
Continuous Influence Maximization: What Discounts
Should We Offer to Social Network Users?

Yu Yang
Simon Fraser University

Burnaby, Canada
yya119@sfu.ca

Xiangbo Mao
Simon Fraser University

Burnaby, Canada
xiangbom@sfu.ca

Jian Pei
Simon Fraser University

Burnaby, Canada
jpei@cs.sfu.ca

Xiaofei He
Zhejiang University
Hangzhou, China

xiaofeihe@gmail.com

ABSTRACT
Imagine we are introducing a new product through a social net-
work, where we know for each user in the network the purchase
probability curve with respect to discount. Then, what discount
should we offer to those social network users so that the adoption
of the product is maximized in expectation under a predefined bud-
get? Although influence maximization has been extensively ex-
plored, surprisingly, this appealing practical problem still cannot
be answered by the existing influence maximization methods. In
this paper, we tackle the problem systematically. We formulate
the general continuous influence maximization problem, investi-
gate the essential properties, and develop a general coordinate de-
scent algorithm as well as the engineering techniques for practical
implementation. Our investigation does not assume any specific in-
fluence model and thus is general and principled. At the same time,
using the most popularly adopted independent influence model as
a concrete example, we demonstrate that more efficient methods
are feasible under specific influence models. Our extensive empiri-
cal study on four benchmark real world networks with synthesized
purchase probability curves clearly illustrates that continuous influ-
ence maximization can improve influence spread significantly with
very moderate extra running time comparing to the classical influ-
ence maximization methods.

1. INTRODUCTION
Influence maximization [8, 13] is a critical technique in many

social network applications, such as viral marketing. The intu-
ition is that, by targeting on only a small number of nodes (called
seed nodes), it is possible to trigger a large cascade of information
spreading in a social network. Technically, in a social network, in-
fluence maximization tries to identify a set of nodes such that if the
selected nodes are committed to spread a piece of information to
their neighbors, such as adopting a product, the expected spread in
the social network is maximized. There have been abundant studies

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

on various models and computational methods for influence maxi-
mization. We will review some representative milestone studies in
Section 2.

All existing works on influence maximization, except for [10],
assume a node is either a seed or not. Eftekhar et al. [10] gener-
alized the assumption one step further by assuming that nodes are
divided into groups and each group takes a predefined probability
to be part of the seeds. However, many demands in practice are still
not addressed.

Imagine a company is introducing a new product through a so-
cial network by providing discounts to users in the network in the
hope of maximizing the influence spread. The total discount is con-
strained by a budget defined by the company. It is well known that
different users in a social network may have a different capability
in spreading influence. Consequently, the company naturally wants
to offer different users different discounts. It is reasonable to as-
sume that the more discount a user is offered, the more likely the
user may adopt the product and spread the influence to her neigh-
bors, which is also known in marketing research as the purchase
probability curve being monotonic with respect to discount. At
the same time, different users may have different purchase proba-
bility curves. Given a budget and the users’ purchase probability
curves, what discounts should the company offer to the users so
that the expected influence spread is maximized? Apparently, this
is an interesting question that is asked again and again in various
applications where influence maximization is used. At the same
time, unfortunately the existing influence maximization techniques
cannot answer the question.

Motivated by the practical demands, in this paper, we investi-
gate the questions about what discounts we should offer to social
network users. In general, given a social network, a budget, and,
for each user in the network, the seed probability function on dis-
count (corresponding to the purchase probability curve with respect
to discount in the above motivation example), the continuous influ-
ence maximization problem is to find the optimal configuration,
which consists of a discount rate for each user, that maximizes the
influence spread in expectation. We make several contributions.

First, to the best of our knowledge, we are the first to identify
and systematically study the problem of continuous influence max-
imization, which has significant applications in practice. We show
that the continuous influence maximization problem is a general-
ization of the existing influence maximization problem, which fo-
cuses on discrete configurations. Consequently, we investigate the
hardness of the problem, and analyze several essential properties of
the problem. We do not assume any specific influence model, and

thus all properties explored are general.
Second, we develop a general coordinate descent framework for

the general continuous influence maximization problem. Again,
this algorithm does not assume any specific influence model. We
analyze the practical challenges in implementation, and suggest the
corresponding engineering techniques.

Third, we demonstrate that more efficient methods are feasible
for specific influence models. As a concrete example, we consider
the independent cascade model [13], which is the most popularly
used influence model in literature. We develop two simple yet ef-
fective algorithms based on the latest, state-of-the-art polling-based
framework [1].

Last, we report an extensive empirical evaluation using four
benchmark real social network data sets with synthesized purchase
probability curves. The largest data set has almost 4 million nodes
and 70 million edges. The experiment results clearly show that con-
tinuous influence maximization can significantly improve influence
spread. At the same time, the extra running time remains moderate.

The rest of the paper is organized as follows. We review the re-
lated work in Section 2 and formulate the problem of continuous
influence maximization in Section 3. In Section 4, we investigate
the properties of the expectation of influence spread. We present
the general coordinate descent framework in Section 5. We study
in Section 6 the relationship between continuous influence maxi-
mization developed in this paper and the existing influence maxi-
mization problem. In Section 7, we examine the challenges of im-
plementing the coordinate descent algorithm in practice, and pro-
vide the corresponding engineering techniques. In Section 8, we
develop two algorithms under the independent cascade model. We
report an extensive empirical evaluation in Section 9, and conclude
the paper in Section 10.

For the interest of space, all mathematical proofs are given in
Appendix.

2. RELATED WORK
Domingos et al. [8] proposed to take advantage of peer influence

between users in social networks for marketing. The essential idea
is that, by targeting on only a small number of users (called seed
users), it is possible to trigger a large cascade of users purchasing a
specific product through a social network. Consequently, the tech-
nical challenge is to find a small set of users who can trigger the
largest cascade in the network. Kempe et al. [13] formulated the
problem as a discrete optimization problem, which is well known
as the influence maximization problem. Since then, influence max-
imization has drawn much attention from both academia and indus-
try [4, 5, 6, 12, 9, 23, 22].

Most influence maximization algorithms are designed for trig-
gering models [13]. Among these algorithms, a polling-based
method [1] has the lowest worst-case time complexity, O((k +
l)(n + m) log2 n/ε3). Tang et al. [23, 22] further improved the
method to make it run in O((k+ l)(n+m) logn/ε2) expected time.
The empirical studies showed that their improved algorithms are
orders of magnitude faster than the other influence maximization
algorithms. Lei et al. [14] proposed a method that learns the prop-
agation probabilities while running the viral marketing campaigns.
Another line of algorithmic viral marketing research is budgeted in-
fluence maximization [25, 19]. Under such problem settings, every
user in a social network is assigned with a threshold value that indi-
cates the amount of money a company needs to spend to persuade
her/him to be an initial adopter. One key problem of this setting
is how to obtain users’ threshold values. Singer [20] proposed a
mechanism that can elicit users’ true threshold values if they are
rational agents. Chen et al. [3] provided a comprehensive survey

on influence maximization algorithms.
Farajtabar et al. [11] modeled social events using multivariate

Hawkes processes, and developed a convex optimization frame-
work to determine the incentives on users for stimulating a social
event of a desired activity level. Although the objective function
in [11] is flexible since it only requires that the objective is a con-
cave utility function, both the properties explored in [11] and the
algorithm proposed are only suitable for multivariate Hawkes pro-
cesses rather than a general influence model. Descriptive influ-
ence models, such as the independent cascade model and the linear
threshold model [13], the two most widely used models, cannot fit
in the framework in [11].

Eftekhar et al. [10] discovered that sometimes instead of target-
ing on very few individual users, persuasion attempts on groups of
users, for example, displaying advertisements to them, may lead to
wider range cascades in social networks. The motivation of persua-
sion on groups is that by spending less money on a targeted indi-
vidual a company can target on much more users and, as a result,
in expectation such a strategy may bring more initial adopters [24].
Eftekhar et al. [10] assumed that the probability that a user is per-
suaded to be a seed user is given and fixed, if she/he is targeted. A
more realistic strategy is that we can adjust the resource spent on a
specific individual to manipulate the probability she/he becomes a
seed user, which is the subject studied in this paper.

3. PROBLEM DEFINITION
A social network is a graph G = 〈V,E〉, where V is a set of users

and E is a set of relationships between users. Denote by n = |V |
the number of users and m = |E| the number of relationships, that
is, edges.

An influence cascading model (influence model for short) de-
scribes the process of how influence is cascaded in a social net-
work. Two most widely used influence models are the independent
cascade model and the linear threshold model [13]. In an influence
cascade process, a cascade is started by a small number of users,
whom we call seed users (or seeds for short). We call the set of
seed users the seed set, denoted by S. Every influence model has an
influence function I : 2V → R, where I(S) is the expected size of the
cascade triggered by the seed set S and is also called the influence
spread of S. Usually, I(S) is assumed monotonic and submodu-
lar [13, 18], which capture the intuition about influence spreading.

In this paper, we are interested in customizing a discount for
every user in a social network to maximize influence cascading.
With a discount of 0%, a user has to pay the full price. With a
discount of 100%, the product is free for the user. Please note that
the notion of discount here can also be used to model in general the
cost that we would like to pay to a user to turn the user into a seed.

Technically, a user u ∈ V is associated with a seed probability
function pu : [0,1]→ [0,1], which models the probabilistic distri-
bution that u is attracted to become a seed user given a discount be-
tween 0% to 100%. Denote by cu the discount we offer to u. Then,
pu(cu) is the probability that u becomes a seed user given such a
discount. In this paper, we assume that a seed probability function
pu(·) has the following properties: (1) pu(0) = 0; (2) pu(1) = 1;
(3) pu(cu) is monotonic with respect to cu; and (4) pu(cu) is con-
tinuously differentiable. Conditions (1) and (2) are also assumed in
the classical influence maximization problem.

The existing marketing research [2, 21] estimates user purchase
probability. Most of the existing work focuses on the adoption rate
of the whole population rather than each individual, and estimations
are on specific goods. In reality, a user’s purchasing behavior may
change over time and on different types of goods [7]. Thus, the best
way to decide a user’s seed probability function (purchase proba-

bility curve) is to learn from data. Since seed probability functions
can take many different forms, it is important to design a general
marketing method that can handle all kinds of such functions.

We assume that different users become seed users independently.
Denote by an n-dimensional vector C = (c1,c2, ...,cn) a configura-
tion of discounts assigned to all users in G. It is clear that, unlike
the situation in the influence maximization problem, the seed set
S in our problem setting is probabilistic. Given a social network
G= 〈V,E〉 and a configuration C, the probability that a subset S⊆V
of users is the seed set is

Pr(S;V,C) = ∏
u∈S

pu(cu) ∏
v∈V−S

(1− pv(cv)) (1)

For a specific influence model with an influence function I(S), the
expected influence spread is

UI(C) = ∑
S∈2V

Pr(S;V,C)I(S) (2)

Now we define the continuous influence maximization problem
(CIM for short) studied in this paper as follows. Given a social
network G = 〈V,E〉, a budget B, a seed probability function pu(cu)
for every user u, and an influence model with an influence function
I(S), find the configuration C that is the optimal solution to the
following continuous optimization problem.

maximize UI(C)

s.t. 0≤ cu ≤ 1,∀u ∈V

∑
u∈V

cu ≤ B
(3)

We call a configuration satisfying the constraints in Eq. 3 a feasible
configuration. Please note that the budget B here is a safe budget
in general. When discounts here are used to model the costs com-
mitted to each user, it models the total cost. When discounts here
are explained as discount rates, the budget is the worst-case budget.
We leave the exploration of other forms of the budget constraint to
future work, such as the expected budget under the discount rate
explanation.

The classical influence maximization problem is a special case
of the continuous influence maximization problem, since it can be
written in a similar way as follows.

maximize UI(C)

s.t. cu = 0 or cu = 1,∀u ∈V

∑
u∈V

cu ≤ B
(4)

We call a configuration satisfying the constraints in Eq. 4 an in-
teger configuration. Apparently, an integer configuration is also a
feasible configuration.

In the rest of the paper, for the sake of clarity, we also call the
classical influence maximization problem discrete influence maxi-
mization (DIM for short). Table 1 summarizes the frequently used
notations.

4. EXPECTED INFLUENCE SPREAD
The CIM problem is to optimize the expected influence spread

UI(C). In this section, we discuss the computation of UI(C) and
the monotonicity of UI(C), which prepare us for the solution de-
velopment in the next sections.

4.1 Computing UI(C)

Given G = 〈V,E〉, an influence function I(S), and a seed proba-
bility function pu(cu) for every u∈V , how can we obtain UI(C)? It

Notation Description
G = 〈V,E〉 Social network G, where V is the set of

users and E is the set of relationships
n = |V | The number of nodes in G
m = |E| The number of edges in G
pu(cu) The probability that u becomes a seed user

if u is offered a discount cu
C = (c1,c2, ...,cn) A configuration, where cu (0 ≤ cu ≤ 1) is

the discount offered to user u
Pr(S;V,C) The probability of a subset of users S ⊆ V

is the seed set S (Eq. 1)
UI(C) The expected influence spread caused by

configuration C (Eq. 2)

Table 1: Frequently used notations.

is known that, for many popular influence models, computing I(S)
is #P-hard [4, 6]. What is the hardness of computing UI(C)?

THEOREM 1 (COMPLEXITY). Given a configuration C, com-
puting UI(C) = ∑S∈2V Pr(S;V,C)I(S) is #P-hard if computing I(S)
is #P-hard.

Since UI(C) is the expectation of I(S) over the random variable
S, we can use Monte Carlo simulations to estimate UI(C). Because
every user becomes a seed user independently, randomly generat-
ing a seed set S according to Pr(S;V,C) is equivalent to simply
adding each user u to S independently with probability pu(cu). We
have the following result.

THEOREM 2 ((ε,δ) ESTIMATION). Suppose we have an in-
fluence spread oracle that can return the influence spread I(S)
of a given seed set S. By calling the influence spread oracle

n2 ln 2
δ

2ε2(∑u∈V pc(cu))2 times, we can have an (ε,δ) estimation [17] of
UI(C).

As mentioned before, computing I(S) is #P-hard for some influ-
ence functions. The good news is that there exists a FPRAS1 (Fully
Polynomial Randomized Approximation Scheme) [17, 16] for es-
timating I(S). We prove that if I(S) can be estimated efficiently,
so is UI(C). Similar to influence maximization where the number
of seeds B is assumed to be Ω(1), we assume that the expected
number of seeds ∑u∈V pu(cu) is also Ω(1).

THEOREM 3 (FPRAS ESTIMATION). For an influence func-
tion I(·), if there is a FPRAS for estimating I(·), there is a FPRAS
for estimating UI(·).

For the two most widely used influence models, namely the in-
dependent cascade model and the linear threshold model [13], we
have the following upper bound on the time complexity of Monte
Carlo simulations needed for obtaining an (ε,δ) approximation of
UI(C).

THEOREM 4 (APPROXIMATION RUNTIME). Under the inde-
pendent cascade model and the linear threshold model, we can

use O(
mn2 ln 1

δ

2ε2(∑u∈V pu(cu))2) time to obtain an (ε,δ) approximation of
UI(C).

In summary, the results in this subsection establish that, as long
as I(S) can be computed efficiently (that is, in polynomial time),
1An FPRAS is an algorithm which returns an (ε,δ) estimation of
the desired value in time polynomial to n (size of input), 1

ε
and ln 1

δ
.

UI(C) can also be computed efficiently. This strong relation makes
comparing two different configurations C1 and C2 computationally
feasible, since we can efficiently estimate UI(C1) and UI(C2) ac-
curately.

4.2 Monotonicity of UI(C)

Eq. 3 contains an inequality constraint ∑u∈V cu ≤ B. According
to the assumption that pu(cu) is monotonic with respect to cu, we
can prove that the inequality constraint ∑u∈V cu ≤ B can be substi-
tuted by an equation constraint ∑u∈V cu = B.

LEMMA 1. Given configurations C1 = (c1
1,c

1
2, ...,c

1
n) and C2 =

(c2
1,c

2
2, ...,c

2
n), if there exists u (1 ≤ u ≤ n) such that c1

u ≥ c2
u, and

∀v ∈V −{u}, c1
v = c2

v , then UI(C1)≥UI(C2).

For two configurations C1 = (c1
1,c

1
2, ...,c

1
n) and C2 =

(c2
1,c

2
2, ...,c

2
n), we write C1 � C2 if ∀u, c1

u ≥ c2
u. By the tran-

sitivity of ≥ and Lemma 1, we have the following immediately.

THEOREM 5 (MONOTONICITY). If C1 � C2, then UI(C1) ≥
UI(C2).

According to Theorem 5, it is obvious that the optimal C for
the continuous influence maximization problem must use up the
budget B. Thus, the continuous influence maximization problem
can be rewritten as follows.

maximize UI(C)

s.t. 0≤ cu ≤ 1,∀u ∈V

∑
u∈V

cu = B
(5)

5. A GENERAL COORDINATE DESCENT
FRAMEWORK

In this section, we develop a coordinate descent algorithm to
solve the continuous influence maximization problem. Our algo-
rithm is a general framework, since we do not compose any con-
straints on the specific form of the influence function I(S) and the
seed probability function pu(cu). We only assume that pu(cu) is
monotonic and continuously differentiable.

5.1 Gradient
For a node u ∈V , we can rewrite UI(C) as follows.

UI(C)

= ∑
S∈2V∧u∈S

Pr(S;V,C)I(S)+ ∑
S∈2V∧u 6∈S

Pr(S;V,C)I(S)

= ∑
S∈2V−{u}

Pr(S;V −{u},C)I(S)[1− pu(cu)]

+ ∑
S∈2V−{u}

Pr(S;V −{u},C)I(S∪{u})pu(cu)

=pu(cu) · ∑
S∈2V−{u}

Pr(S;V −{u},C)[I(S∪{u})− I(S)]+ const

where const is a constant with respect to cu. Given a graph
G = 〈V,E〉 and influence function I(S), for a node u ∈V , Pr(S;V −
{u},C), I(S) and I(S∪{u}) are constants with respect to cu. There-
fore, using a node u ∈ V we can rewrite the objective function
UI(C) into a linear function of pu(cu), where cu is the only vari-
able.

Assuming pu(cu) is continuously differentiable, we can take the
partial derivative of UI(C) with respect to cu, that is,

∂UI(C)

∂cu
= p

′
u(cu) ∑

S∈2V−{u}
Pr(S;V −{u},C)[I(S∪{u})− I(S)]

(6)

In this way, we can compute the gradient of UI(C) with respect to
a specific configuration C. The gradient information will be used
in the coordinate descent algorithm to be developed next.

5.2 A Coordinate Descent Algorithm
The coordinate descent algorithm is an iterative algorithm. In

each iteration, we pick only two variables ci and c j, and fix the
rest n− 2 variables. We try to increase the value of the objective
function UI(C) by changing only the values of ci and c j .

As stated in Eq. 5, ∑u∈V cu = B. Thus, when we fix cu for all u ∈
V−{i, j}, ∑u∈V−{i, j} cu is a constant. Let B′ =B−∑u∈V−{i, j} cu =

ci + c j. In other words, c j = B′ − ci. Combining the other con-
straints 0 ≤ ci ≤ 1 and 0 ≤ c j ≤ 1 in Eq. 5, we have an equivalent
constraint max(0,B′−1)≤ ci ≤ min(1,B′).

Thus, in each iteration, increasing UI(C) can be achieved by
solving the following optimization problem.

maximize UI(C) w.r.t. ci and c j = B′− ci

s.t. max(0,B′−1)≤ ci ≤ min(1,B′)
(7)

To solve the above optimization problem, we further rewrite
UI(C) by fixing cu for all u ∈ V −{i, j} and setting c j = B′− ci.
That is,

UI(C) = ∑
S∈2V−{i, j}

Pr(S;V −{i, j},C)
{

[1− pi(ci)][1− p j(B′− ci)]I(S)

+ [1− pi(ci)]p j(B′− ci)I(S∪{ j})
+ [1− p j(B′− ci)]pi(ci)I(S∪{i})

+ pi(ci)p j(B′− ci)I(S∪{i, j})
}

(8)

In Eq. 8, except for pi(ci) and p j(B′− ci), all terms can be re-
garded as constants. Therefore, we have a new form of UI(C) with
respect to ci and c j = B′− ci as follows.

UI(C) =(A1 +A2−A3−A4)pi(ci)p j(B′− ci)

+(A3−A1)pi(ci)+(A4−A1)p j(B′− ci)+ const,
(9)

where

A1 = ∑
S∈2V−{i, j}

Pr(S;V −{i, j},C)I(S)

A2 = ∑
S∈2V−{i, j}

Pr(S;V −{i, j},C)I(S∪{i, j})

A3 = ∑
S∈2V−{i, j}

Pr(S;V −{i, j},C)I(S∪{i})

A4 = ∑
S∈2V−{i, j}

Pr(S;V −{i, j},C)I(S∪{ j})

(10)

In Eq. 9, UI(C) only has one variable ci. We take the derivative of
UI(C), that is,

dUI(C)

dci
=(A1 +A2−A3−A4)[p

′
i(ci)p j(B′− ci)

− pi(ci)p
′
j(B
′− ci)]+(A3−A1)p

′
i(ci)

− (A4−A1)p
′
j(B
′− ci)

(11)

Since pi(ci) and p j(B′ − ci) are both continuously differen-
tiable on (max(0,B′− 1),min(B′,1)), the value ci ∈ [max(0,B′−
1),min(B′,1)] that maximizes the objective function in Eq. 7 must
be in one of the following three situations: (1) ci = max(0,B′ −
1); (2) ci = min(B′,1); or (3) ci = x, where x ∈ (max(0,B′ −
1),min(B′,1)) and dUI(C)

dci
|ci=x = 0. Thus, we only need to check

Input: Budget B, social network G, seed probability function
pu(cu), ∀u ∈V , and influence function (influence
model) I(S)

Output: Configuration C
1: Initialize C such that C satisfies constraints in Eq. 5
2: while not converge do
3: Pick two variables ci and c j
4: B′← ci + c j
5: Find all x ∈ (max(0,B′−1),min(B′,1)) that

dUI(C)
dci
|ci=x = 0

6: ci← argmaxci∈{x,max(0,B′−1),min(1,B′)}UI(C)

7: c j← B′− ci
8: end while
9: return C

Algorithm 1: The Coordinate Descent Algorithm

these three types of points and set ci to the one that results in the
maximum value of UI(C) with respect to ci and c j = B′− ci.

Based on the above discussion, the pseudo-code of the coordi-
nate descent algorithm for solving the continuous influence maxi-
mization problem is given in Algorithm 1.

We do not assume any specific seed probability function pu(cu)
and influence function I(S). Thus, Algorithm 1 is a general frame-
work for solving the continuous influence maximization problem.

In Line 3 of Algorithm 1, we do not specify which ci and c j
should be picked. One heuristic that may help here is to use the
partial derivative ∂UI(C)

∂cu
as a heuristic. For example, we can pick

a variable with a large partial derivative and another variable that
has a small partial derivative. Limited by space, we leave the ex-
ploration of effective heuristics to future work.

The convergence of Algorithm 1 is guaranteed by the following
observations. First, UI(C) ≤ n, where n is the number of nodes
in the social network. Second, after each iteration in Algorithm 1,
the updated configuration C ensures that the value of UI(C) is at
least as good as the previous one, that is, the value of UI(C) is
non-decreasing.

Algorithm 1 approaches a stationary configuration as the limit,
which is a necessary condition for finding local optima. Since the
objective function UI(C) is not necessarily convex or concave, even
when the stationary point is a local optima, it may not be the global
optima. At the same time, because in each iteration the value of
our objective cannot be decreased, when taking a configuration C
and applying Algorithm 1, we can always find a configuration C′

no worse than C.

6. CIM AND DIM
In this section, we examine the relation between the continu-

ous influence maximization problem (CIM) studied in this paper
and the classical and well studied (discrete) influence maximiza-
tion problem (DIM).

Our first result is that, when the influence function I(S) and the
seed probability function pu(cu) satisfy certain conditions, the con-
tinuous influence maximization problem and the discrete influence
maximization problem share the same optimal solution.

THEOREM 6 (CIM AND DIM). Given an influence function
I(S) that is monotonic and submodular, a budget B that is a positive
integer, and a seed probability function pu(·) for every node such
that ∀u∈V,∀cu ∈ [0,1], pu(cu)≤ cu, the optimal objectives of CIM
and DIM are equivalent.

COROLLARY 1. Given an influence function I(S) that is mono-
tonic and submodular, an integer budget B, if ∀u ∈ V,∀cu ∈ [0,1],
pu(cu) ≤ cu, then there exists an integer configuration C that is
optimal to CIM.

Theorem 6 also immediately indicates the complexity of the con-
tinuous influence maximization problem.

COROLLARY 2. If maximizing I(S) is NP-hard, and I(S) is
monotonic and submodular, then given a social network G= 〈V,E〉,
a budget B and the seed probability function pu(cu) for each u∈V ,
maximizing UI(C) over C is also NP-hard.

To further understand the significance of Theorem 6, we notice
that the seed probability function pu(cu) represents how user u is
sensitive to discount cu. If pu(cu) ≤ cu, user u is insensitive to
discount. Theorem 6 indicates that, if all users in the network are
insensitive to discount, then we would better give free products to
some seed users, that is, setting cu = 1, to trigger a sizeable cascade
propagation.

Although under some conditions, CIM and DIM share the same
optimal objectives, it can be shown that in some situations it is not
the case, particularly when some users are sensitive to discount.

EXAMPLE 1. Consider a social network G = 〈V,E〉 where E =
/0. In other words, G is a graph of n isolated nodes. In the
independent influence model or the linear cascade model, if the
budget B = 1, and for each node u, the seed probability function
pu(cu) =

√
cu, then the optimal solution for discrete influence max-

imization is to pick an arbitrary node u and the optimal influence
spread is 1. However, the optimal solution to continuous influence
maximization is to assign 1

n discount to each node, and the optimal
influence spread is

√
n. Thus, not only the optimal solution to dis-

crete influence maximization is not optimal to continuous influence
maximization in some cases, but also such solutions to DIM can
be arbitrarily bad for CIM as the size of the network becomes very
large.

It can be easily shown that CIM can always achieve influence
spread no smaller than DIM. Given a budget B, one can first run a
DIM algorithm to find a seed set of bBc seeds. Then, by taking the
corresponding integer configuration C of the seed set as the initial
configuration, after applying the coordinate descent algorithm, a
configuration C′ that UI(C′)≥UI(C) can be found.

7. PRACTICAL CIM SOLUTIONS
In this section we first discuss some challenges that the coordi-

nate descent algorithm faces in practical implementation. Then, we
introduce a practical strategy. Although the strategy cannot guar-
antee a global or local optimal solution to the continuous influence
maximization problem, it can always find a solution no worse than
a solution to the discrete influence maximization problem that a
known method can produce.

7.1 Practical Challenges for the Coordinate
Descent Algorithm

In the coordinate descent algorithm, we need to compute 3 co-
efficients, (A1 +A2−A3−A4), A3−A1, and A4−A1. Similar to
UI(C), these three coefficients can only be estimated by sampling
techniques if computing I(S) is #P-hard. All the three coefficients
can be very close to 0. Consequently, estimating them may be very
challenging.

To tackle the challenge, a practical trick is not to solve
dUI(C)

dci
|ci=x = 0. Instead, we can estimate UI(C) directly by trying

all possible values of ci ∈ [max(0,B′−1),min(B′,1)]. This makes
good sense in practice since a budget typically carries a minimum
unit. For example, if we want the absolute error of C to be up to
0.01, at most we only need to try 101 different values of ci because
min(B′,1)−max(0,B′−1)≤ 1.

However, even the above trick may face serious challenges in
some situations. A key observation is that the gain obtained in an
iteration of the coordinate descent algorithm is limited.

THEOREM 7 (GAIN IN AN ITERATION). In the coordinate
descent algorithm, let the configuration before an iteration and that
after the iteration be C and C1, respectively. Then, after the itera-
tion, we have

UI(C1)−UI(C)

≤argmax
u∈V

∑
S∈2V−{u}

Pr(S;V −{u},C)
(
I(S∪{u})− I(S)

)
Theorem 7 indicates that sometimes the gain after one itera-

tion in the coordinate descent algorithm can be very small, be-
cause I(S∪ {u})− I(S) can be close to 0. While very often we
can only calculate UI(C) by Monte Carlo simulations, such sam-
pling techniques may fail to detect a very small difference between
two highly similar configurations.

7.2 Unified Discount Configuration
A practical engineering strategy to design discounts is to offer a

unified discount to some users in a social network. That means, for
each node u in G, cu is either a predefined value c or 0. Thus, for
finding a good configuration C, we can optimize over the unified
discount c. Although c is continuous, because we have to use up
all budget due to the monotonicity of UI(C), to optimize over c, we
only need to consider situations when c = B

dBe ,
B

dBe+1 , . . . ,
B
n . Now,

the problem becomes how we can find the optimal configuration
when c is fixed.

When c is fixed, finding the optimal configuration C is to find the
optimal set of users to offer each of them discount c. Suppose we
choose the set S of users to offer discounts, denote by Pr(S′;S,c)
the probability of generating a seed set S′ when the unified discount
is c, that is,

Pr(S′;S,c) = ∏
u∈S′

pu(c) ∏
v∈S−S′

(1− pv(c)) (12)

We define UI(S;c) as the expected influence spread when we
offer each user in S with a unified discount c. That is,

UI(S;c) = ∑
S′∈2S

Pr(S′;S,c)I(S′) (13)

We observe the following nice property of UI(S;c) when c is
fixed.

THEOREM 8 (MONOTONICITY AND SUBMODULARITY). If
I(S) is monotonic and submodular with respect to S, then UI(S;c)
is also monotonic and submodular with respect to S.

The monotonicity and submodularity of UI(S;c) with respect to
S imply that, when c is fixed, we can apply a greedy algorithm to
find a set of users S to offer discounts which can cause influence
spread at least (1− 1

e) times of the influence spread caused by the
optimal set of users S∗. In such a case, when the influence model
and seed probability function for each user are given, some efficient
influence maximization algorithms [15, 23, 22] can be applied here.

8. CIM ALGORITHMS UNDER THE IN-
DEPENDENT CASCADE MODEL

In this paper, we demonstrate how we can develop specific algo-
rithms for continuous influence maximization under some specific
influence model. Since the independent cascade model is the most
popularly used influence model [5, 4, 13, 23], we design two sim-
ple yet effective algorithms to solve the continuous influence maxi-
mization problem under the independent cascade model. Note that
our main contribution in this paper is the general framework, the
discussion in this subsection is for providing an example that how
a specific influence model is plugged into our framework.

Recently, a polling-based algorithmic framework [1, 23, 22] was
proposed for triggering models [13] like the IC model and was
shown the most efficient influence maximization algorithm so far.
Our algorithms are also polling-based algorithms.

Let us first briefly review how a polling method works for influ-
ence maximization.

Given a graph G = 〈V,E〉, a poll is conducted as follows: a node
v ∈V is picked in random and then we try to find out which nodes
are likely to influence v. We run a Monte Carlo simulation of IC
propagation from v on the transpose graph 2 GT . Note that the
propagation probability of an edge (v,u) in GT is ppuv, the propa-
gation probability of edge (u,v) in G. Such “reverse” propagation
process from v is used for finding v’s potential “influencers”. Sup-
pose the set of nodes reached in this poll is h. We call h a random
hyper-edge. The intuition of the poll process is that if a node u
has high influence, then the probability that u appears in a random
hyper-edge h is high.

Then the polling method consists of two major steps.

1. Random Hyper-graph Construction. Generate a random
hyper-graph H by generating a certain number of random
hyper-edges. Note that nodes in H are still nodes in G. A
node u and a hyper-edge h ∈ H are incident if u ∈ h. De-
note by degH(S) the degree of the set of nodes S, which is
the number of hyper-edges in H incident to at least one node
of S. The greater degH(S) is, the more likely the influence
spread of S is high.

2. Maximum Coverage on Radom Hyper-graph. Greedily
choose B nodes to add to the seed set S such that the selected
node can increase degH(S) the most.

One key property that makes the polling method work well is that
when the number of random hyper-edges mH is fixed, degH (S)∗n

mH is
an unbiased estimation of I(S), the influence spread of S in G [1].
Thus, as long as mH is sufficiently large, the seed set returned by
the polling method has good quality guarantees. Tang et al. [23,
22] illustrated how to estimate the lower bound of mH that makes
the result of the polling method a (1−1/e−ε)-approximation with
probability at least 1− 1

n given ε .
To solve the continuous influence maximization problem, we

can employ a similar method that also constructs a random hyper-
graph.

THEOREM 9. Given a graph G = 〈V,E〉 and seed probabil-
ity functions of all nodes, a random hyper-graph H with mH
hyper-edges generated according to G and a configuration C,
n∗∑h∈H [1−∏u∈h (1−pu(cu))]

mH is an unbiased estimation of UI(C).

According to Theorem 9, we build a random hyper-graph H by
simply setting mH to a predefined number, usually in O(n logn).
2GT = 〈V,ET 〉 is the transpose graph of G = 〈V,E〉 if ∀(u,v) ∈ E,
(v,u) ∈ ET

Two continuous influence maximization algorithms are devised
based on H.

The first algorithm is called Unified Discount (UD). In Sec-
tion 7.2, we discussed that in reality, instead of offering different
users different discounts, a company can select a set of users and
offer each of them the same discount c. We prove that, under such
a situation, UI(S;c) is monotonic and submodular if I(S) is mono-
tonic and submodular, which is true under the IC model. One can
also easily prove that ∑h∈H [1−∏u∈h (1− pu(cu))] is also mono-
tonic and submodular when cu = c or 0. Thus, when c is fixed, a
simple greedy algorithm with the CELF pruning technique [15] can
be applied to find a set S that is at least (1−1/e) optimal with re-
spect to maximizing ∑h∈H [1−∏u∈h (1− pu(cu))]. Obviously the
configuration C returned satisfies that cu = c if u ∈ S, otherwise
cu = 0. For finding the best discount c, we adopt a simple heuristic
that is based on the fact that normally discount offered by compa-
nies is a multiple of 5%. Therefore, we simply run an exhaustive
search of c by setting c= 5%,10%, ...,95%,100%. One can choose
some other step interval as needed.

The second algorithm, called Coordinate Descent (CD), takes
the configuration returned by the Unified Discount algorithm as the
initial values and a coordinate descent procedure is conducted to
further improve UI(C). Like Unified Discount, this algorithm is
also run on the random hyper-graph H. Thus, the formulation that
the optimization Coordinate Descent tries to solve is

maximize ∑
h∈H

[1−∏
u∈h

(1− pu(cu))]

s.t. 0≤ cu ≤ 1,∀u ∈V

∑
u∈V

cu ≤ B

(14)

In our implementation, in each iteration, instead of picking a pair
of coordinates ci and c j from O(n2) potential pairs in Algorithm 1,
we only pick ci and c j from coordinates that have non-zero values
in the initial configuration C. Note that the initial configuration C
has at most B

5% = O(B) non-zero entries, and B� n. Efficiency is
the major reason to do this. In the experiments, we run iterations
in total 100 rounds. In each round, every pair of non-zero ci and c j
are picked and optimized over.

EXAMPLE 2. Fig. 1 is a toy example illustrating the differences
between integer configuration, unified discount configuration, and
continuous configuration. In Figure 1, the propagation model is
the IC model and the propagation probabilities along edges are all
0.1. Suppose the seed probability functions for the nodes in this
graph are all pu(cu) = 2cu− c2

u, that is, the users are sensitive to
discount. When B = 1, the optimal seeding strategy for DIM is
to choose node v1 as the single seed, which leads to the best in-
teger configuration is C1 = (1,0,0,0,0) and UI(C1) = 1.4. If we
apply the unified discount strategy, the best unified discount value
is 0.2. Correspondingly the best unified discount configuration is
C2 = (0.2,0.2,0.2,0.2,0.2) and UI(C2) = 1.89216. If we apply the
coordinate descent algorithm and set C2 = (0.2,0.2,0.2,0.2,0.2)
as the initial value of configuration, we get a better continuous
configuration C3 = (0.38312,0.15422,0.15422,0.15422,0.15422)
and UI(C3) = 1.93533.

9. EMPIRICAL EVALUATION
To examine the effectiveness and efficiency of our methods, in

this section, we report experiments on four real networks with syn-
thesized seed probability functions to test our proposed methods.

v1v3

v4

v5

0.1

0.1

0.1

0.1

v2

Figure 1: An example illustrating the differences among inte-
ger configuration, unified discount configuration and continu-
ous configuration.

cucu

2cu − cu
2

2cu − cu
2

cu
2
cu
2

0.25

0.50

0.75

1.00

0.25 0.50 0.75 1.00
cu

p
u
(c

u
)

0.00

Figure 2: The seed probability functions used in the experi-
ments.

The experiment results show that the continuous influence maxi-
mization strategy can significantly improve influence spread with-
out incurring dramatic extra overheads compared to discrete influ-
ence maximization.

Network n m
Average
Degree mH

wiki-Vote 7,115 103,689 14.6 0.25M
ca-AstroPh 18,772 396,220 21.1 1M
com-dblp 317,080 2,099,732 6.6 20M

com-LiveJornal 3,997,962 69,362,378 17.3 40M

Table 2: Datasets

9.1 Expertmental Settings
We ran our experiments on four real network data sets that are

publicly available in SNAP (http://snap.stanford.edu/
data/index.html). Table 2 shows the details of the four data
sets. All networks are treated as directed graphs, which means if a
network is undirected, every undirected edge (u,v) is processed as
two directed edges (u,v) and (v,u).

In our experiments, we adopted the Independent Cascade (IC)
model as the influence model, which is the most widely used in
literature [5, 4, 13, 23]. Following the most popular settings of the
IC model [5, 4, 13, 23], we set the propagation probability of a
directed edge (u,v) to α

in−degree(v) , where α ∈ {0.7,0.85,1}.
For seed probability functions, unfortunately we do not have ac-

cess to any such real data sets for the purpose of experiments. Thus,
we used synthesized seed probability functions. Given a network
G = 〈V,E〉, we randomly picked 5% nodes to assign pu(cu) = c2

u,
and 10% nodes to assign pu(cu) = cu as their seed probability func-
tions. These users (nodes) were insensitive to discount. The rest
85% nodes were assigned with pu(cu) = 2cu − c2

u, which means
that those users are sensitive to discount. When cu is close to 0,
the probability that u becomes a seed is roughly twice of cu. As cu

increases, the ratio 2cu−c2
u

cu
decreases gradually. Figure 2 shows the

curves of the two seed probability functions as well as the function
pu(cu) = cu as the reference.

0

100

200

300

400

500

10 20 30 40 50

Budget

In
fl
u

e
n

c
e

 S
p

re
a

d
CD

UD

IM

wiki−Vote with α = 0.7

(a) on wiki-Vote with α = 0.7

0

100

200

300

400

500

600

10 20 30 40 50

Budget

In
fl
u

e
n

c
e

 S
p

re
a

d

CD

UD

IM

wiki−Vote with α = 0.85

(b) on wiki-Vote with α = 0.85

0

100

200

300

400

500

600

700

800

10 20 30 40 50

Budget

In
fl
u

e
n

c
e

 S
p

re
a

d

CD

UD

IM

wiki−Vote with α = 1

(c) on wiki-Vote with α = 1

0

200

400

600

800

1000

10 20 30 40 50

Budget

In
fl
u

e
n

c
e

 S
p

re
a

d

CD

UD

IM

ca−AstroPh with α = 0.7

(d) on ca-AstroPh with α = 0.7

0

200

400

600

800

1000

1200

1400

1600

1800

10 20 30 40 50

Budget

In
fl
u

e
n

c
e

 S
p

re
a

d

CD

UD

IM

ca−AstroPh with α = 0.85

(e) on ca-AstroPh with α = 0.85

0

500

1000

1500

2000

2500

3000

10 20 30 40 50

Budget

In
fl
u

e
n

c
e

 S
p

re
a

d

CD

UD

IM

ca−AstroPh with α = 1

(f) on ca-AstroPh with α = 1

0

500

1000

1500

2000

2500

3000

10 20 30 40 50

Budget

In
fl
u

e
n

c
e

 S
p

re
a

d

CD

UD

IM

com−dblp with α = 0.7

(g) on com-dblp with α = 0.7

0

500

1000

1500

2000

2500

3000

3500

4000

4500

10 20 30 40 50

Budget

In
fl
u

e
n

c
e

 S
p

re
a

d

CD

UD

IM

com−dblp with α = 0.85

(h) on com-dblp with α = 0.85

0

1000

2000

3000

4000

5000

6000

7000

10 20 30 40 50

Budget

In
fl
u

e
n

c
e

 S
p

re
a

d

CD

UD

IM

com−dblp with α = 1

(i) on com-dblp with α = 1

0

4000

8000

12000

16000

20000

24000

10 20 30 40 50

Budget

In
fl
u

e
n

c
e

 S
p

re
a

d

CD

UD

IM

com−lj with α = 0.7

(j) on com-LiveJournal with α = 0.7

0

10000

20000

30000

40000

10 20 30 40 50

Budget

In
fl
u

e
n

c
e

 S
p

re
a

d

CD

UD

IM

com−lj with α = 0.85

(k) on com-LiveJournal with α = 0.85

0

20000

40000

60000

80000

100000

120000

10 20 30 40 50

Budget

In
fl
u

e
n

c
e

 S
p

re
a

d

CD

UD

IM

com−lj with α = 1

(l) on com-LiveJournal with α = 1

Figure 3: Influence spread

To compare the continuous influence maximization strategy and
the existing discrete one, we compare the results of our algorithms
to the result of discrete influence maximization. Since the IC model
was used in our experiments, all algorithms implemented are based
on the IC model. Therefore, in our experiments, all algorithms
were implemented based on the polling framework. All algorithms
were implemented in C# and ran on an Apple Mac Pro (Late 2013)
computer with Intel Xeon 3.70GHz CPU, 64GB main memory. In
the algorithms developed in Section 8, we need to set a parameter

mH. The value for each dataset is also listed in Table 2.

9.2 Experimental Results

9.2.1 Effectiveness
Fig. 3 shows the influence spread of each algorithm under dif-

ferent settings of parameters. Since our methods introduce extra
uncertainty in the seed set, we also report one standard deviation
interval of influence spread in Fig. 3. All influence spreads and

Approximation Upper Bound (63%)Approximation Upper Bound (63%)Approximation Upper Bound (63%)Approximation Upper Bound (63%)Approximation Upper Bound (63%)

50%

55%

60%

65%

10 20 30 40 50
Budget

A
p

p
ro

xi
m

a
tio

n
 L

o
w

e
r

B
o

u
n

d

(a) on wiki-Vote with α = 0.7

Approximation Upper Bound (63%)Approximation Upper Bound (63%)Approximation Upper Bound (63%)Approximation Upper Bound (63%)Approximation Upper Bound (63%)

50%

55%

60%

65%

10 20 30 40 50
Budget

A
p

p
ro

xi
m

a
tio

n
 L

o
w

e
r

B
o

u
n

d

(b) on wiki-Vote with α = 0.85

Approximation Upper Bound (63%)Approximation Upper Bound (63%)Approximation Upper Bound (63%)Approximation Upper Bound (63%)Approximation Upper Bound (63%)

50%

55%

60%

65%

10 20 30 40 50
Budget

A
p

p
ro

xi
m

a
tio

n
 L

o
w

e
r

B
o

u
n

d

(c) on wiki-Vote with α = 1

Approximation Upper Bound (63%)Approximation Upper Bound (63%)Approximation Upper Bound (63%)Approximation Upper Bound (63%)Approximation Upper Bound (63%)

50%

55%

60%

65%

10 20 30 40 50
Budget

A
p

p
ro

xi
m

a
tio

n
 L

o
w

e
r

B
o

u
n

d

(d) on ca-AstroPh with α = 0.7

Approximation Upper Bound (63%)Approximation Upper Bound (63%)Approximation Upper Bound (63%)Approximation Upper Bound (63%)Approximation Upper Bound (63%)

50%

55%

60%

65%

10 20 30 40 50
Budget

A
p

p
ro

xi
m

a
tio

n
 L

o
w

e
r

B
o

u
n

d

(e) on ca-AstroPh with α = 0.85

Approximation Upper Bound (63%)Approximation Upper Bound (63%)Approximation Upper Bound (63%)Approximation Upper Bound (63%)Approximation Upper Bound (63%)

50%

55%

60%

65%

10 20 30 40 50
Budget

A
p

p
ro

xi
m

a
tio

n
 L

o
w

e
r

B
o

u
n

d

(f) on ca-AstroPh with α = 1

Approximation Upper Bound (63%)Approximation Upper Bound (63%)Approximation Upper Bound (63%)Approximation Upper Bound (63%)Approximation Upper Bound (63%)

50%

55%

60%

65%

10 20 30 40 50
Budget

A
p

p
ro

xi
m

a
tio

n
 L

o
w

e
r

B
o

u
n

d

(g) on com-dblp with α = 0.7

Approximation Upper Bound (63%)Approximation Upper Bound (63%)Approximation Upper Bound (63%)Approximation Upper Bound (63%)Approximation Upper Bound (63%)

50%

55%

60%

65%

10 20 30 40 50
Budget

A
p

p
ro

xi
m

a
tio

n
 L

o
w

e
r

B
o

u
n

d

(h) on com-dblp with α = 0.85

Approximation Upper Bound (63%)Approximation Upper Bound (63%)Approximation Upper Bound (63%)Approximation Upper Bound (63%)Approximation Upper Bound (63%)

50%

55%

60%

65%

10 20 30 40 50
Budget

A
p

p
ro

xi
m

a
tio

n
 L

o
w

e
r

B
o

u
n

d

(i) on com-dblp with α = 1

Approximation Upper Bound (63%)Approximation Upper Bound (63%)Approximation Upper Bound (63%)Approximation Upper Bound (63%)Approximation Upper Bound (63%)

50%

55%

60%

65%

10 20 30 40 50
Budget

A
p

p
ro

xi
m

a
tio

n
 L

o
w

e
r

B
o

u
n

d

(j) on com-LiveJournal with α = 0.7

Approximation Upper Bound (63%)Approximation Upper Bound (63%)Approximation Upper Bound (63%)Approximation Upper Bound (63%)Approximation Upper Bound (63%)

50%

55%

60%

65%

10 20 30 40 50
Budget

A
p

p
ro

xi
m

a
tio

n
 L

o
w

e
r

B
o

u
n

d

(k) on com-LiveJournal with α = 0.85

Approximation Upper Bound (63%)Approximation Upper Bound (63%)Approximation Upper Bound (63%)Approximation Upper Bound (63%)Approximation Upper Bound (63%)

50%

55%

60%

65%

10 20 30 40 50
Budget

A
p

p
ro

xi
m

a
tio

n
 L

o
w

e
r

B
o

u
n

d

(l) on com-LiveJournal with α = 1

Figure 4: Approximation Lower Bound

standard deviations are obtained by 20,000 Monte Carlo simula-
tions. From the results we find that both the Unified Discount (UD)
algorithm and the Coordinate Descent (CD) algorithm can signifi-
cantly increase the expected influence spread compared to discrete
influence maximization (IM). Although the standard deviations of
UD and CD algorithms are larger than that of IM, the gap is not
large. In most cases the ratio of the first two to the last one is no
more than 1.5. The CD algorithm can always achieve a higher influ-
ence spread and a lower standard deviation than the UD algorithm.
Worth noting that 100 rounds of iterations for the CD algorithm are
enough on datasets used in experiments. The CD algorithm con-
verges within 100 rounds in all cases in our experiments.

Tang et al. [22] pointed out that, for the IM algorithm, to achieve
a (1− 1

e − ε)-approximation of the optimal solution with at least
1− 1

n probability, the number of hyper edges mH should be set to

at least
2n(1− 1

e)(log(n
k)+logn+log2)

OPT ε2 . Therefore, when mH is fixed and
the influence spread of the solution of the IM algorithm is known,

we can figure out ε accordingly, and know how good the solution
is. Thus, we also report the approximation lower bound of the in-
fluence maximization algorithm. Here we use the influence spread
of the seed set returned by the IM algorithm as a lower bound of
OPT . Fig. 4 shows that the approximation lower bound of the IM
algorithm under our experimental settings is greater than 55% usu-
ally. Note that (1− 1

e) ≈ 63% is the approximation upper bound
of any polynomial time algorithm if P 6= NP. This means our im-
plementation of the baseline algorithm (IM) in the experiments is
fairly good.

Fig. 5 shows how the influence spread varies with respect to the
unified discount c in the Unified Discount algorithm. Limited by
space, we only report the influence values when α = 1 and B = 50
on each dataset. From Fig. 5 we can see that finding a best unified
discount is necessary because different values of c can result in very
different influence spreads.

We also tested the effectiveness of the search step 5% we chose
in the Unified Discount algorithm. Table 3 shows the difference of

400

500

600

700

0.1 0.20.20.2 0.3 0.40.40.4 0.5 0.60.6 0.70.7 0.80.80.8 0.9 1.01.0

Discount

In
flu

en
ce

 S
pr

ea
d

wiki−Vote with α = 1

(a) on wiki-Vote with α = 1 and B = 50

2200

2400

2600

2800

0.1 0.20.20.2 0.3 0.40.40.4 0.5 0.60.6 0.70.7 0.80.80.8 0.9 1.01.0

Discount

In
flu

en
ce

 S
pr

ea
d

ca−AstroPh with α = 1

(b) on ca-AstroPh with α = 1 and B = 50

5000

5500

6000

6500

7000

0.1 0.20.20.2 0.3 0.40.40.4 0.5 0.60.6 0.70.7 0.80.80.8 0.9 1.01.0

Discount

In
flu

en
ce

 S
pr

ea
d

com−dblp with α = 1

(c) on com-dblp with α = 1 and B = 50

60000

80000

100000

120000

0.1 0.20.20.2 0.3 0.40.40.4 0.5 0.60.6 0.70.7 0.80.80.8 0.9 1.01.0

Discount

In
flu

en
ce

 S
pr

ea
d

com−lj with α = 1

(d) on com-LiveJournal with α = 1 and B = 50

Figure 5: Influence Spread w.r.t. unified discount c

Dataset B 1% Search Step 5% Search Step Reduction Percentage

Wiki-Vote

10 311 311 0%
20 463 460 0.7%
30 562 562 0%
40 650 642 1.2%
50 719 710 1.3%

Ca-Astro

10 1241 1241 0%
20 1760 1760 0%
30 2120 2120 0%
40 2422 2422 0%
50 2680 2680 0%

Com-Dblp

10 1896 1896 0%
20 3290 3290 0%
30 4489 4489 0%
40 5578 5563 0.3%
50 6557 6530 0.4%

Com-
LiveJournal

10 46906 46845 0.1%
20 69185 69126 0.1%
30 86469 86469 0%
40 100027 99948 0.1%
50 111086 110967 0.1%

Table 3: Effect of the parameter search step in calculating the
best unified discount c.

using 1% and 5% as the search step when finding the best unified
discount c. Here α was set to 1. The column “Reduction Percent-
age” means how much influence the best spread is decreased if we
change the search step from 1% to 5%. From Table 3 we find that
the reduction is tiny. In other words, the Unified Discount algo-
rithm is insensitive to this parameter.

9.2.2 Sensitivity to User Purchase Probability
Curves

We also tested the sensitivity of our methods with respect to user
purchase probability curves. We still used the three purchase prob-
ability curves mentioned in Section 9.1, since they are represen-
tative and stand for users being sensitive to discounts, benchmark
sensitivity to discounts and user being insensitive to discounts, re-
spectively. To test the effect of purchase probability curves on the
results, we reduced the portion of sensitive users and correspond-

ingly increased the number of insensitive users. Specifically, for
each social network, we randomly generated another two instances
of it where different populations were assigned to those purchase
probability curves. In the first instance, the portions of the three
purchase probability curves were changed to 75%, 15% and 10%,
respectively. In the second instance, 65%, 20% and 15%, respec-
tively. We ran our methods on those new instances by setting α = 1.
Then we compared the new results with the original result where
there are 85% sensitive users.

Table 4 shows the changes. Please note that different assign-
ments of purchase probability curves to users may lead to different
results. Moreover, it is possible that influence spread is higher when
the portion of sensitive users is smaller. This is because the pur-
chase probability curves were randomly assigned to users. Thus,
even when the portion of sensitive users is smaller, it is possible that
more influential users are assigned with sensitive purchase proba-
bility curves. We ran a good number of random assignments on the
four data sets. The results are consistent in trend. From Table 4 we
can see that the influence spread only decreases slightly after we
reduced the number of sensitive users.

9.2.3 Scalability
We also tested the scalability of the algorithm and report the re-

sults in Fig. 6. GBT is the time of building the hypergraph. Ac-
cording to Fig 6, as the scale of network increases, the gap on the
running time between our algorithm and the of the IM algorithm de-
creases. On the smallest dataset wiki-Vote, the running time of the
Coordinate Descent algorithm is about 10 times of that of IM. The
gap is reduced to no more than 4 times on the ca-AstroPh dataset
and less than twice on the com-dblp dataset. On the largest dataset
com-LiveJournal, the running time of the CD algorithm is only 1.5
times of that of IM. The reason is that the computational cost of
building the hypergraph is high, while the configuration computa-
tion phase is relatively efficient. In addition, we only ran at most
100 rounds of iterations in CD in all experiments, and in each round
we only need to optimize over O(k2) pairs of ci and c j, if the initial
value of CD has k non-zero entries. Thus, in smaller networks, the

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10 20 30 40 50

Budget

T
im

e
 i
n

 m
ill

is
e

c
o

n
d

s

CD

UC

IM

GBT

wiki−Vote with α = 0.7

(a) on wiki-Vote with α = 0.7

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10 20 30 40 50

Budget

T
im

e
 i
n

 m
ill

is
e

c
o

n
d

s

CD

UC

IM

GBT

wiki−Vote with α = 0.85

(b) on wiki-Vote with α = 0.85

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10 20 30 40 50

Budget

T
im

e
 i
n

 m
ill

is
e

c
o

n
d

s

CD

UC

IM

GBT

wiki−Vote with α = 1

(c) on wiki-Vote with α = 1

10
0.5

10
1

10
1.5

10
2

10 20 30 40 50

Budget

T
im

e
 i
n

 s
e

c
o

n
d

s

CD

UC

IM

GBT

ca−AstroPh with α = 0.7

(d) on ca-AstroPh with α = 0.7

10
0.5

10
1

10
1.5

10
2

10
2.5

10
3

10 20 30 40 50

Budget

T
im

e
 i
n

 s
e

c
o

n
d

s

CD

UC

IM

GBT

ca−AstroPh with α = 0.85

(e) on ca-AstroPh with α = 0.85

10
1

10
1.5

10
2

10
2.5

10
3

10 20 30 40 50

Budget

T
im

e
 i
n

 s
e

c
o

n
d

s

CD

UC

IM

GBT

ca−AstroPh with α = 1

(f) on ca-AstroPh with α = 1

10
1

10
1.5

10
2

10
2.5

10
3

10 20 30 40 50

Budget

T
im

e
 i
n

 s
e

c
o

n
d

s

CD

UC

IM

GBT

com−dblp with α = 0.7

(g) on com-dblp with α = 0.7

10
1

10
1.5

10
2

10
2.5

10
3

10 20 30 40 50

Budget

T
im

e
 i
n

 s
e

c
o

n
d

s

CD

UC

IM

GBT

com−dblp with α = 0.85

(h) on com-dblp with α = 0.85

10
1

10
1.5

10
2

10
2.5

10
3

10 20 30 40 50

Budget

T
im

e
 i
n

 s
e

c
o

n
d

s

CD

UC

IM

GBT

com−dblp with α = 1

(i) on com-dblp with α = 1

10
2

10
2.5

10
3

10
3.5

10
4

10 20 30 40 50

Budget

T
im

e
 i
n

 s
e

c
o

n
d

s

CD

UC

IM

GBT

com−lj with α = 0.7

(j) on com-LiveJournal with α = 0.7

10
2

10
2.5

10
3

10
3.5

10
4

10
4.5

10 20 30 40 50

Budget

T
im

e
 i
n

 s
e

c
o

n
d

s

CD

UC

IM

GBT

com−lj with α = 0.85

(k) on com-LiveJournal with α = 0.85

10
3

10
3.5

10
4

10
4.5

10
5

10 20 30 40 50

Budget

T
im

e
 i
n

 s
e

c
o

n
d

s

CD

UC

IM

GBT

com−lj with α = 1

(l) on com-LiveJournal with α = 1

Figure 6: Running time

portion of iterations in total running time is higher because the cost
of CD iterations is relatively stable while the cost of building hyper
graph is proportional to the scale of the network.

10. CONCLUSIONS
In this paper, we proposed to offer users in social networks dis-

counts rather than free products to trigger social cascades. We
model the continuous influence maximization problem. Some key
properties of the continuous influence maximization problem were

studied and a coordinate descent framework was devised. Based
on this framework, we proved that under certain conditions the
continuous influence maximization problem and the original influ-
ence maximization problem share the same optimal solutions. We
then pointed out the key challenges in practically implementing the
coordinate descent framework and proposed feasible engineering
techniques that work in practice. The experiment results demon-
strated that our methods can improve influence spread significantly,
while the extra running time over the classical discrete influence

Dataset B Unified Discount Coordinate Descent
85%

Sensitive
75%

Sensitive
Reduction
Percentage

65%
Sensitive

Reduction
Percentage

85%
Sensitive

75%
Sensitive

Reduction
Percentage

65%
Sensitive

Reduction
Percentage

Wiki-Vote

10 311 319 -2.6% 319 -2.6% 332 332 0% 337 -1.5%
20 460 463 -0.7% 455 1.1% 487 480 1.4% 473 2.9%
30 562 564 -0.4% 551 2.0% 593 586 1.2% 575 3.0%
40 642 648 -1.0% 631 1.7% 675 671 0.6% 656 2.8%
50 710 715 -0.7% 696 2.0% 745 742 0.4% 725 2.7%

Ca-Astro

10 1241 1251 -0.8% 1173 5.5% 1252 1269 -1.4% 1184 5.4%
20 1760 1754 0.3% 1663 5.5% 1785 1785 0% 1698 4.9%
30 2120 2111 0.4% 2027 4.4% 2159 2147 0.6% 2065 4.4%
40 2422 2405 0.7% 2328 3.9% 2461 2445 0.7% 2370 3.7%
50 2680 2656 0.9% 2577 3.8% 2720 2702 0.9% 2626 3.5%

Com-Dblp

10 1896 1861 1.9% 1827 3.8% 1925 1917 0.4% 1882 2.2%
20 3290 3210 2.4% 3158 4.0% 3338 3271 2.0% 3220 3.5%
30 4489 4356 3.0% 4284 4.6% 4650 4449 4.3% 4379 5.8%
40 5563 5409 2.8% 5331 4.2% 5694 5564 2.3% 5471 4.0%
50 6530 6371 2.4% 6273 4.0% 6675 6522 2.3% 6429 3.7%

Com-
LiveJournal

10 46845 46973 -0.3% 46722 0.3% 51500 48423 6.0% 49630 3.6%
20 69126 68605 0.8% 67763 2.0% 74309 72675 2.2% 71909 3.2%
30 86469 85536 1.1% 83237 3.7% 92201 90524 1.8% 85653 7.1%
40 99948 98766 1.2% 95897 4.1% 104267 102080 2.1% 100541 3.6%
50 110967 109660 1.2% 106268 4.2% 115870 113364 2.2% 111568 3.7%

Table 4: Sensitivity to user purchase probability curves.

maximization algorithm remains moderate.
We believe that this work opens a new direction for future work.

For example, it is imperative to investigate whether our objective
function UI(C) is convex or concave, and how the form of pu(cu)
may affect the convexity/concavity of UI(C)? Moreover, the coor-
dinate descent algorithm is only guaranteed to converge to a station-
ary point. Under what conditions can it converge to a local optima?
Efficient continuous influence maximization algorithms for specific
influence models are essential for real life applications. For exam-
ple, in the experiments, we designed two simple algorithms Uni-
fied Discount (UD) and Coordinate Descent (CD) that work well
in practice. In UD, we conduct a brute force search for finding the
optimal discount c. Is there a better algorithm for searching c? For
both UD and CD, how does the number of hyper-edges mH affect
the quality of the solutions?

Another interesting direction to investigate is minimizing the
budget of our continuous seeding strategy for covering a given por-
tion of users in a social network. While minimizing budget under
integer seeding strategy can be easily obtained by slightly modify-
ing the greedy algorithm for influence maximization, it is far from
trivial to design a new algorithm for our continuous seeding strat-
egy.

11. REFERENCES
[1] C. Borgs, M. Brautbar, J. Chayes, and B. Lucier. Maximizing

social influence in nearly optimal time. In Proceedings of the
Twenty-Fifth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 946–957. SIAM, 2014.

[2] M. Brennan. Constructing demand curves from purchase
probability data: an application of the juster scale. Marketing
Bulletin, 6(May):51–58, 1995.

[3] W. Chen, L. V. Lakshmanan, and C. Castillo. Information
and influence propagation in social networks. Synthesis
Lectures on Data Management, 5(4):1–177, 2013.

[4] W. Chen, C. Wang, and Y. Wang. Scalable influence
maximization for prevalent viral marketing in large-scale
social networks. In Proceedings of the 16th ACM SIGKDD
international conference on Knowledge discovery and data
mining, pages 1029–1038. ACM, 2010.

[5] W. Chen, Y. Wang, and S. Yang. Efficient influence
maximization in social networks. In Proceedings of the 15th

ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 199–208. ACM, 2009.

[6] W. Chen, Y. Yuan, and L. Zhang. Scalable influence
maximization in social networks under the linear threshold
model. In Data Mining (ICDM), 2010 IEEE 10th
International Conference on, pages 88–97. IEEE, 2010.

[7] Y. B. Cho, Y. H. Cho, and S. H. Kim. Mining changes in
customer buying behavior for collaborative
recommendations. Expert Systems with Applications,
28(2):359–369, 2005.

[8] P. Domingos and M. Richardson. Mining the network value
of customers. In Proceedings of the seventh ACM SIGKDD
international conference on Knowledge discovery and data
mining, pages 57–66. ACM, 2001.

[9] N. Du, L. Song, M. Gomez-Rodriguez, and H. Zha. Scalable
influence estimation in continuous-time diffusion networks.
In Advances in Neural Information Processing Systems,
pages 3147–3155, 2013.

[10] M. Eftekhar, Y. Ganjali, and N. Koudas. Information cascade
at group scale. In Proceedings of the 19th ACM SIGKDD
international conference on Knowledge discovery and data
mining, pages 401–409. ACM, 2013.

[11] M. Farajtabar, N. Du, M. Gomez-Rodriguez, I. Valera,
H. Zha, and L. Song. Shaping social activity by incentivizing
users. In NIPS, 2014.

[12] A. Goyal, W. Lu, and L. V. Lakshmanan. Simpath: An
efficient algorithm for influence maximization under the
linear threshold model. In Data Mining (ICDM), 2011 IEEE
11th International Conference on, pages 211–220. IEEE,
2011.

[13] D. Kempe, J. Kleinberg, and É. Tardos. Maximizing the
spread of influence through a social network. In Proceedings
of the ninth ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 137–146.
ACM, 2003.

[14] S. Lei, S. Maniu, L. Mo, R. Cheng, and P. Senellart. Online
influence maximization. In Proceedings of the 21st ACM
SIGKDD international conference on Knowledge discovery
and data mining, pages 645–654. ACM, 2015.

[15] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos,
J. VanBriesen, and N. Glance. Cost-effective outbreak

detection in networks. In Proceedings of the 13th ACM
SIGKDD international conference on Knowledge discovery
and data mining, pages 420–429. ACM, 2007.

[16] C. Long and R.-W. Wong. Minimizing seed set for viral
marketing. In Data Mining (ICDM), 2011 IEEE 11th
International Conference on, pages 427–436. IEEE, 2011.

[17] M. Mitzenmacher and E. Upfal. Probability and computing:
Randomized algorithms and probabilistic analysis.
Cambridge University Press, 2005.

[18] E. Mossel and S. Roch. On the submodularity of influence in
social networks. In Proceedings of the thirty-ninth annual
ACM symposium on Theory of computing, pages 128–134.
ACM, 2007.

[19] H. Nguyen and R. Zheng. On budgeted influence
maximization in social networks. Selected Areas in
Communications, IEEE Journal on, 31(6):1084–1094, 2013.

[20] Y. Singer. How to win friends and influence people,
truthfully: influence maximization mechanisms for social
networks. In Proceedings of the fifth ACM international
conference on Web search and data mining, pages 733–742.
ACM, 2012.

[21] E. Suh, S. Lim, H. Hwang, and S. Kim. A prediction model
for the purchase probability of anonymous customers to
support real time web marketing: a case study. Expert
Systems with Applications, 27(2):245–255, 2004.

[22] Y. Tang, Y. Shi, and X. Xiao. Influence maximization in
near-linear time: A martingale approach. In Proceedings of
the 2015 ACM SIGMOD international conference on
Management of data. ACM, 2015.

[23] Y. Tang, X. Xiao, and Y. Shi. Influence maximization:
Near-optimal time complexity meets practical efficiency. In
Proceedings of the 2014 ACM SIGMOD international
conference on Management of data, pages 75–86. ACM,
2014.

[24] G. Ventures. Business advertising. http://www.
gaebler.com/Business-Advertising.htm.

[25] Y. Wang, W. Huang, L. Zong, T. Wang, and D. Yang.
Influence maximization with limit cost in social network.
Science China Information Sciences, 56(7):1–14, 2013.

Appendix
Proof of Theorem 1 We prove by a simple reduction from
computing I(S). For any S, we can make a configuration C such
that cu = 1 if u ∈ S and cu = 0 otherwise. Clearly we have
UI(C) = I(S). Thus, if computing I(S) is #P-hard, so is computing
UI(C).

Proof of Theorem 2 Recall that UI(C) = ∑S∈2V Pr(S;V,C)I(S).
∀S ∈ 2V , we have 0≤ I(S)≤ n. We can estimate UI(C) by a Monte
Carlo method. By applying the Hoeffding bound, we have

Pr(|ÛI(C)−UI(C)| ≥ εUI(C))≤ 2e−
2R2ε2UI2(C)

Rn2 ,

where R is the number of MC simulations. Since UI(C) ≥
∑u∈V pu(cu), to achieve the goal that Pr(|ÛI(C) −UI(C)| ≥
εUI(C))≤ δ , we can set R≥ n2 ln 2

δ

2ε2(∑u∈V pu(cu))2 .

Proof of Theorem 3 If there is a FPRAS for estimating I(S),
in O(POLY(n

ε ′ ln 1
δ ′
)) time we can obtain an (ε ′,δ ′) approxima-

tion of I(S). If we set δ ′ = δ1
O(POLY(n

ε ′ ln 1
δ1
))

, the time we need is

O(POLY(n
ε ′ ln

O(POLY(n
ε ′ ln 1

δ1
))

δ1
)) = O(POLY(n

ε ′ ln 1
δ1
)).

According to Theorem 2, if we can access the value of I(S),
we can have an (ε ′,δ1) approximation of UI(C) by calling the or-
acle O(POLY(n

ε ′ ln 1
δ1
)) times. Suppose R = O(POLY(n

ε ′ ln 1
δ1
)),

and we have R randomly generated seed sets {S1,S2, ...,SR}. Let
ÛI(C) = ∑

R
i=1 I(Si), Î(Si) be the estimated influence spread of

Si using the FPRAS in O(POLY(n
ε ′ ln 1

δ1
)) time, and ̂̂UI(C) =

∑
R
i=1 Î(Si). Clearly, Pr{|ÛI(C)−UI(C)| > ε ′UI(C)} < δ1, and

Pr{|̂̂UI(C)− ÛI(C)| > ε ′ÛI(C)} < δ1 (by Union Bound). Ap-

plying union bound, we have Pr{|̂̂UI(C) − UI(C)| < ε ′(2 +
ε ′)UI(C)}> 1−2δ1.

Setting ε ′(2+ε ′)= ε and 2δ1 = δ , which means ε ′=
√

1+ ε−1
and δ1 = δ

2 , we can obtain an (ε,δ) approximation of UI(C) in
O(POLY(n

ε ′ ln 1
δ1
)) × O(POLY(n

ε ′ ln 1
δ1
)) = O(POLY(n

ε ′ ln 1
δ1
))

time. Note that 1
ε ′ =

1√
1+ε−1

=
√

ε+1+1
ε

≤ 3
ε
= O(1

ε
), and

ln 1
δ1

= O(ln 1
δ
). So in O(POLY(n

ε
ln 1

δ
)) time we can have an

(ε,δ) approximation of UI(C).

Proof of Theorem 4 We firstly prove UI(C) equals the influence
spread of a fixed seed sets on a gadget graph. Given a graph
G = 〈V,E〉 and a configuration C, we create a gadget graph
G′ = 〈V ′,E ′〉 by adding a gadget node u′ for each node u in G, and
adding a direct edge (u′,u) with propagation probability pu(cu).
Using the equivalent live edges random process of independent
cascade model or linear threshold model [13], it can be easily
proved that UI(C) = I(V ′ −V)− n. So we can use the same
Monte Carlo simulation for computing influence spread of a given
seed set to estimate I(V ′ −V) and then obtain UI(C). Applying
a simple Hoeffding bound to obtain an (ε,δ) approximation of
UI(C), we obtain the number of Monte Carlo simulations needed

as O(
n2 ln 1

δ

2ε2(∑u∈V pu(cu))2). Since each Monte Carlo simulation takes
O(m) time. in total we can have an (ε,δ) approximation of UI(C)

in O(
mn2 ln 1

δ

2ε2(∑u∈V pu(cu))2) time.

Proof of Lemma 1 Because pu(cu) is monotonic with respect to
cu, we have pu(c1

u)≥ pu(c2
u). Thus, pu(c1

u)− pu(c2
u) = α ≥ 0. We

have

UI(C) = ∑
S∈2V−{u}

Pr(S;V −{u},C)I(S)[1− pu(cu)]+

∑
S∈2V−{u}

Pr(S;V −{u},C)I(S∪{u})pu(cu)

Therefore,

UI(C1)−UI(C2)

= ∑
S∈2V−{u}

Pr(S;V −{u},C1)I(S∪{u})α

− ∑
S∈2V−{u}

Pr(S;V −{u},C2)I(S)α

= ∑
S∈2V−{u}

αPr(S;V −{u},C2)[I(S∪{u})− I(S)]

Due to the monotonicity of I(S), I(S ∪ {u})− I(S) ≥ 0 and
UI(C1)−UI(C2)≥ 0. Thus, we have UI(C1)≥UI(C2).

Proof of Theorem 6 The major idea of our proof is to show that,
for an arbitrary feasible configuration C, there is an integer config-
uration C′ such that UI(C′)≥UI(C). As pu(cu)≤ cu stated in the

theorem, we consider two cases.
First, we consider the situation where ∀u ∈ V, pu(cu) = cu. For

any feasible configuration C, in Line 3 of Algorithm 1, if C contains
a component ci that is not an integer, since B is an integer, C must
contains another component c j (i 6= j) such that c j is not an integer,
either. Therefore, we can always pick non-integers ci and c j. Then,
we optimize over ci and c j by solving the optimization problem in
Eq. 7. Due to Eq. 9, we have

UI(C) =(A1 +A2−A3−A4)ci(B′− ci)+

(A3−A1)ci +(A4−A1)(B′− ci)

which is a quadratic form of ci and the coefficient of the quadratic
term is −(A1 +A2−A3−A4). Since I(S) is submodular, we have
I(S∪{i, j})− I(S∪{ j})≤ I(S∪{i})− I(S). Thus, (A1+A2−A3−
A4) ≤ 0, which means UI(C) is a convex function with respect to
ci. Therefore, the value of x that makes dUI(C)

dci
|ci=x = 0 is the global

minimum. Since we are interested in only the maximum, we can
ignore the root of dUI(C)

dci
= 0 completely. This means that, after

optimization, ci must be either max(0,B′−1) or min(B′,1).
Let us examine the value of ci and c j after optimization under

different situations of B′. There are two possible cases.

• If B′ ≥ 1, then B′−1≤ ci ≤ 1. After optimization over ci and
c j , if ci = B′−1, then c j = 1. If ci = 1, then c j = B′−1.

• If B′ < 1, then 0≤ ci ≤ B′. After optimization over ci and c j,
if ci = 0, then c j = B′. If ci = B′, then c j = 0.

Thus, after optimization over ci and c j, at least one variable of
ci and c j takes an integer value. In other words, after one iteration
we eliminate at least one non-integer cu. Apparently, after at most
n iterations we can make all cu’s integers. Since in every iteration
the objective function does not decrease, the final integer configu-
ration C′ can achieve an influence spread no smaller than the initial
configuration. Therefore, we only need to consider integer config-
urations, which means CIM degenerates into DIM.

Second, we consider the situation when there exists at least one
node u such that pu(cu)< cu. In other words, we consider for each
u, pu(cu) ≤ cu. Let p̄u(cu) be the seed probability function such
that for each u, p̄u(cu) = cu. Denote by UI(C) be the influence
spread using p̄u(cu) with respect to configuration C. For each u,
due to the assumption that p̄u(·) is continuous, we have c̄u such
that pu(cu) = p̄u(c̄u) ≤ cu = p̄u(cu). Consider two configurations
C = (c1, . . . ,cn) and C = (c̄1, . . . , c̄n). Clearly, C � C. Due to the
monotonicity of UI(C), we have UI(C) =UI(C)≤UI(C). As the
first case, we already prove that UI(C) has the same objectives in
CIM and DIM when C is an integer configuration. Note that for
any integer configuration C, UI(C) = UI(C). Thus, the theorem
holds in this general case.

Proof of Theorem 7 Suppose in this iteration ci and c j are picked
for optimization. Clearly after optimization over ci and c j, if ci
and c j change, then one of them increases and the other decreases,
because the sum of ci and c j remains a constant. Without loss of
generality, assume ci increases by α and pi(ci +α)− pi(ci) = β .
Apparently, since 0≤ pi(ci)≤ 1 and pi(ci) is monotonic, β ≤ 1.

Let C2 be a new configuration such that C2(j) = C1(j)+α and
all other entries of C2 are identical to those in C1. Due to the mono-
tonicity of UI(C), since C2�C1, we have UI(C2)≥UI(C1). More-
over,

UI(C2)−UI(C) = β ∑
S∈2V−{i}

Pr(S;V −{i},C)
(
I(S∪{u})− I(S)

)
.

Therefore,

UI(C1)−UI(C)≤UI(C2)−UI(C)

≤ ∑
S∈2V−{i}

Pr(S;V −{i},C)
(
I(S∪{u})− I(S)

)
≤argmax

u∈V
∑

S∈2V−{u}
Pr(S;V −{u},C)

(
I(S∪{u})− I(S)

)

Proof of Theorem 8 The monotonicity can be immediately proved
using Theorem 5. Next, we show the submodularity of UI(S;c).

Suppose we have two sets S1 and S2 such that S1∪{v}= S2. Let
u be a node such that u /∈ S2. Then,

UI(S1∪{u};c)−UI(S1;c)

= ∑
S∈2S1

Pr(S;S1,c)
(

pu(c)I(S∪{u})+(1− pu(c))I(S)
)
−

∑
S∈2S1

Pr(S;S1,c)I(S)

= pu(c) ∑
S∈2S1

Pr(S;S1,c)
(

I(S∪{u})− I(S)
)

We also have

UI(S2∪{u};c)−UI(S2;c)

= ∑
S∈2S1

Pr(S;S1,c)
(

pv(c)pu(c)I(S∪{u,v})+

pv(c)(1− pu(c))I(S∪{v})+
pu(c)(1− pv(c))I(S∪{u})+

(1− pu(c))(1− pv(c))I(S)
)
−

∑
S∈2S1

Pr(S;S1,c)
(

pv(c)I(S∪{v})+(1− pv(c))I(S)
)

= ∑
S∈2S1

Pr(S;S1,c)

(
pu(c)pv(c)

(
I(S∪{u,v})− I(S∪{v})

)
+

pu(c)(1− pv(c))
(

I(S∪{u})− I(S)
))

≤ ∑
S∈2S1

Pr(S;S1,c)

(
pu(c)pv(c)

(
I(S∪{u})− I(S)

)
+

pu(c)(1− pv(c))
(

I(S∪{u})− I(S)
))

= pu(c) ∑
S∈2S1

Pr(S;S1,c)
(

I(S∪{u})− I(S)
)

=UI(S1∪{u};c)−UI(S1;c)

That is, we prove

UI(S1∪{u};c)−UI(S1;c)≥UI(S2∪{u};c)−UI(S2;c).

By a simple induction, we can show that, if S ⊆ T and u /∈ T ,
UI(S ∪ {u};c) − UI(S;c) ≥ UI(T ∪ {u};c) − UI(T ;c), which
means UI(S;c) is submodular with respect to S.

Proof of Theorem 9 Recall that in the proof of Theorem 4 we illus-
trated that UI(C)= I(V ′−V)−n on the gadget graph G′= 〈V ′,E ′〉.
Consider a poll process on G′ similar to it on G: we firstly randomly
pick a node v ∈ V , then starting from v we run the random reverse
propagation to generate a random hyper-edge h′ on G′. Accord-
ing to the equivalent living edges process of IC model, this random

reverse propagation process can be divided into two steps. (1) We
randomly reversely “propagate” to nodes in V ; and (2) we reversely
“propagate” to nodes in V ′−V . Clearly ,the first step is equivalent
to generating a random hyper edge on G. Denoted by h′G = h′∩V
the set polled in the first step.

Denote by Pr(h′G = h) the probability that in the first step the
set of nodes h is polled and Pr(h′ ∩ (V −V ′) 6= ∅) the probability
that at least one node in V ′−V is reversely propagated to. Simi-
lar to [1], Pr{h′ ∩ (V −V ′) 6= ∅} = I(V ′−V)−n

n . According to the
equivalent living edges process of the IC model, given h′G = h,
the conditional probability Pr{h′ ∩ (V −V ′) 6= ∅ | h′G = h} =
1−∏u∈h (1− pu(cu)).

Now we consider for a random hyper-edge h the expectation of
1−∏u∈h (1− pu(cu)),

E[1−∏
u∈h

(1− pu(cu))]

= ∑
S∈2V

Pr(h = S)[1−∏
u∈S

(1− pu(cu))]

= ∑
S∈2V

Pr(h′G = S)Pr{h′∩ (V −V ′) 6=∅ | h′G = S}

= Pr{h′∩ (V −V ′) 6=∅}

=
I(V ′−V)−n

n
Apparently,

E[∑
h∈H

[1−∏
u∈h

(1− pu(cu))]] = mH ∗E[1−∏
u∈h

(1− pu(cu))]

Since UI(C) = I(V ′ − V) − n, n∗∑h∈H [1−∏u∈h (1−pu(cu))]
mH is an

unbiased estimation of UI(C).

