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ABSTRACT

Statistical Constraints (SCs) play an important role in sta-
tistical modeling and analysis. This paper brings the con-
cept to data cleaning and studies how to leverage SCs for
error detection. SCs provide a novel approach that has var-
ious application scenarios and works harmoniously with
downstream statistical modeling. Entailment relationships
between SCs and integrity constraints provide analytical in-
sight into SCs. We develop SCODED, an SC-Oriented Data
Error Detection system, comprising two key components:
(1) SC Violation Detection: checks whether an SC is violated
on a given dataset, and (2) Error Drill Down: identifies the
top-k records that contribute most to the violation of an
SC. Experiments on synthetic and real-world data show that
SCs are effective in detecting data errors that violate them,
compared to state-of-the-art approaches.
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1 INTRODUCTION

A Statistical Constraint (SC), also known as Probabilistic
Dependence and Independence, is a fundamental concept
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Figure 1: (a) A counter-intuitive SC: Color 1L Model
(highlighted) is inferred from the correlation matrix;
(b) A counter-intuitive SC: Color 1L Price | Model is
derived from the bayesian network.

in Machine Learning (ML) [24, 48]. An SC expresses the de-
pendence and independence relationships among a set of
variables, and plays an important role in statistical modeling
and causal analysis [56]. For example, suppose that a data
scientist wants to build a regression model to predict Car
Price. She needs to first understand the (in)dependence rela-
tionship between each feature (e.g., Color, Model, Fuel) and
the target variable (i.e., Price). Many SCs may be relevant,
for instance

SC; : RowlID 1L Price, SC, : Model JL Price.

SC; represents an independence relationship, which indi-
cates that RowID cannot be used to predict Price. SC, repre-
sents a dependence relationship, which indicates that Model
is a good feature for predicting Price.

The novel problem we study in this paper is how to lever-
age SCs for error detection. Although SCs have been widely
examined and applied, to the best of our knowledge, they
have not previously been deployed for error detection. The
main purpose of this paper is to i) introduce SCs and associ-
ated techniques to data cleaning and ii) study how to apply
SCs to error detection. In the following, we discuss two
application scenarios of SC-based Error Detection for ML.

ML Model Construction. During ML model construction,
data scientists may discover a counter-intuitive SC from the
data, and want to know whether it is a result of data errors.
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ExampLE 1. Consider a car database with Model, Color,
Price, Fuel attributes. A data scientist computes a correlation
matrix from the data (Figure 1(a)), where each cell in the matrix
contains the Kendall Tau correlation between two attributes [1]
(see Sec. 4.3). She looks for highly correlated cells (dark in
the heatmap) and checks whether they contradict her domain
knowledge. The data correlation matrix suggests that Color
and Model are highly correlated (red dotted line). This is a
counter-intuitive relationship since knowing Color should not
give significant information about Model. The data scientist
suspects that the data may have some errors and wants to
confirm whether it is the case.

Next, she builds a Bayesian network model from the data [45]
(Figure 1(b)), where each node represents an attribute and each
edge represents a conditional dependency. She can infer some
simple SCs from the edges in the model, such as Model )L Color
and Model JL. Price. By applying d-separation [25], she can
infer many more complex SCs from the model, such as Color 1L
Price | Model: knowing Color gives no extra information about
Price once we have knowledge of Model. If this contradicts her
domain knowledge, again she wants to examine whether the
data has errors that cause this counter-intuitive independence.

ML Model Deployment. During model deployment, data sci-

entists may infer a number of important SCs from an ac-
cepted model, and want to ensure that new data satisfy them.

ExAMPLE 2. After a model is trained, it will be applied to
unseen test data. If training data and test data satisfy different
dependencies (e.g., Model and Fuel are dependent on training
data but not on test data), the model performance will degrade.
Enforcing SCs on test data captures this SC violation. In our
experiments, we use a real-world dataset to demonstrate that
there data errors can cause an SC to hold on training data but
not on test data. Our methods can be applied to detect such SC
violations.

In a similar scenario, training data needs to be collected
and updated periodically. Before training a model on incoming
datasets, it is important to check whether the updated data sat-
isfies a set of user-specified SCs to ensure the model is trained
on a trustworthy data source. For example, suppose that a user
specifies that Model and Fuel are dependent, but the new train-
ing dataset shows an independence between Model and Fuel.
The analyst will want to detect this violation and understand
why it happens.

To support such applications, we develop SCODED, an SC-
Oriented Data Error Detection system. SCODED contains
two major components: SC Violation Detection and Error
Drill Down. Given a dataset and an SC (e.g., Color 1L Model),
SCODED first checks whether the dataset violates the SC, i.e.,
whether the dataset shows a different statistical relationship
(Color JL Model). If the violation is detected, it returns the

top-k records that contribute most to the violation, aiming
to help the user understand why the violation happens.

SC Violation Detection. We find that SCs in many datasets
do not hold exactly. Indeed [62] reports that in many datasets,
ICs, such as functional dependencies, do not hold exactly
either, causing low precision (many false positives). The solu-
tion in previous error detection systems is to use approximate
constraints. Inspired by approximate functional dependen-
cies [44], we define approximate statistical constraints, which
hold to a degree and allow for exceptions. We develop a new
framework that leverages statistical hypothesis testing to
detect the violations of approximate SCs. We also evaluate
different hypothesis test statistics for error detection: For
categorical (discrete) attributes, the G-test; for continuous
attributes, Kendall’s rank correlation coefficient 7.

Error Drill Down. Once an SC is detected, a user may ask
why it is violated. SCODED helps the user identify likely dirty
records that cause the violation. The problem of identifying
a subset of dirty records can be phrased as a dataset partition
problem: find the minimum number of records such that if
they were removed from the data, the violation would be
resolved. A related problem is the top-k contribution problem:
find the top-k records that contribute most to the violation.
Both problems are novel optimization problems relevant for
error detection. We prove that the dataset partition problem
reduces to the top-k problem, in the sense that a polynomial-
time algorithm for dataset partition yields a polynomial-
time algorithm for top-k. We propose an efficient top-k error
detection algorithm, whereas the brute-force solution to the
top-k problem is highly inefficient.

To place SCODED in the context of previous work, we
note that a recent survey paper classifies existing approaches
into four categories: constraint-based, pattern-based, outlier
detection, and de-duplication [5]. Our paper belongs to the
first category, where a user specifies a constraint, and the
system detects erroneous values that violate the constraint.

Statistical vs. Integrity Constraints. Various forms of In-
tegrity Constraints (ICs) are proposed for error detection [31].
One natural question is how different SCs are from ICs. Ex-
ploring the answer to this question is useful for two reasons.
First, since ICs are a well-known concept in the DB commu-
nity, it will facilitate the understanding of SCs. Second, it
will identify the situations where SCs are more expressive
than ICs. Previous work established several entailment re-
lationships [22, 34, 55] with functional dependencies (FDs),
and multi-valued dependencies (MVD). However, they only
apply to saturated SCs, where the SC involves all columns in
a relation. We extend their work for general SCs and describe
new entailment relationships.



We implement the SC violation detection and top-k error
detection algorithms in SCODED. Extensive experiments on
synthetic and real-world datasets show the advantages of
SCODED over state-of-the-art approaches when detecting
errors that cause violations of SCs. Our main contributions
are as follows.

e Introducing a novel SC-oriented error detection approach,
and identifying scenarios in which SCs are useful and com-
plement existing approaches.

e Leveraging and developing statistical hypothesis testing
methods to assess whether a dataset violates an SC, and to
what degree the SC holds or fails.

¢ Extending statistical hypothesis testing methods with a
novel top-k approach to highlight records that contribute
the most to the violation of statistical constraints. Drilling
down on the causes of SC violations identifies records that
are likely to be dirty.

The remainder of this paper is organized as follows. We
formally define SCs and compare SCs and ICs in Section 2.
Section 3 presents the SCODED system architecture. We
study the SC violation detection problem in Section 4, and the
error-drill-down problem in Section 5. Section 6 reports our
experimental findings. We review related work in Section 7,
and conclude in Section 8.

2 STATISTICAL CONSTRAINTS

We first present a formal definition of SCs, and then discuss
the entailments between SCs and ICs.

2.1 Definitions

A variable X is an attribute or feature that can be assigned a
value x from a fixed domain; we write X = x to denote an
assignment of a value to a variable. Boldface vector notation
refers to finite sets of objects. For example X = x = (X; =
x1, X2 = X2,...,Xn = x,) denotes a joint assignment where
variable X; is assigned value x;, for eachi = 1,...,n. In
relational terms, a variable corresponds to an attribute or
column, and a joint assignment to a tuple or row.

A random variable requires a distribution P(X = x) that
assigns a probability to each domain value in the domain
of X. A joint distribution P(X = x) assigns a probability to
each joint assignment. Given a joint distribution for a set
of variables X, the marginal distribution over a subset Y is
definedby P(Y =y) =3, P(Y=y,Z=2).HereZ=X-Y
contains the set of variables in X but notin Y, and the comma
notation Y =y, Z = z denotes the conjunction of two joint
assignments. The conditional probability of an assignment
X = x given another assignment P(Y) = y is defined as
PX=x|Y=y)=PX =x,Y =y)/P(Y =y).

A key notion of this paper is the concept of conditional
independence among sets of variables. Intuitively, a set of

Table 1: Entailments Between SCs and ICs.

ISC vs. FD Y 4L (XUY)|X = XY

ISC vs. MVD Y L (XUY)|X = X-»Y

ISC vs. EMVD Y 1L Z|IX = X-»Y|Z

DSC vs. FD . Y_.JA_X X-Y
DSC is maximally strong

variables X is independent of another set Y given a third
conditioning set Z if knowing the values of the variables
in Y adds no information about the values of the variables
in X, beyond what can be inferred from the values in the
set Z. Formally, for three disjoint sets X, Y, Z and assuming
P(Z = z) > 0 for all values z, we define

X1Y|Z
PX =x,Y=y|Z=2) =
PX =x|Z=2)xP(Y =y|Z=2) forallx,vy,z.
We call X Ul Y|Z an independence SC (ISC). A dependence
SC (DSC), written X JL Y|Z, is the negation of an ISC: for

some values x,y,z, we have P(Y =y,Z = z) > 0 and P(X =
x|Y=y,Z =2) # P(X = x|Z = 2).

DEFINITION 1 (STATISTICAL CONSTRAINTS). Fix a set of
variables V. = {Vi,...,V,}. A finite set of statistical con-
straints ¥ = 1 U D comprises

(1) a finite set of independence SCs, I = {¢1,...,$p},

where each ¢; is of the form X 1L Y|Z

(2) a finite set of dependence SCs, D = {14, ..

each A; is of the form X L Y|Z

., Aq}, where

So far we have defined SCs for probability distributions
in general. They become constraints on data when we ap-
ply them to the observed probability distribution associated
with a data relation [34]. This empirical distribution Pp
associated with a relation D is defined as follows. Let r[X]
denote the tuple of values in the X columns for record r.
Given an assignment X = x, a record satisfies the assignment
if r[X] = x. The empirical count is the number Np(X = x)
of records that satisfy it. The empirical frequency of an
assignment is the number of satisfying records, divided by
the total number of records:

Pp(X =x) = Np(X = x)/Np

where Np is the cardinality of relation D.

2.2 Statistical vs. Integrity Constraints

ICs that represent multi-column dependencies among attributes,
such as functional dependencies and embedded multi-valued
dependencies, are conceptually similar to SCs: Both repre-
sent inferential relevance from values in one set of columns to
values in another. This conceptual similarity leads to formal



Table 2: The table satisfies Z - X|Y, but not X /i Y|Z.
Counter-example to the converse of Proposition 1.

Z | X |Y | M
|21 | X1 | Y1 | M
2 || 21 | X2 | Y2 | Ty
3|21 | X1 | Y2 | M
g || 21 | X1 | Yo | M2
s || 21 | X1 | Yo | M3
e || 21 | X2 | Y1 | M1

connections between SCs and FDs/EMVDs. The motivation
for these results is to provide a theoretical understanding of
the differences between ICs and SCs, especially when one is
applicable for error detection, and the other is not. Table 1
summarizes the theoretical relationships among ICs and SCs
discussed in this section.

We review theorems established previously in the litera-
ture [34] and add two new results. i) An FD entails a max-
imally strong dependence SC (DSC). ii) An independence
SC (ISC) entails an EMVD. The results are used as follows
in our experiments in Section 6. i) means that we can trans-
late an FD into a DSC and use SCODED as a novel method
for leveraging an FD for error detection. Our experiments
show that this is an effective error detection method given
an approximate FD. ii) shows the novelty of ISCs for error
detection: While EMVDs have not been previously used in
error detection [6], we can think of ISCs as a way to lever-
age the inferential independence expressed by EMVDs. Our
experiments show that using an approximate ISC as an ap-
proximate EMVD allows us to detect new kinds of errors,
compared to deterministic dependencies (such as functional
dependencies and dependence constraints).

We say that one constraint entails another, denoted by
=, if any relation D that satisfies the former also satisfies
the latter. A relation D satisfies a statistical constraint if the
empirical data distribution Pp does [34]. Two common ICs
that we consider in this section are functional and embedded
multi-valued dependencies, which are defined as follows.

DEFINITION 2 (FUNCTIONAL DEPENDENCY (FD)). A relation
D satisfies an FD X — Y if for any two records ry,r, € D, if
ri[X] = ry[X], then r{[Y] = rp[Y].

For example, consider an FD Z — X. Table 2 does not
satisfy this FD since for r; and ry, we have r[Z] = ry[Z] = zy,
but r;[X] = x; and r,[X] = x; are not equal.

DEFINITION 3 (EMBEDDED MULTI-VALUED DEPENDENCY
(EMVD)). A relation R satisfies an EMVD X —» Y|Z if
lxyz(D) =xy (D) »Ixz(D) [34].

For example, consider an EMVD: Z —» X]|Y. Table 2
satisfies this EMVD. The reason is as follows. From the

table we have dom(Z) = {z:}, dom(X) = {x1,x2} and
dom(Y) = {y1,y}. Given that Z = z;, the columns B and C
contain all combinations of their domain values. Immediately,
we have Hzxy(D) = Hzx(D) > sz(D).

A multi-valued dependency (MVD) X —» Y is the special
case of a saturated EMVD X —» Y|Z where Z = (X U Y)C,
that is, XYZ contains all columns in the relation.

Independence Statistical Constraints(ISC). Key entail-
ments established in previous work [34] are the following.

X>Y = X>»>Ye=YULXUY)X

It is well-known that an FD X — Y entails an MVD X —»
Y [22]. The equivalence between an MVD X —» Y and a
saturated ISC Y 1L (X U Y)C|X was established by [55].

Since MVD is a special case of EMVD, and a saturated SC
is a special case of SC, we explore the entailment relationship
between their general forms, i.e., EMVD vs. SC. Interestingly,
EMVDs are weaker constraints than SCs. That is, an ISC
entails an EMVD, but not vice versa.

ProposITION 1. For all disjoint sets of attributes X,Y,Z
YULZIX = X»Y|Z (1)

Proor. All the proofs in the paper can be found in the
technical report [69]. O

Table 2 shows a counter example. As shown above, Table 2
satisfies Z - X|Y. However, P(X = x1|Z = z1) = %, P(Y =
ylZ =z) = %, and P(X = x1,Y = y1|Z = z1) = %, which
leads to P(X,Y|Z) # P(X|Z)P(Y|Z),so X L Y|Z.

Proposition 1 shows the novelty of ISCs for error detec-
tion: approximate ISCs can be seen as a kind of approximate
EMVD, and our paper is the first to leverage this kind of
constraint for error detection.

Dependence Statistical Constraints (DSC). A common
measure of dependence strength is the mutual informa-
tion I(X;Y) [34, 65]:

P(Y =y, X =x)
P(Y=y)XxP(Y =y)"

IX;Y) = Z P(X = x,Y = y)log,(
xy
Two categorical random variables have minimal mutual
information 0 if and only if they are independent [34]. Let Ip
be the mutual information derived from the empirical data
distribution Pp. An FD entails a maximally strong DSC:

PROPOSITION 2. Suppose that a relation D satisfies
a functional dependency X — Y. Then Pp satisfies
the DSC X L Y of MI-maximal strength: In(X;Y) >
In(X';Y) for all sets of columns X’.

The proposition assumes that the Y-columns are not constant
(contain only a single repeated tuple). Similar results can



(a) Original Car Database (b) Inserted New Records

RID Model Color RID Model Color
rl BMW X1 White r9 BMW X1 White
r2 BMW X1 Black r10 BMW X1 White
r3 BMW X1 White ril BMW X1 White
rd BMW X1 Black r12 BMW X1 Black
r5 | Toyota Prius | White r13 | Toyota Prius | Black
r6 | Toyota Prius | White rl4 1 Toyota Prius | Black
r7 | Toyota Prius | White rl5 | Toyota Prius | Black
r8 | Toyota Prius | Black rl6 | Toyota Prius | Black

Figure 2: (a) The original Car database and Model 1L
Color. (b) Adding records r9-r16 to the database.
SCODED first detects that the new database violates
Model 1L Color, and then finds the top-5 records (high-
lighted), which potentially cause the violation.

be shown for continuous variables. Proposition 2 supports
translating an FD X — Y into a DSC X JL Y. This is the
translation that we use in our experiments in Section 6.

3 SCODED OVERVIEW

We describe SCODED, an SC-Oriented Data Error Detection
System. Figure 3 shows the architecture. The system consists
of four core components: SC Discovery, Consistency Checking,
Violation Detection and Error Drill-down.

SC Discovery. This component aims to assist data scien-
tists to discover SCs. Conceptually it is similar to discovering
dependency ICs, which is an important part of the data profil-
ing process [6]. Various statistical tools have been developed
that a data scientist can leverage to perform statistical data
profiling and discover SCs (cf. Figure 1). Another approach
used very recently in data management [58, 59] is to visu-
alize the causal relationships among random variables in a
causal graph. From a causal graph all possible SCs can be
derived. SC discovery is a major topic in the Al community
[16, 24, 48]. Given the extensive previous research in both
statistics and machine learning on how to solicit SCs from
users, we include SC Discovery as a component, but do not
propose a new method for it.

Consistency Checking. This component aims to check
whether a set of SCs have conflicts. Consider a simple ex-
ample, where we are given two SCs: X = {X 1L Y, X } Y}.
Clearly, X 1L Y and X JL Y cannot be satisfied by the same
data relation, so X is inconsistent. New potentially contra-
dictory SCs can be derived using the graphoid axioms [50].
Fortunately, the problem of deciding whether a given set
of SCs is consistent has been studied extensively by Al re-
searchers [24, 48, 61]. Given the extensive previous research
conducted on SC consistency checking, we include it as a
component, but do not propose a new method for it.

————————————————————————————
’
Input | Consistent Erroneous
SCs SCs Columns
Optional
sCs

wy
Detected
Errors

1
1
1
1
I
1
1

SC-Oriented Error Detection ,

Figure 3: SCODED Architecture

Violation Detection. This component aims to check whether
a dataset violates an SC by deploying hypothesis testing. A
hypothesis test can be used to determine whether the viola-
tion is statistically significant or potentially due to random
exceptions. For example, consider the original car database
and SC = Model 1L Color in Figure 2(a). Suppose the data-
base is updated by inserting records ro — ris (Figure 2(b)).
The user expects that Model and Color should have an inde-
pendent relationship. However, a G hypothesis test on the
data indicates that Model and Color are highly correlated,
which violates the constraint.

Error Drill-Down. If a dataset violates an SC, the data sci-
entist will want to investigate the cause of the violation.
This error-drill-down component aims to identify individual
records that contribute the most to the violation of an SC.
In many situations, systematic errors cause the SC viola-
tion as a side-effect. Drill-down analysis shows the user a
small number of k potentially dirty records. The user can
check whether these records follow a pattern. Continuing the
example in Figure 2, if the user specifies k = 5, the error-drill-
down algorithm will return rs, r13 — r16. The data scientist
finds two interesting patterns: (1) all five records are from
Toyota Prius, and (2) their colors are all Black.

4 DETECTING SC VIOLATIONS

We present an SC violation detection framework that lever-
ages statistical hypothesis testing. A hypothesis test statistic
can be viewed as an approximate SC. The motivation for using
approximate SCs is that in many datasets, SCs do not hold ex-
actly. Inspired by approximate functional dependencies [44],
we define approximate statistical constraints, which hold to
a degree and allow for exceptions. We investigate which test
statistics are appropriate for error detection.

4.1 Approximate SCs

Consider the Car database. Suppose a data scientist wants to
represent the domain knowledge that Price and Color have
a small dependence. We find that neither Price L Color nor
Price JL Color meets her need since the former represents an
independence (rather than dependence) relationship while
the latter does not characterize “small” in the dependence



Algorithm 1: SCs Violation Detection Algorithm

Input: A dataset D, an approximate SC (¢x 1 y|z, &)
Output: Violated or Not Violated
// Apply Hypothesis Testing
Letc = ¢x 1y |z (D)
Compute p-value p(D) = P(t > ¢ | X 1L Y|Z)
if p(D) < a then
L Reject X UL Y|Z

T B N

return Violated

else
8 Accept X UL Y|Z
return Not Violated

N

correlation. Approximate SCs address this problem, because
they allow us to define a small degree of dependence as
one that is close to minimal, or 0; similarly a strong degree
dependence is one that is close to maximal.

For ease of presentation, we will focus on independence
SCs but note that all the definitions and algorithms proposed
in Sections 4 and 5 can be trivially extended to dependence
SCs. Let ¢x 1 v |z denote a test statistic (examples appear
in Section 4.3). A test statistic is an aggregate function that,
given a relation, returns a real number in [0, m], where the
value 0 corresponds to minimal dependence or complete
independence, while the value m to minimal independence
or maximal, typically deterministic, dependence. The larger
the statistic ¢x v |z (D), the stronger the dependence. Let o
denote a false dependence rate (FDR), which controls the
approximation level. Our FDR concept is an instance of the
general concept of a significance level.

DEFINITION 4 (APPROXIMATE STATISTICAL CONSTRAINTS).
Define an approximate SC as {¢x v |z, ), where dx vy |z is
a test statistic and a € [0, 1] is a false dependence rate.

Higher FDRs require stronger independence relationships. A
maximal FDR of 1.0 corresponds to complete independence,
or a statistic value 0. For example, (¢modeli Colors 0.90) en-
forces a strong independence between Model and Color. A
minimal FDR of 0.0 corresponds to a maximally high value
of the test statistic. For example, {((Pmodel . Prices 0.05) enforces
a weak independence between Model and Price.

4.2 SC Violation Detection Algorithm

For simplicity, we first focus on the case when X and Y
are single variables, and then extend the framework to the
general setting.

X,Y are single variables. A hypothesis test T is a proce-
dure that takes as input a dataset D and outputs either 0
(“the hypothesis is rejected") or 1 (“the hypothesis is not
rejected"”). The most common hypothesis tests are based
on the concept of a p-value, which is the probability of ob-
serving a value t at least as great as the test statistic for
the dataset, if the null hypothesis = independence constraint

Probability Density

az

Figure 4: The x-axis represents values ¢ of the test
statistic. We project two different FDR rates o, and o,
to their corresponding ¢-values.

were true. Formally, the p-value for a dataset is computed
as p(D) = P(t > ¢ | Hy is true) where H, is the NULL Hy-
pothesis, ¢ is the standard test statistic value calculated from
the data set, and ¢t > ¢ defines the interval of real numbers
greater than c . The higher the p-value, the lower the observed
test statistic, the stronger the observed independence, and the
weaker the observed dependence. For example, a maximal p-
value of 1.0 corresponds to a test statistic value of 0 and hence
to maximally strong independence. A minimal p-value of
0.0 corresponds to a maximally high test statistic and hence
to a maximally strong dependence. The test rejects Hy if
the observed p-value is less than the specified FDR «. This
means that the significance level « is an upper bound on
the probability of a false positive, that is, rejecting the null
hypothesis when it actually is true. Definition 5 formally
defines independence SC violation.

DEFINITION 5 (SC VIOLATION). Given a dataset D, and an
approximate SC: {(¢px 1y |z, &), we say the dataset violates the
given SC if and only if

P(t>c|Hy) <a (2)
wherec = ¢x 1y |z(D), and Hy : X 1L Y|Z.
Algorithm 1 illustrates the violation detection algorithm.

ExaMpLE 3. Figure 4 illustrates the density probability
Pp over the Car dataset D. Consider an approximate SC:
(PModelw Price(+), 0.05). The shaded green region corresponds
to p(D). We project the p-value

p(D) = P(lL > ¢ModelJJ_Co[or(D) | HO = Model 1L CO[OI’)

on the x-axis as ¢ (refer to the navy dashed line). Consider
two FDRs a1 and a. If a; is chosen, then we have p(D) > a;.
Hence Algorithm 1 will accept Hy and return “not violated”.
However, if a; is chosen, then we have p(D) < a,. Algorithm 1
will reject Hy and return “violated”.

X,Y are sets of variables. Our violation detection algo-
rithm can be easily extended to the case when X, Y are sets
of variables. Consider an SC: X 1L Y;Y;3|Z, where X, Y1, Ys,
and Z are sets of variables. The decomposition principle as-
serts that this SC can be equivalently represented by the



following two SCs [24]:

We apply decomposition recursively until there is no SC
whose X or Y contains multiple variables. Then, the vio-
lation detection problem is reduced to the single-variable
case. Decomposition can be derived from mild theoretical
assumptions, and has been empirically verified on many
datasets [11, 48].

4.3 Choosing Test Statistics

SCODED adopts the G-test for categorical variables and
Kendall’s 7 rank for numerical variables.

G-test. We use the G statistic for testing independence among
categorical (discrete) variables. G is the rescaled mutual in-
formation for the empirical distribution Pp:

G(D) = 2-Np - I(X; Y).

Rescaling by the size of the data relation Np is important
because a dependency based on a larger dataset is more likely
to indicate a genuine error rather than random fluctuations.

Kendall’s r rank. We use Rank Correlations for testing inde-
pendence among numerical (continuous) variables. Consider
n datapoints with two features D = (x1, 1), . . . , (X, yn). For
two datapoints (x;,y;) and (x;, y;) with i # j, if x; > x; and
y; > yj, or x; < xj and y; < yj, then the two variables agree
on the ordering of i and j and the pair (i, ) is concordant.
The number of concordant pairs is denoted as n (D). Else
if x; > x; and y; < y;, or x; < x; and y; > yj;, then the two
variables disagree on the ordering of i and j and the pair
(i, ) is discordant. The number of discordant pairs is denoted
as ng(D). Pairs neither concordant nor discordant are called
tied, and their number is denoted as n;(D). The 7 statistic is

then computed as 7(D) = ne(D)-na(D)

Motivation. We chose Kendall’s 7 as a default method
over other popular options (e.g., Pearson’s coefficient p and
Spearman’s ps [65]) because the default method in SCODED
should be compatible with many data characteristics, so the
fewer underlying data assumptions, the better. In statistical
terminology, we want to use a non-parametric hypothesis
test. Pearson’s p is a parametric method that measures the
degree to which X and Y are linearly related. The disadvan-
tage of the p statistic is that it is reliable only under certain
assumptions, including that the relationship between X and
Y should be approximately linear. Spearman’s ps; computes
the linear correlation p for the ranks of data points from each
column. Comparison studies [17, 23, 29, 36, 67] have found
that Kendall’s 7 is generally more robust in avoiding false
positives, which makes it preferred for data error detection.

Computing p-values. The most common approach to com-
puting p-values (Equation (2)) is to approximate the distri-
bution of the test statistic by a reference distribution (y?
for G and Gaussian for 7) [65]. This allows p-values to be
computed in closed form. Within the sample size limit, the
p-value approximations are exact under the common as-
sumption that the data points are i.i.d. (independently and
identically distributed). For a finite sample size, the tradi-
tional rule is that the y? approximation to the G-test is close
enough if each of the expected counts is at least 5 (in sym-
bols, Np(X = x) X Np(Y = y)/Np = 5).! For the r-test, the
Gaussian approximation is sufficiently close for Np > 60.
In the case of conditional tests, the sample size Np(Z = z)
must be sufficiently large for each value of the conditioning
variables Z. If the sample size is too small to use the closed-
form approximation, p-values can be computed using what is
known as an exact test [65]. Exact tests are computationally
more costly but fast for small sample sizes.

5 ERROR DRILL DOWN

This section aims to develop efficient algorithms to identify
the top-k records that contribute the most to a detected
violation. We propose a general framework and formalize
optimization problems in Section 5.1, then present two search
strategies in Section 5.2, and finally describe efficient top-k
error detection algorithms in Section 5.3.

5.1 Explanation as Optimization

An SC violation helps a user detect which columns have
errors, but not which rows. To this end, we develop an inter-
active error-drill-down framework. A user specifies an SC
and a hypothesis testing method (e.g., 7 test). If the result
of the hypothesis test indicates that a data error may exist,
the drill-down method will return k records whose column
values are most likely to cause the violation. We cast error
drill down as two optimization problems: dataset partition
and top-k contribution. These are algorithmically equivalent
(mutual polynomial-time reductions exist).

A straightforward approach is to assume that data violat-
ing an SC can be partitioned into a clean and a dirty subset.
The clean subset satisfies the SC, whereas the dirty one does
not. Therefore removing the dirty subset will bring the value
of the test statistic closer to what the SC requires. This leads
to the following optimization problem.

DEFINITION 6 (DATASET PARTITION). Given a dataset D,
and an approximate independence SC (¢x v |z, ), the data
partition problem is to find a minimum-cardinality subset AD
of records such that the updated p-value p(D — AD) > a.

! http://www.biostathandbook.com/small.html
2 https://itl.nist.gov/div898/software/dataplot/refman1/auxillar/kend_
tauhtm
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Another approach is to search for a set of records that
minimize the test statistic.

DErinITION 7 (ToP-k CONTRIBUTION). Given a dataset D,
an SC: X 1l Y|Z, a test statistic ¢, and a threshold k, the top-k
contribution problem identifies a set of k records AD, such that
the test statistic ¢x v |z (D — AD) is minimized.

The top-k contribution problem asks the user to provide
a threshold k rather than a FDR a. Theorem 1 asserts that
a tractable algorithm for solving one of the optimization
problems leads to a tractable algorithm for the other.

THEOREM 1. The dataset partition and the top k-problem
can be reduced to each other in polynomial time.

We focus on addressing the top-k contribution problem
in the following. The main reason is that a threshold k is
even more intuitive to the user than the significance level a.
Also, the performance of other error detection methods can
be compared with SCODED using metrics like recall@k, be-
cause these methods support retrieving the top-k records la-
belled as potential errors. But not all error detection methods
support specifying a bound a on the rate of false positives.

5.2 Search Strategies

A brute-force solution is to enumerate all ('i') possibili-

ties, and then return the best result. This is prohibitively
expensive. Even with a modest data size of 10,000 records,
assuming a reasonable k = 10, this approach would require
enumerating (1010000) = 2.7 x 10% possibilities. Therefore, we
propose two greedy algorithms, K strategy and K¢ strategy.
The K strategy seeks to directly identify the best k records;
the K¢ strategy seeks to remove the worst n — k records and

then return the remaining k records as a result.

K Strategy. The algorithm first selects the best-to-remove
record d* from D such that if it was removed, the statistic
improves the most. The algorithm removes d* from D, and
then repeats the above process to select the best record from
D — {d*}. After k iterations, the top-k records are identified.

K¢ Strategy. The algorithm first selects the worst-to-remove
record d’ from D such that if it was removed, the statistic
would deteriorate the most. The algorithm removes d’ from
D, and then repeats the above process to select the worst-to-
remove record from D — {d’}. After n — k iterations, where
n = |D|, the remaining unselected k records are returned.

Remark. The K strategy is more efficient than the K¢ strat-
egy because the former only needs to select k records but
the latter needs to check n — k records. In terms of effective-
ness, the K strategy often leads to a better objective value
(i.e., smaller p(D — AD) because it directly optimizes for that
value. In our experiments we found that the K¢ strategy is
particularly useful in identifying a set of k records that are

Toyota Prius
192 200
213 189
54 369

Figure 5: Group counts of Model and Color

highly correlated with each other, thus it is more suitable to
detect errors for the violation of an independence SC.

5.3 Top-k Error Detection Algorithms

We describe top-k error detection methods for the two statis-
tics that we examine in this paper, G and 7. We discuss how
to implement the K strategy for them efficiently. The same
implementation can be extended to the K¢ strategy trivially.

Categorical Data. We use the G-test as the default method
to detect errors for categorical data. If two records have the
same values on the tested columns, there is no difference
in choosing either one of them. Therefore, we can group
the records based on the two columns that appear in the SC,
and reduce the computation by selecting, at each iteration, a
group rather than a record. Each group contributes a single
term g to the total G-statistic. We randomly pick one record
from the group with the highest g-value.

For example, consider an SC: Model L Color and a dataset
similar to Figure 2 but with more records. We first group the
records based on the tested columns (i.e., Model and Color).
Suppose there are 2 car models and 3 colors. Then, there will
be 6 groups in total. Figure 5 illustrates the 6 groups, where
the number in each cell represents the total number of the
records that belong to that group. Each cell has a G value z.

Numerical Data. We discuss how we employ the frame-
work for numerical data with the 7 test. For investigating an
independence SC, the top-k problem (Defn. 7) is as follows.

DEFINITION 8 (TOP-k FOR 7-TEST). Given a dataset D, an
independence SC, and k, find a subset AD of records from D
that minimizes the t statistic:

. ne(D-AD)-ny(D-AD)
argmin DIk s.t.
ADCD (! 5 )

|AD| = k

We omit the denominator of the objective function since
it is a constant function of n only. The K strategy works
as follows. The weight of a record pair (r1,r2) is 1,-1,0 for
concordant, discordant, and tied, respectively. A priority
queue ranks records by their benefit benefit(r). The benefit
for a given record r is calculated as follows: find all the
records pairs with r, and then sum the weights of these pairs.
At each iteration, we select the record with the largest benefit,
and update the benefit of the remaining records.

Efficiency Analysis. Each of the k update steps runs in
time linear in the number of data records. Therefore, the



Algorithm 2: Efficient 7-test-based error detection algorithm

Input: AnSC = X 1L (L)Y, Dataset D = {< x1, y1 >, ... < Xp, Yn >}, k
Output: k records

1 T « 0;//Segment Tree

2 Q « 0;// Priority Queue

3 R < 0;// Returned List

4 benefit(< x;, y; >) =0for < x;, y; >€ D;

5 Sort D by X column value by ascending order of X;
6 // Initialization tree Ty

7 forr; € Ddo

8 ne = Ti.query((=, y;));

s | na=Th.query((ys. +oo))

10 benefit(< x;, y; >) = ne — ng;
11 T,.Nodeinsert([y;, y;]);
12 Q.push(< xj, y; >, benefit(< x;, y; >);

13 Sort D by X column value by descending order of X;
14 // Initialization tree T
15 forr; € Ddo

16 ng = Ty.query((—oo, yj));

17 ne = Tz.query((y;, +o0));

18 benefit(< xj, y; >)+ = nc — ng;

19 T,.Nodeinsert([y;, yi]);

20 | Q.update(< xj, y; >, benefit(< x;, y; >);

21 // Iteration

22 fori=1tok do

23 Add Q.top() to R;

24 Update Q; // Update the weight of each record benefit(< x;, y; >) € Q
by querying the segment tree Ty, T

25 returnR;

main computational bottleneck of the K strategy is the ini-
tialization phase. Consider a dataset with two columns: D =
(x1,Y1)>** » {Xn, Yn). Initial benefits can be computed effi-
ciently in O(nlog n) steps with two segment trees. A seg-
ment tree is a tree data structure, where each node stores
information about a segment. It allows for inserting a seg-
ment and querying a segment in O(log n) time. Algorithm 2
shows the pseudo-code and Figure 6 presents an example.
Each tree is initialized to be a single node for the interval
(=09, +00). The ascending segment tree is built up as follows:
Sort D by column X ascending, and for each record r;, run
two queries (y;, +o0) and (—o0, y;) against the current tree
and the data. Insert a segment data record. The descending
segment tree is built the same way, but with column X in
descending order. We need O(log n) time to process each
record, thus the total time complexity for building the trees
is O(nlogn). After the two trees have been built, the benefit
of each record can be computed in O(log n) time. With this
optimization, error drill-down scales to millions of records.

ExAMPLE 4 (CONSTRUCTING SEGMENT TREE). Figure 6 il-
lustrates constructing the ascending segment tree querying
(—o0,y]. Given the dataset D and SC: Price )L Fuel, sort the
dataset by Price ascending. Givenr1, query the segment (—oo, y; |
(Fig. 6 (b)). As there is one overlapping range, update the SUM
count and then insert (—co, y;]. Next, query (—0, y3), for the
overlapping range, update the total sums at each node (Fig.
6 (c)), and insert the segment (—y1,y2]) . For r3, the segment

SUM=1
sum=0 - ID | Price | Fuel

rl [31000| 25
r2 (32000 26
(a) Initialization r3 [33000| 24
‘ (—o0.25] ‘ ‘ (25, +09) ‘ r4 (34000| 32
r5 (35000| 22
SUM=1 SUM=0
Sorted by Price

(b) Query (—x,25) and Insert r1

‘(700,24]‘ ‘(24,25]‘ ‘(zs,ze]‘ ‘(ze,m]‘

SUM=1 SUM=0 sum=1 SUM=1 SUM=1 Sum=0

(c) Query (—x,26) and Insert r2 (d) Query (—»,24) and Insert r3

Figure 6: Segment Tree Example

(—o0,y3] overlaps the lefi-side tree, so we update the total r1
node sum and the root node sum, and insert (—oo, ys3].

6 EXPERIMENTAL EVALUATION

We compare the effectiveness of SCODED with other state-
of-the-art error detection approaches, using real-world datasets
containing both synthetic and real-world errors.

6.1 Experiment Setup

Datasets. Our evaluation employs six real-world datasets.
SENSOR and HOSP are commonly used for evaluating data
cleaning algorithms. HOCKEY, CAR, BOSTON, and Nebraska
come from the Machine Learning community.

(1) SENSOR3. The Sensor dataset comprises the sensor
reports from the Berkeley/Intel Lab. The dataset has more
than 2 million records, reporting humidity and temperature
measurements from 54 different sensors.

(2) HOSP*. The HOSP dataset contains 100K records with
19 attributes. We used the same clean and dirty versions of
the dataset as previous data-cleaning studies [14, 51].

(3) HOCKEY®. The Hockey dataset collected the records
of each National Hockey League (NHL) game from 1998-
2010. More than ten columns describe player attributes and
performance statistics for a season. It was first collected and
cleaned for NHL draft prediction [40].

(4) CAR®. The Car Evaluation dataset is from UCI Ma-
chine Learning repository. This dataset contains seven at-
tributes. We used 4 attributes: Buying price (BP), Car Class
(CL), Doors (DR), and Safety level (SA).

3http://db.csail mit.edu/labdata/labdata html

4http:/ /www.hospitalcompare hhs.gov

5https:/ /www.nhl.com
Shttps://archive.ics.uci.edu/ml/datasets/Car+Evaluation.



Table 3: Constraints used by SCODED and other approaches

l Attributes [ SCODED [ Dataset [ Integrity Constraints ]
Temperatures (T) of Neighboring Sensors Ta L Ty Sensor Vri, rj € D: ~(ri[Ta] > ro[Tp] A r1[Tp] < 12Ty )
Rooms(R), Black Index(B) RLUB Boston | X
Tax rate, Black Index, Crime(C) TX L B|C | Boston | Vri,rj €D:=(ri[C]=r[C]Ar[T] > r[T]Ar[B] < rB])
N_oxide, Black Index, Tax rate (T) N UL B|TX | Boston | X
Buying Price(BP), Class(Cl) BP { Cl Boston Vri, rj € D : =(ri[BP] > ry| BP] A r[Cl] < r[CI])
Safety(SA), Doors(DR) SA 1L DR CAR X
Zip Code(ZIP), City(CY) ZIP L CY | HOSP | ZIP — CY at 25% rate
ZIP, State(ST) ZIP L ST | HOSP | ZIP — ST at 25% rate

(5)BOSTON . The Boston dataset was taken from the Boston
Standard Metropolitan Statistical Area (SMSA) in 1970. This
dataset was first used to study the relationship between
clean air quality and households’ willingness to pay [26].
There are 506 instances. We used 6 of 14 attributes: Dis-
tance to CBD area-Distance (D), Nitric Oxides Concentration-
N_oxide (N), Crime Rate-Crime (C), Black index of popula-
tion (B), Rooms (R) and Tax Rate (Tx).

(6) Nebraska®. The Nebraska dataset collected the mea-
surements from national weather stations from 1949 to 1999.
The dataset was often used to predict weather trends with
many features. We followed previous work [8, 21] and se-
lected 8 features from the dataset of the region Bellevue,
Nebraska. Eight features include Temperature(TM), Dew
Point Temperature(DT), Sea level Pressure(SLP), Station Pres-
sure(STP), Visibility(V), Wind(WD), Maximum Sustained
Wind(MW), Maximum Wind Gust(G). The weather situation
(WS) is the prediction label.

Real-world Errors. Hockey is a public dataset used for
hockey player draft analytics. The creators of the dataset
originally believed that the dataset had no error. The analy-
sis, however, found that the downstream machine learning
model predicts results that contradict domain knowledge,
indicating that the data is not clean.

The Nebraska dataset contains missing values. We fol-
lowed the previous approaches in [8, 21] and imputed the
missing value with the mean value from previous 30-days
records. However, in addition to the errors previously docu-
mented, we found outliers in some of the columns.

The large Sensor dataset contains millions of temperature
measurements by Intel Lab. To compress it, we replaced
sensor readings by their hourly average collected in [42].
The dataset is known to contain erroneous outliers [33, 35].
A standard way to pre-process Sensor data is to remove
obvious outliers and then impute the missing value [47].
However, such imputations might impact downstream ML
models. Therefore, we try to detect the errors that result
from removing outliers and imputing their values.

7https://Www.cs.toronto.edu/ delve/data/boston/bostonDetail. html
8hitps://catalog data.gov/dataset/global-surface-summary-of-the-day-gsod

Simulated Errors. We simulated two common types of er-
rors: sorting error and imputation error, both of which have
appeared in real-world model development [53]. An imputa-
tion errors occur when a missing value is filled in with a mis-
leading value, typically one or more constants. The Hockey
dataset errors are due to imputations (see Case Study below).
There are two famous machine learning examples of a sorting
error occurred in the KDD-Cup 2008, which dealt with cancer
detection from mammography data. A sorting error intro-
duced a strong dependence relationship between Patient ID
and the class label. A team found this error and utilized the
dependence relationship to win the competition [53]. In a
real machine learning system, however, Patient 1D should
not be used to predict whether a patient has cancer or not.
A similar dependence based on a sorting error was used to
win a Kaggle competition [4].

For synthetic sorting errors, we selected a% of column A
(randomly or based on column B) and sorted its values in
ascending order. For the imputation error, we selected a%
of column A (randomly or based on column B) and replaced
them with the mean value of column A. a% is called error rate.
Note that sorting and imputation errors may either make
two columns A and B more independent (random values) or
less independent (values in one column selected based on the
other). We used random selection for dependence SCs, and
column B as a basis for independence SCs. We also explored
the combined impact of the two error types. Our combination
error consists of 80% sorting error and 20% imputation error.

Error-Detection Approaches. We compared SCODED with
three state-of-the-art error detection approaches.

Denial Constraints (DCDetect) is a DC based error
detection approach. The original DC approach marks all
the records involved in a DC violation as dirty records [13,
14]. To compare with our top-k error detection algorithms,
we extended it as follows. For each record r, we count the
number of other records that are inconsistent with r given
the DC, and return the top-k records that involve the most
number of violations. Table 3 summarizes the DCs used by
DCDetect. ‘X’ means that we cannot find a DC to represent
the independence SC. As shown in Section 2.2, independence
SCs are closely related to EMVDs, and EMVDs are distinct



from Denial Constraints [6, Sec.5.4]. Therefore, we included
DCDetect only in comparison with dependence SCs.

DCDetect+HC improves the above DCDetect approach for
multiple DCs. DCDetect+HC first uses DCDetect to identify
candidate dirty records, and then marks the records that are
repaired by HoloClean [51] as dirty. This approach has also
been adopted in previous work [27].

DBoost [46] is a state-of-the-art outlier detection approach.
It was also used by [5] to compare different types of error-
detection approaches. We used an implementation available
online’. We applied DBoost with three models: GMM, Gauss-
ian and Histogram. For categorical data, we employed the
bin width that achieves the best f-score results. For numeric
data, we employed Gaussian and GMM with the mixture
parameter n_subpops threshold set at 3,0.001,

Approximate Functional Dependency (AFD) [44]lever-
ages approximate integrity constraints. We utilized two AFDs
on the HOSP dataset: Zipcode -> City with approximation ra-
tio 25%, and Zipcode -> State with approximation ratio 25%. To
use AFDs for top-k error detection, we compare two methods.
1) Following [44], rank each record by projecting its approxi-
mation ratio benefit (essentially, counting the number of FD
violations due to each record). 2) Our new approach: Trans-
late the AFD into a DSC, as shown in Proposition 2, then
apply top-k drill-down to the DSC.

Table 3 summarizes the SCs used by SCODED.Hypothesis
tests used the G test for categorical data, and the 7 test for
numerical data. We implemented the error-drill-down frame-
work, and adopted the K strategy for dependence SCs and
the K¢ strategy for independence SCs.

Quality Measurement. We considered two user scenarios.
(i) The user wants to manually examine a small number of
records (e.g., k = 50) in order to reason about data errors.
For this scenario, since k is fixed, we need to maximize Pre-
cision@K, which is defined as the ratio of the number of
correctly detected records to the number k. (ii) The user
wants to detect all errors in order to repair them. For this
scenario, as k increases, recall increases while precision po-
tentially decreases. We report Precision@K, Recall@K, and
F-score@K by varying k. Precision@K is the same as above.
Recall@K is the ratio of the number of correctly detected
records among the returned K records to the number of total
erroneous records, and F-score@K is their harmonic mean.

To compare with other methods, we apply top-k drill-
down analysis regardless of whether the data show a statis-
tically significant violation of an SC. This makes achieving
high scores more difficult for SCODED, because it forces it
to identify a fixed number of records likely to violate the
SC even if the data indicate that the SC is violated only to a
small degree.

“hitps://github.com/cpitclaudel/dBoost

Top 1-17 Top 18-34 Top 35-50

1998 Yes 0 1998 Yes 0 1999 Yes 0
1999 Yes 0 1998 Yes 0 1998 Yes 0
1999 Yes 0 1998 Yes 0 1999 Yes 0
2000 Yes 0 1998 Yes ] 1999 Yes 0
1999 Yes 0 2000 Yes ] 1999 Yes 0
2004 No -4 2004 No 4 1999 Yes 0
1998 Yes 0 1999 Yes 0 1999 Yes 0
1999 Yes 0 2004 Yes 4 2000 Yes 0
2000 Yes 0 2000 Yes 0 2007 No 11
1999 Yes 0 2000 Yes 0 1998 Yes 0
1999 Yes 0 2000 Yes 0 1998 Yes 0
2000 Yes 0 1999 Yes 0 2004 Yes 4
1999 Yes 0 1999 Yes 0 2000 Yes 0
1999 Yes 0 1999 Yes 0 2000 Yes 0
1999 Yes 0 1999 Yes 0 1999 Yes 0
1998 Yes 0 1999 Yes 0 1999 Yes 0
1998 Yes 0 2000 Yes 0

Figure 7: Top-50 results identified by SCODED.
6.2 Case Study

We present two case studies of enforcing SCs on real data.

Model Construction (Hockey). A data scientist wants to
build a regression model to predict Games (GP), the total
number of games that a player will play after joining NHL.
She collects Hockey as training data, and starts doing ex-
ploratory data analysis for data validation.

Through a Bayesian Network (similar to the example in
Figure 1 (b)), she discovers a counter-intuitive SC: given
Draft Year, the prediction column Games strongly depends
on Goal Plus-Minus (GPM). Here, Draft Year is the year when
a player joins a NHL club through the Entry Draft; GPM
is the plus-minus statistic'’ of a player before joining NHL.
This strong dependence contradicts previous studies [41].

The data scientist applies SCODED to identify the top-50
records (see Figure 7). She has two surprising observations.
First, there are 45 (out of 50) returned records whose GPM is
equal to 0 while all their Games are larger than 0. Second, all
those 45 records are from the Draft Year before 2000. This
points to imputation as a possible cause of the data errors.
For early draft years (before 2000), GPM has many missing
values, and the data provider entered a 0 value even though
player’s Games value is larger than 0. Without detecting this
error, learning would infer this (wrong strong) dependence
from the training data, leading to low test performance.

Model Testing (Nebraska). A data scientist has constructed
a classification model based on historical Nebraska data (1949
- 1969) for Weather Situation(Weather) prediction (e.g., rain,
snow, fog, etc), and wants to apply it to new data (1970 - 1999)
to test model performance. The accepted model shows that
there is a strong dependency between the feature Wind Level
(Wind), and the label Weather. She enforces an approximate
SCi: {pwind 4 Weather|vear» @ = 0.3) for the test data, so
that p > 0.3 violates the dependence constraint. Figure 8(a)
shows the p-value computation result w.r.t. SC; by year.

10The difference between the number of goals that a player’s team scores versus
their opponent’s goals when the player is on the ice.



(a) Wind Weather Dependence (b) Sea Weather Dependence
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Figure 8: SCs violation detection on Nebraska.
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Figure 9: Comparison with DCDetect, DCDetect+HC,
and DBoost on Sensor.

SCODED detects two SC violations (1978 and 1989). Drill-
down analysis explains why they happend: In all the returned
top-50 records for the year 1989 we have Wind = 6.07, which
turns out to be the imputed value. Referencing the initial
data file, it is found that all the data from March to Decem-
ber are missing. The missing value imputation weakens the
dependency relationship since knowing Wind = 6.07 gives
little information about Weather on the test data.

Figure 8(b) shows that SC violation also occurred w.r.t. a
dependence between Sea-level Pressure = Sea and Weather.
Interestingly, for this feature, the violation was not caused by
missing values but by outliers. We find that in the year of 1972
(cf. Figure 8(b)), there are many outliers in January, April,
and October. About 64% of those outliers were returned by
SCODED. They weaken the dependency relationship since
knowing an outlier value of Sea gives little information about
Weather on the test data.

6.3 Evaluation of SCODED Performance

We discuss in detail the performance of SCODED compared
to our baselines.

Comparison With DBoost, DCDetect, and DCDetect+HC.

We compared SCODED with existing error detection ap-
proaches under single and multiple constraints on the Sensor.

Single Constraint. Neighboring sensors tend to report similar
temperatures, which means that their readings of the temper-
ature should be dependent. We first specified a single SC for
Sensor 8 and Sensor 9: Tg L. Ty. For DCDetect+HC and DCDe-
tect, we constructed a corresponding IC as shown in Table 3.
Figure 9(a) compares the F-Score of different approaches. We
make three observations. i) SCODED achieved a much higher
F-Score than DCDetect and DCDetect+HC. This is because
that the specified IC did not always hold, which led to many
false positives. ii) DCDetect+HC and DCDetect achieved the
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Figure 10: Effectiveness of error detection methods for
a dependence SC by varying k (Boston dataset)
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Figure 11: Effectiveness of error detection methods for
an independence SC by varying k (Boston dataset)

same F-Score since there is a single constraint. iii) SCODED
outperformed DBoost for two reasons. First, DBoost derived
correlations from dirty data, and then leveraged the derived
correlations to detect errors. However, since data is dirty,
the derived correlations might be wrong. Second, DBoost
is designed to detect outliers but the dataset has erroneous
values (imputed means) that look like a normal value.
Multiple Constraints. We specified three SCs between the
readings of Sensor 7, Sensor 8, and Senor 9: T; £ Ts, Tg 4 To,
and T; JL Ty. For DCDetect+HC and DCDetect, we con-
structed three corresponding ICs. Figure 9(b) shows the re-
sult. We make three observations. i) All four approaches
achieved a higher F-score when more constraints (i.e., more
user inputs) were provided. ii) SCODED still achieved the
highest F-score, which validates the effectiveness of SCs un-
der multiple constraints. iii) DCDetect+HC achieved a higher
F-Score than DCDetect since DCDetect+HC leveraged the
HoloClean algorithm to holistically infer which records are
dirty based on multiple constraints.

Different Forms of SCs. On the Boston, for dependence
SCs, we compared with DCDetect and DBoost; for indepen-
dence SCs, since DCDetect cannot express independence re-
lationships (cf. Section 2.2), we compared only with DBoost.

Marginal SCs: N L D and R 1L B. We compared the F-score
of SCODED, DCDetect and DBoost using different K val-
ues. The average error rate for the N column is moderate
(20% — 45%). Results are shown in Figure 10 for N JL D and
Figure 11 for R 1L B. We can see that SCODED achieved a
significantly higher F-score than DCDetect and DBoost for
all settings. SCODED’s performance depends on the error
type: It performed better for sorting error and combination
error, where the average F-score is 0.6 and the max F-score is
around 0.8. But for the imputation error, the average F-score
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Figure 12: Effectiveness of error detection methods on
the Hospital dataset (HOSP dataset).
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Figure 13: Effectiveness of error detection methods on
categorical data (Car dataset)

and the max F-score decrease to 0.5 and 0.6, respectively.
This is because the sorting errors have a bigger impact on
SCs than imputation errors do.

Conditional SCs: T L B| C and N 1L B | T. We examined the
effectiveness of SCODED for conditional dependence and
independence SCs. The results are similar to unconditional
SCs; we omit the details due to the space limit.

Comparison with Functional Dependencies. We com-
pared statistical constraints (SCODED) with functional de-
pendencies (AFD) on the Hospital dataset. Figure 12(a) shows
the result for Zipcode -> City vs. Zipcode i City. Figure 12(b)
shows the result for Zipcode -> State vs. Zipcode i State. For
this task, DCDetect is equivalent to using AFD [44]. DBoost
was not designed for this type of error and produced poor
results (not shown).

We make two interesting observations. i) SCODED and
AFD attained the same F-score for K < 3000. This is because
both of them achieved 100% precision and the same recall
when K < 3000. ii) SCODED’s F-score continued to grow
when K > 3000 but AFD’s F-score started to decrease. This is
because AFD did not effectively detect errors on the left-hand
side of an AFD, while many errors on the dataset occurred
on the left-hand side (e.g., Zipcode).

Effectiveness of Error Detection Approaches on Cate-
gorical Data. To evaluate the effectiveness of SCODED on
categorical data, we apply the G-test with two SCs (BP JL CI
and SA 1L DR) on the CAR dataset. DCDetect is not appli-
cable because there are too many violations for the feasible
DCs that we constructed. We compared the performance of
SCODED and DBoost at the moderate error level. Figure 13
shows the results. Due to the space limit, we limit our focus
to imputation errors in this experiment. The average F-score
of SCODED and DBoost are 0.49 and 0.25, respectively. The
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Figure 14: Scalability of SCODED (Boston dataset)

conclusion is that SCODED outperformed DBoost in terms
of F-score for both independence and dependence SCs.

Scalability. We concatenated copies of the Boston dataset to
enlarge its data size, and chose the dependence: SC N £ D. We
examined the execution time of SCODED by varying k and
n (# Records), respectively. Recall that the time complexity of
SCODED (the k strategy) is O(nlog n) for initialization, and
is O(knlog n) for selecting k records. The results shown in
Figure 14 are consistent with this analysis, and demonstrate
the good scalability of SCODED in both k and n.

7 RELATED WORK

We review the most closely related work in this section.

Error Detection Methods. User input is invaluable for solv-
ing error detection, because user input represents specific
domain knowledge. It is therefore important to develop error
detection methods for leveraging as many types of user in-
put as possible. Previous error detection methods have been
developed to leverage several types of domain knowledge, in-
cluding value-patterns (e.g., OpenRefine [2] and Trifacta [3]),
external knowledge bases or web tables (e.g., Katara [15],
Auto-Detect [30], and Uni-Detect [62]), and domain rules,
often represented as integrity constraints (e.g., Functional
Dependencies [44] and Denial Constraints [13]). A recent
trend is to seek user input in the form of binary "clean/dirty"
labels. Based on user labelling, error detection can be ap-
proached as a classification problem for machine learning
(e.g., HoloDetect [27] and Raha [43]). Within these different
frameworks for leveraging user input, our paper belongs to
the rule-based family. It develops a new kind of rule-based ap-
proach, which supports represents user domain knowledge
in the form of statistical constraint (SCs).

Outlier detection. Outlier detection typically examines the
data distribution of a single column to detect errors (e.g.,
any datapoint that is more than 3 standard deviation is an
outlier) [28]. In contrast, SCs are multi-column constraints.
Previous work on multi-column outliers includes [18, 19, 46,
52]. The fundamental difference to our work is that outlier
detection is driven by the data not by the user, and does not
allow a user to specify and analyze a set of SCs.

Previous Research on Statistical Constraints. Previous
work shows that SCs are useful and natural for many ap-
plications besides error detection. SCs have been studied in



the statistics and Al literature [20, 49]. Existing studies as-
sume that data is clean and explore how to infer SCs from the
data. The derived SCs can be used for statistical modeling and
causal inference. Ilyas et al. show that SCs (involving pairs of
columns) are effective in improving query optimization [32].
Salimi et al. leverage (conditional) independence relation-
ships among attributes to resolve bias in OLAP queries [57].
[62] also employed hypothesis testing on a large corpus of ta-
bles to discover diverse errors. Unlike these works, SCODED
allows the user to specify SCs explicitly and then detect and
explain SC violations. Salimi et al. showed that fairness con-
straints can be expressed as ISCs [58, 59]. Enforcing fairness
can be cast as an ISC detection and repair problem. Their
methods are restricted to saturated ISCs and their target
application is not error detection.

Data Repairing. Data cleaning involves two important tasks:

error detection and data repairing. Our paper focuses on
error detection. Data repairing studies the problem of cor-
recting erroneous values. We classify existing works about
data repairing into two categories [12].

Data Repair + Error Detection. Given a set of input constraints,
they study how to find the minimum change to the data to
satisfy the input constraints. Most works assume that the
input constraints are ICs [10, 14, 37].

Data Repair After Error Detection. Those approaches uses er-
ror detection as a black box [47, 51, 68]. ERACER [47] takes
as input a dataset with missing attribute values, and utilizes
belief propagation and relational dependency networks to in-
fer the missing values. SCAREd [68] takes as input a dataset
with a subset of rows identified as dirty and leverages max-
imal likelihood for data repairing. HoloClean [51] uses a
similar approach as HoloDetect to data repair.

Incremental IC Discovery aims to discover and maintain
ICs on dynamic data. Several incremental algorithms, such
as DynFD [60] and Swan [7], have been proposed. One of the
use cases for SCODED is to enforce SCs on new data. This can
be thought of as maintaining SCs on dynamic data. A batch
mode solution is to rerun SC violation detection algorithms
from scratch whenever data is updated. In future work we
will explore incremental on-line versions of SCODED.

Downstream Analysis and Error Explanation. There are
some studies on how to clean data for downstream analy-
sis [9, 38, 39] and how to explain data errors [54, 63, 64, 66].
None of them study how to leverage SC for error detection.

8 CONCLUSION AND FUTURE WORK

An SC represents a probabilistic association, or its absence,
among columns in a data table. SCs provide a powerful ex-
pressive formalism for capturing a user’s domain knowledge
about statistical and causal relationships. This paper explored

how to exploit SCs in data cleaning, by detecting their viola-
tions and identifying the underlying data errors. SCs provide
an attractive complement to deterministic ICs in mainly two
situations: (i) when the user wishes to assert the irrelevance
of one set of columns to another, and (ii) when the user ex-
pects an inferential relationship between columns to hold
only approximately to a certain degree, with exceptions. For
example, we showed that a functional dependence corre-
sponds to a maximal degree of probabilistic dependence, so
weaker dependencies correspond to approximate functional
dependencies.

Our SCODED system addresses the challenges of detecting
and explaining violations of SCs. For SC violation detection,
we showed how statistical metrics can be used to quantify
the degree to which an SC is violated. To explain violations,
we proposed an error-drill-down framework, and devised
efficient algorithms to identify the top-k records that con-
tribute the most to the violation of an SC. We conducted
extensive experiments on real-world datasets with both syn-
thetic and real-life errors, as well as a range of constraint
types. SCs were shown to be effective in detecting data errors
that violate them, compared to state-of-the-art approaches.

Limitations and Future Work. SCs are inherently multi-
column constraints and insensitive to single-column errors.
Examples include domain constraints (e.g. age = 200) and
arguably record duplication errors (e.g. Adriana Grande =
Ariana Grande). Two important extensions for future work
are the following. (1) Human-in-the-Loop. Integrate the dis-
covery and validation of SCs to help the user discover and
validate them efficiently. (2) Data Repairing. Extend SCODED
to the error-repairing stage, to automatically repair errors so
that the cleaned data satisfies a set of given SCs. For example,
we can adapt our methods to search for the top-k cell value
corrections that would contribute the most to satisfying a
SC. Our current approach is limited to labelling only entire
tuples as (likely) dirty, rather than specific values.

SCODED represents a novel approach to leverage power-
ful statistical methods for error detection. It has great poten-
tial for practice, and opens a new set of research directions
in the intersection of statistics and data management.
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