] R. M. Karp, S. Shenker, and C. H. Papadimitriou. A simple
algorithm for finding frequent elements in streams and bags.
TODS, pages 51–55, 2003.

[11] J.-G. Lee, J. Han, and X. Li. Trajectory outlier detection: A
partition-and-detect framework. In ICDE, pages 140–149,
2008.

[12] C.-S. Leung and Q. I. Khan. Dstree: a tree structure for the
mining of frequent sets from data streams. In ICDM, pages
928–932, 2006.

[13] J. Li, D. Maier, K. Tufte, V. Papadimos, and P. A. Tucker. No
pane, no gain: efficient evaluation of sliding-window
aggregates over data streams. SIGMOD, pages 39–44, 2005.

[14] Q. Li, Y. Zheng, X. Xie, Y. Chen, W. Liu, and W.-Y. Ma.
Mining user similarity based on location history. In
SIGSPATIAL, pages 34–45, 2008.

[15] G. S. Manku and R. Motwani. Approximate frequency
counts over data streams. In VLDB, pages 346–357, 2002.

[16] A. Monreale, F. Pinelli, R. Trasarti, and F. Giannotti.
Wherenext: a location predictor on trajectory pattern mining.
In SIGKDD, pages 637–646, 2009.

[17] B. Mozafari, H. Thakkar, and C. Zaniolo. Verifying and
mining frequent patterns from large windows over data
streams. In ICDE, pages 179–188, 2008.

[18] R. T. Ng, L. V. Lakshmanan, J. Han, and A. Pang.
Exploratory mining and pruning optimizations of constrained
associations rules. In SIGMOD, pages 13–24, 1998.

[19] S. Sarawagi, S. Thomas, and R. Agrawal. Integrating
association rule mining with relational database systems:
Alternatives and implications. In SIGMOD, pages 343–354,
1998.

[20] S. K. Tanbeer, C. F. Ahmed, B.-S. Jeong, and Y.-K. Lee.
Efficient single-pass frequent pattern mining using a
prefix-tree. Information Sciences, 179(5):559–583, 2009.

[21] J. X. Yu, Z. Chong, H. Lu, and A. Zhou. False positive or
false negative: mining frequent itemsets from high speed
transactional data streams. In VLDB, pages 204–215, 2004.

84


