
Efficient and Effective Aggregate Keyword Search on

Relational Databases∗

Luping Li¶ Stephen Petschulat‡ Guanting Tang† Jian Pei† Wo-Shun Luk†

¶ Baidu Inc., Beijing, China, liluping01@baidu.com
‡ SAP Research, Vancouver, BC, Canada, stephen.petschulat@sap.com

† Simon Fraser University, Burnaby, BC, Canada, {gta9,jpei,woshun}@cs.sfu.ca

Abstract

Keyword search on relational databases is useful and popular for many users without techni-

cal background. Recently, aggregate keyword search on relational databases was proposed and

has attracted interest. However, two important problems still remain. First, aggregate keyword

search can be very costly on large relational databases, partly due to the lack of efficient in-

dexes. Second, finding the top-k answers to an aggregate keyword query has not been addressed

systematically, including both the ranking model and the efficient evaluation methods. In this

paper, we tackle the above two problems to improve the efficiency and effectiveness of aggregate

keyword search on large relational databases. We design indexes efficient in both size and in

construction time. We propose a general ranking model and an efficient ranking algorithm. We

also report a systematic performance evaluation using real data sets.

∗The work was done when the first author was a master’s student at Simon Fraser University. This research is

supported in part by an NSERC Discovery Grant, a BCFRST NRAS Endowment Research Team Program project,

two SAP Business Objects ARC Fellowships, and two NSERC CRD Research Grants. All opinions, findings, con-

clusions and recommendations in this paper are those of the authors and do not necessarily reflect the views of the

funding agencies.

1 Introduction

More and more relational databases contain textual data and thus keyword search on relational

databases becomes popular. Aggregate keyword search [22] was recently proposed on relational

databases: given a set of keywords, find a set of aggregates such that each aggregate is a group-by

covering all query keywords.

Aggregate keyword search on relational databases has attracted a lot of attention [22, 7, 21, 6,

14, 5, 15]. A few critical challenges have been identified, such as how to develop efficient approaches

for finding all minimal group-bys [22] or top-k relevant cells [7, 6] to a user given keyword query.

To motivate, we revisit the example in [22].

Example 1 (Motivation [22]). Table 1 shows a database of tourism event calendar. Such an event

calendar is popular in many tourism web sites and travel agents’ databases (or data warehouses).

To keep our discussion simple, in the field of description, a set of keywords are extracted. In

general, this field can store text description of events.

Month State City Event Description

December Texas Houston Space Shuttle Experience rocket, supersonic, jet

December Texas Dallas Cowboy’s Dream Run motorcycle, culture, beer

December Texas Austin SPAM Museum Party classical American Hormel foods

November Arizona Phoenix Cowboy Culture Show rock music

Table 1: A table of tourism events.

Scott, a customer planning his vacation, is interested in seeing space shuttles, riding motorcycle

and experiencing American food. He can search the event calendar using the set of keywords {“space

shuttle”, “motorcycle”, “American food”}. Unfortunately, the three keywords do not appear together

in any single tuple, and thus the results returned by the existing keyword search methods may contain

at most one keyword in a tuple.

However, Scott may find the aggregate group (December, Texas, ∗, ∗, ∗) interesting and useful,

since he can have space shuttles, motorcycle, and American food all together if he visits Texas in

December. The ∗ signs on attributes city, event, and description mean that he will have multiple

events in multiple cities with different description.

To make his vacation planning effective, Scott may want to have the aggregate as specific as

possible – it should cover a small area (for example, Texas instead of the whole United States) and

a short period (for example, December instead of year 2009).

In summary, the task of keyword search for Scott is to find minimal aggregates in the event

calendar database such that for each of such aggregates, all keywords are contained by the union of

the tuples in the aggregate.

Two problems still remain for aggregate keyword search. First, aggregate keyword search is still

costly on large relational databases, partly due to the lack of efficient indexes. For example, the

keyword graph index [22] is used to generate all aggregate groups for a keyword query. However, it

2

Dataset ConstructionTime Space Consumption

e-Fashion (308KB) 2hour57mins ≥ 1.0GB

SuperstoreSales (2MB) > 3hour ≥ 1.5GB

CountryInfo (19KB) 17mins ≥ 0.5GB

Table 2: The construction time and space consumption of the keyword graph index [22] for some

real datasets.

often takes a long time to construct the index on large database and has a large space consumption,

as demonstrated in Table 2 using some real data sets to be discussed in detail in Section 5.

The second problem is that finding the top-k answers to an aggregate keyword query has not

been addressed systematically. Since aggregate keyword search on large relational databases may

find a large number of answers, ranking the answers effectively becomes important. It is necessary to

develop efficient top-k algorithm to find the top-k most relevant aggregates. Although [7, 6] develop

efficient methods to find top-k relevant cells for an aggregate keyword query, such a relevant cell

may not match all the query keywords. [22] proposes two approaches to find all the minimal group-

bys for an aggregate keyword query and each minimal group-by matches all the query keywords,

but these minimal group-bys are not ranked and there is no top-k algorithm in [22].

In this paper, we tackle the above two problems to improve the efficiency and effectiveness of

aggregate keyword search on large relational databases. We design indexes efficient in both size

and construction time. We propose a general ranking model and an efficient ranking algorithm.

We also report a systematic performance evaluation using real data sets.

The rest of the paper is organized as follows. In Section 2, we formulate the aggregate keyword

search problem and review the previous studies related to our work. We discuss the index design

in Section 3. The top-k query answering method is presented in Section 4. We report an empirical

evaluation in Section 5, and finally conclude the paper in Section 6.

2 Problem Definition and Related Work

We follow the terminology in [22] throughout the paper. We revisit the preliminaries and state the

problem in Section 2.1. We review the related works in Section 2.2.

2.1 Preliminaries and Problem Definition

Let T = (A1, . . . , An) be a relational table. A group-by on table T is a tuple c = (x1, . . . , xn)

where xi ∈ Ai or xi = ∗ (1 ≤ i ≤ n), and ∗ is a meta symbol meaning that the attribute is

generalized. The cover of group-by c is the set of tuples in T that have the same values as c on

those non-∗ attributes, that is, Cov(c) = {(v1, . . . , vn) ∈ T |vi = xi if xi 6= ∗, 1 ≤ i ≤ n} .

A base group-by is a group-by which takes a non-∗ value on every attribute. For two group-

bys c1 = (x1, . . . , xn) and c2 = (y1, . . . , yn), c1 is an ancestor of c2, and c2 a descendant of c1,

denoted by c1 � c2, if xi = yi for each xi 6= ∗(1 ≤ i ≤ n), and there exists k(1 ≤ k ≤ n) such that

3

xk = ∗ but yk 6= ∗.
Given a table T , an aggregate keyword query is a 3-tuple q = (D,C,W), where D is a

subset of attributes in table T , C is a subset of text-rich attributes in T , and W is a set of

keywords. We call D the aggregate space and each attribute A ∈ D a dimension. We call C

the set of text attributes of q. D and C do not have to be exclusive to each other.

A group-by c is a minimal answer to an aggregate keyword query q if c is an answer to q and

every descendant of c is not an answer to q. As mentioned in Section 1, users may prefer specific

information, so our method needs to guarantee that every returned group-by is minimal.

For a set of tuples t1 and t2 in table T , the max-join of t1 and t2 is a tuple t = “t1 ∨ t2” such

that for any attribute A in T , t[A] = t1[A] if t1[A] = t2[A], otherwise t[A] = ∗. We call (∗, ∗, . . . , ∗)
a trivial answer.

Theorem 1 (Max-join on answers [22]). If t is a minimal answer to aggregate keyword query

q = (D,C, {w1, · · · , wm}), then there exists minimal answers t1 and t2 to queries (D,C, {w1, w2})
and (D,C, {we, · · · , wm}), respectively, such that t = t1 ∨ t2.

To answer query q = (D,C, {w1, . . . , wm}), using Theorem 1 repeatedly, we only need to check

m − 1 edges covering all keywords w1, . . . , wm in the clique. Each edge is associated with the set

of minimal answers to a query on a pair of keywords. The weight of the edge is the size of the

answer set. In order to reduce the total cost of the joins, heuristically, we can find a spanning tree

connecting the m keywords such that the product of the weights on the edges is minimized.

Given a table T , a keyword graph index is an undirected graph G(T) = (V,E) such that V

is the set of keywords in the table T and (u, v) ∈ E is an edge, if there exists a non-trivial answer

to query quv = (D,C, {u, v}). Edge (u, v) is associated with the set of minimal answers to query

quv. Zhou and Pei [22] proved that, if there exists a nontrivial answer to an aggregate keyword

query q, the keyword graph index exists a clique on all keywords of q (Theorem 3 in [22]).

We define a query keyword graph as follows.

Definition 1 (Query keyword graph). Given a table T , a query keyword graph for an aggregate

keyword query q = (D,C, {w1, · · · , wm}) is an undirected graph G(T,Q) = (V,E) such that V =

{w1, · · · , wm} is the set of query keywords and (wi, wj) ∈ E is an edge if there exists a non-trivial

answer to query (D,C, {wi, wj}). Edge (wi, wj) is associated with the set of minimal answers to

query (D,C, {wi, wj}), 1 ≤ i, j ≤ m.

Example 2 (Keyword graph index and query keyword graph). In Table 3, a table T has 3 text

attributes and 3 tuples (or base group-bys). The keywords are w1, w2, w3 and w4. We perform max-

join on each pair of tuples in table T and get the following group-bys: g1 : (∗, w3, w2), g2 : (w1, w3, ∗),
g3 : (∗, w3, ∗), r1 : (w1, w3, w2), r2 : (w4, w3, w2), and r3 : (w1, w3, w4). Among them, r1, r2 and r3
are base group-bys.

The corresponding keyword graph index is shown in Figure 1. Each edge (wi, wj) in Figure 1 con-

tains a set of group-bys and each such a group-by is a minimal answer to the query (D,C, {wi, wj}).
For example, edge (w1, w2) contains a base group-by r1, which is a minimal answer to the query

(D,C, {w1, w2}).

4

RowID TextAttri1 TextAttri2 TextAttri3

r1 w1 w3 w2

r2 w4 w3 w2

r3 w1 w3 w4

Table 3: An example of table T

Figure 1: A keyword graph index Figure 2: A query keyword graph

For the aggregate keyword query (D,C, {w1, w2, w3}), a corresponding query keyword graph, as

shown in Figure 2, can be constructed.

Obviously, for an aggregate keyword query q , there exists a non-trivial answer to q in table T

if and only if in the query keyword graph G(T, q) is a clique.

The number of edges in a keyword graph index is O(|V |2), where V is the set of keywords in

the relational database. For a small relational database, the number of keywords in the database

is limited and the corresponding keyword graph index can be maintained easily. As the database

grows larger, the number of keyword increases and the keyword graph index becomes less efficient.

The difference between a query keyword graph and a keyword graph index is that vertices of the

former are keywords in the query q and vertices of the latter are keywords in the whole database.

Since the number of keywords in a query is much smaller than that in a relational database, a query

keyword graph is often much smaller than a keyword graph index and can be constructed quickly.

Our first task in this paper is to build a new index to facilitate constructing a query keyword

graph during the query processing period. The aggregate information in the query keyword graph

is then used to generate minimal answers. Our complete query-answering method successfully uses

the new index to generate all the minimal answers to a keyword query.

Although many non-minimal answers are pruned during the query processing period, the number

of minimal answers to a keyword query may still be large. For example, as we will discuss in detail

in Section 5, there are about 1, 000 minimal answers to some aggregate keyword queries on the

SuperstoreSales dataset, which has 8, 300 tuples and 21 dimensions. To tackle the problem, we

investigate finding top-k minimal answers. We define several features on the group-bys. The

overall score function of the group-by is a linear combination of those features. We also develop

efficient pruning methods to quickly find the top-k results.

5

2.2 Related Work

In general, our study is related to the existing work on keyword search on relational databases

and keyword-based search in data cube. In this section, we review some representative studies and

point out the differences between those studies and our work.

2.2.1 Keyword Search on Relational Databases

Keyword search on relational databases is an active topic in database research nowadays. Zhou and

Pei [22] studied keyword based aggregation on large relational databases using minimal group-bys,

which is most related to our study.

Given a table, Zhou and Pei [22] constructed a keyword graph index, which is used during

the online query processing phase to generate all minimal answers that contain all the user given

keywords. Each edge in the keyword graph index is corresponding to a pair of keywords. Minimal

answers to every pair of keywords are pre-calculated and stored in the keyword graph index. To

answer an aggregate keyword query q, their method first scans the keyword graph index to check

if there exists a clique on all the query keywords. If so, it then performs max-join repeatedly on

|Q| − 1 edges in that clique and finds nontrivial minimal answers from the max-join results. If not,

there are no nontrivial minimal answers to q.

In this paper, we will design a new index which is more efficient than the keyword graph

index [22]. The new index can be used to quickly construct small query keyword graphs serving

the same purpose as a keyword graph index. We also develop efficient and effective methods to

rank the minimal answers.

There are also a number of works on relational databases in the literature. For example, Balmin

et al. [2] treated the database as a labeled graph and built a labeled graph index which has a natural

flow of authority. Given a keyword query, they applied a PageRank algorithm to find nodes in

the labels graph that have high authority with respect to all query keywords. Hristidis et al. [12]

built an index combining a set of joining networks, each representing a row that can be generated

by joining rows in multiple tables using primary and foreign keys. Given a keyword query, they

scaned the index to find relevant joining networks each containing all the query keywords. Agrawal

et al. [1] implemented a keyword-based search system DBXplorer on a commercial database. It

returns the relevant rows as answers such that each relevant row contains all the query keywords. Its

index contains a symbol table that can help to quickly locate the query keywords in the relational

database. Bhalotia et al. [4] designed a graph index on relational database. Each node represents

a row and each edge represents an application-oriented relationship between two rows. Given a

keyword query, their method scans the index to find Steiner trees [11] that contain all the query

keywords.

All the above studies [2, 12, 1, 4] focus on finding relevant tuples instead of aggregate cells,

so their indexes, score functions and top-k algorithms can not be extended to solve our problems

directly.

6

2.2.2 Keyword-based Search in Data Cubes

Following the framework of [22], Ding et al. [7, 6] found the top-k most relevant cells for a keyword

query on a data cube with text-rich dimensions. A base group-by is treated as a document and

the documents covered by a cell Ccell is treated as a “big document” (also called the cell document

of Ccell, represented by Ccell[Dcell]). The relevance score of a cell Ccell is defined as a function

rel(q, Ccell) of the cell document Ccell[Dcell] and the query q. They use an IR style model to design

the score function of a cell [7] .

rel(q, Ccell) =
∑
t∈q

ln
N − dft + 0.5

dft + 0.5
×

(k1 + 1)tft,Dcell

k1((1− b) + b dlD
avdl) + tft,Dcell

× (k3 + 1)qtft,q
k3 + qtft,q

where N is the number of rows in the database, Dcell is the big document of Ccell, tft,Dcell
is the

term frequency of term t ∈ q in Dcell , dft is the number of documents in the database containing t,

dlD represents the length of Dcell, avdl is the average length of documents covered by Ccell, qtft,q is

the number of times t appearing in q, and k1,b, k3 are the parameters used in Okapi BM25 [17, 16].

Since the parameters of Okapi BM25 are query and collection (cell) dependent, this score

function is sensitive to parameters.

To find the top-k relevant cells, Ding et al. [7] proposed four approaches: inverted-index one-

scan, document sorted-scan, bottom-up dynamic programming, and search-space ordering. Ding

et al. [6] proposed another two approaches: TACell and BoundS.

The inverted-index one-scan method generates and scores all the non-empty cells. Since

the number of non-empty cells increases exponentially with respect to the dimensionality of the

database, this method is efficient only when the number of dimensions is small (from 2 to 4).

The document sorted-scan approach uses a priority queue to keep candidate cells in the relevance

descending order. All rows (documents) of the database are scanned in the relevance descending

at the beginning. Similar to the inverted-index one-scan method, once a row is scanned, all the

cells covering it are explored. It then calculates the relevance scores of the explored cells. Finally,

if an explored cell does not cover any non-scanned rows in the database and the number of its

covered rows is larger than a threshold, it would be inserted into the priority queue. Top-k cells

are selected from the priority queue. For this method, once a row is scanned, 2n cells are explored

in an n-dimension cube. So the numbers of candidate cells and explored cells increase very quickly.

Although the complexity of this method is worse than the inverted-index one-scan, it may terminate

earlier before scanning all rows.

Different from the above one-scan and sorted-scan approaches that compute the relevance score

of a cell from rows in the database, the bottom-up approach and the search-space ordering approach

compute the score of a cell from its children cells in a dynamic-programming manner. Since the

score of a cell on a certain level can be quickly calculated from its children cells on the lower level,

which is faster than computing from cells on the base level, the bottom-up is more efficient than

the previous two approaches. However, the bottom-up method still needs to calculate the scores of

all the cells, so it is efficient only when the number of dimensions is small.

The search-space ordering method carries out cell-based search and explores an as small as

7

possible number of cells in the cube to find the top-k answers. With some pruning techniques,

this method avoids exploring all cells in the text cube and is more efficient than the previous three

approaches.

The above four approaches do not pre-process the database to build any index offline.Ding et

al. [6] developed another two approaches, TACell and BoundS, which build indexes offline.

The TACell method extends the threshold algorithm (TA) [9] for finding the top-k relevant

cells with respect to a given keyword query q. It treats each cell as a ranking object in TA and

needs to build an offline index containing many sorted lists. Given a database, it first generates

all non-empty cells; for each term t in the database, it creates a sorted list of cells Lt, where the

generated cells are sorted in the descending order of term frequency of t in each cell document (big

document). It also creates another sorted list Llen, where cells are sorted in the ascending order

of the lengths of cell documents. So, if the n-dimension database (N rows) contains M terms, the

number of sorted lists is M + 1. On large relational databases, the number of terms is huge and

the total number of non-empty cells is Ω(N ∗ 2n). Such an index may not be efficient since it may

be too large to fit into main memory in whole.

The index of BoundS only contains some inverted indices for all terms with respect to the rows

in the database. Compared with TACell, BoundS is more efficient in building the offline index but

consumes more time for online queries. The basic idea of online processing in BoundS is to estimate

and update the lower bounds and upper bounds of the relevance scores of the cells (explored when

scanning the database rows) to prune some non-top-k cells.

TACell and BoundS apply an IR-style relevance model for scoring and ranking cell documents

in the text cube. For a query q = {t1, t2, ..., tl}, rel(q, Ccell) = s(tft1 , tft2 , ..., tftl , |Dcell|), where tfti
is the term frequency (the occurrence count of a term in a document [18, 19]) of the ith term of q

in the cell document Dcell of Ccell, and s is a user defined function.

The score function s() needs to be monotonic to ensure the correctness of TACell and BoundS.

Ding et al. [6] used a simple monotonic function that considers term frequencies and document

length (terminology in IR). In BoundS, it is assumed that the length of the big document for each

cell, i.e., the document length, is precomputed. Thus, only the term frequency is needed when

estimating the lower bounds and upper bounds of the relevance scores of the cells. If more IR

features (such as dft and qtft,q) are considered in the score function, more sorted lists need to be

created in TACell and thus the index has a larger space consumption. Moreover, the upper bounds

and lower bounds defined in BoundS may no longer be applicable.

In addition, Zhao et al. [21] and Wu et al. [20] supported interactive exploration of data using

keyword search. Wu et al. [20] proposed a system (KDAP) that supports interactive exploration

of data using keyword search. Given a keyword query, the system first generates the candidate

subspaces in an OLAP database such that each subspace essentially corresponds to a possible join

path between the dimensions and the facts. It then ranks the subspaces and asks users to select

one subspace. Finally, it computes the group-by aggregates over some predefined measure using

qualified fact points in the selected subspace and finds the top-k group-by attributes to partition

the subspace.

B. Zhao et al. [21] proposed a similar keyword-based interactive exploration framework called

8

TEXplorer. Different from the work in [22, 7, 6], whose goal is to return a ranked list of the cells

directly, TEXplorer guides users to find their interested information step by step.

More related work can be found in [5, 13], which give an overview of the state-of-the-art tech-

niques for supporting keyword-based search and exploration on databases. Different from our work,

the top-k cells found in [7, 6] are not guaranteed to contain all the query terms. Moreover, [21, 20]

address a different application scenario from us. In this paper, we extend [22] and focus on the

efficiency and the effectiveness issues of aggregate keyword search on relational databases.

3 An Efficient Index

To make aggregate keyword search more efficient on large relational databases, we design a new

index, which is smaller and faster to construct. The new index can be used to correctly generate

the same minimal aggregates as the keyword graph index [22].

3.1 The Index

Our new index is called Inverted Pair-wise Joins (IPJ), which stores only the necessary information

that can be used to quickly generate the same clique as is used in the keyword graph index [22]

during the query processing period.

Definition 2. Given a table T , the IPJ index stores

the pair-wise joins of a keyword w. PJ [w] = {gb|gb is a group-by such that gb = ri ∨
rj, where w is a keyword in T , (ri, rj) is a pair of rows in T , and w ∈ ri or w ∈ rj}; and

the inverted pair-wise joins. IPJ = {(w,PJ [w])|w is a keyword in the table T}.

For each keyword w in the table, the inverted pair-wise joins IPJ records the corresponding

pair-wise joins of w (PJ [w]). PJ [w] stores without redundancy all relevant group-bys (non-trivial)

such that each relevant group-by is generated by performing max-join operation on a certain pair

of rows (at least one row contains the keyword w).

Example 3 (The Inverted Pair-wise Joins). In Table 4, a table T has m = 4 text attributes, n = 4

rows (r1, r2, r3 and r4), and p = 12 different keywords. Each dimension has p′ = 3 different

values. Since a group-by may take value ∗ on a dimension, there are (p′ + 1)m = (3 + 1)4 = 256

possible group-bys and 255 of them are non-trivial group-bys. The index of TACell [6] needs to

store (p + 1) × 255 = 3315 group-bys. For the keyword graph index, there are p×(p−1)
2 = 66 edges

inside. If the average number of minimal answers on an edge is 2, the keyword graph index needs

to store 66× 2 = 132 group-bys. How many group-bys does IPJ need to store?

We first perform max-join on each pair of rows in table T and get the following group-bys:

• base group-bys r1 : (w11, w21, w31, w41), r2 : (w11, w22, w32, w42), r3 : (w12, w22, w33, w43), and

r4 : (w13, w23, w33, w41); and

9

RowID TextAttri1 TextAttri2 TextAttri3 TextAttri4

r1 w11 w21 w31 w41

r2 w11 w22 w32 w42

r3 w12 w22 w33 w43

r4 w13 w23 w33 w41

Table 4: A table T

Keywords PJ[w]

w11 r1, r2, g1, g3, g4
w12 r3, g4, g6
w13 r4, g3, g6
w21 r1, g1, g3
w22 r2, r3, g1, g4, g6
w23 r4, g3, g6
w31 r1, g1, g3
w32 r2, g1, g4
w33 r3, r4, g3, g4, g6
w41 r1, r4, g1, g3, g6
w42 r2, g1, g4
w43 r3, g4, g6

Table 5: IPJ of table T

• aggregate group-bys g1 : (w11, ∗, ∗, ∗) = r1 ∨ r2, g2 : (∗, ∗, ∗, ∗) = r1 ∨ r3, g3 : (∗, ∗, ∗, w41) =

r1 ∨ r4, g4 : (∗, w22, ∗, ∗) = r2 ∨ r3, g5 : (∗, ∗, ∗, ∗) = r2 ∨ r4, and g6 : (∗, ∗, w33, ∗) = r3 ∨ r4.

The trivial group-bys g2 and g5 are pruned. The inverted pair-wise joins IPJ (Table 5) can then

be generated according to its definition. For example, we know that only the row r3 contains the

keyword w12. To generate the pair-wise joins for w12, we only need to perform max-join operations

on (r3, r3), (r3, r1), (r3, r2) and (r3, r4), the corresponding max-join results are r3, g2, g4 and g6.

Since Group-by g2 is trivial and should be pruned, PJ [w12] = {r3, g4, g6}.
Our inverted pair-wise joins IPJ needs to store only 44 group-bys.

To further reduce the size of our new index, we can prune duplicate group-bys by storing all

generated group-bys in a set and replace each group-by in the inverted pair-wise joins with its

unique identity in this set.

3.2 Using IPJ in Query Answering

To answer a query q = (D,C, {w1, . . . , wh}), the complete query-answering method first constructs

a query keyword graph using our new IPJ index.

10

Figure 3: A query keyword graph
Figure 4: A query keyword graph after

pruning non-minimal answers

Example 4 (Query answering). Consider query q = (D,C, {w11, w22, w33}) on table T in Table 4.

A query keyword graph as shown in Figure 3 is then quickly constructed. The graph is a clique

and each node of the graph is a query keyword in the query. For each edge (wi, wj) in the clique,

the corresponding candidate answers are the intersection of PJ [wi] and PJ [wj] in the IPJ index

(Table 5). After pruning non-minimal answers on each edge, the query keyword graph is as shown

in Figure 4.

To answer query q = (D,C, {w1, . . . , wm}), using Theorem 1 repeatedly, we only need to check

m − 1 edges covering all keywords w1, . . . , wm in the clique. Each edge is associated with the set

of minimal answers to a query on a pair of keywords. In the above example, the query contains 3

keywords, so only 2 edges need to be checked. The weight of an edge is the size of the corresponding

answer set. In order to reduce the total cost of the joins, heuristically, we can find a spanning tree

connecting the m keywords such that the product of the weights on the edges is minimized.

If t is a minimal answer to aggregate keyword query q = (D,C, {w1, · · · , wm}), then there exists

minimal answers t1 and t2 to queries (D,C, {w1, w2}) and (D,C, {we, · · · , wm}), respectively, such

that t = t1 ∨ t2.

Example 5 (Checking edges). Continued from Example 4,

• If we check edge (w11, w22) and edge (w22, w33), to generate the candidate answers, we need

to perform max-join operations on (r2, r3). The corresponding result is group-by g4.

• If we check edge (w11, w22) and edge (w11, w33), to generate the candidate answers, we need to

perform max-join operations on (r2, g3) and (r2, g4). The corresponding results are a trivial

group-by and group-by g4.

• If we check edge (w22, w33) and edge (w11, w33), to generate the candidate answers, we need to

perform max-join operations on (r3, g3) and (r3, g4). The corresponding results are a trivial

group-by and group-by g4.

Thus, no matter which two edges are checked, after pruning unsatisfied (duplicated, trivial,

or non-minimal) group-bys, the results are the same. In the above example, the complete query-

11

Algorithm 1 The new index construction algorithm.

Require:

A table T ;

Ensure:

The new index IPJ

1: Create L1= { (w,R[w]) | w is a keyword in T , R[w] represents all the rows that contain w };
2: Create L2= { (r, S[r]) | r is a row in T , the corresponding set S[r] = NULL };
3: for each row r1 ∈ T do do

4: for each row r2 ∈ T do do

5: g= r1 ∨ r2;
6: Add g into S[r1] and add g into S[r2];

7: end for

8: end for

9: Create an Inverted Pair-wise Joins IPJ={ (w,PJ [w]) | w is a keyword in T , the corresponding

Pair-wise Joins PJ [w] = NULL }
10: for each item (w,R[w]) ∈ L1 do do

11: for each row r ∈ R[w] do do

12: Move group-bys from S[r] into PJ [w];

13: Prune duplicated group-bys in PJ [w];

14: end for

15: end for

16: return The inverted pair-wise joins IPJ={ (w,PJ [w]) | w is a keyword in T , PJ [w] is the

corresponding Pair-wise Joins }

answering method finds one minimal answer (group-by g4) for the query q = (D,C, {w11, w22, w33}).

3.3 The Index Construction Algorithm

To construct the IPJ index on a table T , we first create an inverted index L1 to record

the information about which rows contain a certain keyword. We then conduct a max-join

operations on each pair of rows in the table T to construct another inverted index L2 =

{(r, S[r])|r is a row in T , the corresponding set S[r] is null at the beginning}. For example, if the

group-by g is the max-join result of rows r1 and r2, we add g into S[r1] and S[r2]. Finally, we join

L1 and L2 to generate our Inverted Pair-wise Joins. The process summarized in Algorithm 1.

The IPJ index has two advantages comparing to the keyword graph index [22].

First, IPJ is smaller and faster to construct. The space complexity of the keyword graph

index [22] is O(m2 × n × p), where m is the number of unique keywords in the table, n is the

number of dimensions and p is the average number of minimal answers on each edge in the graph.

The space complexity of the IPJ index is O(m× n× p′′), where p′′ is the average size of PJ [w] (w

is a keyword).

12

Dataset NumOfEdges KeywordGraphIndex IPJ

e-Fashion 107 2hour57mins 20seconds

SuperstoreSales 1011 > 3hour 6mins

CountryInfo 106 17mins 8seconds

Table 6: Construction time of the keyword graph index and IPJ

Given a table T with m = 104 unique keywords and n = 10 dimensions, assume that the average

number of minimal answers on each edge is p = 5, if we use an integer (4 bytes) to represent a

dimension value, the size of a minimal answer is p′ = 40 bytes. The size of the keyword graph index

is about 10 GB. Assuming that the average size of PJ [w] (w is a keyword) is p′′ = 100, the size of

IPJ is p′′ × p′ ×m = 100× 40× 104 = 40× 106 bytes, which is about 40 MB.

Table 6 shows the construction time of the two indexes on three real data sets (details in

Section 5), from which we can see that our new index is more efficient.

Second, the IPJ index is easier to maintain. When a keyword is deleted, to maintain the keyword

graph index [22], we need to find all the corresponding edges and then delete them. So, every edge

in the keyword graph index [22] must be checked and the time complexity is O(m2), where m is

the number of unique keywords in the table. To maintain our new index, we only need to delete

the corresponding item from the inverted pair-wise joins and the time complexity is O(m).

4 A Top-k Query Answering Algorithm

In this section, we propose a general ranking model and an efficient ranking algorithm.

4.1 Scoring Functions

We define three scoring functions on a group-by: the density score, the dedication score and the

structure degree. The overall score of a group-by is a linear combination of these three scores.

Table 7 presents the symbols and formulae used in this section.

4.1.1 Density Score

We use a density score to measure whether the query keywords appear frequently in the minimal

answers. If a group-by has a high density score, it means that query keywords appear frequently

in this group-by, and thus this group-by should be ranked high in the search engine.

The feature of term frequency is often used in IR technologies [18, 19]. Since each group-by

covers a set of rows in the table T , we can treat these covered rows as a document and similarly

consider the query term frequency in these covered rows.

Definition 3 (Density Score)). Given an aggregate query Q, the density score of a group-by g is

defined as

13

Item Symbol

The threshold on the overall score of k generated an-

swers

s

An aggregate keyword query Q,Q = (D,C, {w1, . . . , wn})
The number of query terms in Q |Q|
Query terms wi, 1 ≤ i ≤ n
A table of the relational database T

One minimal answer g

One black node (group-by) on an edge of the query

keyword graph

Ai

The set of rows covered by g Cov(g), Cov(g) = r1, . . . , rm
In Cov(g), the number of rows that contain wi Ni, 1 ≤ i ≤ n
The set of sub-queries of Q C,C = c1, . . . , cy
One sub-query of Q cj , 1 ≤ j ≤ y
In Cov(g), the number of rows that contain cj Mj , 1 ≤ j ≤ y
The occurrences of query terms in g Num(Q, g)

The total number of keywords in g Num(g)

The density score of g Density(g) = Num(Q,g)
Num(g)

In T , the number of rows that contain wi DF (wi), IDF (wi) = 1
DF (wi)

, 1 ≤
i ≤ n

The dedication score of g Dedication(g) =
∑n

i=1 IDF (wi) ×
Ni

|Cov(g)|

The structure degree of g StructureDegree(g) =
∑y

j=1
|cj |
|Q| ×

Mj

|Cov(g)|

Table 7: Symbols and formulae used in Section 4

Density(g) = Density(Cov(g)) =
Num(Q, g)

Num(g)
(1)

where Num(Q, g) is the total number of occurrences of query terms in the group-by g, Num(g)

represents the total number of keywords in g, and Cov(g) represents rows covered by g.

We calculate the density score of a group-by g using the information in its covered rows (Cov(g)).

Therefore, Density(g) and Density(Cov(g)) are the same.

Example 6 (Density Score). In Figure 5, suppose the aggregate keyword search engine re-

turns two minimal group-bys for a query q = (D,C, {Austin,Boston, 2001}). For simplicity,

we assume all the attributes are text attributes unless otherwise specified. The two results are

g = (∗, ∗, 2001, accessories, ∗) and g′ = (∗, ∗, ∗, ∗, 43). The number of keywords in group-by g is

Num(g) = 19, and the number of query terms in g is Num(q, g) = 7. So, the density score of

14

Figure 5: A query-answering example

group-by g is Density(g) = 7
19 = 0.37. Similarly, the number of keywords in g′ is Num(g′) = 28,

and the number of query terms in g′ is Num(q, g′) = 7, so the density score of group-by g′ is

Density(g′) = 7
28 = 0.25.

4.1.2 Dedication Score

Inverted document frequencies (IDF) are often used IR technologies [18, 19], too. Carrying the

same spirit, we use a dedication score to measure whether terms with high IDF scores appear

frequently in the minimal answers. If a group-by has a high dedication score, it means that some

terms with high IDF scores appear frequently in this group-by, and thus this group-by should be

ranked high in the search engine.

In a text-rich relational database, some terms may appear in many rows while others may only

appear in few rows, if we treat a row as a document, we can similarly consider the IDF feature of

a group-by.

Definition 4 (Dedication Score). Given a query Q = (D,C, {w1, . . . , wn}), the dedication score

of a group-by g is defined as

Dedication(g) = Dedication(Cov(g)) =

n∑
i=1

IDF (wi)×
Ni

|Cov(g)|
(2)

where IDF (wi) is the inverted value of DF (wi) , DF (wi) is the number of rows that contain a

query term wi, and Ni is the number of rows (in Cov(g)) contain the term wi. We use Ni
Cov(g)

to measure the weight of wi in g. The group-by gis highly dedicated to the term wi if most of its

15

StoreName City Year Lines QuantitySold

e-Fashion Austin Austin 2003 accsesories 43

e-Fashion Boston Newbury Boston 2003 accessories 43

e-Fashion Washington Tolbooth Washington 2003 trousers 43

e-Fashion Boston Newbury Boston 2001 accessories 43

e-Fashion Dallas Dallas 2001 accessories 18

e-Fashion Washington Tolbooth Washington 2002 trousers 18

e-Fashion Washington Tolbooth Washington 2003 dresses 18

e-Fashion Austin Austin 2001 accessories 18

Table 8: Query Keywords in the e-Fashion Database

covered rows contain wi. We use IDF (wi)× Ni
|Cov(g)| to measure how g is dedicated to the term wi.

The dedication score of a group-by g is calculated using the information in its covered rows

(Cov(g)). Thus, Dedication(g) and Dedication(Cov(g)) are the same.

Example 7 (Dedication Score). Continued from Example 6, suppose the database is as shown in

Table 8, and the query is (“Austin”, “Boston”,“2001”). In the database, the number of rows that

contain “Austin” is 2, the number of rows that contain “Boston” is 2, and the number of rows

that contain “2001” is 3, so the IDF scores of the query terms are IDF (“Austin”) = 1
2 = 0.5,

IDF (“Boston”) = 1
2 = 0.5, and IDF (“2001”) = 1

3 = 0.33.

In Figure 5, the number of rows covered by group-by g = (∗, ∗, 2001, accessories, ∗) is |Cov(g)| =
3, the number of rows in Cov(g) that contain (Austin) is N1 = 1, the number of rows in Cov(g)

that contain “Boston” is N2 = 1 and the number of rows in Cov(g) that contain “2001” is N3 = 3.

So, the dedication score of group-by g is Dedication(g) = 0.5 × 1
3 + 0.5 × 1

3 + 0.33 × 3
3 = 0.66.

Similarly, the number of rows covered by group-by g′ = (∗, ∗, ∗, ∗, 43) is |Cov(g′)| = 4, the number

of rows in Cov(g′) that contain “Austin” is N1 = 1, the number of rows in Cov(g′) that contain

“Boston” is N2 = 2 and the number of rows in Cov(g′) that contain “2001” is N3 = 1. So, the

dedication score of group-by g′ is Dedication(g′) = 0.5× 1
4 + 0.5× 2

4 + 0.33× 1
4 = 0.46.

4.1.3 Structure Degree

If a keyword query q = (D,C, {w1, . . . , wn}), there exists 2n sub-queries, including the empty one.

Each row in the database matches one of these sub-queries. If a row does not contain any query

keyword, it matches the empty sub-query. Different sub-queries may have different importance.

Intuitively, longer sub-queries are more important than shorter ones. A group-by is good if its

covered rows match many important sub-queries.

We use a structure degree to measure whether important sub-queries (structures) appear fre-

quently in the minimal answers. If a group-by has a high structure degree, it means that important

16

sub-queries (structures) appear frequently in this group-by, and thus this group-by should be ranked

high in the search engine.

Definition 5 (Structure Degree). Given a query Q, the sub-queries of Q are {c1, . . . , cy}, the

structure degree of a group-by g is defined as

StructureDegree(g) = StructureDegree(Cov(g)) =

y∑
j=1

|cj |
|Q|
× Mj

|Cov(g)|
(3)

where Mj is the number of rows in Cov(g) that contain the sub-query cj.

Since we assume that longer sub-queries are more important than shorter ones, we can use
|cj |
|Q|

to measure the importance of a sub-query cj . Also, we use
Mj

|Cov(g)| to measure the weight of cj in

the group-by g, thus the score of cj in group-by g can be measured by using
|cj |
|Q| ×

Mj

|Cov(g)| .

The structure degree of a group-by g is calculated using the information in its covered rows

(Cov(g)). Thus, StructureDegree(g) and StructureDegree(Cov(g)) are the same.

Example 8 (Structure Degree). Continued from Example 6, suppose the search en-

gine returns two group-bys (g and g′) for the query (D,C, {Austin,Boston, 2001}).
For group-by g = (∗, ∗, 2001, accessories, ∗), its covered rows match the following sub-

queries: (D,C, {Boston, 2001}), (D,C, {Austin, 2001}), and (D,C, {2001}). For group-by

g′ = (∗, ∗, ∗, ∗, 43), its covered rows match the following sub-queries: (D,C, {Boston, 2001}),
(D,C, {Austin}), and (D,C, {Boston}).

In Figure 5, the number of rows covered by group-by g is |Cov(g)| = 3, the number of rows in

Cov(g) that match (D,C, {Boston, 2001}) is M1 = 1, the number of rows in Cov(g) that match

(D,C, {Austin, 2001}) is M2 = 1 and the number of rows in Cov(g) that match (D,C, {2001}) is

M3 = 1. So, the structure degree of group-by g is StructureDegree(g) = 2
3×

1
3 + 1

3×
1
3 + 2

3×
1
3 = 0.56.

Similarly, the number of rows covered by group-by g′ is |Cov(g′)| = 4, the number of rows in

Cov(g′) that match (D,C, {Boston, 2001}) is M1 = 1, the number of rows in Cov(g′) that match

(D,C, {Austin}) is M2 = 1 and the number of rows in Cov(g′) that match (D,C, {Boston}) is

M3 = 1. So, the structure degree of group-by g′ is StructureDegree(g′) = 1
3×

1
4+ 1

3×
1
4+ 2

3×
1
4 = 0.33.

4.1.4 The Overall Scoring Function

Let g be the max-join result of group-bys g1 and g2. The scores of group-by g can be calculated using

the information in Cov(g1) ∪Cov(g2). The overall score of group-by g is the linear combination of

its density score, dedication score and structure degree, that is,

Score(g) = Score(Cov(g1) ∪ Cov(g2))

= e1 ×Density(g) + e2 ×Dedication(g) + (1− e1 − e2)× StructureDegree(g)

where e1, e2 are two coefficients, 0 ≤ e1, e2 ≤ 1.

17

Figure 6: An example of Query Keyword Graph in Chapter 4

4.2 Top-k Query Processing

At the beginning of the query processing, a query keyword graph is constructed by using the IPJ

index. For example, if the query q is (D,C, {w1, w2, w3}), the corresponding query keyword graph

is shown in Figure 6. Each vertex in the graph represents a query keyword and each edge contains

a set of corresponding minimal answers.

Other steps of the query processing are the same with the keyword graph approach [22]. We

need to check |q| − 1 = 3 − 1 = 2 edges (ignoring the edge with the largest number of minimal

answers) in the graph to generate all the candidate answers. Then, we delete duplicate, empty or

non-minimal group-bys in the candidate answers. In our example, we need to check edges (w1, w2)

and (w2, w3). The edge (w1, w3) is ignored and does not need to be checked since it has more

minimal answers than the other edges.

To answer query q = (D,C, {w1, . . . , wm}), using Theorem 1 repeatedly, we only need to check

m − 1 edges covering all keywords w1, . . . , wm in the clique. Each edge is associated with the set

of minimal answers to a query on a pair of keywords. The weight of the edge is the size of the

answer set. In order to reduce the total cost of the joins, heuristically, we can find a spanning tree

connecting the m keywords such that the product of the weights on the edges is minimized.

If t is a minimal answer to aggregate keyword query Q = (D,C, {w1, · · · , wm}), then there exists

minimal answers t1 and t2 to queries (D,C, {w1, w2}) and (D,C, {we, · · · , wm}), respectively, such

that t = t1 ∨ t2.
In the query keyword graph, each edge is associated with a set of minimal answers. We use a

node to represent a minimal answer of the corresponding edge, as shown in Figure 6. All nodes are

black nodes at the beginning. As shown in Figure 7, each line represents a max-join operation

on two black nodes. The max-join result is a candidate answer. We need to perform 12 max-join

operations in order to generate all the candidate answers. Our top-k method detects some black

18

Figure 7: At the beginning all

nodes are black

Figure 8: Detection in the

bounding step

Figure 9: Further pruning in

the pruning step

nodes as white nodes (Figure 8), such that if max-joins are all on white nodes, the corresponding

max-join results are not top-k answers.

We have to do many max-join operations if generating all minimal answers. Since we only need

top-k answers, some unnecessary max-join operations can be pruned.

We develop a two-step (the bounding step and the pruning step) pruning method to prune

unnecessary max-join operations. In Figure 7, each node represents a minimal answer in the

corresponding edge. All these nodes are black at the beginning. To prune unnecessary joins, the

bounding step detects some black nodes as white nodes (Figure 8), such that if max-joins are all

on white nodes, the corresponding max-join results are not top-k answers. The pruning step is

developed to help detect more white nodes in the checked edges (Figure 9). The number of max-

joins reduced by half after using these two steps. We only need to perform 6 max-join operations

(max-joins that are all on white nodes are pruned). The more white nodes we detect, the more

max-join operations we can prune.

4.2.1 The Bounding Step

Suppose there are n edges in the query keyword graph and thus we need to check n − 1 edges

to generate all the candidate answers. To generate one candidate answer g, we need to perform

max-joins on a set of nodes {A1, . . . , An−1}, where Ai is a node from a corresponding checked

edge. As mentioned in Section 4.1.4, the overall score of g is calculated by using information in

Cov(A1) ∪ Cov(A2) ∪ · · · ∪ Cov(An−1), so we can define an upper bound for g using the overall

scores of those nodes, as shown in Equation 4.5. If the upper bound is smaller than a threshold

s, we do not need to perform max-join operations on these nodes. To find a suitable threshold,

we generate k answers (may not be top-k answers) and calculate their overall scores. We use the

lowest overall score as the threshold.

UpperBound(g) = UpperBound(A1, . . . , An−1) =

n−1∑
i

Score(Ai)

where Score(Ai) is the overall score of node Ai.

19

Figure 10: Sort the nodes for each edge
Figure 11: Detect white nodes for edge(w2, w3)

Example 9 (The bounding step). Suppose the query is (D,C, {w1, w2, w3}) and the corresponding

query keyword graph is as shown in Figure 6. To generate candidate answers, we need to check edge

(w1, w2) and edge (w2, w3) (Figure 7). All nodes of the checked edges are black at the beginning. To

prune unnecessary max-join operations, we then detect some white nodes according to the following

steps.

First, we calculate the overall scores of all nodes and rank them according to their overall scores,

as shown in Figure 10.

Second, we detect the white nodes for edge (w2, w3).

• For each checked edge, we scan its associated nodes and find the black node with the lowest

overall score. If the edge is not (w2, w3), we record the overall score of that black node in a

set S. In our example, S = {0.025}.

• We scan every black node of edge (w2, w3) from top to down. Once we find a certain black

node (suppose its overall score is s′), such that UpperBound(0.025, s′) is smaller than the

threshold s, we stop scanning and mark that black node and nodes blow as white nodes. In

our example, s′ = 0.05, and the result is shown in Figure 11.

Finally, we detect the white nodes for edge (w1, w2).

• For each checked edge, we scan its associated nodes and find the black node with the lowest

overall score. If the edge is not (w1, w2), we record the overall score of that black node in a

set S. In our example, S = {0.10}.

• We scan every black node of edge (w1, w2) from top to down. Once we find a certain black

node (suppose its overall score is s′), such that UpperBound(0.10, s′) is smaller than the

threshold s, we stop scanning and mark that black node and nodes blow as white nodes. In

our example, s′ = 0.05, and the result is shown in Figure 12.

The bounding step can detect many white nodes if we can find tight upper bounds. The

limitation of this step is that the best upper bounds we can find are still not tight enough.

20

Figure 12: Detect white nodes for edge (w1, w2)

4.2.2 Tight Upper Bounds

Since the overall score is a linear combination of the three kinds of scores we defined (density,

dedication, structure degree), we have the following equation:

UpperBoundOverallScore(g) = e1 · UpperBoundDensityScore(g) + e2 · UpperBoundDedicationScore(g)

+(1− e1 − e2) · UpperBoundStructureDegree(g)

We can obtain the following.

Theorem 2. Let g be the max-join result of nodes (group-bys) A1 and A2. The upper bound of the

density score of g is

(Density(A1) +Density(A2)− 2×Density(A1)×Density(A2))

1−Density(A1)×Density(A2)
,

the upper bound of the dedication score of g is Dedication(A1) + Dedication(A2), and the upper

bound of structure degree of g is StructureDegree(A1) +StructureDegree(A2). The upper bounds

are reachabel.

Proof. We only show the upper bound of the density score. The other two upper bounds can be

proved similarly.

Suppose

• there are M rows in Cov(A1) ∪ Cov(A2), the density scores of these rows are d1, . . . , dM ;

• there are N ′ rows in Cov(A1) − Cov(A1) ∪ Cov(A2), the density scores of these rows are

a1, . . . , aN ′ ; and

• there are N ′′ rows in Cov(A2) − Cov(A1) ∪ Cov(A2), the density scores of these rows are

b1, . . . , bN ′′ .

For simplicity, we assume that each row has the same length (number of keywords). We

have Density(A1) =
∑N′

i=1 ai+
∑M

i=1 di
N ′+M , Density(A2) =

∑N′′
i=1 bi+

∑M
i=1 di

N ′′+M , and Density(g) =∑N′
i=1 ai+

∑
(i=1)N

′′
bi+

∑M
i=1 di

N ′+N ′′+M . We can prove the upper bound once we show the following.

21

Lemma 1. The upper bound of Density(g) is: (Density(A1)+Density(A2)−2×Density(A1)×Density(A2))
1−Density(A1)×Density(A2)

Proof. Since each density score is in range [0, 1], we have: 0 ≤ B =
∑N ′

i=1 ai ≤ N ′, 0 ≤ C =∑N ′′

i=1 bi ≤ N ′′, and 0 ≤ D =
∑M

i=1 di ≤M .

Let ξ be a very small positive number, and let D′ = D− ξ,B′ = B + ξ, C ′ = C + ξ, so we have

Density(A1) =

∑N ′

i=1 ai +
∑M

i=1 di
N ′ +M

=
B +D

N ′ +M
=
B′ +D′

N ′ +M

Density(A2) =

∑N ′′

i=1 bi +
∑M

i=1 di
N ′′ +M

=
C +D

N ′′ +M
=

C ′ +D′

N ′′ +M
D′ +B′ + C ′

N ′ +N ′′ +M
=
D +B + C + ξ

N ′ +N ′′ +M
>

D +B + C

N ′ +N ′′ +M
= Density(g)

If D becomes smaller (or B and C become larger), Density(g) would become larger. So, if the

upper bound of Density(g) is reached, D must be 0, which means the rows covered by both A1

and A2 contain no query keywords.

Since D is 0, we have Density(g) = B+C
N ′+N ′′+M , Density(A1) = B

N ′+M , and Density(A2) =
C

N ′′+M .

Let M ′ = M + ξ,N ′1 = N ′ − ξ,N ′′1 = N ′′ − ξ. We have:

B + C

N ′1 +N ′′1 +M ′
=

B + C

N ′ +N ′′ +M − ξ
>

B + C

N ′ +N ′′ +M
= Density(g)

0 ≤ B =
N ′∑
i=1

ai ≤ N ′

0 ≤ C =
N ′′∑
i=1

bi ≤ N ′′

If N ′ and N ′′ become smaller(or M becomes larger), Density(g) would become larger. So,

if the upper bound of Density(g) is reached, N ′ must be B and N ′′ must be C, which means

a1 = · · · = aN ′ = 1 and b1 = · · · = bN ′′ = 1.

So, the upper bound of Density(g) is reached if D = 0, B = N ′ and C = N ′′. In such a case,

the upper bound of Density(g) is

(Density(A1) +Density(A2)− 2×Density(A1)×Density(A2))

1−Density(A1)×Density(A2)

The above upper bounds are reached in the case shown in Figure 13.

4.2.3 The Pruning Step

As discussed earlier, the bounding step may not be able to find all white nodes, so we use the

pruning step to detect more white nodes.

In the pruning step, we define a score function f(C) = (Score(C)−s)×|C|, where C represents

a set of rows, Score() is the overall score function we defined above, and s is the threshold.

22

Figure 13: An example when the upper bounds are reached

Figure 14: Define two types of scores for each node

The candidate answer g is generated by performing max-joins on a set of nodes {A1, . . . , An−1},
where Ai is a minimal answer of a corresponding edge. So, for each node Ai, its covered rows

Cov(Ai) can be divided into two parts, Cov(Ai)1 and Cov(Ai)2, such that, for each row r in

Cov(Ai)1, Score(r) ≤ s; and, for each row r′ in Cov(Ai)2, Score(r
′) < s. Therefore, we can

calculate another two types of scores
(
f(Cov(Ai)1) and f(Cov(Ai)2)

)
for each node Ai using the

function f . Figure 14 is an example about the two types of scores of each node of the checked

edges.

Theorem 3. Let s be the threshold on the overall score of k generated answers. Given a group-by

g, if f(Cov(g)1) + f(Cov(g)2) < 0, the overall score of g is smaller than the threshold s.

Theorem 4. Let s be the threshold on the overall score of k generated answers. Suppose the

candidate answer g is generated by performing max-joins on a set of nodes (minimal answers)

{A1, . . . , An−1}, where Ai is a minimal answer of a corresponding checked edge in the query keyword

graph. If the following inequality is satisfied, the overall score of g is smaller than the threshold s.

n−1∑
i=1

f(Cov(Ai)1) + min{f(Cov(A1)2), . . . , f(Cov(An−1)2)} < 0

23

Proof. We need to prove that given a group-by g, if f(Cov(g)1) +f(Cov(g)2) < 0, the overall score

of g is smaller than the threshold s.

According to the definition of function f , we have:

f(Cov(g)1) = (Score(Cov(g)1)− s)× |Cov(g)1|
f(Cov(g)2) = (Score(Cov(g)2)− s)× |Cov(g)2|

We already know that f(Cov(g)1) + f(Cov(g)2) < 0. So, we have

0 > f(Cov(g)1) + f(Cov(g)2)

= (Score(Cov(g)1)− s)× |Cov(g)1)|+ (Score(Cov(g)2)− s)× |Cov(g)2|
= Score(Cov(g)1)× |Cov(g)1|+ Score(Cov(g)2)× |Cov(g)2| − s× (|Cov(g)1|+ |Cov(g)2|)
= Score(Cov(g)1)× |Cov(g)1|+ Score(Cov(g)2)× |Cov(g)2| − s× |Cov(g)|
s× |Cov(g)| > Score(Cov(g)1)× |Cov(g)1|+ Score(Cov(g)2)× |Cov(g)2|

s >
Score(Cov(g)1)× |Cov(g)1|+ Score(Cov(g)2)× |Cov(g)2|

|Cov(g)|

So we only need to prove the following equation:

Score(Cov(g)) =
Score(Cov(g)1)× |Cov(g)1|+ Score(Cov(g)2)× |Cov(g)2|

|Cov(g)|

For simplicity, we assume that each row has the same length l (number of keywords), and we

have:

Density(Cov(g))

=
Density(Cov(g)1)×Num(Cov(g)1) +Density(Cov(g)2)×Num(Cov(g)2)

Num(Cov(g))

=
Density(Cov(g)1)× |Cov(g)1| × l +Density(Cov(g)2)× |Cov(g)2| × l

|Cov(g)| × l

=
Density(Cov(g)1)× |Cov(g)1|+Density(Cov(g)2)× |Cov(g)2|

|Cov(g)|

24

Dedication(Cov(g)) =
n∑

i=1

IDF (wi)×
Ni

|Cov(g)|
=

∑n
i=1 IDF (wi)×Ni

|Cov(g)|

=

∑n
i=1 IDF (wi)× (N ′i +N ′′i)

|Cov(g)|
=

∑n
i=1 IDF (wi)×N ′i + sumn

i=1IDF (wi)×N ′′i
|Cov(g)|

=
|Cov(g)1| ×

∑n
i=1 IDF (wi)×

N ′i
|Cov(g)1| + |Cov(g)2| × sumn

i=1IDF (wi)×
N ′′i

|Cov(g)2|

|Cov(g)|

=
|Cov(g)1| ×Dedication(Cov(g)1) + |Cov(g)2| ×Dedication(Cov(g)2)

|Cov(g)|

StructureDegree(Cov(g)) =

y∑
j=1

|cj |
|Q|
× Mj

|Cov(g)|
=

∑y
j=1

|cj |
|Q| ×Mj

|Cov(g)|
=

∑y
j=1

|cj |
|Q| × (M ′j +M ′′j)

|Cov(g)|

=

∑y
j=1

|cj |
|Q| ×M

′
j +

∑y
j=1

|cj |
|Q| ×M

′′
j

|Cov(g)|

=
|Cov(g)1| ×

∑y
j=1

|cj |
|Q| ×

M ′j
|Cov(g)1| + |Cov(g)2| ×

∑y
j=1

|cj |
|Q| ×

M ′′j
|Cov(g)2|

|Cov(g)|

=
|Cov(g)1| × StructureDegree(Cov(g)1) + |Cov(g)2| × StructureDegree(Cov(g)2)

|Cov(g)|

where wi is a query keyword, Ni represents the number of rows that contain wi in Cov(g), N ′i is the

number of rows that contain wi in Cov(g)1, N
′′
i is the number of rows that contain wi in Cov(g)2,

cj is a sub-query, Mj represents the number of rows that contain cj in Cov(g), M ′i is the number

of rows that contain cj in Cov(g)1, and M ′′i is the number of rows that contain cj in Cov(g)2.

Since the overall score is the linear combination of density score, dedication score and structure

degree, we have:

25

Score(Cov(g)) = e1 ×Density(Cov(g)) + e2 ×Dedication(Cov(g))

+(1− e1 − e2)× StructureDegree(Cov(g))

= e1 × (
Density(Cov(g)1)× |Cov(g)1|+Density(Cov(g)2)× |Cov(g)2|

|Cov(g)|
)

+e2 × (
|Cov(g)1| ×Dedication(Cov(g)1) + |Cov(g)2| ×Dedication(Cov(g)2)

|Cov(g)|
)

+(1− e1 − e2)×
1

|Cov(g)|
×(|Cov(g)1| × StructureDegree(Cov(g)1) + |Cov(g)2| × StructureDegree(Cov(g)2))

=
1

|Cov(g)|
×

[(
e1 ×Density(Cov(g)1) + e2 ×Dedication(Cov(g)1)

+(1− e1 − e2)× StructureDegree(Cov(g)1)
)
× |Cov(g)1|

+
(
e1 ×Density(Cov(g)2) + e2 ×Dedication(Cov(g)2)

+(1− e1 − e2)× StructureDegree(Cov(g)2)
)
× |Cov(g)2|

]

=
Score(Cov(g)1)× |Cov(g)1|+ Score(Cov(g)2)× |Cov(g)2|

|Cov(g)|
< s

We need to prove that : suppose the candidate answer g is generated by performing max-joins on

a set of nodes (minimal answers) {A1, . . . , An−1}, each of which is from a corresponding checked edge

in the query keyword graph. If
∑n−1

i=1 f(Cov(Ai)1) + min{f(Cov(A1)2), . . . , f(Cov(An−1)2)} < 0 ,

the overall score of g is smaller than the threshold s.

We first prove the case for n = 3. The candidate answer g is generated by performing max-

joins on a set of nodes (minimal answers) {A1, A2}, each of these nodes is from a corresponding

checked edge in the query keyword graph. We need to prove that: if f(Cov(A1)1) +f(Cov(A2)1) +

min{f(Cov(A1)2), f(Cov(A2)2)} < 0 , the overall score of g is smaller than the threshold s.

Since g is generated by performing max-joins on A1 and A2, as we discussed in Section 4.1.4,

the scores of group-by g will be calculated using information in Cov(A1) ∪ Cov(A2). So we have:

f(Cov(g)1) = f(Cov(A1)1 ∪ Cov(A2)1) ≤ f(Cov(A1)1) + f(Cov(A2)1)

f(Cov(g)2) = f(Cov(A1)2 ∪ Cov(A2)2) ≤ min{Cov(A1)2, Cov(A2)2}

So we have:

f(Cov(g)1) + f(Cov(g)2)

≤ f(Cov(A1)1) + f(Cov(A2)1) +min{Cov(A1)2, Cov(A2)2} < 0

According to Theorem 3, the overall score of g is smaller than the threshold s. Similarly, we

can prove the case for n ≥ 4:

26

Figure 15: Detect white nodes for edge(w2, w3)

f(Cov(g)1) = f(Cov(A1)1 ∪ · · · ∪ Cov(A2)1) ≤ f(Cov(A1)1) + · · ·+ f(Cov(A2)1)

f(Cov(g)2) = f(Cov(A1)2 ∪ · · · ∪ Cov(A2)2) ≤ min{Cov(A1)2, . . . , Cov(A2)2}
f(Cov(g)1) + f(Cov(g)2) ≤ f(Cov(A1)1) + · · ·+ f(Cov(A2)1) +min{Cov(A1)2, . . . , Cov(A2)2} < 0

Example 10 (The pruning step). In the scenario of the above example, two white nodes of edge

(w1, w2) and one white node of edge (w2, w3) are detected in the bounding step (Figure 12). In the

pruning step, more white nodes can be detected using Theorem 4.

First, we detect more white nodes for edge (w2, w3).

• Create two sets, S1 and S2.

• For each checked edge, if the edge is not (w2, w3) and suppose its associated white nodes are

B1, . . . , Bh, 1) we scan these white nodes and record max{f(Cov(B1)1), f(Cov(B2)1), · · · ,
f(Cov(Bh)1)} in S1; and 2) we also record max{f(Cov(B1)2), f(Cov(B2)2), · · · ,
f(Cov(Bh)2)} in S2. In our example, S1 = {4}, S2 = {−11}.

• Let s1 be the sum of items in S1 and s2 be the minimal item in S2. In our example, s1 = 4

and s2 = −11.

• Scanning every black node of edge (w2, w3) from top to down. Once we find a certain black

node z, such that s1+f(Cov(z)1)+min{s2, f(Cov(z)2)} < 0 (Corollary 1), we stop scanning

and mark that black node and nodes blow as white nodes. In our example, f(Cov(z)1) = 3

and f(Cov(z)2) = −12, the result is shown in Figure 15.

Second, we detect more white nodes for edge (w1, w2).

• Create two sets, S′1 and S′2.

27

Figure 16: Detect white nodes for edge(w2, w3)

• For each checked edge, if the edge is not (w1, w2) and suppose its associated white nodes

are B′1, . . . , B
′
h′, 1)we scan these white nodes and record max{f(Cov(B′1)1), f(Cov(B′2)1), · · · ,

f(Cov(B′h′)1)} in S′1; (2) we also record max{f(Cov(B′1)2), f(Cov(B′2)2), . . . , f(Cov(B′h′)2)}
in S′2. In our example, S′1 = {3}, S′2 = {−12}.

• Let s′1 be the sum of items in S′1 and s′2 be the minimal item in S′2. In our example, s′1 = 3

and s′2 = −12.

• Scanning every black node of edge (w1, w2) from top to down. Once we find a certain black

node z′, such that s′1+f(Cov(z′)1)+min{s′2, f(Cov(z′)2)} < 0 (Theorem 4), we stop scanning

and mark that black node and nodes blow as white nodes. In our example, f(Cov(z)1) = 8

and f(Cov(z)2) = −16, the result is shown in Figure 16.

In the pruning step, we detect more white nodes for both edge (w1, w2) and edge (w2, w3). The

number of max-joins reduced by half after using the bounding step and the pruning step.

5 Experimental Results

In this section, we report an empirical study of our top-k query answering method on two real data

sets. We first describe the user study which is used to learn the coefficients for the overall scoring

function. Then, we report the effectiveness of the bounding step and the pruning step. Finally,

we evaluate the top-k query answering method and the complete query answering method under

various number of tuples and dimensions.

5.1 Setup and Data Sets

All the experiments were conducted on a PC computer running the Microsoft Windows 7 Profes-

sional Edition operating system, with a 2.4 GHz CPU, 2.0 GB main memory, and a 250 GB hard

disk. The programs were implemented in JAVA and were compiled using eclipse.

The e-Fashion dataset and the SuperstoreSales dataset have been used in the projects of SAP

Research on keyword search on relational databases. Since our project is supported by SAP Re-

search, we use these two datasets to empirically evaluate our aggregate keyword search methods.

28

Attribute Description

Store name branch store name

State which State the branch store is located

City which city the branch store is located

Year year of the sales information

Quarter quarter of the sales information

Month month of the sales information

Lines type of the product sold in the branch store

Sales revenue sales revenue of the product

Quantity sold quantity sold of the product

Table 9: Dimensions of the e-Fashion database

The dimensions of the e-Fashion dataset are shown in Table 9. There are 9 dimensions, 4300

tuples and 4000 unique keywords in the e-Fashion dataset. The SuperstoreSales dataset has 21

dimensions, 8339 tuples and 0.35 million unique keywords. Table 10 shows the dimensions in the

SuperstoreSales dataset. To keep our discussion simple, we assume all the database fields are text

attributes. In data representation, we adopted the popular packing technique [3]. A value on a

dimension is mapped to an integer. The star value on a dimension is mapped to 0. We also map

keywords to integers.

5.2 User Study

We use the traditional linear regression model [10, 8] to learn the ranking function. A user study is

then performed to calculate the coefficients of the overall scoring function. For each tested query,

we randomly select 5 answers for users to evaluate. For each selected answer xi, its density score

(xi1), dedication score (xi2) and structure degree (xi3) are pre-calculated. Let yi be the score

evaluated by users for the answer xi, we have the following linear regression model.

f(xi) = e1 × xi1 + e2 × xi2 + (1− e1 − e2)× xi3

The minimum sum of squares (SSE, the error sum of squares) we used in the learning model is

SSE =
∑m

i=1(yi − f(xi))
2, where m is the total number of selected answers evaluated by users.

In the user study, we designed three types of tested queries, each of which represents a possible

search intension. For example, given a query Q = (D,C, {w1, w2, w3}), it may have the following

search intensions:

1. “w1 or w2 or w3” (Table 11)

2. “w1 and w2 and w3” (Table 13)

3. Others, i.e. “w1 and w2 OR w1 and w3” (Table 15)

29

Attribute Description

Order ID ID of the order

Order Date the order date

Order Priority priority of the order

Order Quantity product quantity of the order

Sales total price of the order

Discount discount on the order

Ship Mode ship method of the order

Profit profit of the order

Unit Price price per unit

Shipping Cost cost of the shipping

Customer Name name of the customer

Customer State which State the customer is located

Zip Code Zip code of the customer location

Region region of the customer location

Customer Segment customer type

Product Category category of the product

Product Sub-Category sub-category of the product

Product Name name of the product

Product Container container of the product

Product Base Margin base margin of the product

Ship Date shipping date

Table 10: Dimensions of the SuperstoreSales database

For each type of query, we test 10 instance queries. We have 10 people participating in the

studies. We get 10 sets of results, each of which is from a single user and can be used to calculate

a set of values of the coefficients. We also mix all the results from the users and get another set of

values of the coefficients. So, we have 11 sets of values of the coefficients, as shown in Table 17 and

Table 18.

The learning results may not be the best, since there are only 10 people in the user study and

we only select 5 answers randomly for each tested query. We will get better coefficients if we have

larger samples and more people.

5.3 Effectiveness of the Bounding Step and the Pruning Step

In the query keyword graph, each checked edge contains a set of minimal answers (black nodes).

The bounding step and the pruning step prune many unnecessary max-joins by detecting some

black nodes as white nodes for each checked edge. So, the effectiveness of the bounding step and

the pruning step can be evaluated by measuring the rate of white nodes of the checked edges.

We test the following 6 queries, three of which are on the e-Fashion dataset and others are on

30

Query Template Tested Queries

Q =(D, C, {Austin, Boston, Washington})

Description

Each keyword represents a city. Users are interested in common

information about these cities. For example, products sold in these

cities. Table 5.4 shows such an interesting result.

“w1 or w2 or w3” Keywords in other tested queries

“austin boston washington miami”,“sweaters trousers jackets”,

“paper envelopes tables bookcases”, “michigan florida virginia

maryland”,“newbury springs leighton”, “2001 2002 2003”,

“sweaters trousers jackets outerwear”,“michigan florida virginia”,

“paper envelopes tables”

Table 11: Tested Queries 1

StoreName City Year Quarter Lines QuantitySold

* * 2003 * accessories 78

e-Fashion Austin Austin 2003 q1 accessories 78

e-Fashion Newbury Boston 2003 q3 accessories 78

e-Fashion Tolbooth Washington 2003 q3 accessories 78

Table 12: One good result for the query (D, C, {Austin, Boston, Washington})

the SuperstoreSales dataset. For each tested query, we measure the percentage of white nodes of

the checked edge.

For the e-Fashion dataset,

Q1 = (De−Fashion, CeF ashion, {Jackets, Leather, Sweaters, 2001})
Q2 = (De−Fashion, Ce−Fashion, {Jackets, Leather, Sweaters})
Q3 = (De−Fashion, Ce−Fashion, {2001, 2002, 2003, Jackets})
For the SuperstoreSales dataset,

Q4 = (DSuperstoreSales, CSuperstoreSales, {Paper,Envelopes, Tables})
Q5 = (DSuperstoreSales, CSuperstoreSales, {Roy,Matt, Collins})
Q6 = (DSuperstoreSales, CSuperstoreSales, {Tracy, Truck,Box})
Figure 17 shows the experiment results on the e-Fashion dataset and Figure 18 is the results

on the SuperstoreSales dataset. The bounding step is effective in detecting white nodes for Q5.

However, it detects few white nodes for Q3. For Q5, the bounding step can detect many white

nodes because: 1) the overall scores of most group-bys are close to their upper bounds; and 2) the

overall scores of most group-bys are much smaller than the threshold s. For Q3, few white nodes

31

Query Template Tested Queries

Q =(D, C, {php, html, ajax})

Description

Each keyword represents a job skill, a job hunter

is interested in jobs that contain as many related

“w1 and w2 and w3” job skills as possible. Table 5.6 shows such an

interesting result.

Keywords in other tested queries

“tracy truck box”,“2001 austin trousers”,“2001 q1

trousers”,“express high furniture”, “austin q1 trousers”,

“carolina express furniture”, “austin q1 2001”,

“carolina high express”,“mobile android downtown”

Table 13: Tested Queries 2

JobDescription Avg(USD) JobType Started Location

* * * * richmond

... to add the necessary joomla, php,

code into the current system .net, ajax,

to enable hotmail address to 85 software Nov. richmond

be used. I would love the user architecture

to also be ...

... it needs to be fun .net, ajax, html,

and yet professional 121 graph design, Oct. richmond

looking... website design

Table 14: One good result for the query (D, C, {php, html, ajax})

are detected in the bounding step because: 1) the overall score of most group-bys are much smaller

their upper bounds; or 2) the overall scores of most group-bys are larger than the threshold s. The

pruning step is designed to detect more white nodes for each checked edge. After using the pruning

step, we get better results. The pruning step detects many white nodes for all tested queries. For

Q3, about 90% of the nodes are detected as white nodes after the pruning step. For Q2, although

there is no big improvement after the pruning step, the result is still better than previous. In the

pruning step, each group-by’s covered tuples are divides into two types: 1) tuples with overall scores

smaller than the threshold s and 2) tuples with overall scores not smaller than s. Such information

can help better predicting if the overall score of a group-by is smaller than the threshold s.

32

Query Template Tested Queries

Q =(D, C, {roy, matt, collins}
Description

The first two keywords represent first names, the last

“w1 and w3” keyword represents a last name. Users are interested

OR in information about “roy collins” or “matt collins”.

“w2 and w3” Table 5.8 shows such an interesting result.

Keywords in other tested queries

“sweaters trousers outerwear 2001”,“sweaters trousers

newbury”, “sweaters trousers outerwear newbury”, “maryland

georgia florida cleaner”, “2001 2002 2003 newbury”,

“sweaters trousers 2001”, “office supplies express air”,

“maryland georgia cleaner”, “2001 2002 newbury”

Table 15: Tested Queries 3

OrderID Priority ShipMode CustomerName State Container Product

* high * * * small box laptop

130 high regular roy collins florida small box laptop

air

5318 high expiress matt collins michigan small box laptop

air

Table 16: One good result for the query (D, C, {roy, matt, collins})

5.4 The Top-k Query Answering Method and the Complete Query Answering

Method

We use the e-Fashion dataset and the SuperstoreSales dataset to study the efficiency of the top-k

query answering method. To study the scalability of our algorithm, we measure the query answering

time of our method under various number of tuples and dimensions in the datasets.

We conduct two query answering experiments on the datasets. In our experiments, the top-k

query answering method returns top-10 answers. In the first experiment, we change the number

of tuples in the datasets. The corresponding results are shown in Figure 19 and Figure 20. For

the complete query answering method, increasing the number of tuples results in a fairly linear

increase in the runtime. One reason is that the number of max-join operations increases with the

number of tuples. Another reason is that there could be more answers if the datasets contains more

tuples. The top-k query answering method is also sensitive to the number of tuples in the datasets,

but it is faster than the complete query answering method. The reason is that many unnecessary

33

Coefficients No.1 No.2 No.3 No.4 No.5 No.6

e1 16.869 16.207 16.418 18.014 18.135 15.757

e2 24.440 20.884 24.920 23.910 32.815 24.111

e3 4.500 5.095 4.788 4.868 4.669 5.276

Table 17: The user study results 1

Coefficients No.7 No.8 No.9 No.10 Mix

e1 14.925 15.037 17.137 19.475 16.765

e2 26.524 27.383 30.775 34.009 26.453

e3 5.226 5.352 4.783 3.970 4.867

Table 18: The user study results 2

max-join operations in the top-k query answering method are pruned after the bounding step and

the pruning step. As the number of tuples increases, more unnecessary joins are pruned and the

top-k query answering method performs better than the complete query answering method.

In the second experiment, we change the number of dimensions in the datasets. The corre-

sponding results are shown in Figure 21 and Figure 22. The result of the second experiment is

similar with that of the first experiment. When the number of dimensions increases, both the top-

k query answering method and the complete query answering method spend longer time to find

the answers. One reason is that when there are more dimensions in the datasets, the number of

max-join operations does not increase but it takes longer time to perform each max-join operation.

Another reason is that, as the dimensionality increases, more answers could be found. Thus more

query processing time is needed for both methods, especially for the complete query answering

method since it needs to find all the answers. In summary, our experimental results on the two

datasets clearly show that the top-k query answering method is highly feasible.

5.5 The Effect of k

Figure 23 shows the runtime of the top-k query answering method on the two data sets with respect

to k. Clearly, the smaller the value of k, the more efficient the results. As discussed in Chapter

5, at the beginning of top-k query answering process, we generate k answers (may not be top-k)

and use the lowest overall score as the threshold. The larger the threshold is, the more max-join

operations we can prune. If k becomes smaller, the threshold could become larger and thus we

could prune more max-join operations.

From Figure 23, we find that results on the SuperstoreSales dataset are not sensitive to the

value of k. The reverse is true for the e-Fashion dataset. One possibility is that the overall scores of

answers on the SuperstoreSales dataset are very close, so even if k has a great increase in its value,

the threshold does not have a great change and thus the runtime does not have a great increase.

For the e-Fashion dataset, the top-k query answering method is more efficient than the complete

34

Figure 17: Effectiveness of the bounding step and the pruning step on the e-Fashion dataset

query answering method if the value of k is small (< 80). For the SuperstoreSales dataset, the

top-k query answering method is more efficient than the complete query answering method for most

values of k.

6 Conclusions

In this paper, we tackled two practical and interesting problems to improve the efficiency and

effectiveness of aggregate keyword search on large relational databases. First, aggregate keyword

search can be very costly on large relational databases, partly due to the lack of efficient indexes.

To tackle this problem, we designed a new index which is efficient both in size and in constructing

time. Second, finding the top-k answers to an aggregate keyword query has not been addressed

systematically, including both the ranking model and the efficient evaluation methods. To tackle

this problem, we proposed a general ranking model and an efficient ranking algorithm which using

a two-step method to prune unnecessary max-join operations. We also reported a systematic

performance evaluation using real data sets. Our experimental results show that our new index is

very efficient and our two-step method is very effective. Our top-k query answering method can

find top-k answers in a shorter time than that of the complete query answering method on the real

data sets.

Our work on aggregate keyword search is focused on a single table. As future work, we plan to

extend our work in multiple tables. Moreover, in some cases, a user may find a minimal answer that

is close to the search intension, it could be interesting if we can help the user find other group-bys

that are close to this minimal answer.

35

Figure 18: Effectiveness of the bounding step and the pruning step on the SuperstoreSales dataset

References

[1] S. Agrawal, S. Chaudhuri, and G. Das. Dbxplorer: A system for keyword-based search over

relational databases. In Proceedings of the 18th International Conference on Data Engineering,

ICDE 2002, 26 February - 1 March 2002, San Jose, CA, pages 5–16. IEEE Computer Society,

2002.

[2] A. Balmin, V. Hristidis, and Y. Papakonstantinou. Objectrank: Authority-based keyword

search in databases. In Proceedings of the Thirtieth International Conference on Very Large

Data Bases, VLDB 2004, Toronto, Canada, August 31 - September 3 2004, pages 564–575.

Morgan Kaufmann, 2004.

[3] K. S. Beyer and R. Ramakrishnan. Bottom-up computation of sparse and iceberg cubes.

In Proceedings ACM SIGMOD International Conference on Management of Data, SIGMOD

1999, June 1-3, 1999, Philadelphia, Pennsylvania, USA, pages 359–370. ACM Press, 1999.

[4] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S. Sudarshan. Keyword searching and

browsing in databases using banks. In Proceedings of the 18th International Conference on

Data Engineering, ICDE 2002, 26 February - 1 March 2002, San Jose, CA, pages 431–440.

IEEE Computer Society, 2002.

[5] Y. Chen, W. Wang, and Z. Liu. Keyword-based search and exploration on databases. In

Proceedings of the 27th International Conference on Data Engineering, ICDE 2011, April

11-16, 2011, Hannover, Germany, pages 1380–1383. IEEE Computer Society, 2011.

[6] B. Ding, Y. Yu, B. Zhao, C. X. Lin, J. Han, and C. Zhai. Keyword search in text cube:

Finding top-k aggregated cell documents. In Proceedings of the 2010 Conference on Intelligent

36

Figure 19: Efficiency of theTop-k query answering method and the complete query answering

method on the e-Fashion dataset under various number of tuples

Figure 20: Efficiency of theTop-k query answering method and the complete query answering

method on the SuperstoreSales dataset under various number of tuples

37

Figure 21: Efficiency of theTop-k query answering method and the complete query answering

method on the e-Fashion dataset under various number of dimensions

Figure 22: Efficiency of theTop-k query answering method and the complete query answering

method on the SuperstoreSales dataset under various number of dimensions

38

Figure 23: Effect of the parameter k on the e-Fashion and the SuperstoreSales datasets

Data Understanding, CIDU 2010, October 5-6, 2010, Mountain View, California, USA, pages

145–159. NASA Ames Research Center, 2010.

[7] B. Ding, B. Zhao, C. X. Lin, J. Han, and C. Zhai. Topcells: Keyword-based search of top-k

aggregated documents in text cube. In Proceedings of the 26th International Conference on

Data Engineering, ICDE 2010, March 1-6, 2010, Long Beach, California, USA, pages 381–384.

IEEE, 2010.

[8] N. R. Draper and H. Smith. Applied regression analysis (2. ed.). Wiley series in probability

and mathematical statistics. Wiley, 1981.

[9] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms for middleware. J. Comput.

Syst. Sci., 66(4):614–656, 2003.

[10] J. Fedorowicz. Database evaluation using multiple regression techniques. In Proceedings of

Annual Meeting, SIGMOD 1984, Boston, Massachusetts, June 18-21, 1984, pages 70–76. ACM

Press, 1984.

[11] S. L. Hakimi. Steiner’s problem in graphs and its implications. Wiley Periodicals, Inc.,

1(2):113–133, 1971.

[12] V. Hristidis and Y. Papakonstantinou. Discover: Keyword search in relational databases. In

Proceedings of 28th International Conference on Very Large Data Bases, VLDB 2002, August

20-23, 2002, Hong Kong, China, pages 670–681. Morgan Kaufmann, 2002.

[13] I. F. Ilyas, G. Beskales, and M. A. Soliman. A survey of top-k query processing techniques in

relational database systems. ACM Comput. Surv., 40(4), 2008.

39

[14] J. Koren, Y. Zhang, and X. Liu. Personalized interactive faceted search. In Proceedings of

the 17th International Conference on World Wide Web, WWW 2008, Beijing, China, April

21-25, 2008, pages 477–486. ACM, 2008.

[15] Z. Li, H. Xu, Y. Lu, and A. Qian. Aggregate nearest keyword search in spatial databases.

In Advances in Web Technologies and Applications, Proceedings of the 12th Asia-Pacific Web

Conference, APWeb 2010, Busan, Korea, 6-8 April 2010, pages 15–21. IEEE Computer Soci-

ety, 2010.

[16] S. E. Robertson, S. Walker, and M. Hancock-Beaulieu. Okapi at trec-7: Automatic ad hoc,

filtering, vlc and interactive. In Text REtrieval Conference (TREC), pages 199–210, 1998.

[17] S. E. Robertson, S. Walker, S. Jones, M. Hancock-Beaulieu, and M. Gatford. Okapi at trec-3.

In Text REtrieval Conference (TREC), pages 0–, 1994.

[18] G. Salton and C. Buckley. Term-weighting approaches in automatic text retrieval. Inf. Process.

Manage., 24(5):513–523, 1988.

[19] H. C. Wu, R. W. P. Luk, K.-F. Wong, and K.-L. Kwok. Interpreting tf-idf term weights as

making relevance decisions. ACM Trans. Inf. Syst., 26(3), 2008.

[20] P. Wu, Y. Sismanis, and B. Reinwald. Towards keyword-driven analytical processing. In

Proceedings of the ACM SIGMOD International Conference on Management of Data, Beijing,

China, June 12-14, 2007, pages 617–628. ACM, 2007.

[21] B. Zhao, C. X. Lin, B. Ding, and J. Han. Texplorer: keyword-based object search and ex-

ploration in multidimensional text databases. In Proceedings of the 20th ACM Conference on

Information and Knowledge Management, CIKM 2011, Glasgow, United Kingdom, October

24-28, 2011, pages 1709–1718. ACM, 2011.

[22] B. Zhou and J. Pei. Answering aggregate keyword queries on relational databases using min-

imal group-bys. In Proceedings of the 12th International Conference on Extending Database

Technology: Advances in Database Technology, EDBT 2009, Saint Petersburg, Russia, March

24-26, 2009, pages 108–119. ACM, 2009.

40

