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Clustering Uncertain Data
Based on Probability Distribution Similarity

Bin Jiang, Jian Pei, Yufei Tao, and Xuemin Lin

Abstract—Clustering on uncertain data, one of the essential tasks in mining uncertain data, posts significant challenges on
both modeling similarity between uncertain objects and developing efficient computational methods. The previous methods
extend traditional partitioning clustering methods like k-means and density-based clustering methods like DBSCAN to uncertain
data, thus rely on geometric distances between objects. Such methods cannot handle uncertain objects that are geometrically
indistinguishable, such as products with the same mean but very different variances in customer ratings. Surprisingly, probability
distributions, which are essential characteristics of uncertain objects, have not been considered in measuring similarity between
uncertain objects. In this paper, We systematically model uncertain objects in both continuous and discrete domains, where
an uncertain object is modeled as a continuous and discrete random variable, respectively. We use the well known Kullback-
Leibler divergence to measure similarity between uncertain objects in both the continuous and discrete cases, and integrate it
into partitioning and density-based clustering methods to cluster uncertain objects. Nevertheless, a naı̈ve implementation is very
costly. Particularly, computing exact KL divergence in the continuous case is very costly or even infeasible. To tackle the problem,
we estimate KL divergence in the continuous case by kernel density estimation and employ the fast Gauss transform technique
to further speed up the computation. Our extensive experiment results verify the effectiveness, efficiency, and scalability of our
approaches.

Index Terms—Clustering, Uncertain data, Probabilistic distribution, Density estimation, Fast Gauss Transform

✦

1 INTRODUCTION
Clustering uncertain data has been well recognized
as an important issue [21] [22] [27] [36]. Generally,
an uncertain data object can be represented by a
probability distribution [7] [29] [35]. The problem of
clustering uncertain objects according to their proba-
bility distributions happens in many scenarios.

For example, in marketing research, users are asked
to evaluate digital cameras by scoring on various
aspects, such as image quality, battery performance,
shotting performance, and user friendliness. Each
camera may be scored by many users. Thus, the
user satisfaction to a camera can be modeled as an
uncertain object on the user score space. There are
often a good number of cameras under a user study. A
frequent analysis task is to cluster the digital cameras
under study according to user satisfaction data.

One challenge in this clustering task is that we
need to consider the similarity between cameras not
only in terms of their score values, but also their
score distributions. One camera receiving high scores
is different from one receiving low scores. At the same
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time, two cameras, though with the same mean score,
are substantially different if their score variances are
very different.

As another example, a weather station monitors
weather conditions including various measurements
like temperature, precipitation amount, humidity,
wind speed and direction. The daily weather record
varies from day to day, which can be modeled as
an uncertain object represented by a distribution over
the space formed by several measurements. Can we
group the weather conditions during the last month
for stations in North America? Essentially we need
to cluster the uncertain objects according to their
distributions.

1.1 Limitations of Existing Work
The previous studies on clustering uncertain data are
largely various extensions of the traditional clustering
algorithms designed for certain data. As an object in
a certain data set is a single point, the distribution re-
garding the object itself is not considered in traditional
clustering algorithms. Thus, the studies that extended
traditional algorithms to cluster uncertain data are
limited to using geometric distance-based similarity
measures, and cannot capture the difference between
uncertain objects with different distributions.

Specifically, three principal categories exist in liter-
ature, namely partitioning clustering approaches [27]
[18] [24], density-based clustering approaches [21]
[22], and possible world approaches [36]. The first two
are along the line of the categorization of clustering
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methods for certain data [14], the possible world
approaches are specific for uncertain data following
the popular possible world semantics for uncertain
data [8] [31] [17].

As these approaches only explore the geometric
properties of data objects and focus on instances of
uncertain objects. They do not consider the similarity
between uncertain objects in terms of distributions.

Let us examine this problem in the three existing
categories of approaches in detail. Suppose we have
two sets A and B of uncertain objects. The objects in
A follow uniform distribution, and those in B follow
Gaussian distribution. Suppose all objects in both sets
have the same mean value (i.e., the same center).
Consequently, their geometric locations (i.e., areas that
they occupied) heavily overlap. Clearly, the two sets
of objects form two clusters due to their different
distributions.

Partitioning clustering approaches [27] [18] [24]
extend the k-means method with the use of the ex-
pected distance to measure the similarity between two
uncertain objects. The expected distance between an
object P and a cluster center c (which is a certain
point) is ED(P, c) =

∫
P
fP (x)dist(x, c)dx, where fP

denotes the probability density function of P and
the distance measure dist is the square of Euclidean
distance. In [24], it is proved that ED(P, c) is equal to
the dist between the center (i.e., the mean) P.c of P
and c plus the variance of P . That is,

ED(P, c) = dist(P.c, c) + V ar(P ). (1)

Accordingly, P can be assigned to the cluster cen-
ter argminc{ED(P, c)} = argminc{dist(P.c, c)}. Thus,
only the centers of objects are taken into account in
these uncertain versions of the k-means method. In
our case, as every object has the same center, the ex-
pected distance-based approaches cannot distinguish
the two sets of objects having different distributions.

Density-based clustering approaches [21] [22] ex-
tend the DBSCAN method [10] and the OPTICS
method [3] in a probabilistic way. The basic idea
behind the algorithms does not change – objects in
geometrically dense regions are grouped together as
clusters and clusters are separated by sparse regions.
However, in our case, objects heavily overlap. There
is no clear sparse regions to separate objects into clus-
ters. Therefore, the density-based approaches cannot
work well.

Possible world approaches [36] follow the possi-
ble world semantics [8] [31] [17]. A set of possible
worlds are sampled from an uncertain data set. Each
possible world consists of an instance from each
object. Clustering is conducted individually on each
possible world and the final clustering is obtained
by aggregating the clustering results on all possible
worlds into a single global clustering. The goal is
to minimize the sum of the difference between the
global clustering and the clustering of every possible

obj 1
obj 2
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obj 1
obj 2

(b)

Fig. 1. Probability distributions and geometric loca-
tions.

world. Clearly, a sampled possible world does not
consider the distribution of a data object since a
possible world only contains one instance from each
object. The clustering results from different possible
worlds can be drastically different. The most prob-
able clusters calculated using possible worlds may
still carry a very low probability. Thus, the possible
world approaches often cannot provide a stable and
meaningful clustering result at the object level, not to
mention that it is computationally infeasible due to
the exponential number of possible worlds.

1.2 Our Ideas and Contributions
Can we cluster uncertain objects according to the sim-
ilarity between their probability distributions? Sim-
ilarity measurement between two probability distri-
butions is not a new problem at all. In information
theory, the similarity between two distributions can
be measured by the Kullback-Leibler divergence
(KL divergence for short, also known as information
entropy or relative entropy) [23].

The distribution difference cannot be captured by
geometric distances. For example, in Figure 1 (a),
the two objects (each one is represented by a set of
sampled points) have different geometric locations.
Their probability density functions over the entire
data space are different and the difference can be
captured by KL divergence. In Figure 1 (b), although
the geometric locations of the two objects are heavily
overlapping, they have different distributions (one is
uniform and the other is Gaussian). The difference
between their distributions can also be discovered by
KL divergence, but cannot be captured by the existing
methods as elaborated in Section 1.1.

In this paper, we consider uncertain objects as ran-
dom variables with certain distributions. We consider
both the discrete case and the continuous cases. In
the discrete case, the domain has a finite number
of values, for example, the rating of a camera can
only take a value in {1, 2, 3, 4, 5}. In the continuous
case, the domain is a continuous range of values,
for example, the temperatures recorded in a weather
station are continuous real numbers.

Directly computing KL divergence between proba-
bility distributions can be very costly or even infeasi-
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ble if the distributions are complex, as will be shown
in Section 3. Although KL divergence is meaningful,
a significant challenge of clustering using KL diver-
gence is how to evaluate KL divergence efficiently on
many uncertain objects.

To the best of our knowledge, this paper is the
first to study clustering uncertain data objects using
KL divergence in a general setting. We make several
contributions. We develop a general framework of
clustering uncertain objects considering the distribu-
tion as the first class citizen in both discrete and
continuous cases. Uncertain objects can have any
discrete or continuous distribution. We show that
distribution differences cannot be captured by the
previous methods based on geometric distances. We
use KL divergence to measure the similarity between
distributions, and demonstrate the effectiveness of
KL divergence in both partitioning and density-based
clustering methods. To tackle the challenge of eval-
uating the KL divergence in the continuous case,
we estimate KL divergence by kernel density esti-
mation and apply the fast Gauss transform to boost
the computation. We conducted experiments on real
and synthetic data sets to show clustering uncertain
data in probability distribution is meaningful and our
methods are efficient and scalable.

The rest of the paper is organized as follows. Sec-
tion 2 reviews the related work. In Section 3, we
define uncertain objects and the similarity using KL
divergence, and show how to evaluate KL divergence
in both discrete and continuous cases. In Section 4,
we present the partitioning and density-based clus-
tering methods using KL divergence. In Section 5, we
develop implementation techniques to speed up the
clustering and introduce the fast Gauss transform to
boost the evaluation of KL divergence. We conduct an
extensive empirical study in Section 6, and conclude
the paper in Section 7.

2 RELATED WORK
Clustering is a fundamental data mining task. Clus-
tering certain data has been studied for years in
data mining, machine learning, pattern recognition,
bioinformatics, and some other fields [14] [16] [19].
However, there is only preliminary research on clus-
tering uncertain data.

Data uncertainty brings new challenges to clus-
tering, since clustering uncertain data demands a
measurement of similarity between uncertain data
objects. Most studies of clustering uncertain data used
geometric distance-based similarity measures, which
are reviewed in Section 2.1. A few theoretical studies
considered using divergences to measure the similar-
ity between objects. We discuss them in Section 2.2.

2.1 Clustering Based on Geometric Distances
Ngai et al. [27] proposed the UK-means method which
extends the k-means method. The UK-means method

measures the distance between an uncertain object
and the cluster center (which is a certain point) by the
expected distance. Recently, Lee et al. [24] showed that
the UK-means method can be reduced to the k-means
method on certain data points due to Equation (1)
described in Section 1.

Kriegel et al. [21] proposed the FDBSCAN algorithm
which is a probabilistic extension of the deterministic
DBSCAN algorithm [10] for clustering certain data. As
DBSCAN is extended to a hierarchical density based
clustering method referred to as OPTICS [3], Kriegel
et al. [22] developed a probabilistic version of OPTICS
called FOPTICS for clustering uncertain data objects.
FOPTICS outputs a hierarchical order in which data
objects, instead of the determined clustering member-
ship for each object, are clustered.

Volk et al. [36] followed the possible world seman-
tics [1] [15] [8] [31] using Monte Carlo sampling [17].
This approach finds the clustering of a set of sampled
possible worlds using existing clustering algorithms
for certain data. Then the final clustering is aggregated
from those sample clusterings.

As discussed in Section 1, the existing techniques
on clustering uncertain data mainly focus on the
geometric characteristics of objects, and do not take
into account the probability distributions of objects.
In this paper, we propose to use KL divergence as
the similarity measure which can capture distribution
difference between objects. To the best of our knowl-
edge, this paper is the first work to study clustering
uncertain objects using KL divergence.

2.2 Clustering Based on Distribution Similarity

We are aware that clustering distributions has ap-
peared in the area of information retrieval when
clustering documents [37] [5]. The major difference of
our work is that we do not assume any knowledge
on the types of distributions of uncertain objects.
When clustering documents, each document is mod-
eled as a multinomial distribution in the language
model [30] [34]. For example, Xu et al. [37] discussed
a k-means clustering method with KL divergence
as the similarity measurement between multinomial
distributions of documents. Assuming multinomial
distributions, KL divergence can be computed using
the number of occurrences of terms in documents.
Blei et al. [5] proposed a generative model approach –
the Latent Dirichlet Allocation (LDA for short). LDA
models each document and each topic (i.e., cluster)
as a multinomial distribution, where a document is
generated by several topics. However, such multino-
mial distribution based methods cannot be applied to
general cases where the type of distributions are not
multinomial.

There are also a few studies on clustering using KL
divergences.
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Dhillon et al. [9] used KL divergence to measure
similarity between words to cluster words in docu-
ments in order to reduce the number of features in
document classification. They developed a k-means
like clustering algorithm and showed that the algo-
rithm monotonically decreases the objective function
as shown in Equation (9), and minimizes the intra-
cluster Jensen-Shannon divergence while maximiz-
ing inter-cluster Jensen-Shannon divergence. As their
application is on text data, each word is a discrete
random variable in the space of documents. Therefore,
it is corresponding to the discrete case in our problem.

Banerjee et al. [4] theoretically analyzed the k-means
like iterative relocation clustering algorithms based on
Bregman divergences which is a general case of KL
divergence. They summarized a generalized iterative
relocation clustering framework for various similarity
measures from the previous work from an informa-
tion theoretical viewpoint. They showed that finding
the optimal clustering is equivalent to minimizing the
loss function in Bregman information corresponding
to the selected Bregman divergence used as the under-
lying similarity measure. In terms of efficiency, their
algorithms have linear complexity in each iteration
with respect to the number of objects. However, they
did not provide methods for efficiently evaluating
Bregman divergence nor calculating the mean of a
set of distributions in a cluster. For uncertain objects
in our problem which can have arbitrary discrete or
continuous distributions, it is essential to solve the
two problems in order to scale on large data sets, as
we can see in our experiments.

Ackermann et al. [2] developed a probabilistic (1 +
ε)-approximation algorithm with linear time complex-
ity for the k-medoids problem with respect to an ar-
bitrary similarity measure, such as squared Euclidean
distance, KL divergence, Mahalanobis distance, etc., if
the similarity measure allows the 1-medoid problem
being approximated within a factor of (1 + ε) by
solving it exactly on a random sample of constant size.
They were motivated by the problem of compressing
Java and C++ executable codes which are modeled
based on a large number of probability distributions.
They solved the problem by identifying a good set of
representatives for these distributions to achieve com-
pression which involves non-metric similarity mea-
sures like KL divergence. The major contribution of
their work is on developing a probabilistic approxi-
mation algorithm for the k-medoids problem.

The previous theoretical studies focused on the
correctness of clustering using KL divergence [9], the
correspondence of clustering using Bregman diver-
gence in information theory [4], and the probabilis-
tic approximation algorithm [2]. However, they did
not provide methods for efficiently evaluating KL
divergence in the clustering process, neither did they
experimentally test the efficiency and scalability of
their methods on large data sets. Different to them,

our work aims at introducing distribution differences
especially KL divergence as a similarity measure for
clustering uncertain data. We integrate KL divergence
into the framework of k-medoids and DBSCAN to
demonstrate the performance of clustering uncertain
data. More importantly, particular to the uncertain
objects in our problem, we focus on efficient compu-
tation techniques for large data sets, and demonstrate
the effectiveness, efficiency, and scalability of our
methods on both synthetic and real data sets with
thousands of objects, each of which has a sample of
hundreds of observations.

3 UNCERTAIN OBJECTS AND KL DIVER-
GENCE
This section first models uncertain objects as random
variables in probability distributions. We consider
both the discrete and continuous probability distribu-
tions and show the evaluation of the corresponding
probability mass and density functions in the discrete
and continuous cases, respectively. Then, we recall
the definition of KL divergence, and formalize the
distribution similarity between two uncertain objects
using KL divergence.

3.1 Uncertain Objects and Probability Distribu-
tions
We consider an uncertain object as a random variable
following a probability distribution in a domain D.
We consider both the discrete and continuous cases.

If the domain is discrete (e.g., categorical) with
a finite or countably infinite number of values, the
object is a discrete random variable and its probability
distribution is described by a probability mass function
(pmf for short). Otherwise if the domain is continuous
with a continuous range of values, the object is a
continuous random variable and its probability distribu-
tion is described by a probability density function (pdf
for short). For example, the domain of the ratings of
cameras is a discrete set {1, 2, 3, 4, 5}, and the domain
of temperature is continuous real numbers.

In many case, the accurate probability distributions
of uncertain objects are not known beforehand in
practice. Instead, the probability distribution of an un-
certain object is often derived from our observations
of the corresponding random variable. Therefore, we
associate each object with a sample of observations,
and assume that the sample is finite and the obser-
vations are independent and identically distributed
(i.i.d. for short).

By overloading the notation, for an uncertain object
P , we still use P to denote the corresponding random
variable, the probability mass/density function, and
the sample.

For discrete domains, the probability mass function
of an uncertain object can be directly estimated by

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



CLUSTERING UNCERTAIN DATA BASED ON PROBABILITY DISTRIBUTION SIMILARITY 5

normalizing the number of observations against the
size of the sample. Formally, the pmf of object P is

P (x) =

∣∣{p ∈ P |p = x}∣∣
|P | , (2)

where p ∈ P is an observation of P and | · | is the
cardinality of a set.

For continuous domains, we estimate the probabil-
ity density function of an uncertain object by kernel
density estimation.

Kernel density estimation [33] [32] is a non-
parametric way of estimating the probability density
function of a continuous random variable. Given a
sample of a continuous random variable P , the kernel
density estimate of the probability density function is
the sum of |P | kernel functions. In this paper, we use
the popular Gaussian kernels.

Each Gaussian kernel function is centered at a sam-
ple point p ∈ P with variance h. h is called the band-
width, and is used to control the level of smoothing.
A popular choice of the bandwidth is the Sliverman
approximation rule [33] for which h = 1.06× δ|P |− 1

5 ,
where δ is the standard deviation of the sample points
of P . In 1-dimensional case, the density estimator is

P (x) =
1

|P |√2πh

∑
p∈P

e−
(x−p)2

2h2 .

For the d-dimensional (d ≥ 2) case, the kernel function
is the product of d Gaussian functions, each with its
own bandwidth hj (1 ≤ j ≤ d), and the density
estimator is

P (x) =
1

|P |(2π)d/2 ∏d
j=1 hj

∑
p∈P

d∏
j=1

e
−

(x.Dj−p.Dj)
2

2h2
j , (3)

where we denote a d-dimensional point p by
(p.D1, . . . , p.Dd).

3.2 KL Divergence
In general, KL divergence between two probability
distributions is defined as follows,

Definition 1 (Kullback-Leibler divergence [23]): In the
discrete case, let f and g be two probability mass
functions in a discrete domain D with a finite or
countably infinite number of values. The Kullback-
Leibler diverge (KL divergence for short) between f
and g is

D(f ‖g) =
∑
x∈D

f(x) log
f(x)

g(x)
. (4)

In the continuous case, let f and g be two probabil-
ity density functions in a continuous domain D with
a continuous range of values. The Kullback-Leibler
divergence between f and g is

D(f ‖g) =
∫
D

f(x) log
f(x)

g(x)
dx. (5)

In both discrete and continuous cases, KL diver-
gence is defined only in the case where for any x in
domain D if f(x) > 0 then g(x) > 0. By convention,
0 log 0

p = 0 for any p �= 0 and the base of log is 2.
Note that, KL divergence is not symmetric in gen-

eral, that is, D(f ‖g) �= D(g‖f).

3.3 Using KL Divergence as Similarity
It is natural to quantify the similarity between two un-
certain objects by KL divergence. Given two uncertain
objects P and Q and their corresponding probability
distributions, D(P ‖ Q) evaluates the relative uncer-
tainty of Q given the distribution of P . In fact, from
Equations (4) and (5), we have

D(P ‖Q) = E
[
log

P

Q

]
, (6)

which is the expected log-likelihood ratio of the two
distributions and tells how similar they are. The
KL divergence is always non-negative, and satisfies
Gibbs’ inequality. That is, D(P ‖Q) ≥ 0 with equality
only if P = Q. Therefore, the smaller the KL diver-
gence, the more similar the two uncertain objects.

In the discrete case, it is straightforward to evaluate
Equation (4) to calculate the KL divergence between
two uncertain objects P and Q from their probability
mass functions calculated as Equation (2).

In the continuous case, given the samples of P and
Q, by the law of large numbers and Equation (6), we
have

lim
s→∞

1

s

s∑
i=1

log
P (pi)

Q(pi)
= D(P ‖Q),

where we assume the sample of P = {p1, . . . , ps}.
Hence, we estimate the KL divergence D(P ‖Q) as

D̂(P ‖Q) =
1

s

s∑
i=1

log
P (pi)

Q(pi)
. (7)

It is important to note that the definition of KL
divergence necessitates that for any x ∈ D if P (x) > 0
then Q(x) > 0. To ensure that the KL divergence
is defined between every pair of uncertain objects,
we smooth the probability mass/density function of
every uncertain object P so that it has a positive
probability to take any possible value in the domain.
In other words, we assume that there is always a small
non-zero probability for an uncertain object to observe
any unseen value. As in the camera rating example,
if we only observe ratings 2, 3, 4, and 5 of a camera,
but not 1, we still assume that the camera has a small
probability to be rated as 1, even we have no such
observations.

The smoothing is based on the following two as-
sumptions about the uncertain objects to be clustered
in our problem.

1) We assume that the probability distribution of
every uncertain object to be clustered is defined
in the same domain D.
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2) We assume that the domain D is bounded.
If D is discrete, we assume it has a finite number of
values. For the continuous domain, we only consider
D as a bounded range of values. In most applications,
possible values are within a sufficiently large bounded
range, as we can use the lowest and highest recorded
values to define the range. For example, cameras can
be rated at 5 possible grades, and temperatures on
Earth’s surface usually range between −90◦C to 60◦C.

We smooth a probability distribution P as follows,

P̂ (x) =
P (x) + δ

1 + δ |D| , (8)

where 0 < δ < 1, |D| is the number of possible values
in D if D is discrete and the area of D (i.e., |D| = ∫

D
dx)

if D is continuous.
Clearly, the sum/integral of P̂ (x) over the entire

domain remains 1. For two uncertain objects P and
Q, after smoothing, P̂ (x) = Q̂(x) for any x ∈ D still
holds if and only if P (x) = Q(x).

The error incurred by such an approximation is

∣∣∣P̂ (x)− P (x)
∣∣∣ = ∣∣∣∣1− P (x) |D|

1/δ + |D|
∣∣∣∣ ∈

[
0,

max{1, ∣∣1− |D| ∣∣}
1/δ + |D|

]
.

As the domain D is bounded, |D| is bounded. By
choosing a sufficient small δ, we can provide an
approximation at arbitrary accuracy level.

In summary of this section, we model every un-
certain object to be clustered as a random variable
in the same bounded domain D and represent it
with a sample of i.i.d. observations. The probabil-
ity distribution of an uncertain object is estimated
from its sample by Equation (2) in the discrete case
and Equation (3) using kernel density estimation in
the continuous case. In both cases, the probability
mass/density function is smoothed by Equation (8).

We define the similarity between two uncertain
objects as the KL divergence between their probabil-
ity distributions. The KL divergence is calculated by
Equations (4) and (7) in the discrete and continuous
cases, respectively.

4 CLUSTERING ALGORITHMS
As the previous geometric distance-based clustering
methods for uncertain data mainly fall into two cate-
gories, partitioning and density-based approaches. In
this section, we present the clustering methods using
KL divergence to cluster uncertain objects in these two
categories. In Section 4.1, we present the uncertain k-
medoids method which extends a popular partition-
ing clustering method k-medoids [19] by using KL di-
vergence. Then, we develop a randomized k-medoids
method based on the uncertain k-medoids method
to reduce the time complexity. Section 4.2 presents
the uncertain DBSCAN method which integrates KL
divergence into the framework of a typical density-
based clustering method DBSCAN [10]. We describe

the algorithms of the methods and how they use KL
divergence as the similarity measure.

4.1 Partitioning Clustering Methods
A partitioning clustering method organizes a set of n
uncertain objects O into k clusters C1, · · · ,Ck, such
that Ci ⊆ O (1 ≤ i ≤ k), Ci �= ∅,

⋃k
i=1 Ci = O,

and Ci ∩ Cj = ∅ for any i �= j. We use Ci to denote
the representative of cluster Ci. Using KL divergence
as similarity, a partitioning clustering method tries to
partition objects into k clusters and chooses the best k
representatives, one for each cluster, to minimize the
total KL divergence as below,

TKL =
k∑

i=1

∑
P∈Ci

D(P ‖Ci). (9)

For an object P in cluster Ci (1 ≤ i ≤ k), the KL diver-
gence D(P ‖Ci) between P and the representative Ci

measures the extra information required to construct
P given Ci. Therefore,

∑
P∈Ci

D(P ‖Ci) captures the
total extra information required to construct the whole
cluster Ci using its representative Ci. Summing over
all k clusters, the total KL divergence thus measures
the quality of the partitioning clustering. The smaller
the value of TKL, the better the clustering.

k-means [25] [26] and k-medoids [19] are two classi-
cal partitioning methods. The difference is that the k-
means method represents each cluster by the mean of
all objects in this cluster, while the k-medoids method
uses an actual object in a cluster as its representative.
In the context of uncertain data where objects are
probability distributions, it is inefficient to compute
the mean of probability density functions. k-medoids
method avoids computing the means. For the sake
of efficiency, we adopt the k-medoids method to
demonstrate the performance of partitioning cluster-
ing methods using KL divergence to cluster uncertain
objects.

In Section 4.1.1, we first present the uncertain k-
medoids method which integrates KL divergence into
the original k-medoids method. Then, we develop
a randomized k-medoids method in Section 4.1.2 to
reduce the complexity of the uncertain one.

4.1.1 Uncertain K-Medoids Method
The uncertain k-medoids method consists of two
phases, the building phase and the swapping phase.

Building Phase: In the building phase, the uncer-
tain k-medoids method obtains an initial clustering by
selecting k representatives one after another. The first
representatives C1 is the one which has the smallest
sum of the KL divergence to all other objects in O.
That is,

C1 = argmin
P∈O

⎛
⎝ ∑

P ′∈O\{P}

D(P ′ ‖P )

⎞
⎠ .
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The rest k − 1 representatives are selected iteratively.
In the i-th (2 ≤ i ≤ k) iteration, the algorithm selects
the representative Ci which decreases the total KL
divergence (Equation (9)) as much as possible. For
each object P which has not been selected, we test
whether it should be selected in the current round. For
any other non-selected object P ′, P ′ will be assigned
to the new representative P if the divergence D(P ′ ‖
P ) is smaller than the divergence between P ′ and
any previously selected representatives. Therefore, we
calculate the contribution of P ′ to the decrease of the
total KL divergence by selecting P as

max

(
0,

i−1
min
j=1

(
D(P ′ ‖Cj)

)−D(P ′ ‖P )

)
.

We calculate the total decrease of the total KL diver-
gence by selecting P as the sum over the contribution
of all non-selected object, denoted by DEC(P ). Then,
the object to be selected in the i-th iteration is the one
that can incur the largest decrease, that is,

Ci = argmax
P∈O\{C1,··· ,Ci−1}

(
DEC(P )

)
.

We end the building phase as long as k representatives
are selected and proceed to the swapping phase.

Swapping Phase: In the swapping phase, the un-
certain k-medoids method iteratively improves the
clustering by swapping a non-representative object
with the representative to which it is assigned. For
a non-representative object P , suppose it is assigned
to cluster C whose representative is C. We consider
the effect of swapping P and C in two cases on every
non-selected object P ′ other than P ,
• If P ′ currently belongs to C, when C is replaced

by P , we will reassign P ′ to P or one of the other
k − 1 existing representatives, to which P ′ is the
most similar.

• If P ′ currently belongs to a representative C ′

other than C, and D(P ′ ‖ P ) < D(P ′ ‖ C ′), P ′

is reassigned to P .
When a reassignment happens, the decrease of the
total KL divergence by swapping P and C is recorded.
After all non-representative objects are examined, we
obtain the total decrease of swapping P and C. Then,
we select the object Pmax which can make the largest
decrease. That is,

Pmax = argmax
P∈O\{C1,··· ,Ck}

(
DEC(P )

)
.

We check that whether the swapping of Pmax can
improve the clusters, i.e., whether DEC(Pmax) > 0. If
so, the swapping is carried into execution. Otherwise,
the method terminates and report the final clustering.

Complexity: The building phase in the uncertain
k-medoids method requires evaluating the KL diver-
gences between O(kn2) pairs of objects, where n is
the number of objects. In the swapping phase, in each
iteration, it evaluates O(n2) KL divergences to find the

optimal swapping. In total, the uncertain k-medoids
method has complexity O((k+ r)n2E), where r is the
number of iterations in the swapping phase and E is
the complexity of evaluating the KL divergence of two
objects. The method cannot scale on big data sets due
to it quadratic complexity with respect to the number
of object. Next, we present a randomized k-medoids
method to bring down the complexity.

4.1.2 Randomized K-Medoids Method
The randomized k-medoids method, instead of find-
ing the optimal non-representative object for swap-
ping, randomly selects a non-representative object for
swapping if the clustering quality can be improved.
We follow the simulated annealing technique [20] [6]
to prevent the method from being stuck at a local
optimal result.

The randomized k-medoids method follows the
building-swapping framework. At the beginning, the
building phase is simplified by selecting the initial
k representatives at random. Non-selected objects
are assigned to the most similar representative ac-
cording to KL divergence. Then, in the swapping
phase, we iteratively replace representatives by non-
representative objects.

In each iteration, instead of finding the optimal non-
representative object for swapping in the uncertain
k-medoids method, a non-representative object P is
randomly selected to replace the representative C to
which P is assigned. To determine whether P is a
good replacement of C, we examine the two cases
as described in the swapping phase in Section 4.1.1.
After all non-representative objects are examined, the
total decrease of the total KL divergence by swapping
P and C is recorded as DEC.

Then, we compute the probability of swapping as

Prswap(DEC) =

{
1 if DEC > 0

eDEC×log(rcur) if DEC ≤ 0
,

where rcur is the current number of iterations. Ba-
sically, if DEC > 0, the swapping can improve the
clustering, then the swapping is put into practice. In
the cases where DEC ≤ 0, the swapping may not
improve the clustering. However, the swapping may
still be carried out with probability eDEC×log(rcur) to
prevent the algorithm from being stuck at a local
optimal result. We repeat the iterative process until
a swapping is not executed.

The randomized k-medoids method has time com-
plexity O(rnE) where r is the number of iterations
in the swapping phase and E is the complexity of
evaluating the KL divergence of two objects. The cost
of the building phase in the uncertain k-medoids
method is removed since the representatives are ran-
domly initialized. The object selected for swapping
in each iteration in the swapping phase is also ran-
domly picked, so the randomized k-medoids method
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evaluates O(n) KL divergences in each iteration. We
will see in our experiments that the randomized k-
medoids method can scale well on data sets with a
large number of objects.

4.2 Density-Based Clustering Methods
Unlike partitioning methods which organize similar
objects into the same partitions to discover clusters,
density-based clustering methods regard clusters as
dense regions of objects that are separated by regions
of low density.

DBSCAN [10] is the first and most representative
density-based clustering method developed for cer-
tain data. To demonstrate density-based clustering
methods based on distribution similarity, we develop
the uncertain DBSCAN method which integrates KL
divergence into DBSCAN. Different to the FDBSCAN
method [21] which is based on geometric distances
and finds dense regions in the original geometric
space, the uncertain DBSCAN method transforms
objects into a different space where the distribution
differences are revealed.

The uncertain DBSCAN method finds dense regions
through core objects whose ε-neighborhood contains
at least μ objects. Formally, P is a core object, if∣∣{Q ∈ O|D(Q‖P ) ≤ ε}∣∣ ≥ μ.

An object Q is said to be direct density-reachable from
an object P if D(Q‖P ) ≤ ε and P is a core object.

Initially, every core object forms a cluster. Two
clusters are merged together if a core object of one
cluster is density-reachable from a core object of the
other cluster. A non-core object is assigned to the
closest core object if it is direct density reachable from
this core object. The algorithm iteratively examines
objects in the data set until no new object can be
added to any cluster.

Note that direct density-reachability described
above is an asymmetric relationship. This is not
caused by the asymmetry of KL divergence. The
relationship is also asymmetry on certain data where
similarity between points are measured by the square
of Euclidean distance.

The quality of the clustering obtained by the uncer-
tain DBSCAN method depends on the parameters ε
and μ. We will show the performance in Section 6.

The complexity of the uncertain DBSCAN method
is O(n2E) where n is the number of uncertain objects
and E is the cost of evaluating the KL divergence of
two objects. Essentially, the KL divergence of any pair
of objects is evaluated because we do not assume any
index on the data set.

5 BOOSTING COMPUTATION
The uncertain k-medoids method, the randomized k-
medoids method, and the uncertain DBSCAN method

all require evaluation of KL divergences of many pairs
of objects. As the number of uncertain objects and
the sample size of each object increase, it is costly to
evaluate a large amount of KL divergence expressions.
In this section, we first show the implementation
technique to save the computation in Section 5.1.
Then, Section 5.2 introduces fast Gauss transform to
provide a fast approximation of KL divergence in the
continuous case.

5.1 Efficient Implementation
In both the uncertain and randomized k-medoids
methods but not DBSCAN, the most used operation is
computing the difference between two KL divergence
expressions, D(P ‖ C) − D(P ‖ C ′), for example, to
decide whether P should be assigned to representa-
tive C or C ′, and to compute the DEC of replacing a
representative.

We can evaluate the divergence difference D(P ‖
C) − D(P ‖ C ′) more efficiently than evaluating the
two divergences separately and then computing the
subtraction.

In the discrete case, applying Equation (4), we have

D(P ‖C)−D(P ‖C ′)
=

∑
p∈P

P (p) log
P (p)

C(p)
−

∑
p∈P

P (p) log
P (p)

C ′(p)

=
∑
p∈P

P (p)
(
logC ′(p)− logC(p)

) (10)

In the continuous case, applying Equation (7), we
have

D(P ‖C)−D(P ‖C ′)
=

1

|P |
∑
p∈P

log
P (p)

C(p)
− 1

|P |
∑
p∈P

log
P (p)

C ′(p)

=
1

|P |
∑
p∈P

(
logC ′(p)− logC(p)

) (11)

By directly computing the difference between the two
divergence expressions, we simplify the computation
in both the discrete and continuous cases. More im-
portantly, we avoid evaluating the term logP (p) in
the continuous case, thus substantially reduce the
computation in density estimation.

5.2 Fast Gauss Transform for Efficiently Calculat-
ing Probability Density Functions
The probability mass functions of uncertain objects in
the discrete case can be directly calculated as shown
in Equation (2). The complexity is linear to the sample
size of the uncertain object. Moreover, as the domain
is finite, we can pre-compute the probability mass
function of every object and store them in a hash table
either in-memory or on-disk.

However, in the continuous case, the complexity
of calculating the probability density functions is
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quadratic to the sample size of the uncertain object.
Pre-computation is not feasible since the domain is
uncountably infinite. No matter we evaluate KL diver-
gences directly or evaluate the divergence differences
as described in Section 5.1, the major cost is on
evaluating the following expression,

∑
p∈P

log
∑
q∈C

d∏
j=1

e
−

(p.Dj−q.Dj)
2

2h2
C,j . (12)

It requires to evaluate the sum of N Gaussian func-
tions at M points, where N is the sample size of C
and M is the sample size of P . Straightforwardly,
N × M Gaussian functions are evaluated, and the
computational complexity is O(N ×M). Clearly, it is
costly for large N and M . To make the computation
practical for large data sets, we resort to approximate
Equation (12).

The main idea of approximating the sum of a series
of Gaussian functions is to make use of the fact that
the probability density of the Gaussian function de-
cays exponentially and is negligible outside a certain
distance to the center of the Gaussian. The fast Gauss
transform [13] is one of the best techniques to do
the job. It reduces the computational complexity from
O(N ×M) to O(N +M) using a divide-and-conquer
strategy and combined with the manipulation of Her-
mite polynomial expansions and Taylor series. How-
ever, as pointed out by Yang et al. [38], the constant
factor in O(N +M) grows exponentially with respect
to the dimensionality d, which makes the technique
impractical for d > 3. Yang et al. [38] developed an
improved fast Gauss transform to reduce the constant
factor to asymptotically polynomial order. We adopt
their improved Gauss transform to boost the efficiency
of evaluating Equation (11).

The improved fast Gauss transform takes advan-
tages of the exponential decay of the Gaussian. An-
other key technique is to expand the sum of Gaussian
functions into a multivariate Taylor expansion and
truncate the series after degree p, where p is chosen
to be sufficiently large such that the bounded error is
no more than the precision parameter ε.

To evaluate Equation (12), the algorithm works in
the following steps:

Step 1:Approximate the sample of C by clustering.
Partition the N sample points of C into k
clusters S1, · · · , Sk using the farthest-point
clustering algorithm [12] [11] such that the
maximum radius of all clusters is less than
hρ1, here h is the bandwidth of the Gaussian
function and ρ1 is a controlling parameter.

Step 2:Choose parameter p for truncating Taylor
expansion. Choose p sufficiently large such
that the error estimate is less than the preci-
sion ε. Here, the error at any point of P is
bounded by N

(
2p

p! ρ1ρ2 + e−ρ2
2

)
, where ρ2 is

a controlling parameter.

Step 3:Compute the coefficients of the Taylor ex-
pansion. For each cluster Si (1 ≤ i ≤ k), let
ci denote the center found by the farthest-
point clustering algorithm, compute the co-
efficients below,

Ci
α =

2|α|

α!

∑
q∈Si

d∏
j=1

e
−(q.Dj−ci.Dj)

2

h2 (
q − ci
h

)α.

Here, α = (α1, · · · , αd) is a multi-index
which is a d-dimensional vector of nonnega-
tive integers. For any multi-index α and any
real value vector x = (x.D1, · · · , x.Dd), we
define the following operations.

xα = x.Dα1
1 · · ·x.Dαd

d ,
|α| = α1 + · · ·+ αd,
α! = α1! · · ·αd!.

Step 4:Compute the sum of approximated Gaussian
functions. For each point s ∈ P , find the
clusters whose centers lie within the range
hρ2. Then, the sum of Gaussian functions in
Equation (12) is evaluated as

∑
q∈C

d∏
j=1

e
−

(p.Dj−q.Dj)
2

2h2
C,j =

∑
dist(s,ci)
≤hρ2

∑
|α|<p

Ci
α

d∏
j=1

e
−(p.Dj−ci.Dj)

2

h2

(
p− ci
h

)α

,

where dist(s, ci) is the distance between p
and ci.

The tradeoff between the computational cost and
the precision is controlled by parameters p, ρ1, and
ρ2. The larger p and ρ2, and the smaller ρ1, the
better precision, but the computation and storage cost
increases. In our experiments, as suggested in [38], we
set p = ρ2 = 10 and ρ1 is indirectly set by k (see Step
1) which is set to

√
N .

Our empirical study in Section 6 shows that the
fast Gauss transform boosts the efficiency of our
algorithms dramatically with only a small decrease
of the clustering quality.

6 EMPIRICAL STUDY
We conducted extensive experiments on both syn-
thetic and real data sets to evaluate the effectiveness of
KL divergence as a similarity measure for clustering
uncertain data and the efficiency of the techniques for
evaluating KL divergences.

Our programs were implemented in C++ and com-
piled by GCC 4.3.3. The experiments were con-
ducted on a computer with an Intel Core 2 Duo
P8700 2.53GHz CPU and 4GB main memory running
Ubuntu 9.04 Jaunty. All programs ran in-memory. The
I/O cost is not reported.
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(a) Uniform (b) Gaussian (c) Inverse Gaussian

Fig. 2. Three types of distributions.

6.1 Synthetic Data

We generated data sets in both continuous and dis-
crete domains. In the continuous case, an uncertain
object is a sample drawn from a continuous distri-
bution. In the discrete case, a data set is generated
by converting a data set in the continuous case. We
discretized the continuous domain by partitioning it
into a grid. Every dimension is equally divided into
2 parts. So a d-dimensional space is divided into 2d

cells of equal size. We use the central points of cells
as values in the discrete domain. The probability of
an object in a cell is the sum of the probabilities of all
its sample points in this cell.

The data space was restricted to [0, 1]d. We use three
different types of distributions shown in Figure 2,
the uniform distribution, the Gaussian distribution,
and the inverse Gaussian distribution. An inverse
Gaussian distribution was generated from a Gaussian
distribution. Given a point x in a Gaussian distribu-
tion, we generated a point y for the inverse Gaussian
distribution according to the following formula for
1 ≤ i ≤ d,

y.Di =

{
1.5− x.Di if x.Di ∈ [0.5, 1];

0.5− x.Di if x.Di ∈ [0, 0.5).

We consider 4 major factors in our experiments, the
dimensionality d of the data space (from 2 to 10), the
cardinality (i.e., the number of objects) n of the data
set (from 50 to 10, 000), the sample size s (from 50 to
900), and the number of clusters k (from 3 to 25).

Given the number of clusters k for a data set, we
generated k probability density functions, in which
there is one uniform distribution, (k − 1)/2 Gaussian
distributions with different variances, and (k−1)/2 in-
verse Gaussian distributions with different variances.
The variance of the i-th Gaussian/inverse Gaussian
distribution is 0.05i. For each distribution, we gener-
ated a group of samples, each of which forms one
object. Thus, objects in the same group are sampled
from the same probability density function. The num-
ber of objects of a group was randomly picked with an
expectation of n

k . We made sure that the total number
of objects is equal to n. As we generated a synthetic
data set in this way, we have the ground truth of the
clustering in the data set. We used the ground truth
to evaluate the clustering quality of our algorithms.

Our experiments include three parts. Section 6.1.1
first evaluates the effect of KL divergence used in
clustering methods presented in Section 4. Then, Sec-
tion 6.1.2 shows the speedup by the implementation
techniques and fast Gauss transform introduced in
Section 5. Last, Section 6.1.3 shows the scalability and
feasibility of our algorithms on large data sets.

6.1.1 Effectiveness of KL Divergence in Clustering
We first compare the clustering quality of KL diver-
gences with geometric distances in both partition-
ing clustering methods and density-based clustering
methods. For partitioning clustering methods, we im-
plemented the UK-means method [24] (denoted by
UK) using geometric distances as well as the uncertain
k-medoids method (denoted by KM-KL) and the ran-
domized k-medoids method (denoted by RKM-KL)
using KL divergences. For density-based clustering
methods, we implemented the FDBSCAN method [21]
(denoted by FD) using geometric distances and the
uncertain DBSCAN method (denoted by DB-KL) us-
ing KL divergences.

We use precision and recall as the quality mea-
surements. Let G denote the ground truth clustering
generated by the synthetic data generator, C is the
clustering obtained by a clustering method. Two ob-
jects are called a pair if they appear in the same cluster
in a clustering. We define

TP true positive, the set of common pairs of
objects in both G and C;

FP false positive, the set of pairs of objects in C

but not G;
FN false negative, the number of pairs of objects

in G but not C.
Then, the precision and recall of a clustering C are
calculated respectively as

precision(C) = |TP |/(|TP |+ |FP |),
recall(C) = |TP |/(|TP |+ |FN |).

By default a data set contains n = 100 objects, each
of which has s = 100 sample points in a d = 4
dimensional space. The number of clusters is k = 6
by default.

We note that density-based methods, FD and DB-
KL, do not use k as a parameter. Instead, the cluster-
ing is controlled by the minimum number μ of points
required to form a cluster and the neighborhood
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Fig. 3. Comparison in precision between KL divergences and geometric distances in the continuous case.
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Fig. 4. Comparison in recall between KL divergences and geometric distances in the continuous case.
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Fig. 5. Comparison in precision between KL divergences and geometric distances in the discrete case.
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Fig. 6. Comparison in recall between KL divergences and geometric distances in the discrete case.

distance/divergence. As suggested in [21], we set
μ = 5 and varied ε so that FD and DB-KL can output
approximately the specified number k of clusters.

Figures 3 and 4 compare the precision and re-
call of UK, KM-KL, RKM-KL, FD, and DB-KL in
the continuous case, respectively. Clearly, geometric
distance-based methods UK and FD have very poor
precision and recall, while the KL divergence-based
methods KM-KL, RKM-KL, and DB-KL can obtain
much better clustering. KM-KL has higher precision
and recall than the randomized versions RKM-KL,
since the uncertain k-medoids method tries to find
the optimal non-representative object for swapping
in each iteration. In the discrete case, as shown in
Figures 5 and 6, we see similar results as in the
continuous case.

We also see that the precision and recall of all algo-

rithms follow similar trends. They are not sensitive to
the dimensionality. They increase as the sample size
increases or the number of clusters decreases. Also,
they drop when there are more clusters in a data set
since the number of object pairs in a clustering de-
creases linearly as k increases, thus the mis-clustered
pairs incur large penalties on the precision and recall.

6.1.2 Efficiency of Boosting Techniques

Figure 7 shows the speedup of the boosting tech-
niques, especially the fast Gauss transform. We plot
the runtime of KM-KL, RKM-KL, and DB-KL and
their corresponding methods implemented with the
fast Gauss transform, annotated by KM-KL-FGT,
RKM-KL-FGT, and DB-KL-FGT. Methods with the fast
Gauss transform are significantly faster than their
counterparts, since the fast Gauss transform brings
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Fig. 7. Comparison in runtime between methods w/ and
w/o the fast Gauss transform in the continuous case.
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Fig. 8. Comparison in precision between methods w/
and w/o the fast Gauss transform in the continuous case.
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Fig. 9. Comparison in recall between methods with and
without the fast Gauss transform in the continuous case.
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Fig. 10. Precision on large data sets in the continuous
case.

 0

 0.2

 0.4

 0.6

 0.8

 1

2000 4000 6000 8000 10000

re
ca

ll

RKM-KL
RKM-KL-FGT

(a) cardinality n

 0

 0.2

 0.4

 0.6

 0.8

 1

100 300 500 700 900

re
ca

ll

RKM-KL
RKM-KL-FGT

(b) sample size s

Fig. 11. Recall on large data sets in continuous case.
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Fig. 12. Runtime on large data sets in continuous cases.

down the complexity of evaluating the sum of KL
divergences from quadratic to linear.

Figures 8 and 9 show that the precision and recall
of the methods with the fast Gauss transform are
slightly lower than their counterparts which compute
KL divergences directly due to the error incurred in
the approximation.

In a word, the fast Gauss transform is a tradeoff
between quality and time. The experiment results
show that it can speed up the clustering a lot with
an acceptable accuracy tradeoff.

6.1.3 Scalability
As the uncertain k-medoids method and the uncertain
DBSCAN method have quadratic complexity with
respect to the number of objects, they cannot scale
on data sets with a large number of objects. In this
section, we test the scalability of the randomized
k-medoids method on large data sets which con-
sist of 4, 000 objects and 300 sample points in a 4-
dimensional space by default. The number of clusters
in a data set is k = 10 by default.

Figures 10 and 11 show similar trends of precision
and recall of RKM-KL and RKM-KL-FGT as on small
data sets.
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Fig. 14. Results on weather data.

Figure 12 shows the runtime of RKM-KL and RKM-
KL-FGT on large data sets. RKM-KL scales well as the
number of objects increases, however, it suffers from
the quadratic complexity of evaluating the sum of KL
divergences with respect to the sample size. Thanks to
the fast Gaussian transform, RKM-KL-FGT is scalable
on data sets with both a large number of objects and
a large sample per object.

6.2 Real Data
We obtained a weather data set from the National
Center for Atmospheric Research data archive (http:
//dss.ucar.edu/datasets/ds512.0/). The data set con-
sists of 2, 936 stations around the world. Each station

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



CLUSTERING UNCERTAIN DATA BASED ON PROBABILITY DISTRIBUTION SIMILARITY 13

 0

 5

 10

 15

 20

 25

 30

-20 -10  0  10  20  30  40

pr
ec

ip
ita

tio
n

temperature

(a) tropical

 0

 5

 10

 15

 20

 25

 30

-20 -10  0  10  20  30  40

pr
ec

ip
ita

tio
n

temperature

(b) dry

 0

 5

 10

 15

 20

 25

 30

-20 -10  0  10  20  30  40

pr
ec

ip
ita

tio
n

temperature

(c) temperate

 0

 5

 10

 15

 20

 25

 30

-20 -10  0  10  20  30  40

pr
ec

ip
ita

tio
n

temperature

(d) continental

 0

 5

 10

 15

 20

 25

 30

-20 -10  0  10  20  30  40

pr
ec

ip
ita

tio
n

temperature

(e) polar

Fig. 13. Example distributions of the 5 types of climates.

contains 366 daily records in the year of 2008. Each
record has 3 dimensions, average temperature, precip-
itation, and average humidity. We labeled the climate
type of each station according to the Köppen-Geiger
climate classification [28]. For the ground truth, sta-
tions with the same label are considered to be in the
same cluster. In total, we have 5 clusters, tropical
climate, dry climate, temperate climate, continental
climate, and polar climate.

Figure 13 shows an example distribution of each
of the 5 climates. We only plot dimensions of average
temperature and precipitation for better visualization.
Clearly, we observe the difference among the 5 types
of climates.

Figure 14 shows the results of the UK, RKM-KL,
RKM-KL-FGT, and a random clustering methods (de-
noted by RD) on the weather data set. The random
clustering method randomly assigns an object to one
of the k clusters, and it serves as the baseline of
other methods. We see that RKM-KL and RKM-KL-
FGT have much higher precision and recall than
RD and UK. RKM-KL-FGT has feasible running time
comparing to RKM-KL.

6.3 Summary
In summary, both partitioning and density-based clus-
tering methods have better clustering quality when
using KL divergences as similarity than using geo-
metric distances. The results confirm that KL diver-
gence can naturally capture the distribution difference
which geometric distance cannot capture.

To boost the computation in the continuous case
to battle the costly kernel density estimation, the fast
Gauss transform can speed up the clustering a lot with
an acceptable accuracy tradeoff. To scale on large data
sets, the randomized k-medoids method equipped
with the Gauss transform has linear complexity with
respect to both the number of objects and the sample
size per object. It can perform scalable clustering tasks
on large data sets with moderate accuracy.

7 CONCLUSIONS
In this paper, we explore clustering uncertain data
based on the similarity between their distributions.
We advocate using the Kullback-Leibler divergence
as the similarity measurement, and systematically

define the KL divergence between objects in both
the continuous and discrete cases. We integrated KL
divergence into the partitioning and density-based
clustering methods to demonstrate the effectiveness
of clustering using KL divergence. To tackle the com-
putational challenge in the continuous case, we esti-
mate KL divergence by kernel density estimation and
employ the fast Gauss transform technique to further
speed up the computation. The extensive experiments
confirm that our methods are effective and efficient.

The most important contribution of this paper is
to introduce distribution difference as the similarity
measure for uncertain data. Besides clustering, sim-
ilarity is also of fundamental significance to many
other applications, such as nearest neighbor search. In
the future, we will study those problems on uncertain
data based on distribution similarity.
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