
Mining Coherent Gene Clusters from Gene-Sample-Time
Microarray Data ∗

Daxin Jiang† Jian Pei†‡ Murali Ramanathan† Chun Tang† Aidong Zhang†
† State University of New York at Buffalo, USA ‡ Simon Fraser University, Canada

Email: {djiang3, jianpei}@cse.buffalo.edu, murali@acsu.buffalo.edu, {chuntang, azhang}@cse.buffalo.edu

ABSTRACT
Extensive studies have shown that mining microarray data
sets is important in bioinformatics research and biomedical
applications. In this paper, we explore a novel type of gene-
sample-time microarray data sets, which records the expres-
sion levels of various genes under a set of samples during a
series of time points. In particular, we propose the mining
of coherent gene clusters from such data sets. Each clus-
ter contains a subset of genes and a subset of samples such
that the genes are coherent on the samples along the time
series. The coherent gene clusters may identify the samples
corresponding to some phenotypes (e.g., diseases), and sug-
gest the candidate genes correlated to the phenotypes. We
present two efficient algorithms, namely the Sample-Gene
Search and the Gene-Sample Search, to mine the complete
set of coherent gene clusters. We empirically evaluate the
performance of our approaches on both a real microarray
data set and synthetic data sets. The test results have shown
that our approaches are both efficient and effective to find
meaningful coherent gene clusters.
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1. INTRODUCTION
The recent microarray technology can measure the ex-

pression levels of thousands of genes simultaneously. It is
an important research problem in bioinformatics and clini-
cal research to explore the patterns in microarray data sets.
For example, in drug development, gene expression patterns
may reflect gene-level responses to different drug treatments
and provide deep insights into the nature of the diseases.

Most microarray data sets can be divided into two cate-
gories. On the one hand, the gene-time data sets record the
expression levels of various genes during important biologi-
cal processes over a series of time points. The gene-sample
data sets account the expression levels of various genes across
related samples. Both gene-time data sets and gene-sample
data sets can be represented by a n×l gene expression matrix
of n genes and l samples/time points. In the gene expression
matrix, the rows are the genes and the columns are either
samples (in gene-sample data sets) or ordered time points
(in gene-time data sets), while each cell represents the ex-
pression level of a certain gene on a certain sample or at a
certain time point.

With the latest advances in the microarray technology,
the expression levels of a set of genes under a set of sam-
ples can be monitored synchronically during a series of time
points [20]. Different from the previous gene-time or gene-
sample microarray data sets, these new data sets have three
types of variables: genes, samples and time. We call such
data gene-sample-time microarray data, or GST data for
short. Figure 1(a) elaborates the structure of a GST mi-
croarray data set.

j3

genes

j1s j2s
samples

genes

tim
e

samples

s

111

wnm1

w1m1w121

w211

w g

g

g

i3

i2

i1

(a) (b)

Figure 1: The structure of GST microarray data

In general, each cell mk
i,j in a GST data set represents the

expression level of gene gi under sample sj at time point tk.
Interestingly, a GST data set can also be viewed as a n× l



matrix, such that each cell mi,j contains the time series with
respect to gene gi under sample sj , as shown in Figure 1(b).

The previous studies on gene-sample microarray data (e.g.,
[7, 2, 15, 1]) indicate that high correlations may exist be-
tween the gene expression patterns and some diseases. It
is natural to extend the similar analysis to GST microarray
data. That is, it is interesting to identify a subset of genes
G and a subset of samples S in a GST microarray data set
such that each gene g ∈ G has coherent patterns across the
samples in S during the time series. For example, in Fig-
ure 1, gene gi1, gi2 and gi3 show coherent patterns across
samples sj1, sj2 and sj3, respectively. We call such subsets
of genes and samples a coherent gene cluster.

What is the biological meaning of the coherent gene clus-
ters? The coherent gene clusters provide valuable hypothesis
for biologists. The samples in a cluster may correspond to a
phenotype, such as the patients having a disease, while the
corresponding set of genes may suggest the candidate genes
correlated to the disease.

The functions of genes in an organism are highly com-
plicated. There are typically multiple coherent clusters in a
data set. Different clusters may correlate to different pheno-
types, such as age and gender. Therefore, to avoid missing
any valuable hypothesis, it is necessary to mine all the co-
herent clusters in the data set.

Many previous studies investigate the mining of interest-
ing patterns from microarray matrices. For example, vari-
ous clustering algorithms can identify the co-expressed genes
showing coherent patterns during the time-series (e.g., [17,
12, 15, 8]). Moreover, both supervised or unsupervised ap-
proaches are proposed to partition the samples into homo-
geneous groups (e.g., [4, 14, 9, 16]). Additionally, statistical
approaches have been proposed to validate the significance
of the mining results (e.g., [3, 18, 5]). However, all previ-
ous studies target at conventional gene-time or gene-sample
microarray data sets. The models of clusters in those pre-
vious studies are different from our coherent gene clusters
which disclose the correlation among genes, samples and
time points. Therefore, those algorithms cannot be extended
directly to solve our problem.

Recently, the pattern-based clustering approaches (e.g., [19])
have been developed to discover subsets of objects following
similar patterns on subsets of attributes. Conceptually, a
pattern-based cluster is a coherent gene cluster. If we treat
the GST microarray data sets as a n× l matrix of time se-
ries, as shown in Figure 1(b), then pattern-based clusters
and coherent gene clusters may have some similarity at the
first look. However, in some pattern-based approaches, a
cluster requires that each pair of objects in the cluster must
be coherent on each pair of attributes. Such a requirement
is often too strong in practice. Our coherent gene clustering
relaxes the constraints among the objects. Therefore, each
traditional pattern-based cluster is a coherent gene cluster,
but not necessarily true vice versa.

In this paper, we tackle the problem of mining coherent
patterns from gene-sample-time microarray data sets and
make the following contributions.

First, we propose a model of coherent gene clusters in
GST microarray data sets. We justify that the model is
meaningful for biomedical research.

Second, we identify the computational challenges and con-
duct a systematic research on mining coherent gene clus-
ters from GST microarray data sets. We develop two ap-

proaches, namely the Gene-Sample Search and the Sample-
Gene Search, to mine the complete set of coherent gene clus-
ters. We illustrate and compare the efficiency and scalability
of both approaches.

Last, we conduct an extensive empirical evaluation on
both real data sets and synthetic data sets. Our results show
that our proposed methods can find coherent gene clusters
interesting to biomedical research from real data sets. The
results on synthetic data sets also show that our algorithms
are both efficient and scalable.

The rest of the paper is organized as follows. Section 2
defines the problem. Section 3 describes the preprocessing
step of computing the maximal coherent samples sets for
each individual gene. Section 4 presents two algorithms to
mine coherent gene clusters. In Section 5, our methods are
evaluated using real and synthetic data sets. Related work
is discussed in Section 6. Section 7 concludes the paper.

2. PROBLEM DESCRIPTION
Given a set of n genes G-Set = {g1, . . . , gn} and a set of l

samples S-Set = {s1, . . . , sl}, we can measure the expression
levels of the genes on the samples. The results form a con-
ventional n × l microarray matrix M = {mi,j}, where mi,j

is the expression level of gene gi (1 ≤ i ≤ n) on sample sj

(1 ≤ j ≤ l). If such microarray experiments are conducted
synchronically on all genes and all samples at time instants
t1, . . . , tT , the results form a n×l×T GST microarray matrix
M = {mt

i,j}, where (1 ≤ t ≤ T ).
A GST microarray matrix M = {mt

i,j} can also be viewed
as a n × l matrix M ′ = {m′

i,j} such that m′
i,j is a vector

of 〈m1
i,j , . . . , m

T
i,j〉. Hereafter, we do not strictly distinguish

the two notations. Instead, whenever mi,j is written, the
vector is referred to.

In this paper, we are interested in finding those genes that
are coherent on a subset of samples during the whole time
series. There are various methods to measure the correla-
tion between two time series. However, for gene expression
data, users are often interested in the overall trends of the
expression levels instead of the absolute magnitudes. There-
fore, we choose the Pearson’s correlation coefficient as the
coherence measure, since it is robust to shifting and scaling
patterns [22]. Specifically, given two vectors mi,j1 and mi,j2

of gene gi, the coherence ρ(mi,j1 , mi,j2) is defined as

∑T
t=1(m

t
i,j1 −mi,j1)(m

t
i,j2 −mi,j2)√∑T

t=1(m
t
i,j1

−mi,j1)
2

√∑T
t=1(m

t
i,j2
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,

where mi,j =
∑T

t=1

mt
i,j

T
is the mean of the expression levels

of gene gi on sample sj . The correlation coefficient ranges
between −1 and 1. The larger the value, the more coherent
are the two vectors.

A gene gi is coherent across a subset of samples S ⊆ S-Set,
if given any pair of samples sj1 , sj2 ∈ S, ρ(mi,j1 , mi,j2) ≥ δ,
where δ is a minimum coherence threshold specified by the
user. For a subset of genes G ⊆ G-Set and a subset of
samples S ⊆ S-Set, if every gene gi ∈ G is coherent across
samples in S, we call gene set G coherent on sample set S.
(G × S) is called a coherent gene cluster. A coherent gene
cluster having u genes and v samples is said a (u, v)-coherent
gene cluster.

Trivially, for any gene gi and any sample sj , ({gi}×{sj}) is
a (1, 1)-coherent gene cluster, and (G-Set×{sj}) and ({gi}×



S-Set) are trivial (|G-Set|, 1)- and (1, |S-Set|)-coherent gene
clusters, respectively. To avoid this triviality, we require
that a coherent gene cluster should consist of at least two
genes and two samples.

Given a coherent gene cluster (G × S), for any subsets
G′ ⊆ G and S′ ⊆ S, (G′×S′) is also a coherent gene cluster.
To avoid such redundancy, a coherent gene cluster (G × S)
is maximal if there exists no any other coherent gene clus-
ter (G′ × S′) such that G ⊆ G′, S ⊆ S′. Moreover, a user
may not be interested in very small clusters, which are often
formed by chance. Thus, a user can specify the minimum
numbers of genes and samples in a cluster. Generally, given
ming and mins as user defined minimum gene size and sam-
ple size thresholds, a cluster (G × S) is called significant if
|G| ≥ ming and |S| ≥ mins.

Problem definition Given a GST microarray matrix M ,
a minimum coherence threshold δ, a minimum gene size
threshold ming and a minimum sample size threshold mins,
the problem of mining coherent gene clusters is to find the
complete set of significant maximal coherent gene clusters
in M with respect to the parameters. Hereafter, a signifi-
cant maximal coherent gene cluster is called a coherent gene
cluster for short.

3. MAXIMAL COHERENT SAMPLE SETS
We propose two algorithms computing maximal coherent

gene clusters. In both algorithms, to compute coherent gene
clusters, we need to check whether a subset of genes are
coherent on a subset of samples. To facilitate the tests, for
each gene gk, we compute the sets of samples S such that
(1) |S| ≥ mins; (2) gk is coherent on S; and (3) there exists
no superset S′ ⊃ S such that gk is also coherent on S′. S
is called a maximal coherent sample set of gk. Please note
that, in general, a gene may have more than one maximal
coherent sample set.

For a gene gk, all of its maximal coherent sample sets can
be computed efficiently using the following 2-step process.

In the first step, we test whether gene gk is coherent on
each pair of samples (si, sj). A binary triangle matrix {ci,j}
is populated, where 1 ≤ i < j ≤ |S-Set|. ci,j = 1 if gene
gk is coherent on samples si and sj , i.e., ρ(mk,i, mk,j) ≥ δ,
otherwise, ci,j = 0.

Once the matrix {ci,j} is populated, the problem of find-
ing gk’s maximal coherent sample sets can be reduced to the
problem of finding all maximal cliques of size at least mins

in graph Gk = (S-Set, E), where (si, sj) is an edge in the
graph if and only if ci,j = 1. A clique S is called maximal if
there exists no any other clique S′ such that S ⊂ S′. Please
note that there may exist more than one maximal clique in
a graph.

Unlike the conventional clique problem where the clique of
the maximal size is found, here, we need to find the complete
set of maximal cliques in the graph. It is well known that
the conventional clique problem is NP-complete. So is the
problem of finding the complete set of maximal cliques.

Fortunately, the real GST microarray data sets are often
sparse and the number of samples is typically below one hun-
dred. For each gene, the number of maximal cliques is quite
small and the samples can often be partitioned into exclu-
sive small subsets. Our experimental results show that, with
efficient search and pruning techniques, it is still practical to
find the complete set of maximal cliques. In the following,
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{a,b} {a,c}
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Figure 2: Enumeration of combinations of samples.

we will show how to find the maximal cliques of a sample
set by a depth-first search in a sample set enumeration tree.

Given a set of samples S = {s1, . . . , sl}, the set 2S (i.e., all
combinations of samples) can be enumerated systematically.
For example, consider a set of samples S = {a, b, c, d}. The
complete set of non-empty combinations of samples can be
divided into 4 exclusive subsets: (1) the ones having sample
a; (2) the ones having sample b but no a; (3) the ones having
sample c but no a or b; and (4) {d}. They are shown as the
immediate children of the root in Figure 2.

These subsets can be further partitioned. For example,
the first subset can be further divided into three exclusive
sub-subsets: (1) the ones having samples a and b; (2) the
ones having samples a and c but no b; and (3) {a, d}.

The tree shown in Figure 2 is called a set enumeration
tree [13] with respect to {a, b, c, d}. It provides a conceptual
tool to enumerate the complete set of combinations system-
atically.

We can conduct a recursive, depth-first search of the sam-
ple set enumeration tree to detect the maximal cliques of
the samples. Given a set of samples S, the set enumeration
tree has 2|S| nodes. However, we never need to materialize
such a tree. Instead, we only need to keep a path from the
root of the tree to the node we are searching as a working
set, which contains at most (|S|+ 1) nodes.

Clearly, in the set enumeration tree, each node contains
a unique subset of samples. Thus we can use the subset of
samples to refer to the node. At node {si1 , . . . , sik} (1 ≤
i1 < · · · < ik ≤ l), we also keep a list Tail, which contains
the samples that can be used to extend the node to larger
subsets of samples in the subtree. We have the following
result.

Lemma 3.1. At node v = {si1 , . . . , sik} of the sample set
enumeration tree, where (1 ≤ i1 < · · · < ik ≤ l), a sample
sj 6∈ Tail if (1) j ≤ ik; or (2) there exists some 1 ≤ l ≤ k
such that cil,j = 0. Moreover, for v’s parent node v′ =
{si1 , . . . , sik−1}, v’s Tail is a subset of that of v′.

We can prune any subtree that cannot lead to a coherent
sample set of at least mins samples.

Pruning Rule 3.1 (Pruning small sample sets). At
a node v = {si1 , . . . , sik}, the subtree of v can be pruned if
(k + |Tail|) < mins.

For example, for a set of l samples, even the complete
set of sample combinations can be divided into l exclusive
subsets as shown before, we only need to search the first
(l − mins + 1) subsets, since each of the last (mins − 1)
subsets contains less than mins samples.

Moreover, if the samples at the current node and its Tail
are subsumed by some maximal coherent sample set found



Input: the GST data set, the coherence threshold δ;
minimum sample size threshold mins;

Output: the maximal coherent sample sets for each gene;
Method:

for each gene gk do
generate matrix ci,j for gk;
// depth-first search
for i = 1 to (l−mins + 1) do

call search-clique({si}, {si+1, . . . , sl});
end-for

end-for

Procedure: search-clique(head, tail)
// head records the samples in the current node
suppose si is the last sample in head, remove samples

sj from tail such that ci,j = 0; // Lemma 3.1
if (|head ∪ tail| < mins) // Pruning 3.1

or (head ∪ tail ⊂ S) s.t. S is a maximal clique
// Pruning 3.2

then return; //abort the recursive search
if tail = ∅ then output a maximal clique;
else

do
let j = min{k|sk ∈ tail} and tail = tail− {sj};
call search-clique(head ∪ {sj}, tail);

until tail = ∅;
return;

Figure 3: Computing maximal coherent sample sets.

so far, then the recursive search can also be pruned, since it
cannot lead to any new maximal coherent sample set.

Pruning Rule 3.2 (Pruning subsumed sets). At a
node v = {si1 , . . . , sik}, if {si1 , . . . , sik}∪Tail is a subset of
some maximal coherent sample set, then the subtree of the
node can be pruned.

Based on the above lemma and pruning rules, the prepro-
cessing algorithm is presented in Figure 3. For the readers
familiar with the techniques of depth-first mining of maxi-
mal/closed frequent patterns, the ideas of pruning here share
the similar spirit with the pruning in frequent closed itemset
mining (e.g., [10]). However, one key difference is that the
frequent pattern mining conducts counting on databases,
and we do not need to scan the database for any counting
once the triangle matrix {ci,j} is materialized. The correct-
ness of the preprocessing algorithm can be shown. Limited
by space, we omit the details here.

4. THE MINING ALGORITHMS
A näıve method to find the maximal coherent gene clusters

is to test every possible combination of genes and samples
thoroughly. After all the coherent gene clusters are found,
we can identify and report the maximal ones. The näıve
method is very costly and thus infeasible for real data sets.
For example, suppose we have 1, 000 genes and 20 samples.
The näıve method may have to search up to (21000 − 1) ×
(220 − 1− 20) ≈ 1.12× 10307 combinations!

How can we search the huge space efficiently and prune
unpromising subspaces sharply? When computing the maxi-
mal coherent sample sets (Figure 3), we systematically enu-
merate combinations of samples in a recursive depth-first
search, and develop techniques to prune unpromising sub-
spaces aggressively. Stimulated by the similar spirit, here

The Sample-Gene Search
depth-first enumerate subsets of samples
for each subset of samples S do

find the maximal subsets of genes G
s.t. G× S is a coherent gene cluster;

test whether (G× S) is a maximal coherent gene
cluster;

end-for

The Gene-Sample Search
depth-first enumerate subsets of genes
for each subset of genes G do

find the maximal subsets of samples S
s.t. G× S is a coherent gene cluster;

test whether (G× S) is a maximal coherent gene
cluster;

end-for

Figure 4: The frameworks of the Sample-Gene
Search and the Gene-Sample Search.

we can also systematically enumerate the combinations of
genes and samples, and prune unfruitful combinations.

Basically, we have two alternatives. On the one hand, we
can enumerate all combinations of samples systematically.
For each subset of samples, we can find the maximal subsets
of genes that form coherent gene clusters on the samples,
and check whether the clusters are maximal. This method
is called the Sample-Gene Search. On the other hand, we
can let the gene enumeration go first. For each subset of
genes, we find the maximal subsets of samples that form
coherent gene clusters with the genes, and check whether
the clusters are maximal. The method is called the Gene-
Sample Search.

The frameworks of the Sample-Gene Search and the Gene-
Sample Search are shown in Figure 4. Proper pruning tech-
niques should be developed to prune unpromising combina-
tions and search branches as early as possible.

A first look at Figure 4 may suggest that the two methods
are symmetric. However, since genes and samples are not
symmetric in the problem, the technical details are in fact
substantially different. We are mining coherent gene clusters
on samples. As long as the genes respond coherently on the
same subset of samples, they belong to the same cluster.
However, the expression patterns of different genes in the
same cluster on one sample can be very different!

4.1 Sample-Gene Search
In the Sample-Gene Search, we need to address the fol-

lowing issues. First, as we enumerate the combinations of
samples systematically, for each subset of samples, how can
we find the maximal sets of genes such that the genes are
coherent on the samples? Second, during the sample set
enumeration, which sample sets can be pruned? Third, sim-
ilar to the situation in Pruning rule 3.2, can we identify and
prune the searches that cannot lead to any potential maximal
coherent clusters?. Last, how can we determine whether a
coherent gene cluster is subsumed by the others? We answer
the above questions in this subsection.

4.1.1 Maximal Coherent Gene Sets for Sample Sets
For each combination of samples S, we need to compute

the maximal coherent gene set GS such that the genes in GS



Gene Maximal coherent sample sets

g1 {s1, s2, s3, s4, s5}
g2 {s1, s2, s4}, {s1, s5}
g3 {s1, s2, s3, s4, s5}
g4 {s1, s2, s3}, {s5, s6}
g5 {s1, s5, s6}

(a) The maximal coherent sample sets for genes

Sample The inverted list

s1 {g1.b1, g2.b1, g2.b2, g3.b1, g4.b1, g5.b1}
s2 {g1.b1, g2.b1, g3.b1, g4.b1}
s3 {g1.b1, g3.b1, g4.b1}
s4 {g1.b1, g2.b1, g3.b1}
s5 {g1.b1, g2.b2, g3.b1, g4.b2, g5.b1}
s6 {g4.b2, g5.b1}

(b) The inverted lists for samples

Figure 5: The maximal coherent sample sets and
the inverted lists.

are coherent on S and no proper superset G′ ⊃ GS also has
this property.

Clearly, for a gene g, if there exists a maximal coherent
sample set Sg such that S ⊆ Sg, then g ∈ GS . In other
words, GS can be derived by one scan of the maximal co-
herent sample sets of all genes. If a maximal coherent sam-
ple set is a superset of S, then the corresponding gene g is
inserted into GS .

It is expensive to scan the complete list of maximal co-
herent sample sets of all genes once for every combination
of samples. An efficient solution is to use an inverted list.

Suppose we have 5 genes and 6 samples. The maximal
coherent sample sets for each gene are listed in Figure 5(a).

We label each maximal coherent sample set by the gene
gk, and the set-id, bj , in the gene. For example, gene g2 has
two maximal coherent sample sets, g2.b1 = {s1, s2, s4} and
g2.b2 = {s1, s5}.

For each sample s, we make up the inverted list Ls as
the list of all maximal coherent sample sets containing s, as
shown in Figure 5(b).

Now, when we want to compute the maximal coherent
gene sets for a subset of samples, say {s1, s2, s3}, we do not
need to search the complete list in Figure 5(a). Instead,
we only need to get the intersection of the inverted lists of
the samples s1, s2 and s3, which is {g1.b1, g3.b1, g4.b1}. By
this intersection, we know that {g1, g3, g4} is the maximal
coherent gene set.

4.1.2 Pruning Irrelevant Samples
For a combination of samples S = {si1 , . . . , sik}, where

i1 < · · · < ik, let Stail be the set of samples that can be used
to extend S to a larger set S′ ⊂ S ∪ Stail such that there
are at least ming genes coherent on S′. Clearly, a sample
sj 6∈ Stail if j ≤ ik. Moreover, if the maximal coherent
gene set of S ∪ {sj} contains less than ming genes, then
sj 6∈ Stail, either. This is in the similar spirit of Lemma 3.1.
For example, in our running example (Figure 5), sample s6

cannot be used to extend sample set S = {s2}, since there
is no gene coherent on both s2 and s6.

Moreover, similar to Pruning rule 3.1, if |S| + |Stail| <
mins, then S cannot lead to any coherent gene cluster hav-
ing mins or more samples, and thus can be pruned.

4.1.3 Pruning Unpromising Coherent Gene Clusters
Similar to the situation in Pruning rule 3.2, we can prune

the unpromising combinations that cannot lead to any new
maximal coherent gene cluster. Here, two pruning tech-
niques can be applied.

For example, in our running example (Figure 5), sup-
pose we find the maximal coherent gene cluster ({g1, g3} ×
{s1, s2, s3, s5}) before we search sample set S = {s1, s3}. For
S = {s1, s3}, Stail = {s5} and GS∪Stail = {g1, g3}. That
is, both S ∪ Stail and GS∪Stail are subsumed by the maxi-
mal coherent gene cluster. The recursive search of S cannot
lead to any maximal coherent gene cluster and thus can be
pruned.

In general, suppose we are searching a sample combination
S′. If there exists a maximal coherent gene cluster (G× S)
found before such that S′ ∪ S′tail ⊆ S and GS′∪S′

tail
⊆ G,

then any recursive search from S′ results in a coherent gene
cluster subsumed by (G× S), and thus can be pruned.

Moreover, if there exists a maximal coherent gene cluster
(G × S) found before such that S′ ⊆ S and every maximal
coherent sample set containing S′ also contains S, then the
recursive search of S′ cannot lead to any maximal coherent
gene cluster either, and thus can be pruned. For example,
suppose we search the sample set S′ = {s2} after we find the
maximal coherent gene cluster ({g1, g2, g3, g4}× {s1, s2}) in
our running example (Figure 5). From Figure 5(a), we can
see that every maximal coherent sample set containing s2

also contains s1. In other words, there exists no maximal
coherent gene cluster containing s2 but no s1. Thus, the
search of S′ can be pruned.

4.1.4 Determining maximal coherent gene clusters
When we search a combination of samples S, we need to

check whether GS × S is a maximal coherent gene cluster.
We look at those maximal coherent gene clusters (G′ × S′)
such that S′ ⊃ S. Clearly, since we conduct depth-first
search in the set enumeration tree, such maximal coherent
gene clusters should be reported either before S is searched,
or in the subtree rooted at S.

Based on the above discussion, we have the Sample-Gene
Search algorithm in Figure 6.

4.2 Gene-Sample Search
The framework of Gene-Sample Search is symmetric to

that of Sample-Gene Search. That is, we enumerate the
combinations of genes systematically. For each combination
of genes, we compute the maximal sets of samples that the
genes are coherent on. Many pruning techniques in Sample-
Gene Search have the symmetric versions in Gene-Sample
Search. Limited by space, we omit the details here. Instead,
we only focus on the differences between the two approaches.

4.2.1 Determining Coherent Gene Clusters
The concept of coherent sample sets for a gene can be

generalized for a set of genes. Given a set of genes G, a
maximal coherent sample set with respect to G is a set of
samples SG such that (1) genes in G are coherent on SG;
and (2) there exists no S′ ⊃ SG that samples in G are also
coherent on S′. Please note that there can be more than
one maximal coherent sample set for a given set of genes.

How can we compute the maximal coherent sample sets
efficiently? Interestingly, SG can be computed by some sim-
ple intersection operations. For example, suppose S{g1} =



Input: the maximal coherent samples sets for genes,
// from the algorithm in Figure 3

Output: the complete set of coherent gene clusters
Method:

generate the inverted list for samples
as described in Section 4.1.1;

for i = 1 to (|S-Set| −mins) do
let S = {si} and Stail = {si+1, . . . , s|S-Set|};
call recursive-search(S, Stail);

end-for

Procedure: recursive-search(S, Stail)
remove irrelevant samples from Stail as described in

Section 4.1.2;
if (|S|+ |Stail| < mins) then return;
derive the intersection of inverted lists for samples

in S as described in Section 4.1.1;
if S can be pruned by the criteria in

Section 4.1.3 then return;
while Stail 6= ∅ do

let i = min{j|sj ∈ Stail};
let tail = tail− {si};
call recursive-search(S ∪ {si}, Stail);

end-while
derive the maximal coherent gene set GS ;
output (GS × S) as a maximal coherent gene cluster if

it is not subsumed by any maximal coherent gene
cluster found before

End

Figure 6: The Sample-Gene Search algorithm.

{(s1, s2, s3)} and S{g2} = {(s2, s3, s4), (s5, s7)}. Then,
{s2, s3} is the only maximal sample set that both g1 and
g2 are coherent on. That is, S{g1,g2} = {(s2, s3)}. In other
words, we can derive S{g1,g2} from {s1, s2, s3} ∩ {s2, s3, s4}
and {s1, s2, s3} ∩ {s5, s7}.

In general, if gene set G = G1 ∪ G2, then SG can be de-
rived from SG1 and SG2 by the function find-max-coherent-
sample-sets in Figure 7.

4.2.2 Pruning Irrelevant Genes and Unpromising Co-
herent Gene Clusters

Similar to the idea in Section 4.1.2, we can prune genes
that cannot be used to extend the current combination of
genes. Given a set of genes G = {gi1 , . . . , gik}, where 1 ≤
ii < · · · < ik, a gene gj cannot be used to extend G to a
larger set of genes if j ≤ ik or none of the maximal coher-
ent sample set with respect to G ∪ {gj} has at least mins

samples. Moreover, let Gtail be the set of genes that can be
used to extend G. If |G|+ |Gtail| < ming, then G should be
pruned.

Based on the same idea in Section 4.1.3, we can use the
maximal coherent gene clusters to prune the unpromising
coherent gene clusters. Suppose we are searching a gene
combination G1. Let S1 be one maximal coherent sample
set with respect to G1, i.e., S1 ∈ SG1 . If there exists a max-
imal coherent gene cluster (G × S) such that S1 ⊆ S and
G1 ⊆ G, then S1 should be removed from the list of the max-
imal coherent sample sets SG1 , since it cannot lead to any
maximal coherent gene cluster. Moreover, if SG1 becomes
empty after the pruning, then G1 should be pruned, since
any recursive search from G1 cannot lead to any maximal
coherent gene cluster.

Function find-max-coherent-sample-sets
Input: gene sets G1 and G2, sets of maximal coherent

sample sets SG1 and SG2 ;
Output: the maximal coherent sample sets w.r.t. G1 ∪G2

Method:
let SG1∪G2 = ∅;
for each maximal coherent sample set Si ∈ SG1 do

for each maximal coherent sample set Sj ∈ SG2 do
let Sk = Si ∩ Sj ;
if |Sk| ≥ mins then insert Sk into SG1∪G2 ;

end-for
end-for
for each Sk ∈ SG1∪G2 do

if Sk is a proper subset of S′ ∈ SG1∪G2
then SG1∪G2 = SG1∪G2 − {Sk};

end-for
output SG1∪G2 ;

Figure 7: Computing maximal coherent sample set
for a set of genes.

4.2.3 Merging Coherent Genes in the Tail List
In our running example, the maximal coherent sample sets

with respect to gene g1 and g3 are identical. Then, for any
coherent gene cluster (G×S) such that g1 ∈ G, (G∪{g3}×S)
must also be a coherent gene cluster. Thus, we can search
{g1, ge} in a shoot.

In general, we have the following result.

Lemma 4.1. When search a combination of genes G, if
there exist genes {gj1 , . . . , gjk} ⊆ Gtail such that they are
coherent on every maximal coherent sample set of G, then
there exists no maximal coherent gene cluster containing G
but no {gj1 , . . . , gjk}.

Based on Lemma 4.1, we can immediately merge genes
{gj1 , . . . , gjk} to G at the current node, and thus shrink the
number of recursions. The computation time is saved as
well, since we only need to check the coherent gene clusters,
prune the irrelevant genes or unpromising gene clusters for
all these genes in one shoot.

In our experiments on real data sets, we observe many
genes can be merged by Lemma 4.1. The real-world GST
microarray data sets are typically sparse and genes are co-
herent on a quite small number of sample sets. As a con-
sequence, the performance of Gene-Sample Search can be
improved substantially by this optimization.

One may ask, “Do we have a symmetric pruning for
Sample-Gene Search?” We can apply the similar optimiza-
tion technique for sample-gene. That is, a sample sj is
merged into current combination of samples S as long as
the inverted list of S is a subset of that of sj . However, such
a situation is rare in practice, since it is rare that, for two
different sample sets S1 and S2, the maximal coherent gene
sets with respect to S1 and S2 are identical.

Based on the above discussion, we have the Gene-Sample
Search algorithm as shown in Figure 8.

5. EXPERIMENTAL RESULTS
We implemented and tested our approaches on both a

real GST microarray data set and synthetic data sets. The
system is implemented in Java. The tests are conducted on
a Sun Ultra 10 work station with a 440MHz CPU and 256
MB main memory.



Input and output: same as the Sample-Gene Search
algorithm (Figure 6)

Method:
for i = 1 to (|G-Set| −ming) do

let G = {gi} and Gtail = {gi+1, . . . , g|G-Set|};
call recursive-search(G, Gtail);

end-for

Procedure: recursive-search(G, Gtail)
remove irrelevant genes from Gtail as described in

Section 4.2.2;
if (|G|+ |Gtail| < ming) then return;
merge coherent genes in Gtail as described in

Section 4.2.3;
for each maximal coherent sample set Si ∈ SG do

if Si can be pruned by the second criteria in
Section 4.2.2 then remove Si from SG;

end-for
if (SG = ∅) then return;
while Gtail 6= ∅ do

let i = min{j|gj ∈ Gtail};
let Gtail = Gtail − {gi};
call recursive-search(G ∪ {gi}, Gtail);

end-while
for each sample set Si in SG do

output (G× Si) as a maximal coherent gene
cluster if it is not subsumed by any maximal
coherent gene cluster found before

end-for
End

Figure 8: The Gene-Sample Search algorithm.

5.1 The Data Sets
The real data set. We use the real gene-sample-time mi-
croarray data set reported in [20]. It consists of the mi-
croarray measurements of 4, 324 genes in 13 multiple sclero-
sis (MS) patients before and at 1, 2, 4, 8, 24, 48, 120 and
168 hours after IFN-β treatments. MS patients show hetero-
geneous responses to IFN-β treatments. For example, the
patients with relapsing MS respond better to IFN-β treat-
ments than the patients with progressive disease do. How-
ever, relapsing MS patients also exhibit considerable inter-
individual heterogeneity in their clinical responses to IFN-β
therapies. So far, the effects of IFN-β treatment at the ge-
nomic level in humans are poorly understood. Researchers
are interested in distinguishing the heterogeneous clinical re-
sponse to IFN-β therapy among the patients. On the other
hand, characterized gene expression dynamics correlated to
the heterogeneous responses potentially help in exploring
the causing mechanisms at the molecular level.

Synthetic data. We observe that the preprocessing, i.e.,
mining the maximal coherent sample sets for each individ-
ual gene, is relatively fast. The major bottleneck in mining
coherent gene clusters is in the latter part. Therefore, in-
stead of generating synthetic GST data sets, we simulate
the table of maximal coherent sample sets for genes such as
in Figure 5(a). Initially, an empty table is created. Then,
a certain number of coherent gene clusters (G× S) are ran-
domly generated. For each g ∈ G, S is inserted into the
table as one maximal coherent sample set with respect to
g. In addition to the size of the synthetic data set, i.e., the
total number of genes in G-Set and the number of samples
in S-Set, the synthetic data generator takes the following
parameters: (1) k, the number of coherent gene clusters in

the data set; (2) maxgene and mingene, the maximal and
minimal numbers of genes in a coherent gene cluster, re-
spectively; and (3) maxsample and minsample, the maximal
and minimal numbers of samples in a cluster, respectively.

We generate the data sets by setting mingene = 10 and
minsample = 5. maxsample is set to the same value of |S-
Set|, and maxgene is set to 1000. In practice, only a small
number of genes are correlated with a phenotype [7]. When
the size of the data set grows, we expect to see more co-
herent gene clusters. To simulate the situation, we set k to
|G-Set|·|S-Set|

3000
.

5.2 Results on the MS Microarray Data
We apply our algorithms on the MS microarray data with

ming = 15, mins = 3 and δ = 0.8. In total, 21 coherent
gene clusters are reported. To better understand the min-
ing results, we feed the genes in each cluster to Onto-Express
(http://vortex.cs.wayne.edu/Projects.html) and obtain a hi-
erarchy of functional annotations in terms of Gene Ontology
for each cluster. An example of gene ontology tree for clus-
ter 17 is shown in Figure 9(a). Then, we further investigate
the genes and samples in the clusters. Some interesting ob-
servations are obtained as follows.

First, as expected, the majority genes in the clusters are
involved in cellular processes and physiological processes,
while genes involved in other biological processes (e.g., de-
velopment, behavior and viral life cycle) are not highly rep-
resented (Figure 9(b)). Moreover, among the genes involved
in cellular process, those involved in cell communication
and cell growth and/or maintenance are predominant (Fig-
ure 9(c)). Since IFN-β is known to have anti-proliferative
activities, the high population of cellular process genes in-
volved in cell growth and/or maintenance is biologically
plausible.

Second, a bunch of genes (e.g., in cluster 10, genes H38522,
AA704613, N92443, N75595, etc.) that are well known for
transcriptional signaling and cellular signaling can be identi-
fied in the resulted clusters. Those genes, together with the
other genes in the same cluster that are unknown or poorly
understood, may serve as switches in the genetic network
and hence play an essential role in the biological processes.
Thus, studying the time-series of the genes in the coherent
gene clusters may greatly help people understand the regu-
latory mechanisms behind the response to IFN-β treatment.

Last, coherent gene clusters also consist of different group-
ings of samples, which provide promising hypothesis for dif-
ferent phenotypes. For example, in the MS microarray data,
the expression data from patients with different responses to
IFN-β treatment are collected. Among the 21 reported clus-
ters, only 2 clusters (cluster 10 and 17) consist of 4 samples,
while other clusters only consist of the mins number of sam-
ples. Therefore, those two clusters may become good can-
didates for target phenotype. Based on the clinical records
of the patients, and combined with the gene information
from the clusters, the interpretation of the sample groups is
currently under investigation.

5.3 Effects of the Parameters
The maximal coherent gene cluster is defined with respect

to three parameters, i.e., the minimum number of genes
ming, the minimum number of samples mins and the co-
herence threshold δ. We test the effect of the parameters
on the real GST data set. Figure 10(a) shows the number



(a) The gene ontology tree for genes in cluster 17
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Figure 9: The gene ontology tree and the distribution of functions for genes in cluster 17.

of coherent gene clusters when ming varies from 5 to 100,
mins = 3 and δ = 0.8. Clearly, the number of coherent
gene clusters in the data set decreases when ming increases.
The result concurs the intuition: with a lower ming value,
we can catch more clusters with more or less genes. As a
matter of fact, with fixed mins and δ, let Bi be the complete
set of coherent blocks when ming = i. Then, we can show
B1 ⊇ . . .Bi ⊇ . . .Bn.

Figure 10(b) shows the number of coherent gene clusters
with respect to various mins when ming and δ are fixed
to 10 and 0.8, respectively. This result can be explained in
a way similar to the situation of ming. Figure 10(c) shows
the effect of δ on the number of coherent gene clusters in the
data set, with ming = 10 and mins = 3. When we lower
the coherence threshold, more combinations of samples are
“coherent” by chance with respect to a minimum of ming

genes.
Interestingly, the three curves in Figure 10 share similar

trends. That is, when the value of the parameter (repre-
sented by the X axis) increases, the number of coherent gene
clusters (represented by the Y axis) goes down. The curve
drops sharply until a “knot” is met, then the curve goes
stably to the right. For example, we can see the “knots”
of ming = 20 in Figure 10(a), mins = 4 in Figure 10(b)
and δ = 0.85 in Figure 10(c). These “knots” indicate that
there exist stable and significant coherent gene clusters in
the real data set. They are highly correlated, involving a
statistically significant number of genes and samples. The
“knots” also suggest the best settings of the parameters to
avoid the coherent gene clusters formed just by chance.

5.4 Scalability
We first test the efficiency of the preprocessing (algorithm

in Figure 3) on various random subsets (by sampling) of the
real microarray data set. The size of the subsets varies from
500 to 4324 genes, and all the samples are included. For
each size, we sampled 30 subsets and calculate the average
runtime. Figure 11(a) illustrates the scalability for the pre-
processing step. As we discussed in Section 3, the real GST
microarray data sets are often sparse. With the efficient
pruning techniques, the preprocessing algorithm is linearly
scalable to the size of the data sets.

We then test the scalability of both Gene-Sample Search
and Sample-Gene Search on synthetic data sets. We set
mins = 5, ming = 10, and δ = 0.8. We first fix the num-
ber of samples to 30, and report the runtime with respect to
number of genes (Figure 11(b)). We can see both approaches
show an approximately linear scalability with respect to the
number of genes. Figure 11(c) shows the scalability for both
approaches under different sizes of sample sets (from 30 to
100), when the number of genes is fixed to 3000. We can see
both approaches scale well with respect to the number of
samples. Since the number of genes for a microarray data is
typically by far larger than that of the samples, the enumer-
ation of genes is much more expensive than the enumeration
of samples. This explains why the Sample-Gene Search is
faster than the Gene-Sample Search.

5.5 The Effect of Lemma 4.1
Lemma 4.1 can identify the genes gi that can be merged

into the current combination of genes, and thus can reduce
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the number of recursions in the mining. We use some sam-
ples of the real microarray data set (each subset contains 100
to 1000 genes and 12 patients) to compare the performance
of the Gene-Sample Search with and without the optimiza-
tion. The comparison is conducted in three aspects: (1)
the maximal number of recursion levels in the Gene-Sample
Search; (2) the number of gene combinations in the Gene-
Sample Search; and (3) the runtime. Figure 12 shows the
results. We can clearly see that (1) the maximal number of
recursion levels can be reduced substantially (Figure 12(a));
(2) with the optimization, the total number of gene com-
binations needed to be checked goes down sharply (12(b));
and (3) the runtime is much shorter when the optimization
is applied (12(c)). The results strongly confirm that the
optimization is effective for Gene-Sample Search.

We also apply the spirit of Lemma 4.1 on the Sample-Gene
Search, and conduct similar tests. However, we can hardly
see any significant improvement brought by the optimiza-
tion. As we discussed in Section 4.2.3, due to the sparsity
of the microarray data, many genes can be merged because
they are coherent on the same sample set. However, few
samples would be merged together since usually the maxi-
mal coherent gene sets with respect to two different sample
sets are not identical.

6. RELATED WORK
This research is related to previous work on clustering

conventional gene-time / gene-sample microarray data and
frequent itemset mining.

As we introduced in Section 1, there have been two cate-
gories of conventional microarray data sets: gene-time data
sets and gene-sample data sets. For gene-time microarray

data, various algorithms (e.g. [17, 15, 8]) have focused
on clustering the genes. That is, co-expressed genes are
grouped based on their expression patterns during the time
series. On the other hand, different approaches (e.g. [4, 21,
16]) have been proposed to partition the sample sets to find
their macroscopic phenotypes as well as to detect informa-
tive genes which manifest the sample partition. However, all
the cluster models in those previous studies are substantially
different from our coherent gene clusters. As a consequence,
those algorithms cannot be extended directly to solve our
problem.

In [6], Cheng and Church introduce the concept of biclus-
ter to measure the coherence between genes and conditions
(either time series or samples). Given a set of genes and
a set of conditions, a bicluster is a subset of genes coher-
ent with a subset of conditions. Yang et al. [22] propose
a move-based algorithm to find biclusters more efficiently.
Both algorithms in [6] and [22] adopt heuristic search ap-
proaches, and thus cannot guarantee to find the complete
set of biclusters in the data set.

In [19], Wang et al. propose the model of pattern-based
cluster. Given a subset of objects O and a subset of at-
tributes A, pair (O, A) forms a pattern-based cluster if for
any pair of objects x, y ∈ O, and any pair of attributes
a, b ∈ A, the difference of change of values on attributes
a and b between objects x and y is smaller than a thresh-
old δ. In a recent study [11], Pei et al. has proposed an
efficient algorithm, MaPle to mine the complete set of max-
imal pattern-based clusters.

We borrow some important ideas from previous studies
on frequent itemset mining. First, the framework of our
approaches is similar in spirit to that of pattern-growth
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methods for frequent pattern mining. Second, the pruning
techniques in our approaches share some interesting simi-
larities with the methods of mining frequent closed item-
sets (e.g., [10]). However, there are two essential differences
between the frequent pattern mining methods and the ap-
proaches developed in this paper. On the one hand, the
coherent gene clusters are inherently different from frequent
itemsets. Thus, the similarity between the two categories of
methods is only at the level of spirit (e.g., set enumeration
and pruning). The technical details are dramatically differ-
ent. On the other hand, new techniques such as the inverted
lists are adopted to tackle the particular microarray data.

7. CONCLUSIONS
In this paper, we have investigated a novel type of gene-

sample-time microarray data sets and propose a new prob-
lem of mining coherent gene clusters from such data sets.
We have conducted a systematic study to develop two min-
ing methods: the Sample-Gene Search and the Gene-Sample
Search. Our extensive performance study on both a real mi-
croarray data set and synthetic data sets shows that there
exist interesting and significant coherent gene clusters in the
real data set, and both the algorithms have good perfor-
mance. Since the number of genes in the microarray data
is typically by far larger than the number of samples, the
Sample-Gene Search usually outperforms the Gene-Sample
Search.
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