Speeding Up Data Science: From a Data Management Perspective

JIANNAN WANG SIMON FRASER UNIVERSITY

> Database Group @ UBC July 24, 2017

Our Lab's Mission

Speeding Up Data Science

Computer Science vs. Data Science

What	When	Who	Goal
Computer Science	1950-	Software Engineer	Write software to make computers work

 $Plan \rightarrow Design \rightarrow Develop \rightarrow Test \rightarrow Deploy \rightarrow Maintain$

What	When	Who	Goal
Data Science	2010-	Data Scientist	Extract insights from data to answer questions

 $Collect \rightarrow Clean \rightarrow Integrate \rightarrow Analyze \rightarrow Visualize \rightarrow Communicate$

Lab Members

Today's Talk

Where is the bottleneck?

Data scientists spend 60% of their time on cleaning and organizing data.

What data scientists spend the most time doing

- Building training sets: 3%
- Cleaning and organizing data: 60%
- Collecting data sets; 19%
- Mining data for patterns: 9%
- Refining algorithms: 4%
- Other: 5%

(Source: Cloudera)

DeepER's Key Idea

Leveraging Deep Web To Speed Up Data Cleaning and Data Enrichment

Hidden Database

Invaluable External Resource

- <u>Big</u>: Consisting of a substantial number of entities
- <u>Rich:</u> Having rich Information about each entity
- <u>High-quality.</u> Being trustful and up-to-date

A real-world example

· · · · · · · · · · · · · · · · · · ·	Userid	Location	Zip Code	Frequency	Category
	U12345	Lotus of Siam	891004	20 visits	Thai, Wine Bars
2. Data Cleaning	User ID	Location	Zip Code	Frequency	
	U12345	Lotus of Siam	89104	20 visits	

Entity Resolution

Hidden Database (H)

Deep Entity Resolution

Keyword Search

- 1. Conjunctive Query
- 2. Top-k Constraint
- 3. Deterministic Query Processing

Local and Hidden DBs 1. D has no duplicate record 2. H has no duplicate record

New Challenges

Limited Query Budget

- Yelp API is restricted to 25,000 free requests per day
- Goolge Maps API only allows 2,500 free requests per day

Top-k Constraint

• Return top-k results based on an unknown ranking function

NaiveCrawl

Enumerate each record in D and then generate a query to cover it **Limitation**

• Cover one record at a time

Restaurant			
Thai Noodle House			
Thai Pot			
Thai House			
BBQ Noodle House			

Keyword Queries

$q_1 =$ "Thai Noodle House"
$q_2 = $ "Thai Pot"
q ₃ = "Thai House"
$q_4 = "BBQ Noodle House"$

FullCrawl

- 1. Try to crawl the entire hidden database $H_{crawled}$
- **2.** Perform entity resolution between D and $H_{crawled}$

Limitation

• Not aware of the existence of a local database

SmartCrawl

Insight 1. Query Sharing

Restaurant

Thai Noodle House Thai Pot Thai House BBQ Noodle House

Keyword Queries

 $q_1 =$ "Thai Noodle House"

 $q_2 =$ "Thai Pot"

*q*₃ = "Thai House"

 $q_4 = "BBQ Noodle House"$

 $q_5 = "Noodle House"$

 $q_6 =$ "House"

 $q_7 =$ **"Thai"**

Cover multiple records at a time

SmartCrawl

Insight 2. Local-database-aware crawling

SmartCrawl Framework

- \bigcirc 1. Generate a query pool Q
 - 2. Select at most b queries from Q such that $|H_{crawled} \cap D|$ is maximized
 - 3. Perform entity resolution between $H_{crawled}$ and D

Query Pool Generation

Basic Idea

• Only need to consider the queries in D

Restaurant Thai Noodle House Thai Pot Thai House BBQ Noodle House

Keyword Queries

*q*₁ = "Thai Noodle House"

 $q_2 =$ "Thai Pot"

*q*₃ = "Thai House"

 $q_4 = "BBQ Noodle House"$

 $q_5 = "Noodle House"$

 $q_6 =$ "House"

 $q_7 =$ **"Thai"**

SmartCrawl Framework

- 1. Generate a query pool Q
- \bigcirc 2. Select at most b queries from Q such that $|H_{crawled} \cap D|$ is maximized
 - 3. Perform entity resolution between $H_{crawled}$ and D

Query Selection

NP-Hard Problem

• Can be proved by a reduction from the maximum coverage problem

Greedy Algorithm

• Suffers from a chicken-and-egg problem

Sampling and Estimation

Deep Web Sampling [Zhang et al. SIGMOD 2011]

- H_S is a random sample of H
- $\boldsymbol{\theta}$ is the sampling ratio

Two classes of queries

- Solid Query
- Overflowing Query

```
\begin{aligned} & \text{IF } \frac{|q(H_s)|}{\theta} \leq k \text{ THEN} \\ & q \text{ is a solid query} \\ & \text{ELSE} \\ & q \text{ is an overflowing query} \\ & \text{END} \end{aligned}
```

Solid Query

How to estimate $|q(D) \cap q(H)|$?

Unbiased Estimator: $\frac{|q(D) \cap q(H_S)|}{\theta}$

Key Observation: |q(D) - q(H)| is small

Biased Estimator: |q(D)|

Overflowing Query

How to estimate $|q(D) \cap q(H)_k|$?

How to estimate
$$\frac{k}{|q(H)|} \times |q(D) \cap q(H)|$$
?

A Summary of Estimators

	Unbiased	Biased (w/ small biases)	
Solid	$rac{ q(\mathcal{D}) \cap q(\mathcal{H}_s) }{ heta}$	$ q(\mathcal{D}) $	
Overflowing	$ q(\mathcal{D}) \cap q(\mathcal{H}_s) \cdot rac{k}{ q(\mathcal{H}_s) }$	$ q(\mathcal{D}) \cdot rac{k heta}{ q(\mathcal{H}_s) }$	

Other Contributions

1. Theoretical Analysis

2. Efficient Implementations

3. Inadequate Sample Size

4. Fuzzy Matching

Experimental Settings

Simulation

- Hidden Database: DBLP
- Local Database: Database Researchers' publications

Real-world

- Hidden Database: Yelp
- Local Database: 3000 restaurants in AZ
- Ground-Truth: Manually Labeled

DBLP

$|D| = 10,000, |H| = 100,000, K = 100, \theta = 0.2\%$

- 1. SmartCrawl performed very well with a small sampling ratio
- 2. SmartCrawl outperforms straightforward solutions

Yelp

$|D| = 3,000, |H| \approx 250,000, K = 50, \theta = 0.2\%$

- 1. SmartCrawl outperformed straightforward solutions
- 2. SmartCrawl was more robust to the fuzzymatching situation than NaiveCrawl

DeepER Conclusion

We are the first to study the DeepER problem

SmartCrawl outperforms NaiveCrawl and FullCrawl by a factor of $2 - 7 \times$

SmartCrawl is more robust to the fuzzy-matching situation than NaiveCrawl

Today's Talk

Interactive Analytics

Two Separate Ideas

Approximate Query Processing (AQP)

• Trade answer quality for interactive response time

Aggregate Precomputation (AggPre) Trade preprocessing cost for interactive response time

AQP++: Connecting AQP with AggPre

Experimental Result

TPCD-Skew (10GB, z = 2, 0.3% sample)

	Preprocessing Cost		Response	Answer Quality	
	Space	Time	Time	Avg Err.	Mdn Err.
AQP	30.72 MB	1.71 min	0.11 sec	3.28%	2.89%
AggPre	10.91 TB	> 1 day	< 0.01 sec	0.00%	0.00%
AQP++	30.74 MB	2.97 min	0.12 sec	0.41%	0.28%

On-going Projects

Students	Stages	Projects
Pei & Yongjun	Clean & Integrate	DeepER: Deep Entity Resolution
Jinglin Peng	Analyze & Visualize	AQP++: Connecting AQP with AggPre
Mathew & Mohamad	Clean & Analyze	Data Cleaning Advisor for ML
Changbo & Ruochen	Collect & Clean	Live Video Highlight Detection using Crowdsourced User Comments
Nathan Yan	Clean	Data Cleaning with Statistical Constraints
Young Woo	Analyze	ML Explanation and Debugging

Two Take-away Messages

Data scientists waste a lot of time on data processing

Collect \rightarrow Clean \rightarrow Integrate \rightarrow Analyze \rightarrow Visualize \rightarrow Communicate

Database researchers play a central role to speed up data science