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ABSTRACT
Detecting dominant clusters is important in many analytic
applications. The state-of-the-art methods find dense sub-
graphs on the affinity graph as dominant clusters. However,
the time and space complexities of those methods are domi-
nated by the construction of affinity graph, which is quadrat-
ic with respect to the number of data points, and thus are
impractical on large data sets. To tackle the challenge, in
this paper, we apply Evolutionary Game Theory (EGT)
and develop a scalable algorithm, Approximate Localized
Infection Immunization Dynamics (ALID). The major idea
is to perform Localized Infection Immunization Dynamics
(LID) to find dense subgraphs within local ranges of the
affinity graph. LID is further scaled up with guaranteed
high efficiency and detection quality by an estimated Region
of Interest (ROI) and a Candidate Infective Vertex Search
method (CIVS). ALID only constructs small local affinity
graphs and has time complexity O(C(a∗ + δ)n) and space
complexity O(a∗(a∗ + δ)), where a∗ is the size of the largest
dominant cluster, and C � n and δ � n are small constants.
We demonstrate by extensive experiments on both synthetic
data and real world data that ALID achieves the state-of-the-
art detection quality with much lower time and space cost
on single machine. We also demonstrate the encouraging
parallelization performance of ALID by implementing the
Parallel ALID (PALID) on Apache Spark. PALID processes
50 million SIFT data points in 2.29 hours, achieving a
speedup ratio of 7.51 with 8 executors.

1. INTRODUCTION
A dominant cluster is a group of highly similar objects

that possesses maximal inner group coherence [19, 29]. On a
massive data set, more often than not the dominant clusters
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carry useful information and convey important knowledge.
For example, in a big collection of news data, such as official
news, RSS-feeds and tweet-streams, the dominant clusters
may indicate potential real world hot events [4, 32]. In a
large repository of interpersonal communication data, such
as emails and social networks, the dominant clusters may
reveal stable social hubs [39]. Therefore, efficiently and
effectively detecting dominant clusters from massive data
sets has become an important task in data analytics.
In real applications, dominant cluster detection often faces

two challenges. First, the number of dominant clusters is
often unknown. Second, large data sets are often noisy.
An unknown number of dominant clusters are often hidden
deeply in an overwhelming amount of background noise [32,
39]. For instance, numerous news items about almost every
aspect of our daily life are added to the Web everyday. Most
of the news items are interesting to small groups of people,
and hardly attract sufficient social attention or become a
dominant cluster of a hot event. As another example,
billions of spam messages are sent everyday. Finding mean-
ingful email threads and activities is a typical application of
dominant cluster detection, and is challenging mainly due
to the large amount of spam messages as noise [19].
Traditional partitioning-based clustering methods like k -

means [5, 22, 33] and spectral clustering [16, 18, 25, 37]
are often used in cluster detection. However, such methods
are not robust in processing noisy data with an unknown
number of dominant clusters [29]. First, those methods typ-
ically require a pre-defined number of (dominant) clusters.
Without prior knowledge on the true number of (dominant)
clusters, setting an improper number of clusters may lead to
low detection accuracy. Second, each data item, including
both members of dominant clusters and noise data items, is
forced to be assigned to a certain cluster, which inevitably
leads to degenerated detection accuracy and subtracted clus-
ter coherence under high background noise.
The affinity-based methods [29, 31], which detect

dominant clusters by finding dense subgraphs on an affinity
graph, are effective in detecting an unknown number of
dominant clusters from noisy background. Since the data
objects in a dominant cluster are very similar to each other,
they naturally form a highly cohesive dense subgraph on
the affinity graph. Such high cohesiveness is proven to
be a stable characteristic to accurately identify dominant
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clusters from noisy background without knowing the exact
number of clusters [19, 31]. Nevertheless, efficiency and
scalability are the bottlenecks of the affinity-based methods,
since the complexity of constructing the affinity matrix from
n data items is O(n2) in both time and space. Even though
the computational cost can be saved by forcing the affinity
graph sparse [9], the enforced sparsity breaks the intrinsic
cohesiveness of dense subgraphs and consequently affects the
detection quality of dominant clusters.

To tackle the challenge, in this paper, we propose Approx-
imate Localized Infection Immunization Dynamics (ALID),
a dominant cluster detection approach that achieves high
scalability and retains high detection quality. The key idea
is to avoid constructing the global complete affinity graph.
Instead, ALID finds a dense subgraph within an accurate-
ly estimated local Region of Interest (ROI). The ROI is
guaranteed by the law of triangle inequality to completely
cover a dominant cluster, and thus fully preserves the high
intrinsic cohesiveness of the corresponding dense subgraph
and ensures the detection quality. Moreover, since dominant
clusters generally exist in small local ranges, ALID only
searches a small local affinity subgraph within the ROI.
Therefore, ALID only constructs small local affinity graphs
and largely avoids the expensive construction of the global
affinity graph. Consequently, the original O(n2) time and
space complexity of affinity graph construction is significant-
ly reduced to O(C(a∗ + δ)n) in time and O(a∗(a∗ + δ)) in
space, where a∗ is the size of the largest dominant cluster,
and C � n and δ � n are small constants.
We make the following major contributions. First, we

propose LID to detect dense subgraphs on a local affinity
graph within a ROI. LID localizes the Infection Immuniza-
tion Dynamics [31] to efficiently seek dense subgraphs on a
small local affinity graph. It only computes a few columns
of a local affinity matrix to detect a dense subgraph without
sacrificing detection quality. This significantly reduces the
time and space complexity.

Second, we estimate a Region of Interest (ROI) and pro-
pose a Candidate Infective Vertex Search (CIVS) method
to significantly improve the scalability of LID and ensure
high detection quality. The ROI is guaranteed to accurately
identify the local range of the “true” dense subgraph, which
ensures the detection quality of ALID. The CIVS method is
proposed to quickly retrieve the data items within the ROI,
where all data items are efficiently indexed by Locality Sensi-
tive Hashing (LSH) [13]. Demonstrated by extensive exper-
iments on synthetic data and real world data, ALID achieves
substantially better scalability than the other affinity-based
methods without sacrificing the detection quality.

Third, we carefully design a parallelized solution on top of
the MapReduce framework [14] to further improve the scala-
bility of ALID. The promising parallelization performance of
Parallel ALID (PALID) is demonstrated by the experiments
on Apache Spark (http://spark.apache.org/). PALID can
efficiently process 50 million SIFT data [23] in 2.29 hours
and achieve a speedup ratio of 7.51 with 8 executors.
The rest of the paper is organized as follows. We review

related work in Section 2, and revisit the problem of dense
subgraph finding in Section 3. We present the ALID method
in Section 4. Section 5 reports the experimental results.
Section 6 concludes the paper. Limited by space, the math-
ematical proofs are omitted in this paper. The full version
of this work can be found at [11].

2. RELATED WORK
For dominant cluster detection, the affinity-based meth-

ods [19, 28, 29, 31] that find dense subgraphs on affinity
graphs are more resistant against background noise than
the canonical partitioning-based methods like k -means [5,
22] and spectral clustering [16, 18, 37]. The dense subgraph
seeking problem is well investigated in literature [3, 4, 36].
Motzkin et al. [24] proved that seeking dense subgraphs
on an un-weighted graph can be formulated as a quadratic
optimization problem on the simplex. Their method was
extended to weighted graphs by the dominant set method
(DS) [29], which solves a standard quadratic optimization
problem (StQP) by replicator dynamics (RD) [38].
Bulò et al. [31] and Pavan et al. [28] showed that, given

the full affinity matrix of an affinity graph with n vertices,
the time complexity for each RD iteration is O(n2), which
hinders its application on large data sets. Thus, they pro-
posed the infection immunization dynamics (IID) to solve
the StQP problem in O(n) time and space. However, the
overall time and space complexity of IID is still O(n2),
since each iteration of IID needs the full affinity matrix,
which costs quadratic time and space to compute and store.
Pavan et al. [28] reduced the computational overheads by
sampling graph vertices from the original affinity graph with
an efficient out-of-sample method. As the tradeoff, the
cluster detection accuracy is affected by the sampling rate.
Since most dense subgraphs exist in local ranges of an

affinity graph, running RD on the entire graph is inef-
ficient [19, 21]. Therefore, Liu et al. [19] proposed the
shrinking and expansion algorithm (SEA) to effectively pre-
vent unnecessary time and space cost by restricting all RD
iterations on small subgraphs. Both the time and space
complexities of SEA are linear with respect to the number
of graph edges [19]. The scalability of SEA is sensitive to
the sparse degree of the affinity graph. Liu et al. [20] and
Bulò et al. [7] also extended dominant cluster detection from
pairwise affinity graphs to hypergraphs. Their methods [20,
7] focus on capturing high-order coherence of vertices with
hypergraph, which leads to high computational complexity
and limited scalability.
Affinity propagation (AP) [17] is another noise resistant

solution to detect an unknown number of dominant clus-
ters. It finds the dominant clusters by passing real valued
messages along graph edges, which is very time consuming
when there are many vertices and edges. aiNet [26] is an
evolutionary artificial immune network designed for affinity
based clustering. However, the scalability of aiNet is limited
due to its high computational complexity.
Mean shift [12] differs from the affinity-based methods by

directly seeking clusters in the feature space. It assumes
that the discrete data items are sampled from a pre-defined
density distribution, and detects clusters by iteratively seek-
ing the maxima of the density distribution. However, the
detection quality of mean shift is sensitive to the type and
bandwidth of the pre-defined density distribution.
The above affinity-based methods are able to achieve

high detection quality when the affinity matrix is already
materialized. However, the scalability of those methods is
limited by the O(n2) time and space complexities of the
affinity matrix computation. To the best of our knowledge,
ALID developed in this paper is the first attempt to achieve
high scalability and retain good clustering accuracy.
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Figure 1: An affinity graph G with 5 vertices
{s1, s2, s3, s4, s5}. The thicker edges indicate larg-
er affinity. The rounded rectangle highlights a
subgraph x of G. The subgraph x is composed
of vertices {s1, s2, s3, s5} and is represented by x =
[0.3, 0.3, 0.3, 0, 0.1]�, x ∈ �5. s4 is an infective vertex
against x, since π(s4, x) > π(x). s5 is a weak vertex in

x, since π(s5, x) < π(x). The co-vertex s5(x) repre-
sents an infective subgraph composed of {s1, s2, s3}.

3. DENSE SUBGRAPH FINDING REVISIT
In this section, we revisit the dense subgraph finding

problem from the perspective of Evolutionary Game Theory
(EGT) [38] and discuss the common scalability bottleneck
of the infection immunization dynamics (IID) [31] and other
affinity-based methods.

Consider a global affinity graph, denoted by G = (V, I, A),
where V = {vi ∈ Rd | i ∈ I = [1, n]} is the set of vertices,
each vertex vi uniquely corresponds to a d-dimensional data
point in Rd space, R is the set of real numbers, and I = [1, n]
is the range of indices of all vertices. Let A be the affinity
matrix, where each entry aij of A represents the affinity
between vi and vj , that is,

aij =

{
e
−k||vi−vj ||p i �= j

0 i = j
(1)

where ||·||p represents the Lp-norm (p ≥ 1) and k > 0 is the
scaling factor of the Laplacian Kernel.

Given an affinity graph G of n vertices, each graph vertex
vi can be further referenced by an n-dimensional index
vector si = [0 · · · 0︸ ︷︷ ︸

i−1

1 0 · · · 0︸ ︷︷ ︸
n−i

]�. In other words, both vi

and si refer to the same i-th vertex in the graph.
A subgraph can be modeled by a subset of vertices as

well as their probabilistic memberships. Take Figure 1 as an
example. We assign L1 normalized non-negative weights to a
subgraph x containing vertices {s1, s2, s3, s5} and represent
the subgraph by x = 0.3 ·s1+0.3 ·s2+0.3 ·s3+0 ·s4+0.1 ·s5.
Alternatively, x can be regarded as an n-dimensional vector
storing all the vertex weights, where the i-th dimension xi

is the weight of vertex si. Intuitively, xi embodies the prob-
ability that vertex si belongs to subgraph x. Thus xi = 0
indicates that si does not belong to x. For example, vertex
s4 in Figure 1 does not belong to x. In general, a subgraph
can be represented by an n-dimensional vector x ∈ �n in
the standard simplex �n = {x ∈ Rn | ∑i∈I xi = 1, xi ≥ 0}.
The average affinity between two subgraphs x, y ∈ �n

is measured by the weighted affinity sum between all their
member vertices. That is,

π(y, x) = y�Ax =
∑
i

∑
j

xiyjaij (2)

As a special case, when y = si, that is, y is a subgraph
of a single vertex, π(si, x) = (si)

�Ax represents the average
affinity between vertex si and subgraph x. Moreover, the
average affinity between subgraph x and itself is π(x) =
π(x, x) = x�Ax, which measures the internal connection
strength between all vertices of subgraph x. Liu and Yan [21]
indicated that such internal connection strength is a robust
measurement of the intrinsic cohesiveness of x. Thus, π(x)
is also called the density of subgraph x.

Bulò et al. [31] indicated that a dense subgraph is a
subgraph of local maximum density π(x) [21, 29], and every
local maximum argument x∗ of π(x) uniquely corresponds
to a dense subgraph. Thus, the dense subgraph seeking
problem can be reduced to the following standard quadratic
optimization problem (StQP):

Maximize π(x) = x�Ax =
∑

i xiπ(si, x)
s.t. x ∈ �n (3)

which can be solved by the Infection Immunization Dynam-
ics (IID) [31]. IID finds the dense subgraph x∗ by iteratively
increasing the graph density π(x) in the following two steps.

Infection : for a vertex si whose average affinity π(si, x) is
larger than the graph density π(x), such as π(s4, x) >
π(x) in Figure 1, increase the its weight xi.

Immunization : for a vertex si whose average affinity
π(si, x) is smaller than the graph density π(x), such
as π(s5, x) < π(x) in Figure 1, decrease its weight xi.

For the sake of clarity, we write π(y−x, x) = π(y, x)−π(x)
and define the relationship between subgraphs x and y as
follow. If π(y − x, x) > 0, then y is said to be infective
against x. Otherwise, x is said to be immune against y.
The set of infective subgraphs against x is defined as

γ(x) = {y ∈ �n | π(y − x, x) > 0} (4)

IID performs infection and immunization using the
following invasion model.

z = (1− ε)x+ εy (5)

The new subgraph z ∈ �n is obtained by invading x ∈ �n

with a subgraph εy, where ε ∈ [0, 1] and y ∈ �n. This trans-
fers an amount of ε weight from the vertices in subgraph x
to the vertices in subgraph y, while the vertex weights in
z still sum to 1. In other words, the weights of vertices
in subgraph x are decreased and the weights of vertices in
subgraph y are increased.
For each iteration, IID selects the optimal graph vertex

si that maximizes the absolute value of |π(si − x, x)| by
function si = M(x), where

M(x) = arg max
si∈(C1∪C2)

|π(si − x, x)|
C1 = {si | π(si − x, x) > 0)}
C2 = {si | π(si − x, x) < 0, xi > 0}

(6)

If si = M(x) ∈ C1, then π(si, x) > π(x) and si is the
strongest infective vertex. In this case, an infection is
performed by the invasion model (Equation 5) with y = si.
This increases π(x) by increasing the weight of infective
vertex si. For example, in Figure 1, invading x with a weight
of ε of the strongest infective vertex s4 transfers a weight of
ε from {s1, s2, s3, s5} to s4 and increases π(x).
If si = M(x) ∈ C2, then π(si, x) < π(x). Thus x is

immune against si and si is the weakest vertex in subgraph
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x. In such a case, an immunization is performed by the
invasion model (Equation 5) with y = si(x):

si(x) =
xi

xi − 1
(si − x) + x (7)

Here, si(x) is called the co-vertex of si, and represents an
infective subgraph composed of all the vertices in subgraph
x except si. Thus, invading x with y = si(x) by the invasion
model (Equation 5) reduces the weight of vertex si and
increases the weights of the other vertices in subgraph x.
For example, in Figure 1, the co-vertex s5(x) represents
a subgraph composed of {s1, s2, s3}. Invading subgraph x

with a weight ε of s5(x) transfers a weight of ε from s5 to
{s1, s2, s3} and increases π(x).
Formally, the infective vertex (or co-vertex) y of the in-

vasion model (Equation 5) can be selected by y = S(x),
where

S(x)=

{
si if si = M(x) ∈ C1

si(x) if si = M(x) ∈ C2
(8)

Bulò et al. [31] showed the following.

Theorem 1 ([31]). The following three statements are
equivalent for x ∈ �n. 1) x is immune against all vertices
si ∈ �n; 2) γ(x) = ∅; and 3) x is a dense subgraph with
local maximum π(x).

According to Theorem 1, IID searches for the global dense
subgraph x∗ by iteratively shrinking γ(x) until γ(x) = ∅.

Moreover, Bulò et al. [30] showed the following.

Theorem 2. Let y ∈ γ(x) and z = (1 − ε)x + εy, where
ε = εy(x) is defined as follows.

εy(x) =

{
min

[
−π(y−x,x)

π(y−x)
, 1
]

if π(y − x) < 0

1 otherwise
(9)

Then, y �∈ γ(z) and π(z) > π(x).

According to Theorem 2, any infective subgraph y ∈ γ(x)
can be excluded from γ(z) by invading x with weight ε =
εy(x) of y. This monotonously reduces the volume of γ(z)
and guarantees the convergence of IID.

IID needs the full affinity matrix to find dense subgraphs
by solving the StQP problem (Equation 3). Therefore, its
scalability is heavily affected due to the O(n2) time and
space complexities in computing the complete affinity ma-
trix A. Although forcing A sparse can reduce such expensive
time and space cost to some extent [9], the enforced sparsity
breaks the intrinsic cohesiveness of dense subgraphs, thus
inevitably impairs the detection quality. The scalability of
both DS [29] and SEA [19] is limited due to the same reason,
since they need the complete affinity matrix A as well.

4. THE ALID APPROACH
In this section, we introduce our ALIDmethod. The major

idea of ALID is to confine the computation of infection and
immunization in small local ranges within the Region of
Interest (ROI), so that only small submatrices of the affinity
matrix need to be computed. As a result, ALID largely
avoids the affinity matrix computation and significantly
reduces both the time and space complexities.

The framework of ALID is an iterative execution of the
following three steps, as summarized in Figure 2.

No 

Yes 

Step 1

Step 2

Step 3

Reiterate 

Theorem.1 

Initialization 
 

. 

Output 

Figure 2: An overview of the ALID framework.

Step 1 Finding local dense subgraph by Localized Infection
Immunization Dynamics (LID). LID confines all infec-
tion immunization iterations in a small local range to
find the local dense subgraph. It avoids computing
the full affinity matrix by selectively computing a few
columns of the local affinity matrix.

Step 2 Estimating a Region of Interest (ROI). The local
dense subgraph found in Step 1 may or may not be a
global dense subgraph, since there may still be global
infective vertices that are not covered by the current
local range, as indicated by Theorem 1. Therefore,
we estimate a ROI to identify the candidate infective
vertices in the global range.

Step 3 Candidate Infective Vertex Search (CIVS). CIVS
efficiently retrieves the candidate infective vertices
within a ROI and uses them to update the local range
towards the global dense subgraph.

The iterative process of ALID terminates when the local
dense subgraph found in the last round of iteration is im-
mune against all vertices in the global range. According to
Theorem 1, such a subgraph is a global dense subgraph that
identifies a true dominant cluster. We explain the details of
the three steps in the first three subsections as follow.

4.1 Localized Infection Immunization Dy-
namics (Step 1)

The key idea of Localized Infection Immunization Dynam-
ics (LID) is that a dense subgraph on a small local range of
the affinity graph can be detected by selectively computing
only a few columns of the corresponding local affinity subma-
trix. Denote by β ⊂ I the local range of the affinity graph,
which is the index set of a local group of graph vertices.
LID finds the local dense subgraph x̂ that maximizes π(x)
in the local range β by localizing the infection immunization
process on the selectively computed submatrix Aβα (see

Figure 3). Here, α � {i ∈ β | xi > 0} is the support of
the subgraph x ∈ �n

β , where �n
β = {x ∈ �n | ∑i∈β xi = 1}

represents the set of all possible subgraphs within local range
β. In this way, the computation of the full matrix Aββ can
be effectively avoided. Consequently, LID is more efficient
than directly running IID in the local range.
Algorithm 1 shows the steps in a LID iteration, which

takes
[
x(t), (Aβαxα)

(t)
]

as input and obtains the output[
x(t+1), (Aβαxα)

(t+1)
]
in linear time and space with respect
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Figure 3: The affinity matrix with ordered data
item indexes. A is the global affinity matrix, Aββ

is the affinity matrix in the local range β, and Aβα

is the group of columns in Aββ corresponding to the
support α. The dashed line denotes the new column
Aβi : i ∈ (β − α). Only the green parts (Aβα and Aβi)
are involved in the LID iteration.

to the size of β. The superscripts (t) and (t + 1) indicate
the number of iterations. For the interest of simplicity, we
omit (t) and illustrate the details of Algorithm 1 as follows.

First, we use the function S(x) in Equation 8 to select the
infective vertex or subgraph (i.e., co-vertex in Equation 7) in
the local range β. Since x ∈ �n

β , the component π(si−x, x)
can be computed as

π(si − x, x) = (si − xβ)
�Aββxβ

= (Aβαxα)i − ∑
i∈α

(Aβαxα)ixi
(10)

where only the graph vertices si ∈ �n
β are considered.

Second, we compute the invasion share εy(x) by Equa-
tion 9, whose value depends on y = S(x) in two cases:

Case 1 : Infection (y = S(x) = si). The key components
π(y − x, x) and π(y − x) in Equation 9 are computed
by Equations 10 and 11, respectively.

π(si − x) = (si − xβ)
�Aββ(si − xβ)

= −2(Aβαxα)i +
∑
i∈α

(Aβαxα)ixi
(11)

Case 2 : Immunization (y = S(x) = si(x)). εy(x) is
computed by plugging Equation 12 into Equation 9.

π(si(x)− x, x) = xi
xi−1

π(si − x, x)

π(si(x)− x) = ( xi
xi−1

)2π(si − x)
(12)

Last, the new subgraph x(t+1) is obtained by Equation 13
and (Aβαxα)

(t+1) is computed by Equation 14 in linear time
and space for the next iteration.

x(t+1) = (1− εy(x))x+ εy(x)S(x) (13)

(Aβαxα)
(t+1) = (Ax(t+1))β ={

εy(x)[Aβi−Aβαxα]+Aβαxα if y=si

( xi
xi−1

)εy(x)[Aβi−Aβαxα]+Aβαxα if y=si(x)

(14)

Each LID iteration in Algorithm 1 is guaranteed by The-
orem 2 to shrink the size of the local infective subgraph set
γβ(x) = {y ∈ �n

β | π(y − x, x) > 0}. Thus, we obtain
the local dense subgraph x̂ ∈ �n

β in the local range β by

Algorithm 1: A single period of LID iteration

Input: x(t), (Aβαxα)
(t)

Output: x(t+1), (Aβαxα)
(t+1)

1: Select the infective vertex y = S(x) by Equation 8
2: Calculate the invasion share εy(x) by Equation 9

3: Update x(t+1) by the invasion model of Equation 13
4: Update (Aβαxα)

(t+1) by Equation 14

5: return x(t+1), (Aβαxα)
(t+1)

repeating Algorithm 1 to shrink γβ(x) until γβ(x) = ∅.
According to Theorem 1, γβ(x̂) = ∅ indicates that x̂ is
immune against all vertices si ∈ �n

β . Thus, x̂ is a local
dense subgraph with local maximum π(x̂) in the local range
β. In practice, we stop the LID iteration when π(x) is stable
or the total number of iterations exceeds an upper limit T .
Let b = |β| be the size of β. The time and space complexities
of LID method are O(Tb) and O(b), respectively. We will
discuss the cost of initializing [x,Aβαxα] in Section 4.3.

All ALID iterations are restricted on the dynamically com-
puted submatrix Aβα, where the new matrix column Aβi

only needs to be computed and stored when i ∈ (β−α) (see
Figure 3). We will discuss how LID effectively reduces the
original O(n2) time and space complexity of affinity matrix
computation in Section 4.5.

4.2 Estimating ROI (Step 2)
A local dense subgraph x̂ ∈ �n

β may not be a global dense
subgraph in �n, since β may not fully cover the true dense
subgraph in the global range I. Therefore, there may still be
graph vertices in the complementary range U = I−β, which
are infective against the local dense subgraph x̂. Thus, the
current local range β should be updated to include such
infective vertices in U , so that the true dense subgraph with
maximum graph density can be detected by LID.
A natural way to find the global dense subgraph x∗ is

to keep invading x̂ using the infective vertices in U until
no infective vertex exists in the global range I. However,
fully scanning U for infective vertices leads to an overall
time complexity of O(n2) in detecting all dominant clusters,
since U contains all the remaining vertices in I with an
overwhelming proportion of irrelevant vertices. To tackle
this problem, we estimate a Region of Interest (ROI) from
x̂ to include all the infective vertices and exclude most
of the irrelevant ones. Only a limited amount of vertices
inside the ROI are used to update β. This strategy can
largely reduce the amount of vertices to be considered and
effectively reduces the time and space complexities of ALID.
Before estimating the ROI, we first construct a double-

deck hyperball H(D,Rin, Rout) from x̂, where D ∈ Rd is
the ball center and Rin, Rout are the radiuses of the inner
and outer balls, respectively, which are defined as follows.

D =
∑
i∈α

vix̂i, where vi ∈ V are the data items.

Rin = 1
k
ln( λin

π(x̂)
), where λin=

∑
i∈α

x̂ie
−k||vi−D||p

Rout =
1
k
ln(λout

π(x̂)
), where λout=

∑
i∈α

x̂ie
k||vi−D||p

(15)

where k is the positive scaling factor in Equation 1. Proposi-
tion 1 discloses two important properties of the double-deck
hyperball H(D,Rin, Rout).

830



Proposition 1. Given a local dense subgraph x̂, the
double-deck hyperball H(D,Rin, Rout) has the following
properties:

1. ∀j ∈ I and ||vj −D||p < Rin, π(sj − x̂, x̂) > 0; and

2. ∀j ∈ I and ||vj −D||p > Rout, π(sj − x̂, x̂) < 0.

Again, all mathematical proofs can be found in Appendix
of the full version [11].

According to the two properties in Proposition 1, the
surfaces of the inner ball H(D,Rin) and the outer ball
H(D,Rout) are two boundaries, which guarantee that every
data entry inside the inner ball corresponds to an infective
vertex and the ones outside the outer ball are non-infective.

The ROI is defined as a growing hyperball Hc(D,R),
whose surface starts from the inner ball and gradually ap-
proaches the outer ball as the ALID iteration continues. The
radius R is defined as

R = Rin + θ(c)(Rout −Rin) (16)

where θ(c) = 1

1+e(4−c/2) is a shifted logistic function to

control the growing speed and c is the number of the current
ALID iteration. When c grows large, we have θ(c) ≈ 1 and
R ≈ Rout. Thus, the ROI is guaranteed to coincide with
the outer ball as c grows. Since the outer ball H(D,Rout) is
guaranteed by Proposition 1 to contain all infective vertices
in the global range I, the finally found local dense subgraph
x̂ within the ROI is guaranteed to be immune against all
vertices in I, thus x̂ is a global dense subgraph according
to Theorem 1. Moreover, starting the ROI from the small
inner ball can effectively reduce the number of vertices to
be scanned in the first several ALID iterations.

4.3 Candidate Infective Vertex Search (Step 3)
The hyperball of ROI identifies a small local region in the

d-dimensional space Rd. The data items vi ∈ V inside the
ROI correspond to the candidate graph vertices, which are
possibly infective against the current local dense subgraph x̂
and may further increase the graph density π(x̂). Therefore,
we carefully design the Candidate Infective Vertex Searching
(CIVS) method to efficiently retrieve such data items inside

the ROI and use them to update the local range β(c). The
variable c is the current number of ALID iteration.

Retrieving the data items inside a ROI Hc(D,R) is e-
quivalent to a fixed-radius near neighbor problem in the d-
dimensional space Rd. For the interest of scalability, we
adopt the Locality Sensitive Hashing (LSH) method [13] to
solve this problem. However, LSH can only retrieve data
items within a small Locality Sensitive Region (LSR) of a
query (Figure 4). Thus, when using the hyperball center D
as a single LSH query (Figure 4(a)), the corresponding LSR
may fail to find all data items within the ROI, which would
prevent ALID from converging to the optimal result.
To solve this problem, we propose CIVS. As shown in

Figure 4(b), CIVS applies multiple LSH queries using all the

supporting data items of x̂(c) (i.e., {vi ∈ V | x̂(c)
i > 0}). The

benefit of CIVS is that multiple LSRs effectively cover most
of a ROI, thus most of the data items within the ROI can be
retrieved. Specifically, CIVS first collects all the new data
items that is retrieved by any of the supporting data items
of x̂(c) using LSH. Then, we retrieve at most δ new data
items within the ROI that are the nearest to the ball center

Figure 4: Each dashed circle is a locality sensitive
region (LSR). The red points show the supporting

data items of the current local dense subgraph x̂(c).
(a) A single LSR cannot cover a ROI. (b) CIVS
covers most of a ROI by multiple LSRs.

D. The index set of the retrieved data items is denoted by
ψ = {i | i ∈ (I − α(c)), vi ∈ Hc(D,R)}, |ψ| ≤ δ.
The retrieved data {vi | i ∈ ψ} are used to perform up-

date:
[
x̂(c), (Aβαx̂α)

(c)
]
→

[
x(c+1), (Aβαxα)

(c+1)
]
as follow.

x(c+1) = x̂(c)

(Aβαxα)
(c+1) =

[
(Aααx̂α)

(c)

(Aψαx̂α)
(c)

]
(17)

Equation 17 updates the local range by β(c+1)=α(c) ∪ ψ,
where ψ involves new infective vertices against x(c+1). Then,
we can re-run LID (i.e., Step 1) with the initialization of

[x(c+1), (Aβαxα)
(c+1)] to find the local dense subgraph x̂(c+1)

in the new range β(c+1). Since x̂(c+1) is guaranteed by
Theorem 1 to be immune against all vertices in ψ ⊂ U ,
the number of infective vertices in I is further reduced.
Theoretically, CIVS does not cover a ROI completely.

However, by iteratively using every support data item as
a LSH query, ALID can retrieve new candidate infective
vertices progressively. Since the number of infective vertices
is finite and will be monotonically reduced to zero through a
series of iterations, the final result of ALID will be optimal.
The convergence of ALID is proved in Appendix in the full
version of this paper [11].

The time and space complexities for building the hash
tables are linear with respect to n, the size of the data set.
Specifically, the time complexity to build l hash tables by
μ hash functions is O(ndlμ). The space complexity consists
of O(nd) space for all the d dimensional data items, O(nl)
space for an inverted list that maps each data item to their
buckets and O(nl) space for l hash tables [13]. Since all
possible LSH queries are built into the hash tables, we check
the inverted list to retrieve neighbor data items and do not
store the hash keys.

4.4 Summary of ALID
The entire iteration of ALID is summarized in Algorith-

m 2. The LID in Step 1 makes the local dense subgraph
immune against all vertices within a local range of the ROI.
The ROI and CIVS in Steps 2 and 3 update the local
range by the new infective vertices retrieved from global
range. In this way, the number of infective vertices in global
range is guaranteed to be iteratively reduced to zero. Then,
according to Theorem 1, the last found local dense sub-
graph is a global one that identifies a dominant cluster [38].
Algorithm 2 stops when a global dense subgraph is found
or the total number of iterations exceeds an upper limit
C. Since Algorithm 2 is initialized with Aβαxα = 0, which
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Algorithm 2: The entire ALID iteration

Input: An initial vertex index i ∈ I
Output: A global dense subgraph x∗ in global range I

1: Set α = β = i, x = si, Aβαxα = aii = 0, c = 1
2: repeat

3: Step 1:
[
x(c), (Aβαxα)

(c)
]
→

[
x̂(c), (Aβαx̂α)

(c)
]

Find the local dense subgraph x̂(c) by LID in Step 1
4: Step 2: x̂(c) → Hc(D,R)

Estimate ROI from the local dense subgraph x̂(c)

5: Step 3:
[
x̂(c), (Aβαx̂α)

(c)
]
→

[
x(c+1), (Aβαxα)

(c+1)
]

Apply CIVS to retrieve candidate vertices within the
ROI and update the local range β(c) by Equation 17
for the next iteration

6: Index update: c ← c+ 1
7: until x̂(c) is a global dense subgraph, or c > C
8: return x∗ = x̂(c)

cannot be used to compute the radius of ROI Hc=1(D,R)
(Equations 15 and 16), we empirically set R = 0.4 for the
first iteration c = 1. Limited by space, we omit a detailed
analysis of the effect of R on the performance.
In order to fairly compare with the other affinity-based

methods, ALID adopts the same peeling method as what
DS [29] and IID [31] do to detect all dominant clusters. The
peeling method peels off the detected cluster and reiterates
on the remaining data items to find another cluster until
all data items are peeled off. Then, the clusters with large
values of π(x) (e.g., π(x) ≥ 0.75) can be selected as the final
result.

4.5 Complexity Analysis
The time and space complexities of ALID mainly consist

of three parts:

• The time and space complexities of LID in Step 1 are
O(Tb) and O(b), respectively, where b = |β| < n is the
size of the local range β and T is a constant limit of
the number of LID iterations.

• The time and space complexities for the hash tables
of CIVS are O(ndlμ) and O(n(2l + d)), respectively,
where d, l, μ are constant LSH parameters.

• The time and space complexities for the affinity matrix
A are O(C(a∗ + δ)n) and O(a∗(a∗ + δ)), respectively,
which are analyzed in detail as follows.

Since all ALID iterations are restricted by Aβα, the time
and space complexities for the affinity matrix are determined
by the size of Aβα. Let (Aβα)

c
i be the submatrix computed

in the c-th iteration in Algorithm 2 when detecting the i-
th cluster. Denote by ac

i and bci , respectively, the column
and row sizes of (Aβα)

c
i . Since the maximum number of

iterations of Algorithm 2 is C, the overall time cost for
detecting the i-th cluster is T ime(i) <

∑C
c=1 a

c
ib

c
i , which is

a loose upper bound, since many matrix entries of different
(Aβα)

c
i are duplicate and are only computed once. Then, we

can derive

T ime(i) < CaC
i (a

C
i + δ) (18)

from the following observations. First, ac
i ≤ aC

i , since more
and more matrix columns (i.e., Aβi : i ∈ (β−α) in Figure 3)

Table 1: The complexity of the affinity matrix
Typical Cases Time Complexity Space Complexity

a∗ = ωn (ω ≤ 1) O(C(ωn2 + δn)) O(ω2n2 + δωn)
a∗ = nη (η < 1) O(C(n1+η + δn)) O(n2η + δnη)

a∗ ≤ P O(C((P + δ)n)) O(P 2 + δP )

are computed. Second, bci ≤ (ac
i + δ) ≤ (aC

i + δ), since the
size of β is strictly limited by the ROI, where at most δ data
items can be retrieved by CIVS.
Since T ime(i) is the time cost of affinity matrix computa-

tion for detecting the i-th dominant cluster, the overall cost
in time of detecting all dominant clusters is

∑
i T ime(i). We

can derive the following from Equation 18.∑
i

T ime(i) <
∑
i

CaC
i (a

C
i + δ) (19)

Recall that ALID adopts the peeling method (see Sec-
tion 4.4), which peels off one detected cluster and reiterates
on the remaining data items to find another cluster until all
the n data items are peeled off. We have∑

i

aC
i = n (20)

from the fact that aC
i is the size of the i-th detected cluster.

Define a∗ = maxi{aC
i } and b∗ = maxi{bCi }. Due to the

restriction of ROI, b∗ ≤ (a∗ + δ). Then, we can derive
from Equations 19 and 20 that the overall cost in time of
computing the affinity matrix is∑

i

T ime(i) <
∑
i

CaC
i (a

∗ + δ) = C(a∗ + δ)n (21)

The maximum cost in space is a∗b∗ ≤ a∗(a∗ + δ), since
all submatrices (Aβα)

c
i are released when the i-th cluster is

peeled off. As a result, the time and space complexities for
the affinity matrix of ALID are O(C(a∗+δ)n) and O(a∗(a∗+
δ)), respectively.
Recall that a∗ = maxi{aC

i } is the size of the largest (sin-
gle) dominant cluster. We summarize in Table 1 the three
typical cases how a∗ affects the time and space complexities
of the affinity matrix. The data items belonging to the
largest dominant cluster of size a∗ are referred to as “positive
data”, data items that do not belong to any dominant cluster
are regarded as “noise data” and the size of the entire data
set is denoted by n.
First, for data sets where the amount of positive data is

proportional to the entire data set, that is, a∗ = ωn and
ω ≤ 1 is the constant proportion, ALID reduces the original
O(n2) time and space complexities of the affinity matrix to
O(C(ωn2 + δn)) and O(ω2n2 + δωn), respectively.

Second, for noisy data sets (e.g., tweet-streams and user
comments) that generate noise data faster than positive
data, the growth rate of a∗ is slower than n, that is,
a∗ = nη (η < 1). ALID reduces the O(n2) time and
space complexities to O(C(n1+η + δn)) and O(n2η + δnη),
respectively.

Third, for noisy data sets containing dominant clusters
of limited-sizes, there is a constant upper bound P for a∗

(i.e., a∗ ≤ P ). For example, in phone books and email
contacts, the largest number of people in a stable social
group (i.e., dominant cluster) is limited by the Dunbar’s
number [15]. In such a case, we have a∗ ≤ P . The time

832



 

… 

 

… 

 

… 

Task list Mapper 
A 

Mapper 
B 

Mapper 
C 

 

 

 
 

=1 
=0.9 

=3 
=0.8 

=5 
=0.6 

Key Values 
1 [1, 0.9] 

2 [1, 0.9] 

3 [3, 0.8] 

4 [3, 0.8] 

4 [5, 0.6] 

5 [5, 0.6] 

Reducer 

Data 
index 

Cluster  
[Label, Density] 

1 [1, 0.9] 

2 [1, 0.9] 

3 [3, 0.8] 

4 [3, 0.8] 

5 [5, 0.6] 

Cluster 1 

Cluster 3 

Cluster 5 

Intermediate 
key/values 

Output 

 

Key= data item index, Values= ,  is unique cluster label,  is cluster density 

Figure 5: An illustrative example of Algorithm 3.
Each mapper runs Algorithm 2 independently with
a different initial vertex.

and space complexities of the affinity matrix are reduced to
O(C(P + δ)n) and O(P 2 + δP ), respectively. Note that,
since the infection immunization process converges quickly
in finite steps [30], a small value of C, such as 10, is adequate
for the convergence of ALID.

4.6 Parallel ALID
ALID is suitable for parallelization in the MapReduce

framework [14], since multiple tasks of ALID can be concur-
rently run in independent local ranges of the affinity graph.
We introduce the parallel ALID (PALID) in Algorithm 3 and
provide an illustrative example in Figure 5.

As shown in Figure 5, three initial graph vertex indexes
i = {1, 3, 5} are assigned to three Mappers (A,B,C). Each
Mapper runs Algorithm 2 to detect a cluster independently.
Once a Mapper detects a cluster, it produces a list of
intermediate key/value pairs (Key, V alues=[L,D]), where
Key is the index of one data item belonging to the cluster,
L is the unique cluster label of the detected cluster and D is
the density of the cluster. In the case of overlapping clusters,
such as clusters 3 and 5 in the figure, we simply assign the
overlapped data item v4 to cluster 3 of maximum density,
which can be easily handled by a reducer.

Since data items belonging to the same dominant cluster
are highly similar to each other, such data items are likely
to be mapped to the same set of LSH buckets. Therefore,
buckets of large size reveal the potential data items of
dominant clusters. In practice, PALID uniformly samples
the initial graph vertices from every LSH hash bucket that
contains more than 5 data items. The sample rate is set to
20% in our experiments.

In summary, ALID is highly parallelizeable in the MapRe-
duce framework, which further improves its capability in
handling massive data in real world applications.

5. EXPERIMENTAL RESULTS
We empirically examined and analyzed the performance

of ALID and PALID, and compared with the following
state-of-the-art affinity-based methods: 1) Affinity Propa-
gation (AP) [17]; 2) the Shrinking Expansion Algorithm
(SEA) [19]; and 3) Infection Immunization Dynamics (I-
ID) [31]. We used the published source codes of AP [1]
and SEA [2]. Since the code for IID is unavailable, we
implemented it in MATLAB. All compared methods are
carefully tuned. We report their best performance in this
section. The parameter δ in Step 3 of ALID (PALID) was set
to 800.

Algorithm 3: The parallel ALID (PALID)

Input: V = {vi | i ∈ I = [1, n]}
Output: Cluster labels and cluster densities of each

data item in the detected clusters
Tasklist: A list of initial graph vertex indexes
Map(Key, Value)
\\Key: An initial vertex index i for Algorithm 2
\\Value: A unique cluster label L for the detected cluster

1: Call Algorithm 2 to find a global dense subgraph x∗,
which identifies dominant cluster L with density
D = π(x∗)

2: for all data item index h in I = [1, n] do
3: if x∗

h > 0 then
4: Emit(h, [L,D]) \\ vh belongs to cluster L
5: end if
6: end for

Reduce(Key, Values)
\\Key: The index h of a single data item vh ∈ V
\\Values: A list of [L,D] w.r.t. the clusters containing vh

1: Find [L∗,D∗] in Values with maximum density D∗

2: Emit(h, [L∗,D∗]) \\ Assign vh to cluster L∗

The detection quality was evaluated by the Average
F1 score (AVG-F), which is the same criterion as what
Chen et al. [8] used. AVG-F was obtained by averaging
the F1 scores on all the true dominant clusters. Besides,
as Chen et al. [8] showed, since the data items are partially
clustered in this task, traditional evaluation criteria, such
as entropy and normalized mutual information, are not
appropriate in evaluating the detection quality.
The detection efficiency was measured from two perspec-

tives, the runtime of each method including the time to com-
pute the affinity matrix and the memory overhead including
the memory storing the affinity matrix.
We used a PC computer with a Core i-5 CPU, 12 GB main

memory and a 7200 RPM hard drive, running Windows 7
operating system. All experiments using single computer
were conducted using MATLAB, since the compared meth-
ods were implemented on the same platform. We will
explicitly illustrate the parallel experiments of PALID in
Section 5.3.
The following data sets were used: 1) the news articles

data set (NART); 2) the near duplicate image data set
(NDI); 3) three synthetic data sets; 4) the SIFT-50M data
set that consists of 50 million SIFT features [23]. For all data
sets, the pairwise distance and affinity were calculated using
Euclidean distance and Equation 1 (p = 2), respectively.
The news articles data set (NART) was built by crawling

5, 301 news articles from news.sina.com.cn. It contains
13 real world “hot” events happened from May to June
2012, each of which corresponds to a dominant cluster of
news articles. All 734 news articles of the 13 dominant
clusters were manually labeled as ground truth by 3 vol-
unteers without professional background. The remaining
4,567 articles are daily news that do not form any dominant
cluster. Each article is represented by a normalized 350-
dimensional vector generated by standard Latent Dirichlet
Allocation (LDA) [6].
The near duplicate image data set (NDI) contains 109,815

images crawled from images.google.com.hk. It includes a
labeled set of ground truth of 57 dominant clusters and
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11,951 near duplicate images, where images with similar
contents are grouped as one dominant cluster. The re-
maining 97,864 images with diverse contents are regarded
as background noise data. Each image is represented by a
256-dimensional GIST feature [27] that describes the global
texture of the image content.

Details of the three synthetic data sets and the SIFT-
50M data set will be described in Sections 5.2 and 5.3,
respectively.

5.1 Influence of Sparsity
As mentioned in Section 2, the scalability of canonical

affinity-based methods (i.e., IID, SEA, AP) is constrained by
the O(n2) time and space complexity in fully computing and
storing the affinity matrix. Although the computational effi-
ciency can be improved by sparsifying the affinity matrix [9],
the enforced sparsity breaks the high cohesiveness of dense
subgraphs, which inevitably weakens the noise resistance
capability and impairs the detection quality.

In this section, we specifically analyze how the sparse de-
gree of sparsified affinity matrix affects the detection quality
and runtime of all compared methods. The sparse degree is
defined as the ratio of the number of entries in the matrix
taking value 0 over the total number of entries in the matrix.

All experiment results were obtained on the NART and
Sub-NDI data sets. Sub-NDI is a subset of the NDI data set
containing 6 clusters of 1420 ground truth images and 8520
noise images. We used Sub-NDI instead of NDI, since AP
cannot deal with the entire NDI data set with 12GB RAM.

Chen et al. [9] provided two approaches to sparsify the
affinity matrix: the exact nearest neighbors (ENN) method
and the approximate nearest neighbors (ANN) method. The
ENN method is expensive on large data sets, while the ANN
method is efficient by employing LSH [13]. Thus, we sparsify
the affinity matrix by LSH due to its efficiency.

For AP, IID and SEA, we directly applied LSH to sparsify
the affinity matrix, where only the affinities between the
nearest neighbors were computed and stored. The same
LSH module is utilized by CIVS in ALID. To remove possible
uncertainty caused by the LSH approximation, the param-
eter settings of LSH were kept exactly the same for all the
compared methods, including ALID.
Standard LSH projects each data item onto an equally

segmented real line. The line segment length r controls
the recall of LSH, and thus affects the sparse degree of the
affinity matrix. Figure 6 shows that the sparse degree of
all affinity-based methods, including ALID, decreases when r
increases. However, the sparse degree of ALID remains high,
since ALID only computes small submatrices corresponding
to the vertices within the ROI.

Figures 6(a) and 6(c) show the experiment results on data
set NART. The AVG-F of all methods increases to a stable
level as the sparse degree decreases. This is because the
cohesiveness of dense subgraphs are better retained as the
sparse degree decreases. For AP, SEA and IID, when the
sparse degree approaches zero, the original cohesiveness of
subgraphs is maximally preserved by a full affinity matrix,
and thus the methods all approach their best performance.
Since most dense subgraphs exist in small local ranges, the
relative local submatrices are good enough to retain their
cohesiveness. ALID largely preserves such cohesiveness by
accurately estimating the local range of true dense subgraph-
s and fully computing the relative local affinity matrices.
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Figure 6: The results on NART and Sub-NDI. (a)-
(b) show how sparse degree affects AVG-F. (c)-
(d) show how sparse degree affects runtime. For
LSH, we used 40 projections per hash value and 50
hash tables. r is the length of the equally divided
segments of LSH.

Consequently, ALID achieves a good AVG-F performance
under an extremely high sparse degree of 0.998 (r = 0.3),
which indicates that the computation and storage of 99.8%
of the matrix entries are effectively pruned. Such a situa-
tion is understandable, since the useful matrix entries that
correspond to the 13 true clusters of 734 data items in data
set NART only counts for 7342/(13 × 53012) = 0.147% of
the entire affinity matrix.
The results in Figure 6(c) demonstrate that sparsifying

the affinity matrix reduces the runtime of the affinity-based
methods. The runtime of all methods are comparably low
when the sparse degree is high. However, when the sparse
degree decreases, the differences in runtime among the meth-
ods become significant. When r = 1.3, AP is significantly
slower than the other methods due to its expensive message
passing cost. Moreover, SEA is much slower than IID due
to the time consuming replicator dynamics [38]. ALID is
the fastest, since it effectively prunes the computation of
99.8% of the affinity matrix entries. Similar results were
also observed on data set Sub-NDI (Figures 6(b) and 6(d)).

5.2 Scalability
In this section, we analyze the scalability of the affinity-

based methods on data set NDI and three synthetic data
sets. The synthetic data sets were made up by sampling n
100-dimensional data items from 20 different multivariate
Gaussian distributions as the dominant clusters and one
uniform distribution as the background noise. To better
simulate typical properties of real world data, we made
some Gaussian distributions partially overlapped by setting
their mean vectors close to each other and variating the
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(e) Synthetic a∗=ωn
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(f) Synthetic a∗=nη
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(g) Synthetic a∗= P
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(h) NDI data set
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(j) Synthetic a∗=nη
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(l) NDI data set

Figure 7: Scalability on synthetic data sets with 3 types of dominant clusters and the real world data set
NDI. Parameters for the 3 synthetic data sets are: ω = 1.0, η = 0.9 and P = 1000

shapes of the Gaussian distributions by different diagonal
covariance matrices with elements ranging in [0, 10]. Then,
we sampled a∗ data items from each Gaussian distribution
as the ground truth and (n − 20a∗) data items from the
surrounding uniform distribution as noise. Since all the 20
clusters were sampled in equal size, a∗ is the largest size of
dominant clusters, which is consistent with the definition of
a∗ in Section 4.5. The synthetic data sets were mainly
used to test the efficiency and scalability of ALID. Thus, we
simulated the three typical cases of a∗ analyzed in Table 1 by
controlling the amount of sampled data items with a∗=ωn

20
,

a∗=nη

20
and a∗= P

20
, respectively, where the constant denom-

inator 20 does not affect the complexity of ALID. We used
different values of n ∈ [1×103, 1×105] to generate data sets
of different sizes. For the experiments on the NDI data set,
we generated subsets of different sizes by randomly sampling
the original NDI data set. All the performance curves of
runtime and memory overheads in this section are plotted
in double logarithmic scale.

In Figures 7(a)-(c), the growths of runtime on the syn-
thetic data sets are are consistent with the orders of time
complexities (Table 1) analyzed in Section 4.5. The results
on the real world data set NDI (Figure 7(d)) also demon-
strate that the growth of runtime of ALID is substantially
lower than the other affinity-based methods.

In Figures 7(e)-(g), the growth of memory usage of ALID
on the three synthetic data sets are consistent with the
space complexities (see Table 1) analyzed in Section 4.5.
The results on NDI (Figure 7(h)) further demonstrate the

superior memory performance of ALID, which consumes
about 90% less memory to process 3.3 times larger data
size with a more moderate increase of memory usage than
the other affinity-based methods.
Figures 7(i)-(l) show that ALID achieves comparable AVG-

F performance with the other affinity-based methods on all
the four data sets. The AVG-F curves in Figures 7(i), (j),
and (l) have similar trends as the data set size increases:
the AVG-F grows first due to the increasing dense sub-
graph cohesiveness caused by the growing amount of data
in dominant clusters (i.e., a∗=ωn

20
and a∗=nη

20
). Then, the

AVG-F decreases due to the growing amount of data in
overlapping dominant clusters and the increasing influence
of noise. The AVG-F curves in Figure 7(k) monotonously
decreases, since the dense subgraph cohesiveness does not
increase when the amount of data in clusters is fixed to
a∗= P

20
.

In summary, ALID achieves remarkably better scalability
than the other affinity-based methods, and, at the same
time, retains high detection quality.

5.3 Parallel Experiments of PALID
PALID is the parallel implementation of ALID. It was im-

plemented in Java on the parallel platform of Apache Spark
on Ubuntu 13.10. In this section, we report the evaluation
results of the parallel performance of PALID on a cluster of
5 PC computers each with an i-7 CPU, 32 GB RAM and a
7200 RPM hard drive. We set 1 machine as the master and
the other 4 machines as workers. Each worker was assigned
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Figure 8: Illustration of SIFT dominant cluster.

Table 2: Performance of PALID on SIFT-50M
Methods Executors Runtime Speadup Ratio

PALID-1Exec 1 17.2 hours 1
PALID-2Exec 2 8.96 hours 1.92
PALID-4Exec 4 4.48 hours 3.84
PALID-8Exec 8 2.29 hours 7.51

with 2 executor processes, where each executor took a single
CPU core. The hash tables and the data items were stored
in a MongoDB (http://www.mongodb.org/) server on the
master. All machines were connected by a 1000 Mbit/s
ethernet. The performance of PALID was evaluated on
the SIFT-50M data set, which is an unlabeled data set
containing 50 million SIFT features [23]. The SIFTs were
extracted from the IPDID/1000k image data set [10] using
the VLFeat toolbox [35].

Scale Invariant Feature Transform (SIFT) [23] is a L2

normalized 128-dimensional vector describing the texture of
a small image region. In the field of computer vision, it
is a standard procedure to represent similar image regions
by highly cohesive SIFT dominant clusters named “visual
words” [34]. Figure 8 demonstrates that, since partial
duplicate images always share a common image content
(e.g., KFC grandpa), the SIFTs [23] extracted from similar
image regions are highly similar to each other and naturally
form a dominant cluster (i.e., visual word). However, the
number of visual words is unknown and there are also a large
proportion of noisy SIFTs extracted from the random non-
duplicate regions (i.e., red points), leading to a high degree
of background noise. As a result, the scalability and the
strong capability of being resistant against noise in PALID
are very suitable for visual word generation.

Table 2 shows the performance of PALID. PALID was able
to process 50 million SIFT features in 2.29 hours, achieving
a speedup ratio of 7.51 with 8 executors. This demonstrates
the promising parallel performance of PALID.

Since there is no parallel solution for the other affinity-
based methods, such as IID [31], SEA [19] and AP [17], we
fairly compared them with ALID on the SIFT-50M data set
using the same single-machine experimental settings as what
Section 5.2 used. Figure 9 shows the memory and runtime
performance of the affinity-based methods on the uniformly
sampled subsets of SIFT-50M. The increases of ALID in both
runtime and memory usage are significantly lower than the
other methods. Especially, ALID consumes 10 GB memory
to process 1.29 million SIFTs in 4.4 hours on a standard PC.
In contrast, such a large amount of data is far beyond the
capability of the other affinity-based methods, which can at
most deal with 0.04 million SIFTs on the same platform.
Although SIFT-50M is too large to be manually labeled,

the dominant cluster detection quality can still be qualita-
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Figure 9: Scalability on the SIFT-50M subset.

(a) Original (b) PALID (c) ALID

(d) IID (e) SEA (f) AP

Figure 10: Detection quality on (a) “KFC grandpa”
of the IPDID/1000k data set. The green points are
SIFTs from dominant clusters with high densities
(π(x) > 0.75). The red points in (b)-(f) are noise
SIFTs filtered out by the affinity-based methods.

tively assessed by the results in Figure 10. In Figures 10(b)-
10(f), the affinity-based methods effectively detect most of
the SIFT features (i.e., green points) extracted from the
similar image regions of “KFC grandpa”, since such SIFTs
can naturally form dense subgraphs with high cohesiveness.
At the same time, the large proportion of noisy SIFTs
(i.e., red points) extracted from the random non-duplicate
background image regions are filtered out. The results
demonstrate the effectiveness of the affinity-based methods
in resisting overwhelming amount of noisy SIFTs. Addition-
ally, we also evaluated the AVG-F performance of PALID on
the labeled data sets of NART and NDI. The resulting AVG-
F performances are consistent with ALID. Limited by space,
we omit the details here.

6. CONCLUSIONS
In this paper, we proposed ALID, a scalable and ef-

fective dominant cluster detection approach against high
background noise. ALID demonstrates remarkable noise re-
sistance capability, achieves significant scalability improve-
ment over the other affinity-based methods, and is highly
parallelizable in MapReduce framework. As future work,
we will further extend ALID towards the online version to
efficiently process streaming data.
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[30] S. Rota Bulò and I. M. Bomze. Infection and
immunization: a new class of evolutionary game
dynamics. Games and Economic Behavior,
71(1):193–211, 2011.
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