
Explaining InferenceQueries with Bayesian Optimization

Brandon Lockhart♦, Jinglin Peng♦, Weiyuan Wu♦, Jiannan Wang♦, Eugene Wu†

Simon Fraser University♦ Columbia University†

{brandon_lockhart, jinglin_peng, youngw, jnwang}@sfu.ca ewu@cs.columbia.edu

ABSTRACT
Obtaining an explanation for an SQL query result can enrich the
analysis experience, reveal data errors, and provide deeper insight
into the data. Inference query explanation seeks to explain unex-
pected aggregate query results on inference data; such queries are
challenging to explain because an explanation may need to be de-
rived from the source, training, or inference data in an ML pipeline.
In this paper, we model an objective function as a black-box func-
tion and propose BOExplain, a novel framework for explaining
inference queries using Bayesian optimization (BO). An explana-
tion is a predicate defining the input tuples that should be removed
so that the query result of interest is significantly affected. BO Ð a
technique for finding the global optimum of a black-box function
Ð is used to find the best predicate. We develop two new tech-
niques (individual contribution encoding and warm start) to handle
categorical variables. We perform experiments showing that the
predicates found by BOExplain have a higher degree of explanation
compared to those found by the state-of-the-art query explanation
engines. We also show that BOExplain is effective at deriving ex-
planations for inference queries from source and training data on
a variety of real-world datasets. BOExplain is open-sourced as a
Python package at https://github.com/sfu-db/BOExplain.

PVLDB Reference Format:
Brandon Lockhart, Jinglin Peng, Weiyuan Wu, Jiannan Wang, Eugene Wu.
Explaining Inference Queries with Bayesian Optimization. PVLDB, 14(11):
2576 - 2585, 2021.

doi:10.14778/3476249.3476304

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://github.com/sfu-db/BOExplain.

1 INTRODUCTION
Data scientists often need to execute aggregate SQL queries on
inference data to inspect a machine learning (ML) model’s perfor-
mance. We call such queries inference queries, which can be seen
as an SQL query whose expressions may perform model inference.
Consider an inference dataset with four variables (customer_id, age,
sex, M.predict(I)), whereM.predict(I) represents a variable where
each value denotes whether the model 𝑀 predicts the customer
will be a repeat or one-time buyer. Running the following inference
query will return the number of female (predicted) repeat buyers:

SELECT COUNT(*) FROM InferenceData as I

WHERE sex = 'female' and M.predict(I) = 'repeat'

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 14, No. 11 ISSN 2150-8097.
doi:10.14778/3476249.3476304

Table 1: Comparison of BOExplain and existing approaches.

SQL Explain Inference Query Explain
[1, 40, 41, 52] Rain [53] BOExplain

Inference Data Supported Supported Supported

Training Data Not Supported Supported Supported

Source Data Not Supported Not Supported Supported

Explanation Type Coarse-grained Fine-grained Coarse-grained

Methodology White-box White-box Black-box

If the query result is surprising, e.g., the number of repeat buyers
is higher than expected, the data scientist may seek an explanation.
One popular explanation method is to find a subset of the input data
such that when this subset is removed, and the query is re-executed,
the unexpected result no longer manifests [41, 52]. This method is
known as a provenance or intervention-based explanation [34].

There are two types of explanations in the intervention-based set-
ting: fine-grained (a set of tuples) and coarse-grained (a predicate)
[33]. This paper focuses on coarse-grained explanations. Predicates,
unlike sets of tuples, provide comprehensible explanations and
identify common properties of the input tuples that cause the unex-
pected result. For the above example, it may return a predicate like
sex = ‘female’ AND 20 ≤ age ≤ 25 which suggests that if the
young female customers are removed from the inference data, the
query result will look normal. Then, the data scientist can inspect
these customers and conduct further investigation.

Generating an explanation from inference data can certainly
help to understand the answer to an inference query. However, an
ML pipeline does not only contain inference data but also training
and source data. The following example illustrates a scenario where
an explanation should be generated from source data.

Example 1.1. CompanyX creates an ML pipeline (Figure 1(a)) to
predict repeat customers for a promotional event. CompanyX receives
transaction records from several websites that sell their products and
aggregates them into a source data table 𝑆 . Next, the user defined
function (UDF)make_training(·) extracts and transforms features into
the training dataset 𝑇 . Finally, a random forest model is fit to the
training data, and the model is applied to the inference dataset 𝐼 which
updates it with a prediction variable,𝑀.𝑝𝑟𝑒𝑑𝑖𝑐𝑡 (𝐼).

For validation purposes, the data scientist writes a query to compute
the percentage of repeat buyers. The rate is higher than expected, but
she wants to double check that the result is not due to a data error.
In fact, it turns out that the source data 𝑆 contains errors during
Date ∈ [𝑡1, 𝑡2], when the website 𝑤 had network issues; customers
confirmed their transactions multiple times, which led to duplicate
records in 𝑆 . The training data extraction UDF was coded to label
customers with multiple purchases as repeat buyers, and labelled all
of the 𝑤 customers during the network issue as repeats. The model
erroneously predicts every website𝑤 customer as a repeat buyer, and
thus leads to the high query result. Ideally, the data scientist could ask
whether the source data contains an error, and an explanation system
would generate a predicate (𝑡1 ≤ Date ≤ 𝑡2 AND Website = 𝑤).

2576

https://github.com/sfu-db/BOExplain
https://doi.org/10.14778/3476249.3476304
https://github.com/sfu-db/BOExplain
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3476249.3476304

ID Date Website CID …

1 12/01/2020 𝑤 1

2 12/01/2020 𝑥 1

3 12/01/2020 𝑥 2

4 12/01/2020 𝑥 3

5 12/01/2020 𝑤 3

… … … …

Age Sex … Label

37 F one-time

40 M repeat

… … …

Age Sex … 𝑀.predict(I)

48 F repeat

45 F repeat

46 M one-time

… … …

Train a model

Source Data, S Training Data, T

Inference Data, I

Feature extraction

and transformation

Random forest

PredictQueryThe repeat buyer

rate is too high

(a) Example ML Pipeline and Inference Query

(b) Inference Query Explanation

from Source Data Using BOExplain

CID Age Sex …

1 37 F

2 40 M

… … …

Customers

CID

Figure 1: An illustration of using BOExplain to generate an explanation from source data in an ML pipeline.

Unfortunately, existing SQL explanation approaches [1, 40, 41,
52] are ill-equipped to address this setting (Table 1) because they
are based on analysis of the query provenance. Although they can
generate a predicate explanation over the inference data, the prove-
nance analysis does not extend across model training nor UDFs,
which are prevalent in data science workflows. The recent system
Rain [53] generates fine-grained explanations for inference queries.
It relaxes the inference query into a differentiable function over
the model’s prediction probabilities, and leverages influence analy-
sis [25] to estimate the query result’s sensitivity to a training record.
However, Rain returns training records rather than predicates, and
estimating the model prediction sensitivity to group-wise changes
to the training data is an open problem. Further, Rain does not sup-
port UDFs and uses a white-box approach that is less amenable to
data science programs (Figure 1(b)) that heavily incorporate UDFs.

As a first approach towards addressing the above limitations, and
to diverge from existing white-box explanation approaches [1, 40,
41, 52, 53], this paper explores a black-box approach for inference
query explanation. BOExplain models inference query explanation
as a hyperparameter tuning problem and adopts Bayesian Optimiza-
tion (BO) to solve it. In ML, hyperparameters (e.g., the number of
trees, learning rate) control the training process and are tuned in an
łouter-loopž that surrounds the training process. Hyperparameter
tuning seeks to find the best hyperparameters that maximizes some
model quality measure (e.g., validation score). BOExplain treats
predicate constraints (e.g., 𝑡1, 𝑡2,𝑤 in Example 1.1) as hyperparam-
eters, and aims to assign the optimal value to each constraint. By
defining a metric that evaluates a candidate explanation’s quality
(e.g., the repeat buyer rate decrease), BOExplain finds the constraint
values that correspond to the highest quality predicate.

A black-box approach offers many advantages for inference
query explanation. In terms of usability, a data scientist can derive
a predicate from any data involved in an ML pipeline rather than
inference data only. Furthermore, its concise API design is similar
to popular hyperparameter tuning libraries, such as scikit-optimize
[22] and Hyperopt [9], that many data scientists are already very
familiar with. Figure 1(b) shows an example using BOExplain’s API
to solve Example 1.1. The data scientist wraps the portion of the
program in an objective function obj whose input is the dataset to
generate predicates for, and whose output is the repeat buyer rate
that should be minimized. She also provides hints to focus on the
Date andWebsite variables. See Section 3.2 for more details.

In terms of adaptability, a black-box approach can potentially
be used to generate explanations for any data science workflow be-
yond inference queries. The current ML and analytics ecosystem is
rapidly evolving. In contrast to white-box approaches, which must
be carefully designed for specific programs, BOExplain can more
readily evolve with API, library, model, and ecosystem changes.

In terms of effectiveness, BOExplain builds on the considerable
advances in BO by theML community [48], to quickly generate high
quality explanations. A secondary benefit is that BO is a progressive
optimization algorithm, which lets BOExplain quickly propose an
initial explanation, and improve it over time.

The key technical challenge is that existing BO approaches [10,
23, 50] cannot be naively adapted to explanation generation. In
the hyperparameter tuning setting, categorical variables typically
have very low cardinality (e.g., with 2-3 distinct values [35]). In the
query explanation setting, however, a categorical variable can have
manymore distinct values. To address this, we propose a categorical
encoding method to map a categorical variable into a numerical
variable. This lets BOExplain estimate the quality of the categorical
values that have not been evaluated. We further propose a warm
start approach so that BOExplain can prioritize predicates with
more promising categorical values.

In summary, this paper makes the following contributions:

• We are the first to generate coarse-grained explanations from
the training and source data to an inference query. We argue for
a black-box approach to inference query explanation and discuss
its advantages over a white-box approach.

• We propose BOExplain, a novel query explanation framework
that derives explanations for inference queries using BO. We
develop two techniques (categorical encoding and warm start)
to improve BOExplain’s performance on categorical variables.

• We show that BOExplain can generate comparable or higher
quality explanations than state-of-the-art SQL explanation en-
gines (Scorpion [52] and MacroBase [1]) on SQL-only queries.
We evaluate BOExplain using inference queries on real-world
datasets showing that BOExplain can generate higher quality
explanations than random search for various input datasets.

2 PROBLEM DEFINITION
In this section, we first define the SQL explanation problem, and
subsequently describe the extension to inference query explanation.

2.1 Background: SQL Explanation

Query. In this work, we focus on aggregation queries over a single
table (the extension to multiple tables has been formalized in [41]).
An explainable query is an arithmetic expression over a collection
of SQL query results, as formally defined in Definition 1.

Definition 1 (Supported Queries). Given a relation 𝑅, an explain-
able query 𝑄 = 𝐸 (𝑞1, . . . , 𝑞𝑘) is an arithmetic expression 𝐸 over
queries 𝑞1, . . . , 𝑞𝑘 of the form

𝑞𝑖 = SELECT agg(. . .) FROM 𝑅

WHERE 𝐶1 AND/OR . . . AND/OR 𝐶𝑚

2577

where agg is an aggregation operation and 𝐶 𝑗 is a filter condition.

Example 2.1. Returning to the running example in Section 1, the
user queries the predicted repeat buyer rate. This can be expressed as
𝑄 = 𝑞1/𝑞2, an arithmetic expression over 𝑞1 and 𝑞2 where

𝑞1 = SELECT COUNT(*) FROM I WHERE M.predict(I)=‘repeat’;

𝑞2 = SELECT COUNT(*) FROM I;

Complaint. After the user executes a query, she may find that the
result is unexpected and complain about its value. In this work, the
user can complain about the result being too high or too low, as
done in [41]. We use the notation 𝑑𝑖𝑟 = 𝑙𝑜𝑤 (𝑑𝑖𝑟 = ℎ𝑖𝑔ℎ) to indicate
that 𝑄 is unexpectedly high (low).

Example 2.2. In our running example, the user found the repeat
buyer rate too high. Thus along with the query𝑄 from Example 2.1,
the user specifies 𝑑𝑖𝑟 = 𝑙𝑜𝑤 to indicate that 𝑄 should be lower.

Explanation. After the user complains about a query result, BOEx-
plain will return an explanation for the complaint. In this work, we
define an explanation as a predicate over given variables.

Definition 2 (Explanation). Given numerical variables 𝑁1, . . . , 𝑁𝑛

and categorical variables 𝐶1, . . . ,𝐶𝑚 , an explanation is a predicate 𝑝
of the form

𝑝 = 𝑙1 ≤ 𝑁1 ≤ 𝑢1 ∧ · · · ∧ 𝑙𝑛 ≤ 𝑁𝑛 ≤ 𝑢𝑛 ∧𝐶1 = 𝑐1 ∧ · · · ∧𝐶𝑚 = 𝑐𝑚 .

The set of all such predicates forms the predicate space 𝑆 .

Example 2.3. The source data in Figure 1 contains the variables
Date and Website. An example explanation over these variables is
12/01/2020 ≤ Date ≤ 12/10/2020 ∧Website = 𝑤.

Objective Function. Next we define our objective function. The
goal of our system is to find the best explanation for the user’s
complaint. Hence, we need to measure the quality of an explanation.
For a predicate 𝑝 , let 𝜎¬𝑝 (𝑅) represent𝑅 filtered to contain all tuples
that do not satisfy 𝑝 . We apply the query to 𝜎¬𝑝 (𝑅) and get the
new query result. If the user specifies 𝑑𝑖𝑟 = 𝑙𝑜𝑤 , then the smaller
the new query result is, the better the explanation is. Hence, we
use the new query result as a measure of explanation quality. The
objective function is formally defined in Definition 3.

Definition 3 (Objective Function). Given a predicate 𝑝 , relation 𝑅,
and query 𝑄 , the objective function 𝑜𝑏 𝑗 (𝑝, 𝑅,𝑄) → R applies 𝑄 on
the relation 𝜎¬𝑝 (𝑅).

With the definition of objective function, the problem of search-
ing for the best explanation is equivalent to finding a predicate that
minimizes or maximizes the objective function.

Definition 4 (SQL Explanation Problem). Given a relation 𝑅, query
𝑄 , direction 𝑑𝑖𝑟 , and predicate space 𝑆 , find the predicate 𝑝∗ =

argmin𝑝∈𝑆 𝑜𝑏 𝑗 (𝑝, 𝑅,𝑄) if 𝑑𝑖𝑟 = 𝑙𝑜𝑤 (use argmax if 𝑑𝑖𝑟 = ℎ𝑖𝑔ℎ).

It may appear that minimizing the above objective function runs
the risk of overfitting to the user’s complaint (perhaps with an
overly complex predicate). However, a regularization term can be
placed within the objective functionÐfor instance, SQL explanation
typically regularizes using the number of tuples that satisfy the
predicate [52]. Since 𝑄 is an arithmetic expression over multiple
queries, one of those queries may simply be the regularization term.

2.2 Extension to Inference Query Explanation
For inference query explanation, we focus on three input datasets
that the user can generate explanations from: source, training, and
inference. The query processing pipeline is as follows (Figure 1(a)):

(1) Transform and featurize the source data into the training data.
(2) Train an ML model over the training data.
(3) Use the model to predict a variable from the inference dataset.
(4) Issue a query over the inference dataset.

From the above workflow, we can find that there are two differences
between SQL and inference query explanations: 1) the query for
inference query explanation is evaluated on the inference data with
model predictions, and 2) in inference query explanation, the user
may want an explanation for the input dataset at any step of the
workflow (e.g., the source, training, or inference dataset), while SQL
explanation only consider the query’s direct input.

We next formally define the scope of the errors that we seek to
explain in Definition 5.

Definition 5 (Scope of Errors). This paper focuses on errors in the
form of systematically mislabelled tuples that can be described using
a predicate as defined in Definition 2.

We next extend the objective function from SQL explanation
to inference query explanation. Let 𝑄 be the query issued by the
user over the updated inference data, with the same form as in
Definition 1. Let 𝑅 be the data that we want to derive an explanation
from (it can be source, training, or inference data) and 𝑝 be an
explanation (i.e., predicate) over 𝑅. We measure the quality of 𝑝
like in SQL explanation: filter the data by 𝑝 , then get the new
query result. Note that for inference query explanation, the query
is issued over the updated inference data. Hence, we define P as
the subset of the ML pipeline that takes as input the dataset 𝑅 that
we wish to generate an explanation from, and that outputs the
updated inference data which is used as input to the SQL query.
The extended objective function is defined in Definition 6.

Definition 6 (Objective Function). Given a subset of an ML pipeline
P, a predicate 𝑝 , relation 𝑅, and query 𝑄 , the objective function
𝑜𝑏 𝑗 (𝑝, 𝑅,P, 𝑄) → R feeds 𝜎¬𝑝 (𝑅) through P, and then applies𝑄 on
the inference data.

Finally, we define the inference query explanation problem.

Definition 7 (Inference Query Explanation Problem). Given a
relation 𝑅, query 𝑄 , direction 𝑑𝑖𝑟 , pipeline P, and predicate space 𝑆 ,
find the predicate 𝑝∗ = argmin𝑝∈𝑆 𝑜𝑏 𝑗 (𝑝, 𝑅,𝑄,P) if 𝑑𝑖𝑟 = 𝑙𝑜𝑤 (use

argmax if 𝑑𝑖𝑟 = ℎ𝑖𝑔ℎ).

We assume that an explanation in the form of Definition 2 that
performs well under the objective function in Definition 7 is mean-
ingful to the user. Hence, if 𝑑𝑖𝑟 = 𝑙𝑜𝑤 (ℎ𝑖𝑔ℎ), the predicate 𝑝∗ that
minimizes (maximizes) the objective function is considered optimal.

3 THE BOEXPLAIN FRAMEWORK
This section introduces Bayesian optimization (BO) and presents
the BOExplain framework.

3.1 Background
Black-box optimization aims to find a global minimum (or maxi-
mum) 𝑥∗ = min𝑥 ∈X 𝑓 (𝑥) of a black-box function 𝑓 over a search
space X. BO is a sequential model-based optimization strategy to
solve the problem, where sequential means it is an iterative algo-
rithm andmodel-based means it estimates 𝑓 using surrogate models.

2578

-6 -4 -2 0 2 4 6

10

20

30

35%-percentile

Good-point set: 𝐷!={-1, 2}

Bad-point set: 𝐷"={-5, -3, 3, 3.5}

Step (1)

x

f(x)

-6 -4 -2 0 2 4 6

0.1

0.2

x

Density

𝑔(𝑥): the density over 𝐷!

𝑏(𝑥): the density over 𝐷"

Step (2)

-6 -4 -2 0 2 4 6

1

3

x

𝒈(𝒙)/𝒃(𝒙)

𝑔(𝑥)/𝑏(𝑥): acquisition function

The next point

Step (3)

2

4

Figure 2: Suppose TPE has observed six points 𝐷 = {(−5, 25),
(−3, 9), (−1, 1), (2, 4), (3, 9), (3.5, 9.25)}. This figure illustrates
how TPE finds the next point to evaluate (𝛾 = 35%).

Table 2: An illustration of parameter creation.

Age Sex City State Occupation M.predict(𝐼)

48 F Mesa AZ Athlete repeat
45 F Miami FL Artist repeat
46 M Mesa AZ Writer one-time
40 M Miami FL Athlete repeat
42 F Miami FL Athlete repeat

Tree-structured Parzen Estimator (TPE). TPE [8, 10] is a pop-
ular BO algorithm. It first initializes by evaluating 𝑓 on random
samples from the search space. Then, it iteratively selects 𝑥 from the
search space using an acquisition function and evaluates 𝑓 (𝑥). Let
𝐷 = {(𝑥1, 𝑓 (𝑥1)), · · · , (𝑥𝑡 , 𝑓 (𝑥𝑡))} be the set of samples evaluated
in previous iterations. TPE chooses the next sample as follows:

(1) Partition 𝐷 into sets 𝐷𝑔 and 𝐷𝑏 , where 𝐷𝑔 consists of the set

of 𝛾-percentile points with the lowest 𝑓 (𝑥) values in 𝐷 , and 𝐷𝑏

consists of the remaining points (𝛾 is a user-definable parame-
ter). Since the goal is minimize 𝑓 (𝑥), 𝐷𝑔 is called the good-point

set and 𝐷𝑏 is called the bad-point set. Intuitively, good points
lead to smaller objective values than bad points.

(2) Use Parzen estimators (a.k.a kernel density estimators) to build

a density model 𝑔(𝑥) and 𝑏 (𝑥) over 𝐷𝑔 and 𝐷𝑏 , respectively.
Intuitively, given an unseen 𝑥∗ in the search space, the density
models 𝑔(𝑥∗) and 𝑏 (𝑥∗) can return the probability of 𝑥∗ being
a good and bad point, respectively. Note that separate density
models 𝑔(𝑥) and 𝑏 (𝑥) are constructed for each dimension of X.

(3) Construct an acquisition function 𝑔(𝑥)/𝑏 (𝑥) and select 𝑥 with
the maximum 𝑔(𝑥)/𝑏 (𝑥) to evaluate in the next iteration. Intu-
itively, TPE selects a point that is more likely to appear in the
good-point set and less likely to appear in the bad-point set.

Figure 2 illustrates the three steps. Please refer to our technical
report [30] for a complete introduction to TPE.

Categorical Variables. TPE models categorical variables by using
categorical distributions rather than kernel density estimation. Con-
sider a categorical variable with four distinct values: Website ∈ {𝑤1,
𝑤2,𝑤3,𝑤4}. To build 𝑔(Website), TPE estimates the probability of
𝑤𝑖 based on the fraction of its occurrences in 𝐷𝑔 ; the distribution
is smoothed by adding 1 to the count of occurrences for each value.
For instance, if the occurrences are 2, 0, 1, 0, then the distribution
𝑔(Website) is {𝑃 (𝑤1), 𝑃 (𝑤3), 𝑃 (𝑤3), 𝑃 (𝑤4)} = {3/7, 1/7, 2/7, 1/7}.

3.2 Our Framework
In this section, we describe the BOExplain framework.

Parameter Creation. Given a predicate space, we need to map it
to a parameter search space (the parameters and their domains).
Suppose a predicate space is defined over variables 𝐴1, 𝐴2, · · · , 𝐴𝑛 .

If𝐴𝑖 is numerical (e.g., age, date), two parameters are created that
serve as bounds on the range constraint. Specifically, the parameters
𝐴𝑖min and𝐴𝑖length define the lower bound and the length of the range

constraint, respectively. 𝐴𝑖min and 𝐴𝑖length have interval domains

[min(𝐴𝑖),max(𝐴𝑖)] and [0,max(𝐴𝑖) −min(𝐴𝑖)], respectively.
If 𝐴𝑖 is categorical (e.g., sex, website), one categorical parameter

is created with a domain consisting of all unique values in 𝐴𝑖 .

Parameter

creation

Predicate

Remove tuples

satisfying predicate
obj(S_filtered)

Result

Filtered

data

0 1

34

Parameters

and domains

Best predicate

TPE

2

Figure 3: The BOExplain framework.

Example 3.1. Suppose the user defines a predicate space over State
and Age in Table 2. BOExplain creates three parameters: one categor-
ical parameter for State with domain {AZ, FL}, and two numerical
parameters for Age with domains [40, 48] and [0, 8], respectively.

BOExplain Framework. Figure 3 walks through the BOExplain
framework. In step 0 , the user provides an objective function 𝑜𝑏 𝑗 ,
a relation 𝑆 , and predicate variables 𝐴1, . . . , 𝐴𝑛 (Figure 1(b), line
10). Step 1 creates the parameters and their domains. Step 2 runs
one iteration of TPE, starting with the parameters from step 1 ,
and outputs a predicate. Steps 3 and 4 evaluate the predicate
by removing those tuples from the input dataset, and evaluating
𝑜𝑏 𝑗 on the filtered data. The result is passed to TPE for the next
iteration, and possibly yielded to the user as an intermediate or
final predicate explanation.

Consider the example code in Figure 1(b). Once it is executed,
BOExplain first creates three parameters: Datemin, Datelength, and
Website along with corresponding domains. Then, it iteratively
calls TPE to propose predicates (e.g., ł12/01/2020 ≤ Date ≤

12/02/2020 AND Website = 𝑤ž). BOExplain obtains S_filtered by
removing the tuples that satisfy this predicate from 𝑆 . Next, it ap-
plies obj(·) to S_filtered which will rerun the pipeline (Figure 1(a))
to compute the updated repeat buyer rate. The predicate and the
updated rate are passed to TPE to use when selecting the predicate
on the next iteration. This iterative process repeats until the time
budget is reached. When the user stops BOExplain, or when the
optimization has converged, the predicate with the lowest rate is
returned.

Why Is TPE Suitable For Query Explanation? Recent work [7,
28, 32] has suggested that random search is a competitive hyper-
parameter tuning strategy for various ML tasks. However, we find
that TPE is more effective for query explanation because it is de-
signed for problems where similar parameter values tend to have
similar objective values (e.g., model accuracy). TPE can leverage
this property to prune poor regions of the search space. As a trivial
example, suppose a hyperparameter controls the number of trees in
a random forest. If values 10, 12, 14 have resulted in a poor objective
value, then TPE will down-weigh similar values (e.g., 9, 16).

This property tends to hold in query explanation, because similar
predicates tend to have similar objective values. For instance, we
would expect that the predicate age ∈ [10, 20] will exhibit a similar
objective to age ∈ [10, 19] and age ∈ [10, 21]; when the former has
a poor objective value, the latter twomay be pruned. If this property
does not hold, BOExplain can still find the optimal predicate via
the exploration component of BO. BO balances two components
for selecting a point to evaluate: 1) exploration of the search space,
and 2) exploitation of points similar to previously well-performing
points. Exploitation may be ineffective if similar predicates do not
perform similarly under the objective function, but exploration will
still test unpromising predicates, thus eventually leading BO to the
optimal predicate.

4 SUPPORTING CATEGORICAL VARIABLES
In this section, we present our techniques to enable BOExplain to
support categorical variables more effectively.

2579

4.1 Individual Contribution Encoding
Recall from Section 3.1 that TPE models numerical and categorical
variables using kernel density estimation (KDE) and categorical
distributions, respectively. The advantage of KDE over a categorical
distribution is that it can estimate the quality of unseen points using
the points that are close to them. To benefit from this advantage, we
map a categorical variable to a numerical variable. We call this idea
categorical encoding. In the following, we present our categorical
encoding approach, called individual contribution (IC) encoding.

A good encoding method should put similar categorical values
close to each other. Intuitively, two categorical values are similar
if they have a similar contribution to the objective function value.
Based on this intuition, we rank the categorical values by their
individual contribution to the objective function value. Specifically,
consider a categorical variable𝐶 with domain {𝑐1, . . . , 𝑐𝑛}. For each
value 𝑐𝑖 , we obtain the filtered dataset 𝜎𝐶≠𝑐𝑖 (𝑆) w.r.t. the predicate
𝐶 = 𝑐𝑖 . Next, the objective function is evaluated on the relation
𝜎𝐶≠𝑐𝑖 (𝑆) which returns a number. This number can be interpreted
as the contribution of the categorical value on the objective function.
After repeating for all values 𝑐𝑖 , the categorical values are mapped
to consecutive integers in order of their IC. BOExplain will then
use a numerical rather than categorical variable to model 𝐶 .

Example 4.1. Suppose we would like an explanation from the in-
ference data in Table 2. Suppose the objective function value is the
repeat buyer rate and the predicate space is defined over the Occu-
pation variable. Note that the Occupation variable has the domain
{Athlete, Artist, Writer}. The IC of Athlete is determined by removing
the tuples where Occupation=łAthletež and computing the objective
function on the filtered dataset, which gives 0.5 (since only one of the
two tuples in the filtered dataset is a repeat buyer). Similarly, the ICs
of Artist and Writer are 0.75 and 1 respectively. Finally, we sort the
categorical values by their objective function value and encode the
values as integers: Athlete → 1, Artist→ 2, Writer→ 3.

4.2 Warm Start
We next propose a warm-start approach to further enhance BOEx-
plain’s performance for categorical variables. Since an IC score has
been computed for each categorical value, we can prioritize predi-
cates that are composed of well performing individual categorical
values. Rather than selecting 𝑛init points at random to initialize
the TPE algorithm, we select the 𝑛init combinations of categorical
values with the best combined score. More precisely, for a variable
𝐶𝑖 , we consider the tuple pairs (variable value, IC) as computed
in Section 4.1, 𝑆𝑖

𝐼𝐶
= {(𝑐 𝑗 , 𝐼𝐶 (𝑐 𝑗))}

𝑛𝑖
𝑗=1, where 𝑛𝑖 is the number of

unique values in variable𝐶𝑖 . Next, we compute the d−ary Cartesian

product and add the ICs for each combination 𝑆𝐼𝐶 = 𝑆1
𝐼𝐶
×· · ·×𝑆𝑑

𝐼𝐶
=

{((𝑐𝑖1 , . . . , 𝑐𝑖𝑑), 𝐼𝐶 (𝑐𝑖1) + · · · + 𝐼𝐶 (𝑐𝑖𝑑)) | 𝑖 𝑗 ∈ {1, . . . , 𝑛 𝑗 }}.

Example 4.2. The IC for values in the Occupation variable were

computed in Example 4.1, 𝑆
Occupation
𝑖𝑐 = {(Athlete, 0.5), (Artist, 0.75),

(Writer, 1)}, and for Sex we have 𝑆Sex𝑖𝑐 = {(F, 0.5), (M, 1)}. Next we
compute the combined IC score for each combination of predicates
𝑆𝐼𝐶 = {((Athlete, F), 1), . . . , ((Writer, M), 2)}.

To see why adding ICs can be useful for prioritizing good pred-
icates, suppose we want to minimize the objective function, and
that 𝐶1 = 𝑐1 and 𝐶2 = 𝑐2 have small ICs. Then it is likely that
𝐶1 = 𝑐1 ∧ 𝐶2 = 𝑐2 has a small value. So we choose to sum the
IC values as it encodes this property. Finally, we select 𝑛init valid
predicates with the best combined IC score. Recall the user defines

the direction that the objective function should be optimized. There-
fore, we select the predicates with the smallest (largest) IC score
if the objective function should be minimized (maximized). If the
predicate also contains numerical variables, values are selected at
random to initialize the range constraint parameters.

Example 4.3. Continuing with Example 4.2, recall that we want
to minimize the objective function, so the smaller the combined
IC score the better. Suppose 𝑛init = 2, then on the first and sec-
ond iterations of BO, we evaluate the predicates Occupation =

łAthletež ∧ Sex = łFž and Occupation = łArtistž ∧ Sex = łFž re-
spectively. Note that Occupation = łAthletež ∧ Sex = łFž is the
best predicate, so adding IC scores can prioritize good explanations.

5 EXPERIMENTS
Our experiments seek to answer the following questions. (1) How
does BOExplain compare to current state-of-the-art query expla-
nation engines for numerical variables? (2) Are the IC encoding
and warm start heuristics effective? (3) How effective is BOExplain
at deriving explanations from source and training data? (4) Can
BOExplain generate useful explanations for real corrupted datasets?

5.1 Experimental Settings
5.1.1 Baselines. For SQL-only queries, we compare BOExplain
with the explanation engines Scorpion [52] and MacroBase [1, 5]
which return predicates as explanations. For inference queries, no
predicate-based explanation engines exist, so we compare with a
random search baseline [7] Hyperband [27].

Scorpion [52] is a framework for explaining group-by aggregate
queries. The authors define a function to measure the quality of
a predicate, which can be implemented as BOExplain’s objective
function. Each continuous variable’s domain is split into 15 equi-
sized ranges as set in the original paper. We use the author’s open-
source code1 to run the Scorpion experiments.

MacroBase [5] (later, the DIFF operator [1]) is an explanation
engine that considers combinations of variable-values pairs, similar
to a CUBE query [21], as candidate explanations. In Section 2.3 of [1],
the authors describe how to use the DIFF operator with Scorpion’s
objective function. We implemented it using the author’s open-
source code2. The user needs to discretize numerical variables; we
tuned the bin size from 2 to 15 and report the best result.

In [1], MacroBase was shown to outperform other explanation
engines including Data X-ray [51] and Roy and Suciu [40], and so
we do not compare with these approaches.

Random search is a competitive method for hyperparameter tun-
ing [7]. The parameters are chosen independently and uniformly
at random from the domains described in Section 3.2.

Hyperband [27] is an exploration-based optimization strategy that
speeds up random search through adaptive resource allocation and
early-stopping.

5.1.2 Real-world Datasets. The following lists the five real-world
datasets used in our experiments. For House and Credit, we inject
synthetic errors. An explanation is derived from source data for
Credit and Amazon, training data for House and German, and
inference data for NYC.

House price prediction [14]. This data was published already split
into training (1460 rows) and inference (1459 rows) datasets. It

1https://github.com/sirrice/scorpion
2https://github.com/stanford-futuredata/macrobase

2580

https://github.com/sirrice/scorpion
https://github.com/stanford-futuredata/macrobase

0 5 10 15 20 25 30
Time (seconds)

0
2,000
4,000
6,000

2D Easy

0 5 10 15 20 25 30
Time (seconds)

0
500

1,000
1,500

2D Hard

0 10 20 30 40 50 60
Time (seconds)

0
2,000
4,000
6,000

3D Easy

0 10 20 30 40 50 60
Time (seconds)

0
500

1,000
1,500
2,000

3D Hard

BOExplain MacroBase Scorpion
Figure 4: Performance comparison with Scorpion and MacroBase. The goal is to maximize the objective function.

contains 79 variables of a house which are used to train a support
vector regression model to predict the house price.

Credit card approval prediction3. The source data consists of two ta-
bles: application_record (438,557 rows, 18 variables), which con-
tains information about previous applicants, and credit_record

(1,048,575 rows, 3 variables), which stores the applicants’ credit
history. A decision tree classifier is trained to predict whether a
customer will default on their credit card payment. We set aside
20% of the data to use for the inference query, and 80% for training.

Amazon product reviews [38]. This dataset contains 6928 reviews
of Amazon products with ground truth and crowdsourced binary
labels. 80% of the reviews are used for training with labels formed
from the majority vote of the crowdsourced labels, and 20% for
testing with the ground truth labels. We encode the reviews using
Count Vectorization and train a support vector classifier.

German credit risk [16]. This dataset contains 19 variables of 1000
bank customers with each customer labelled as having good or bad
credit risk. We one-hot encode the categorical variables, do an 80-20
train-test split, and train an XGBoost classifier.

NYC yellow taxi dataset4. This dataset contains taxi trip informa-
tion for every yellow taxi trip in New York City. Following the setup
in [4], we predict the hourly demand by region for the 20 most fre-
quent regions, and use the features weekday, region, demand of
previous 24 hours, and cosine/sine features to encode that hours
are cyclical. We train an XGBoost regressor on data from January
and February, 2020, and perform inference on March 2020’s data.

5.1.3 Metrics. To measure the quality of an explanation, we plot
the best objective function value achieved by each time point. For
Scorpion and MacroBase we plot, the objective function value cor-
responding to their output predicate as a line that begins when
the system finishes. To evaluate the effectiveness at identifying
data errors, we measure the F-score, precision, and recall in the
experiments on House and Credit. We synthetically corrupt data
defined by a predicate, and use that data as ground truth. Precision
is the number of selected corrupted tuples divided by the total num-
ber of selected tuples. Recall is the number of selected corrupted
tuples divided by the total number of corrupted tuples. F-score is
the harmonic mean of precision and recall. For BOExplain, Random,
and Hyperband, each result is averaged over 10 runs.

5.1.4 Implementation. BOExplain was implemented in Python 3.9.
We modify the TPE algorithm in the Optuna library [2] with our
optimization for categorical variables. The MLmodels in Section 5.3
are created with sklearn. The experiments were run single-threaded
on a MacBook Air (OS Big Sur, 8GB RAM). In the TPE algorithm,
we set 𝑛𝑖𝑛𝑖𝑡 = 10, 𝑛𝑒𝑖 = 24, and 𝛾 = 0.1 for all experiments.

5.2 Explaining SQL-Only Queries
To compare BOExplain, Scorpion, and MacroBase, we replicate
the experiment from Section 8.3 of Scorpion’s paper [52], using

3https://www.kaggle.com/rikdifos/credit-card-approval-prediction
4https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page

the same datasets, query, and objective function. Note that Mac-
roBase explicitly aims to optimize Scorpion’s objective function,
as described in Section 2.2 of [1]. The dataset consists of a single
group by variable𝐴𝑑 , an aggregate variable𝐴𝑣 , and search variables
𝐴1, . . . , 𝐴𝑛 with domain(𝐴𝑖) = [0, 100] ⊂ R, 𝑖 ∈ [𝑛].𝐴𝑑 contains 10
unique values (or 10 groups) each corresponding to 2000 tuples ran-
domly distributed in the 𝑛 dimensions. 5 groups are outlier groups
and the other 5 are holdout groups. Each 𝐴𝑣 value in a holdout
group is drawn from N(10, 10). Outlier groups are created with
two 𝑛 dimensional hyper-cubes over the 𝑛 variables, where one is
nested inside the other. The inner cube contains 25% of the tuples
and 𝐴𝑣 ∼ N(𝜇, 10), and the outer cube contains 25% of the tuples
in the group and 𝐴𝑣 ∼ N((𝜇 + 10)/2, 10), else 𝐴𝑣 ∼ N(10, 10). 𝜇 is
set to 80 for the łeasyž setting (the outliers are more pronounced),
and 30 for the łhardž setting (the outliers are less pronounced). The
query is SELECT SUM(𝐴𝑣) FROM synthetic GROUP BY 𝐴𝑑 . The
arithmetic expression over the SQL query is defined in Section
3 of [52] that forms an objective function to be maximized. The
penalty 𝑐 = 0.2 was used to penalize the number of tuples removed
as described in Section 7 of [52]. We used 𝑛 = 2 and 𝑛 = 3 since 3 is
the maximum number of variables supported by MacroBase.

The results are shown in Figure 4. BOExplain outperforms Scor-
pion and MacroBase in terms of optimizing the objective function
in each experiment. This is because BOExplain can refine the con-
straint values of the range predicate which enables it to outperform
Scorpion and MacroBase which discretize the range. The results
are the same in the easy and hard settings. MacroBase performs
poorly because the predicates formed by discretizing the variable
domains into equi-sized bins, and computing the cube, do not opti-
mize this objective function. This exemplifies a known limitation
of MacroBase that binning continuous variables is difficult [1].

BOExplain also outperforms Scorpion in terms of running time.
BOExplain achieves Scorpion’s objective function value in around
half the time on each experiment.

Note. The focus of this paper is not on SQL-only queries, thus
we did not conduct a comprehensive comparison with Scorpion
and MacroBase. This experiment aims to show that a black-box
approach (BOExplain) can even outperform white-box approaches
(Scorpion and MacroBase) for SQL-only queries in some situations.

5.3 Explaining Inference Queries
In this section, we evaluate BOExplain’s efficacy at explaining in-
ference queries from training and source data. In Section 5.3.1,
we investigate BOExplain’s approach for categorical variables on
House (training data), and in Section 5.3.2, we evaluate BOExplain
in a complex ML pipeline on Credit (source data).

5.3.1 Supporting Categorical Variables. In this experiment,
we assess BOExplain’s method for handling categorical variables
on House. The data is corrupted by setting the tuples satisfying
Neighbourhood="CollgCr" ∧ Exterior1st="VinylSd" ∧ 2000 ≤

YearBuilt ≤ 2010 to have their sale price multiplied by 10, affect-
ing 6.16% of the data. We query the average predicted house price
and seek an explanation for why it is high. To assess BOExplain’s

2581

https://www.kaggle.com/rikdifos/credit-card-approval-prediction
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page

Jaccard Similarity

0.2
0.5
0.8

F-score

0 50 100 150 200
Time (seconds)

0.2
0.5
0.8

Precision

0 50 100 150 200
Time (seconds)

0.2
0.5
0.8

Recall

BOExplain BOExplain (w/o IC and WS)
BOExplain (w/o IC) Random

Jaccard Similarity

0.2
0.5
0.8

F-score

0 50 100 150 200
Time (seconds)

0.2
0.5
0.8

Precision

0 50 100 150 200
Time (seconds)

0.2
0.5
0.8

Recall

BOExplain BOExplain (w/o IC and WS)
BOExplain (w/o IC) Random

0

5,000

10,000

M
ea

n
Ob

je
ct

iv
e

Fu
nc

tio
n

Va
lu

e

BOExplain BOExplain (w/o IC and WS)
BOExplain (w/o IC) Random

Jaccard Similarity

0.2
0.5
0.8

F-score

0 50 100 150 200
Time (seconds)

0.2
0.5
0.8

Precision

0 50 100 150 200
Time (seconds)

0.2
0.5
0.8

Recall

BOExplain BOExplain (w/o IC and WS)
BOExplain (w/o IC) Random

Figure 5: House: best objective function value, F-score, preci-
sion, and recall, found at each 5 second increment averaged
over 10 runs. The goal is to minimize the objective function.
(IC = Individual Contribution Encoding, WS = Warm Start)

efficacy at removing the corrupted tuples, we define the objective
function to minimize the distance between the queried result on
the passed data and the result of the query issued on the data with
the corrupted tuples removed. We use two categorical search vari-
ables Neighbourhood and Exterior1st which have 25 and 15 distinct
values respectively, and one numerical search variable YearBuilt
which has domain [1872, 2010]. The search space size is 7.25 × 106.

In this experiment, we compare three strategies for dealing with
categorical variables. The first, BOExplain, is our algorithm with
both of the IC encoding and warm-start (WS) optimizations pro-
posed in Section 4. To determine whether encoding categorical
values to integers based on IC and using a numerical distribution
is effective, we consider a second approach, BOExplain (w/o IC),
which uses the warm start optimization from Section 4.2, but uses
the TPE categorical distribution to model the variables rather than
encoding. The third, BOExplain (w/o IC and WS), is BOExplain
without any optimizations.

Each method is run for 200 seconds, and the results are shown
in Figure 5. The benefit of the warm start is apparent since BOEx-
plain and BOExplain (w/o IC) outperform the other baselines much
sooner. Also, BOExplain significantly outperforms BOExplain (w/o
IC) which shows that encoding the categorical values, and using a
numerical distribution to model the parameter, leads to BO learning
the good region which can optimize the objective function when
exploited. The F-score, precision, and recall also demonstrate how
BOExplain can significantly outperform the baselines. In this exper-
iment, BOExplain completed on average 274.3 iterations, whereas
random completed 1148.4 iterations.

Hyperband Experiment. To evaluate our choice of using TPE, we
also compare with a Hyperband implementation. For Hyperband,
we use the data sample size as the resource for successive halving.
To compare fairly with TPE, we run Hyperband for 200 seconds.
We start with a random sample of 12.5% of the data and randomly
select predicates to evaluate by the objective function. Next, we
select the 50% best performing predicates, and evaluate their quality
on a sample size of 25%. This repeats until we evaluate the best
predicates on 100% of the data, and finally output the best predicate.
The objective function value of the best found predicate averaged
over 10 runs is 7666.03, whereas for the TPE-based implementation
it is 90.74. Since the goal is to minimize the objective function, TPE
performed better. The reason is that TPE with our proposed opti-
mizations for categorical variables prioritized promising predicates

early on in the search, whereas Hyperband’s exploration-based
search strategy could not find good quality predicates as quickly.

5.3.2 Explanation From Source Data. In this experiment, we
derive an explanation from source data on Credit. We corrupt the
source data by setting all applicant records satisfying −23000 ≤

DAYS_BIRTH ≤ −17000 ∧ 2 ≤ CNT_FAM_MEMBERS ≤ 3 to have a
łbadž credit status, affecting 20.1% of the data. Corrupting the data
decreases the model accuracy, and we define the objective function
to increase the accuracy. We derive an explanation from the source
data table application_record with the variables DAYS_BIRTH
and CNT_FAM_MEMBERSwhich have domains [-25201, -7489] and
[1, 15], respectively, and the size of the search space is 7.06 × 1010.

The experiment is run for 200 seconds, and the results are shown
in Figure 6. On average, BOExplain completes 246.8 iterations and
random search completes 319.6 iterations during the 200 seconds.
BOExplain significantly outperforms Random at optimizing the
objective function, as BOExplain on average attains an objective
function value at 51 seconds that is higher than the average value
Random attains at 200 seconds. This shows that exploiting promis-
ing regions can lead to better explanations, and that BOExplain
is effective at deriving explanations from source data that passes
through an ML pipeline. Although random search can find an expla-
nation with high precision, BOExplain significantly outperforms
Random in terms of F-score.

5.4 Case Studies
To understand how BOExplain performs on real workloads, we
present three case studies in this section. These case studies use
BOExplain to derive an explanation from three real-world datasets
under realistic settings. The derived explanations are insightful,
which show BOExplain’s effectiveness in real-world applications.

Crowdsourced Mislabels. With the Amazon dataset, the infer-
ence accuracy is 93.75%. To investigate whether mislabelled reviews
decrease the accuracy, we define the objective function to increase
the accuracy. We derive a predicate over the variables Country and
TextWordCount (the number of words in the review) in the source
dataset. After running BOExplain for 60 seconds, the output predi-
cate is Country = "Turkey" ∧ 101 ≤ TextWordCount ≤ 221, which
increases the test accuracy to 95%. Upon further inspection, we
found that the labelling accuracy of the training data is 93%, but the
labelling accuracy of the tuples satisfying the returned predicate is
90%. Hence, BOExplain identified that labellers from Turkey were
more likely to mislabel long reviews, which degraded the model.

Bias. With the German credit dataset, the predicted rate of good
credit risk for individuals 25 years old or older is 76%, and for
individuals under 25 years old it is 57%, hence this dataset is biased.
We define the objective function to minimize the predicted rate of
good credit risk between those over and under 25 years old, and
derive a predicate from the training data with the search variables
Purpose and DurationInMonths (duration of the loan).

We ran BOExplain for 60 seconds, and the returned predicate
is Purpose = "car (new)" ∧ 20 ≤ DurationInMonths ≤ 50. After
removing the tuples satisfying this predicate, the predicted rate of
having good credit risk is 74% and 68% for people over and under
25, respectively, which is significantly less biased. Moreover, in
the training data, the overall good credit risk rate is 71% and 60%
for people over and under 25, respectively, however for the tuples
satisfying the predicates, the rates are 57% and 17%. Therefore,

2582

0 50 100 150 200
Time (seconds)

0.2
0.5
0.8

F-score

0 50 100 150 200
Time (seconds)

Precision

0 50 100 150 200
Time (seconds)

Recall

BOExplain Random

0 50 100 150 200
Time (seconds)

0.70
0.75
0.80
0.85
0.90

M
ea

n
Ob

je
ct

iv
e

Fu
nc

tio
n

Va
lu

e

BOExplain Random

0 50 100 150 200
Time (seconds)

0.2
0.5
0.8

F-score

0 50 100 150 200
Time (seconds)

Precision

0 50 100 150 200
Time (seconds)

Recall

BOExplain Random
Figure 6: Credit: best objective function value, F-score, precision, and recall found at each 5 second increment, averaged over
10 runs. The goal is to maximize the objective function; larger values are better.

BOExplain identified that long-term loans for new cars are greatly
biased in favour of people over 25 years old.

DataDrift.With the NYC dataset, the mean-squared error (MSE) of
taxi trip durations is 1801.03 on the training data and 10658.49 on the
inference data. The objective function is to minimize theMSE on the
inference data, and we search for an explanation over the inference
data with the search variables Region and PickUpDateTime.

After running BOExplain for 30 seconds, the returned predicate
is Region = "230" ∧ 2020-03-12 21:00:00 ≤ PickUpDatetime ≤

2020-03-31 23:00:00. When the tuples that satisfy this predicate are
removed, the MSE on the inference data is 8706.13. In fact the MSE
of the tuples satisfying the predicate is 18151.93, which is much
higher than the overall MSE of the inference data (10658.49). Thus,
BOExplain identified a region and time period that underwent
significant drift as a result of the COVID-19 pandemic.

6 RELATED WORK
Our work is mainly related to query explanation, ML pipeline de-
bugging, and Bayesian optimization.

Query Explanation. BOExplain is most closely related to Scor-
pion [52] and the work of Roy and Suciu [41]. Both approaches
define explanations as predicates. Scorpion uses a space partition-
ing and merging process to find the predicates, while Roy and
Suciu [41] use a data cube approach. Both systems make assump-
tions about the aggregation query’s structure in order to benefit
from their white-box optimizations. In contrast, BOExplain sup-
ports complex queries, model training, and user defined functions.
Variations of these ideas include the DIFF operator [1], explanation-
ready databases [40], and counterbalances [34]. Finally, a number
of specialized systems focus on explaining specific scenarios, such
as streaming data [5], map-reduce jobs [24], online transaction
processing workloads [54], cloud services [39], and range-radius
queries [46].

Another related concept is the OLAP data cube [21] which is
used to explore and discover insights about subsets of multidimen-
sional queries. Much previous work has been dedicated to providing
the user with more meaningful and efficient exploration of the data
cube [43ś45]. Other work has used the data cube concept to further
understand the results of ML models [12, 13, 37]. However, BOEx-
plain is different from the cube-based approaches in two aspects.
First, BOExplain can generate explanations from not only inference
data but also training and source data. Second, BOExplain does not
need to discretize numerical variables.

ML Pipeline Debugging. Rain [53] is designed to resolve a user’s
complaint about the result of an inference query by removing a
set of tuples that highly influence the query result. In contrast,
BOExplain removes sets of tuples satisfying a predicate, which
can be easier for a user to understand. In addition, BOExplain is
more expressive, and supports UDFs, data science workflows, and
pre-processing functions. Data X-Ray [51] focuses on explaining
systematic errors in a data generative process. Other systems debug
the configuration of a computational pipeline [3, 26, 31, 55].

Optimization Algorithms. Bayesian optimization (BO) is used
to optimize expensive black box functions (see [11, 18, 29, 48] for
overviews). BO consists of a surrogate model to estimate the expen-
sive, derivative-free objective function, and an acquisition function
(e.g., Expected Improvement [47]) to determine the next best point.
The most common surrogate models are Gaussian processes [47]
(GP) and tree-structured Parzen estimators [8, 10] (TPE). We se-
lected TPE since it scales linearly in the size of the set of evaluated
points, whereas a GP scales cubically [10]. Other surrogate models
include random forests [23] and neural networks [49].

Hyperband [27] is a bandit-based approach for hyperparameter
tuning that uses adaptive resource allocation and early-stopping
to speed up random search. We did not choose Hyperband as the
optimization approach since a time budget needs to be specified
before running the algorithm (whereas TPE can run progressively),
and our categorical variable optimizations in Section 4 are designed
for a sequential optimization algorithm, which Hyperband is not.

Categorical BayesianOptimization.Categorical variables in BO
are often handled by one-hot encoded [17, 19, 20]. However, this
approach does not scale well to variables with many distinct val-
ues [42]. BO may use tree-based surrogate models (e.g., random
forests [23], TPE [10]) to handle categorical variables, however
their predictive accuracy is empirically poor [19, 35]. Other work
optimizes a combinatorial search space [6, 15, 36], and categorical
and category-specific continuous variables [35]. These works only
consider categorical variables or focus on categorical variables with
few distinct values, which is unsuitable for query explanation.

7 CONCLUSION
In this paper, we proposed BOExplain, a novel framework for ex-
plaining inference queries using BO. This framework treats the
inference query along with an ML pipeline as a black-box which
enables explanations to be derived from complex pipelines with
UDFs. We considered predicates as explanations, and treated the
predicate constraints as parameters to be tuned. TPE was used to
tune the parameters, and we proposed a novel individual contribu-
tion encoding and warm-start heuristic to improve the performance
of categorical variables. We performed experiments showing that
a) BOExplain can even outperform Scorpion and Macrobase for
explaining SQL-only queries in certain situations, b) the proposed
IC and warm start techniques were effective, c) BOExplain sig-
nificantly outperformed random search for explaining inference
queries, and d) BOExplain generated useful explanations for real
corrupted datasets.

ACKNOWLEDGMENTS
This work was supported in part by Mitacs through an Accelerate
Grant, NSERC through a discovery grant and a CRD grant as well
as NSF awards 1845638, 2106197, and 1564049, a Columbia SIRS
award, Amazon, and Google. All opinions, findings, conclusions
and recommendations in this paper are those of the authors and do
not necessarily reflect the views of the funding agencies.

2583

REFERENCES
[1] Firas Abuzaid, Peter Kraft, Sahaana Suri, Edward Gan, Eric Xu, Atul Shenoy,

Asvin Ananthanarayan, John Sheu, Erik Meijer, Xi Wu, et al. 2020. DIFF: a
relational interface for large-scale data explanation. The VLDB Journal (2020),
1ś26.

[2] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori
Koyama. 2019. Optuna: A next-generation hyperparameter optimization frame-
work. In Proceedings of the 25th ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining. 2623ś2631.

[3] Cyrille Artho. 2011. Iterative delta debugging. International Journal on Software
Tools for Technology Transfer 13, 3 (2011), 223ś246.

[4] Lucas Baier, Marcel Hofmann, Niklas Kühl, Marisa Mohr, and Gerhard Satzger.
2020. Handling Concept Drifts in Regression Problemsśthe Error Intersection
Approach. arXiv preprint arXiv:2004.00438 (2020).

[5] Peter Bailis, Edward Gan, Samuel Madden, Deepak Narayanan, Kexin Rong, and
Sahaana Suri. 2017. Macrobase: Prioritizing attention in fast data. In Proceedings
of the 2017 ACM International Conference on Management of Data. 541ś556.

[6] Ricardo Baptista and Matthias Poloczek. 2018. Bayesian optimization of combi-
natorial structures. arXiv preprint arXiv:1806.08838 (2018).

[7] James Bergstra and Yoshua Bengio. 2012. Random search for hyper-parameter
optimization. The Journal of Machine Learning Research 13, 1 (2012), 281ś305.

[8] James Bergstra, Daniel Yamins, and David Cox. 2013. Making a science of
model search: Hyperparameter optimization in hundreds of dimensions for vision
architectures. In International conference on machine learning. 115ś123.

[9] James Bergstra, Dan Yamins, and David D Cox. 2013. Hyperopt: A python
library for optimizing the hyperparameters of machine learning algorithms. In
Proceedings of the 12th Python in science conference, Vol. 13. Citeseer, 20.

[10] James S Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. 2011. Al-
gorithms for hyper-parameter optimization. In Advances in neural information
processing systems. 2546ś2554.

[11] Eric Brochu, Vlad M Cora, and Nando De Freitas. 2010. A tutorial on Bayesian
optimization of expensive cost functions, with application to active user modeling
and hierarchical reinforcement learning. arXiv preprint arXiv:1012.2599 (2010).

[12] Bee-Chung Chen, Lei Chen, Yi Lin, and Raghu Ramakrishnan. 2005. Prediction
cubes. In Proceedings of the 31st international conference on Very large data bases.
982ś993.

[13] Yeounoh Chung, Tim Kraska, Neoklis Polyzotis, Ki Hyun Tae, and Steven Euijong
Whang. 2019. Slice finder: Automated data slicing for model validation. In 2019
IEEE 35th International Conference on Data Engineering (ICDE). IEEE, 1550ś1553.

[14] Dean De Cock. 2011. Ames, Iowa: Alternative to the Boston housing data as an
end of semester regression project. Journal of Statistics Education 19, 3 (2011).

[15] Aryan Deshwal, Syrine Belakaria, and Janardhan Rao Doppa. 2020. Scalable
Combinatorial Bayesian Optimization with Tractable Statistical models. arXiv
preprint arXiv:2008.08177 (2020).

[16] Dheeru Dua and Casey Graff. 2017. UCI Machine Learning Repository. http:
//archive.ics.uci.edu/ml

[17] Matthias Feurer and Frank Hutter. 2019. Hyperparameter optimization. In
Automated Machine Learning. Springer, Cham, 3ś33.

[18] Peter I Frazier. 2018. A tutorial on bayesian optimization. arXiv preprint
arXiv:1807.02811 (2018).

[19] Eduardo C Garrido-Merchán and Daniel Hernández-Lobato. 2020. Dealing with
categorical and integer-valued variables in bayesian optimization with gaussian
processes. Neurocomputing 380 (2020), 20ś35.

[20] Daniel Golovin, Benjamin Solnik, Subhodeep Moitra, Greg Kochanski, John
Karro, and D Sculley. 2017. Google vizier: A service for black-box optimization.
In Proceedings of the 23rd ACM SIGKDD international conference on knowledge
discovery and data mining. 1487ś1495.

[21] Jim Gray, Surajit Chaudhuri, Adam Bosworth, Andrew Layman, Don Reichart,
Murali Venkatrao, Frank Pellow, and Hamid Pirahesh. 1997. Data cube: A re-
lational aggregation operator generalizing group-by, cross-tab, and sub-totals.
Data mining and knowledge discovery 1, 1 (1997), 29ś53.

[22] Tim Head, MechCoder, Gilles Louppe, Iaroslav Shcherbatyi, fcharras, Zé Vinícius,
cmmalone, Christopher Schröder, nel215, Nuno Campos, Todd Young, Stefano
Cereda, Thomas Fan, rene rex, Kejia (KJ) Shi, Justus Schwabedal, carlosdanielc-
santos, Hvass-Labs, Mikhail Pak, SoManyUsernamesTaken, Fred Callaway, Loïc
Estève, Lilian Besson, Mehdi Cherti, Karlson Pfannschmidt, Fabian Linzberger,
Christophe Cauet, Anna Gut, Andreas Mueller, and Alexander Fabisch. 2018.
scikit-optimize/scikit-optimize: v0.5.2. https://doi.org/10.5281/zenodo.1207017

[23] Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. 2011. Sequential model-
based optimization for general algorithm configuration. In International confer-
ence on learning and intelligent optimization. Springer, 507ś523.

[24] Nodira Khoussainova, Magdalena Balazinska, and Dan Suciu. 2012. Perfxplain:
debugging mapreduce job performance. arXiv preprint arXiv:1203.6400 (2012).

[25] Pang Wei Koh and Percy Liang. 2017. Understanding black-box predictions
via influence functions. In International Conference on Machine Learning. PMLR,
1885ś1894.

[26] Rahul Krishna, Md Shahriar Iqbal, Mohammad Ali Javidian, Baishakhi Ray, and
Pooyan Jamshidi. 2020. CADET: A Systematic Method For Debugging Miscon-
figurations using Counterfactual Reasoning. arXiv preprint arXiv:2010.06061
(2020).

[27] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet
Talwalkar. 2017. Hyperband: A novel bandit-based approach to hyperparameter

optimization. The Journal of Machine Learning Research 18, 1 (2017), 6765ś6816.
[28] Liam Li and Ameet Talwalkar. 2020. Random search and reproducibility for neural

architecture search. In Uncertainty in Artificial Intelligence. PMLR, 367ś377.
[29] Daniel James Lizotte. 2008. Practical bayesian optimization. University of Alberta.
[30] Brandon Lockhart, Jinglin Peng, Weiyuan Wu, Jiannan Wang, and Eugene Wu.

2021. Explaining Inference Queries with Bayesian Optimization. https://github.
com/sfu-db/BOExplain.

[31] Raoni Lourenço, Juliana Freire, and Dennis Shasha. 2020. Bugdoc: A system for
debugging computational pipelines. In Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data. 2733ś2736.

[32] Horia Mania, Aurelia Guy, and Benjamin Recht. 2018. Simple random search
provides a competitive approach to reinforcement learning. arXiv preprint
arXiv:1803.07055 (2018).

[33] Alexandra Meliou, Sudeepa Roy, and Dan Suciu. 2014. Causality and Explanations
in Databases. Proc. VLDB Endow. 7, 13 (Aug. 2014), 1715ś1716. https://doi.org/
10.14778/2733004.2733070

[34] Zhengjie Miao, Qitian Zeng, Boris Glavic, and Sudeepa Roy. 2019. Going beyond
provenance: Explaining query answers with pattern-based counterbalances. In
Proceedings of the 2019 International Conference on Management of Data. 485ś502.

[35] Dang Nguyen, Sunil Gupta, Santu Rana, Alistair Shilton, and Svetha Venkatesh.
2020. Bayesian Optimization for Categorical and Category-Specific Continuous
Inputs.. In AAAI. 5256ś5263.

[36] Changyong Oh, Jakub Tomczak, Efstratios Gavves, and Max Welling. 2019. Com-
binatorial Bayesian Optimization using the Graph Cartesian Product. In Advances
in Neural Information Processing Systems. 2914ś2924.

[37] Eliana Pastor, Luca de Alfaro, and Elena Baralis. 2021. Looking for Trouble:
Analyzing Classifier Behavior via Pattern Divergence. (2021).

[38] Jorge Ramírez, Marcos Baez, Fabio Casati, and Boualem Benatallah. 2019. Crowd-
sourced datasets to study the generation and impact of text highlighting in
classification tasks. (11 2019). https://doi.org/10.6084/m9.figshare.9917162.v4

[39] Sudip Roy, Arnd Christian König, Igor Dvorkin, and Manish Kumar. 2015. Per-
faugur: Robust diagnostics for performance anomalies in cloud services. In 2015
IEEE 31st International Conference on Data Engineering. IEEE, 1167ś1178.

[40] Sudeepa Roy, Laurel Orr, and Dan Suciu. 2015. Explaining Query Answers with
Explanation-Ready Databases. Proc. VLDB Endow. 9, 4 (Dec. 2015), 348ś359.
https://doi.org/10.14778/2856318.2856329

[41] Sudeepa Roy and Dan Suciu. 2014. A Formal Approach to Finding Explana-
tions for Database Queries. In Proceedings of the 2014 ACM SIGMOD Interna-
tional Conference on Management of Data (Snowbird, Utah, USA) (SIGMOD
’14). Association for Computing Machinery, New York, NY, USA, 1579ś1590.
https://doi.org/10.1145/2588555.2588578

[42] Binxin Ru, Ahsan Alvi, Vu Nguyen, Michael A Osborne, and Stephen Roberts.
2020. Bayesian optimisation over multiple continuous and categorical inputs. In
International Conference on Machine Learning. PMLR, 8276ś8285.

[43] Sunita Sarawagi, Rakesh Agrawal, and Nimrod Megiddo. 1998. Discovery-driven
exploration of OLAP data cubes. In International Conference on Extending Database
Technology. Springer, 168ś182.

[44] Sunita Sarawagi and Gayatri Sathe. 2000. i3: intelligent, interactive investigation
of olap data cubes. ACM SIGMOD Record 29, 2 (2000), 589.

[45] Gayatri Sathe and Sunita Sarawagi. 2001. Intelligent rollups in multidimensional
OLAP data. In VLDB, Vol. 1. 531ś540.

[46] Fotis Savva, Christos Anagnostopoulos, and Peter Triantafillou. 2018. Explaining
aggregates for exploratory analytics. In 2018 IEEE International Conference on Big
Data (Big Data). IEEE, 478ś487.

[47] Matthias Schonlau,William JWelch, and Donald R Jones. 1998. Global versus local
search in constrained optimization of computer models. Lecture Notes-Monograph
Series (1998), 11ś25.

[48] Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando De Fre-
itas. 2015. Taking the human out of the loop: A review of Bayesian optimization.
Proc. IEEE 104, 1 (2015), 148ś175.

[49] Jasper Snoek, Oren Rippel, Kevin Swersky, Ryan Kiros, Nadathur Satish,
Narayanan Sundaram, Mostofa Patwary, Mr Prabhat, and Ryan Adams. 2015.
Scalable bayesian optimization using deep neural networks. In International
conference on machine learning. 2171ś2180.

[50] Jasper Roland Snoek. 2013. Bayesian optimization and semiparametric models
with applications to assistive technology. Ph.D. Dissertation. Citeseer.

[51] Xiaolan Wang, Xin Luna Dong, and Alexandra Meliou. 2015. Data x-ray: A diag-
nostic tool for data errors. In Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data. 1231ś1245.

[52] Eugene Wu and Samuel Madden. 2013. Scorpion: Explaining Away Outliers
in Aggregate Queries. Proc. VLDB Endow. 6, 8 (June 2013), 553ś564. https:
//doi.org/10.14778/2536354.2536356

[53] Weiyuan Wu, Lampros Flokas, Eugene Wu, and Jiannan Wang. 2020. Complaint-
driven Training Data Debugging for Query 2.0. In Proceedings of the 2020 ACM
SIGMOD International Conference on Management of Data. 1317ś1334.

[54] Dong Young Yoon, Ning Niu, and Barzan Mozafari. 2016. Dbsherlock: A per-
formance diagnostic tool for transactional databases. In Proceedings of the 2016
International Conference on Management of Data. 1599ś1614.

[55] Jiaqi Zhang, Lakshminarayanan Renganarayana, Xiaolan Zhang, Niyu Ge, Vas-
anth Bala, Tianyin Xu, and Yuanyuan Zhou. 2014. Encore: Exploiting system
environment and correlation information for misconfiguration detection. In

2584

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://doi.org/10.5281/zenodo.1207017
https://github.com/sfu-db/BOExplain
https://github.com/sfu-db/BOExplain
https://doi.org/10.14778/2733004.2733070
https://doi.org/10.14778/2733004.2733070
https://doi.org/10.6084/m9.figshare.9917162.v4
https://doi.org/10.14778/2856318.2856329
https://doi.org/10.1145/2588555.2588578
https://doi.org/10.14778/2536354.2536356
https://doi.org/10.14778/2536354.2536356

Proceedings of the 19th international conference on Architectural support for pro-
gramming languages and operating systems. 687ś700.

2585

